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ABSTRACT
Objective: This study aimed to predict the molecular features of endometrial
carcinoma (EC) and the overall survival (OS) of EC patients using histopathological
imaging.
Methods: The patients from The Cancer Genome Atlas (TCGA) were separated into
the training set (n = 215) and test set (n = 214) in proportion of 1:1. By analyzing
quantitative histological image features and setting up random forest model verified
by cross-validation, we constructed prognostic models for OS. The model
performance is evaluated with the time-dependent receiver operating characteristics
(AUC) over the test set.
Results: Prognostic models based on histopathological imaging features (HIF)
predicted OS in the test set (5-year AUC = 0.803). The performance of combining
histopathology and omics transcends that of genomics, transcriptomics, or
proteomics alone. Additionally, multi-dimensional omics data, including HIF,
genomics, transcriptomics, and proteomics, attained the largest AUCs of 0.866,
0.869, and 0.856 at years 1, 3, and 5, respectively, showcasing the highest discrepancy
in survival (HR = 18.347, 95% CI [11.09–25.65], p < 0.001).
Conclusions: The results of this experiment indicated that the complementary
features of HIF could improve the prognostic performance of EC patients. Moreover,
the integration of HIF and multi-dimensional omics data might ameliorate survival
prediction and risk stratification in clinical practice.
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INTRODUCTION
Endometrial carcinoma (EC) is the sixth most commonly encountered type of cancer in
women and one of the most prevalent malignancies of the female reproductive system.
Epidemiological data related that its incidence has risen globally in the last decades
(Fitzmaurice et al., 2018), which could be partly attributed to the global epidemic of obesity
(Sheikh et al., 2014; Zeng et al., 2015). Nevertheless, substantial geographical variations in
cancer survival rates could also be observed between China and developed countries (Zeng
et al., 2018). The main clinical research progress in EC was focused on sentinel lymph node
mapping, adjuvant radiotherapy, and targeted therapy (Garg, Jayaraj & Kumar, 2022).
However, despite of advances in EC treatment, its incidence and mortality rates continue
to grow (Xu et al., 2022). Hence, identifying novel potential clinical prognostic biomarkers
and therapeutic targets plays a vital role in enhancing survival outcomes in EC patients.

Biopsy and resection histopathological images are extensively used for cancer diagnosis,
staging, prognosis, and treatment. With the takeoff of computer-aided image analysis
systems, digital pathological images can now be examined more accurately, rapidly, and
consistently than ever before. Moreover, they assist in reducing the pressure resulting from
the shortage in manual evaluation (Zhang et al., 2015). Digital images are extracted with
histopathological image features (HIF) comprising histological and morphological
information that can be employed to determine the prognosis for numerous types of
cancer, including lung cancer, breast cancer and prostate cancer (Chen et al., 2015; Lee
et al., 2017; Yu et al., 2016). Given that tumor properties and its microenvironment are
closely related to molecular alterations, some studies have utilized tumor morphology and
gene expression to extract integrative prognostic signals (Colen et al., 2014; Yuan et al.,
2012). The integration of histopathological imaging with genomics, transcriptomics and
proteomics data in constructing prognostic models based on those high-dimensional
features has been hypothesized to impart more predicting power in predicting the survival
of cancer patients compared to using a single type of data (Cheng et al., 2017; Zeng et al.,
2020). Indeed, it is feasible to achieve better superior accuracy with the implementation of
multi-omics analysis.

The multi-omics model has been extensively applied in EC, and molecular indicators for
EC have been incorporated into the NCCN Guidelines. Studies based on multi-omics and
The Cancer Genome Atlas (TCGA) database divided EC into four distinct molecular
subgroups: (1) polymerase epsilon (POLE) ultra-mutated group, (2) microsatellite
instability (MSI)-hypermutated group, (3) copy number abnormalities-low (CN-L) group,
and (4) copy number abnormalities-high (CN-H) group (Kandoth et al., 2013). In addition
to these molecular subgroups, mutations are used to categorize EC, which can
subsequently guide its treatment and prognosis. Patients with POLE-mutant EC typically
have a favorable prognosis (McConechy et al., 2016). Noteworthily, mutations are crucial in
predicting molecular subgroups. The integration of diverse information, such as genomics,
transcriptomics, or any other known cancer-related information, might generate the ideal
performance.
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The goal of this research was to establish an image processing pipeline into which digital
histopathological slides could be introduced; the system would then automatically extract
their features and conduct sequential, systematic analyses to determine features correlated
with those detected on the slides. This study also aimed to predict the mutations and
molecular subtypes of EC using HIF and different machine-learning methods. To begin,
the prognostic model was built using image feature to establish its robustness and
reliability. Next, its performance was evaluated on the test set. Different multi-dimensional
omics models were developed to compete for higher accuracy so that the survival risk
could be more accurately predicted and to boost personalized medicines for EC patients.

MATERIALS AND METHODS
Data sources
The dataset in this study comprised genetic, transcriptional, and clinical information of EC
patients from the TCGA database. Moreover, the corresponding protein profiles were
collected from the Cancer Proteome Atlas (TCPA) repository. Variance-stabilizing
transformation (VST) of the DESeq2 R package was applied to the mRNA sequencing data
for normalization so as to extend the generality of the current model.

A total of 735 hematoxylin and eosin (H&E)-stained histopathological images of 465
patients were downloaded from The Cancer Imaging Archive (TCIA) to create the image
features (Table S1). For adequate image feature recognition and feature extraction, all the
histopathological tissue slides were formalin-fixed, and the slides were frozen to preserve
cellular morphology. Each histopathological image was reviewed by experienced
oncologists to ensure that the quality of the images was ideal for the ensuing analyses. A
dataset of 465 samples was obtained; among them clinical, histopathological and
multi-omics information was available for 429 samples.

Feature engineering on the images
The flowchart of image segmentation and multi-omics model construction is illustrated in
Fig. 1. The extremely high resolution of the original histopathological images made directly
extracting their features intractable. Therefore, they were cropped into sub-images of 1,000
× 1,000 pixels using Openslide in Python. Thereafter, 60 sub-images from each original
histopathological image were randomly selected for further analysis. CellProfiler was
utilized to extract HIF from each sub-image and can transform the colored images of
H&E-stained images into grayscale and extract useful features, including image intensity,
correlation, area occupancy, image quality, granularity, object neighbors, object size shape
and texture. Finally, the average value of 537 quantitative image features extracted from the
60 sub-images for each patient was calculated.

Statistical analysis
Classifying molecular features: An attempt was made to predict the molecular features of
EC using HIF. The data from the TCGA cohort were randomly split into a 1:1 ratio obtain
a training set and a test set. Random splits maintain consistency at a positive rate. Several
machine-learning algorithms were applied, including least absolute shrinkage and
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selection operator (LASSO), gradient boosting decision tree (GBDT), extreme gradient
boosting (XGBoost), and random forest (RF), to screen features in order of importance
and subsequently narrow down the dimensionality of the data herein to 20 features. Next,
RF, GBDT, ADABAG, logistic regression (LR), naive Bayes (NB), support vector machine

Figure 1 Workflow chart for pipeline of data analysis and modeling. (1) The histopathological images of EC 366 were cropped into smaller
sub-images with size of 1,000 × 1,000 pixels. Next, CellProfiler was used to estimate the images and calculate the average values of various image
features related to cell nucleus, morphology, and texture. (2) A total of 32 different combinations of machine learning algorithms were utilized for
prediction of subtypes and mutations based on the extracted image information. (3) We incorporated features from histopathological images,
genomics, transcriptomics, and proteomics to develop enhanced prognostic models using the random forest method. These models were trained on a
specific dataset and evaluated for predictive performance using a separate test set. Full-size DOI: 10.7717/peerj.15674/fig-1
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(SVM), decision tree (DT), and K-nearest neighbor (KNN) were selected to build
classifiers based on the selected features to predict molecular substyles (CN-high, CN-low,
MSI, and PLOE) and molecular mutations (CTNNB1, PIK3CA, PIK3R1, and PTEN).
Finally, five-fold cross-validation was applied to fine tune the hyperparameter in the
training set. Here, the area under the curve (AUC) of the receiver operating characteristic
(ROC) curve served as evaluation metrics.

Survival analysis
The TCGA cohort was divided into training and test sets. Patients in the training set were
divided into high-expression and low-expression groups according to the median value of
each histopathological imaging feature. Cox regression analysis was used to calculate the
hazard ratio (HR) and the 95% confidence intervals of the overall survival (OS). Next, the
Kaplan-Meier survival curve and the log-rank test were employed to estimate differences
in survival outcomes between the two groups. p < 0.05 was considered as statistically
significant.

Data pre-processing
The genomic features and transcriptomics were screened to lower the dimensionality of
data, and the top 100 most common somatic mutations in the training set were selected.
One hundred of the most differently expressed genes (DEGs) of the training set patients,
including the long-term (OS ≥ 60 months) and short-term (OS of 1–12 months at death)
survival group, were chosen for survival prediction.

Survival model development
The usefulness of different combinations of features, like single features (HIF, genomics,
transcriptomics, proteomics) and the combination of two types of features (HIF +
genomics, HIF + transcriptomics, HIF + proteomics, HIF + omics), in the prognostic
model was evaluated and compared. Based on the HIF and genomic data, random survival
forest (RSF) models were trained with five-fold cross-validation in the training set via the R
randomForestSRC package to establish prognostic models. Moreover, patients were
divided into high-risk and low-risk groups according to the median risk score estimated
from the models. A time-dependent ROC curve was plotted to display the predictive
capability of our prognostic model. Thereafter, the Kaplan-Meier method and log-rank test
were applied to evaluate the survival difference between the two risk groups. Furthermore,
to yield an in-depth understanding of the net clinical benefit of the models, decision curve
analysis (DCA) was conducted with the threshold probabilities of each model based on a
5-year OS by the R “DCA” package.

RESULTS
Mutations and molecular subtypes prediction
Comparisons over different machine learning methods were performed on a 4 × 8
cross-test basis using four algorithms (GBDT, LASSO, RF, and XGBoost) for feature
selection and eight algorithms (RF, GBDT, ADABAG, LR, NB, SVM, DT, and KNN) to
build classifiers. The most outstanding performance was rendered by our RF model despite
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the feature engineering process (Fig. 2A). Among 32 different combinations of possible
classifiers, the performance of the RF model always peaked in the predicting process and
also stood out among all feature filters, followed by XGBoost and GBDT. More specifically,
the RF models accurately predicted common gene aberrations in EC, as reflected by their
relatively high AUCs: CN-high (AUC = 0.826), CN-low (AUC = 0.882), MSI
(AUC = 0.773), and PLOE (AUC = 0.754), and molecular mutations: CTNNB1
(AUC = 0.844), PIK3CA (AUC = 0.793), PIK3R1 (AUC = 0.773), PTEN l (AUC = 0.776)
(Table S2). The results signaled that the HIF of EC could potentially be applied for
predicting the molecular features and molecular subtypes of EC by statistical learning.

Feature analysis of histopathological images for predicting prognosis
The training set was split into high-expression and low-expression groups depending on
the median value of each HIF, and univariate Cox analyses were conducted to identify the
prognostic value for OS (Table S3). The results uncovered that the top 20 HIF were
correlated with OS (p < 0.05) (Fig. 2B). Among those histopathological features, the top
four features with the smallest p-values were Median_Cells_Granularity_14,
StDev_Cells_AreaShape_Orientation, StDev_Cells_Intensity_MassDisplacement, and
StDev_Cells_Texture_DifferenceVariance_3_90 (Fig. 2C). The difference in OS between
the high-expression and low-expression groups was significant, as demonstrated by the
Kaplan-Meier survival curves and log-rank tests (Fig. 2C). Taken together, these analyses
indicated that HIF of EC might be associated with prognosis.

Furthermore, patients were stratified into two subgroups based on survival time: the
high-risk group (OS < 1 year) and the low-risk group (OS ≥ 5 years). Four features with
discrepant categories showed up with their highest significance. They were further
illustrated by high-expressed and low-expressed prognostic features (Fig. 2D).
As displayed in Fig. 3, the histopathological sub-images from TCGA cohorts were from
high-risk and low-risk groups. Preprocessing methods such as cell recognition and
segmentation were subsequently conducted on the sub-images. In addition, algorithms
were applied to identify and differentiate cell types within the images, aiming to validate
the high accuracy of CellProfier for image processing.

Histopathological image features and genomics integrated prognostic
model
The RSF algorithm was included in our integrative model to validate the possibility of
integrating histopathological and genomics data and to evaluate the value of genomics data
in predicting prognosis. The 20 most common somatic mutations in the training set are
presented in Fig. 4A. In addition, the time-dependent ROC curves of the model in the test
set were analyzed. With our integrative prognostic model, the HIF + genomics model
possessed the highest AUCs (0.841 at year 1, 0.829 at year 3, 0.815 at year 5) compared to
the genomics model (0.765, 0.713, and 0.730) and HIF model (0.822, 0.805, and 0.803) at
all time points (Figs. 4C–4E).

The test set was divided into a high-risk group (greater than the median) and a low-risk
group (less than the median) according to the median value of the survival risk score
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Figure 2 Performance of prediction model using histopathological image features. (A) Four algo-
rithms (GBDT, LASSO, RF, XGBoost) were used for feature selection, while eight algorithms (RF,
GBDT, ADABAG, LR, DT, SVM, nNB, KNN) function as prediction model in the training set.
The models were evaluated on a separated set for demonstrating its prediction power. (B) Histo-
pathological image features (HIF) that exhibited significant prognostic value (p < 0.05) in univariate
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predicted by the machine-learning models. Based on the Kaplan-Meier survival curves, our
three models exhibited a satisfactory predictive value for the OS of in the high-risk and
low-risk groups of the test set (Fig. 4B). Among our prognostic models, the integrative
model achieved the best overall performance as it outperformed other models when
differentiating the survival of patients. Compared to our integrative model, the HIF model
achieved mundane results while the genomics model exhibited the worst performance in
predicting survival. Lastly, the superiority of our integrative model demonstrated the
efficacy of genomic and histopathological features in improving prognostic ability.

Integrative model of histopathological images features and
transcriptomics for predicting prognosis
Apart from genomics analysis, we combined histopathological data and transcriptomics
data to investigate the predictive power of possible integration between HIF and mRNA
transcription data of EC patients as well. Thus, the training set was stratified into
short-term (OS of 1–12 months at death) and long-term survivors (OS ≥ 60 months).
For mRNA sequencing data, the DEGs between the short-term and long-term groups were
analyzed for dimension reduction. Gene Ontology (GO) enrichment analysis using
Metascape (http://metascape.org) exposed that was closely associated with cell
differentiation, anticoagulation, and blood circulation (Fig. 5A).

Figure 2 (continued)
Cox analysis were identified. (C) Kaplan-Meier curves were plotted for specific features, namely
“Median_Cells_Granularity_14”, “StDev_Cells_AreaShape_Orientation”, “StDev_Cells_Intensity_-
MassDisplacement”, and “StDev_Cells_Texture_DifferenceVariance_3_90”. (D) Sub-images depicting
patients with high and low expression of prognostic factors were generated. Each image feature was
divided into groups based on its median value. Full-size DOI: 10.7717/peerj.15674/fig-2

Figure 3 Sub-images and processed images were generated for both the high-risk and low-risk groups, which were defined based on survival
time. The TCGA and TMA cohorts were partitioned into these two groups. Full-size DOI: 10.7717/peerj.15674/fig-3
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One hundred of the most significant DEGs were selected for modeling on the training
set (Table S4). In the test set, HIF and transcriptomics (HIF + RNA) transcended the other
two models with their superior predictive results (1-year AUC = 0.854, 3-year
AUC = 0.844, 5-year AUC = 0.845) (Figs. 5C–5E). Furthermore, based on the HIF + RNA
model, the prognosis for low-risk group was significantly higher than that in the high-risk
group in the test set (Fig. 5B).

A proteomics-integrated prognostic model of histopathological
images
Besides the transcriptomic profile, the prognostic models were established using reverse
phase protein array (RPPA) data with the inclusion of 203 proteins (Table S5). On the one
hand, the predictive results obtained following the integration of image features and
proteomics (HIF + P) outperformed those of the other two models in the test set (1-year

Figure 4 The prognostic model used both histopathological image features and genomics. (A) A waterfall plot was generated, illustrating the
presence of 20 common somatic mutant genes within the training set. (B) The predictive performance of the integrative model, incorporating both
histopathology image features and genomics (HIF + G), was compared to models using histopathological image features alone (HIF) or genomics
alone (G). Kaplan-Meier survival curves were plotted, revealing that the HIF + G model exhibited superior predictive performance over HIF or G
alone in the test set. (C–E) The area under the time-dependent receiver operating characteristic curve (AUC) calculated at 1, 3, and 5 years.

Full-size DOI: 10.7717/peerj.15674/fig-4
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Figure 5 Prognostic models constructed using histopathological image features (HIF) and transcriptomics (RNA). (A) To understand the
differentially expressed genes, a Gene Ontology enrichment network was built up, and the most enriched term was assigned to each cluster (refer to
legends). (B) Demonstrated predictive performance of three models (HIF model, transcriptomics model, and HIF + RNA model) in the test set,
showcased with Kaplan-Meier curves. (C–E) Area under the time-dependent ROC curves of three predictive models from test set.

Full-size DOI: 10.7717/peerj.15674/fig-5
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Figure 6 A prognostic model developed by integrating histopathological image features with
proteomics. (A–C) The predictive power of histopathological image features (HIF), protein expres-
sion (P), and the combination of images and proteomics (HIF + P) for survival in the test set. (D)
Kaplan-Meier curves demonstrated a more significant survival difference between high-risk and
low-risk groups in the HIF + P model (E). The time-dependent receiver operating characteristic curve
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AUC = 0.860, 3-year AUC = 0.856, 5-year AUC = 0.852) (Figs. 6A–6C). On the other
hand, Kaplan-Meier survival analyses of our established prognostic models, demonstrated
significant differences in survival outcomes between the high-risk and low-risk patients
(Fig. 6D), especially in the HIF + P model.

Integrative multi-omics model for survival prediction
The previous analyses signaled that the combination of HIF and single omics (genomics,
transcriptomics, and proteomics) had a better ability to predict the OS of EC patients.
Therefore, the impact of integrating all the omics and histopathology image features in
optimizing the results was assessed. In the test set, the AUC of OS at 1-year, 3-year, and
5-year was elevated to 0.866, 0.8969, and 0.856, respectively (Fig. 6E). Cox regression
analysis and Kaplan-Meier curves indicated a significant difference in survival between the
high-risk and low-risk groups (Fig. 6F) (HR = 18.347, 95% CI [11.09–25.65], p < 0.001)
(Table S6). Additionally, decision curve analysis of the models was conducted on the test
set, revealing that the multi-dimensional omics model had a greater net benefit than the
others in the clinical decision-making process (Fig. 6G).

DISCUSSION
Herein, the molecular subtypes, molecular mutations, and the prognosis of EC patients
were predicted with HIF data, genomics data, transcription data, and proteomics data by
applying image-processing and data analysis pipelines to extract HIF from
histopathological images. Thereafter, molecular features were predicted with machine
learning. HIF was subsequently used to predict the survival outcomes in EC patients.
However, the predictive results from models using single-omics features or HIF were
mediocre and far from ideal. Therefore, HIF and multi-omics information were integrated
for patient survival prediction, with the expectation of superior overall performance.
The integrated model was constructed to demonstrate that histomolecular integration
could boost predictive performance. In other studies, several researchers predicted the
therapeutic targets and different types of molecular mutations and features with
multi-omics data (Isobe et al., 2022; Parvathy Dharshini et al., 2022; Suter et al., 2022).
Moreover, multi-omics data was universally adopted for predicting the prognosis of
different types of cancer, such as gastrointestinal cancers (Li et al., 2022; Yuan et al., 2022),
high-grade serous ovarian cancer (Sun et al., 2022), lung adenocarcinoma (Yang et al.,
2022) and head and neck squamous cell carcinoma (Hildebrand et al., 2021). To the best of
our knowledge, this is the first study to predict the prognosis of EC patients with machine
learning using multi-omics data.

Figure 6 (continued)
(F) and Kaplan-Meier curves for evaluation multi-omics model integrated image features, genomics,
transcriptomics, and proteomics in the test set. (G) Decision curve analysis for each model in the test
set, using an oblique line to represent the net benefit of intervening in all patients, and a horizontal line
to represent the net benefit of no patients with intervention. The multi-omics model exhibited the
highest net benefit compared to other models across a risk threshold range greater than 10%.

Full-size DOI: 10.7717/peerj.15674/fig-6
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Machine-learning models were established to predict CTNNB1, PIK3CA, PIK3R1, and
PTEN mutations in EC patients with HIF. EC can be classified into several histological
subtypes, which could be used to guide treatment decisions and determine the prognosis of
EC patients (Urick & Bell, 2019). Meanwhile, PIK3CA mutation is one of the most
common mutations in solid tumors, especially in endometrial (42–55%) (Travaglino et al.,
2022); PIK3CA mutation is one of the most common mutations in solid tumors, especially
in endometrial (42–55%) (Kandoth et al., 2013), cervical (42%) (The Cancer Genome Atlas
Research Network, 2017), breast cancer (27–36%). The incidence of PIK3R1 (p85 a)
mutations are higher in EC compared to any other cancer lineage, and the primary cause
for triggering the PI3K pathway is the loss of PTEN protein (Cheung et al., 2011). Tumor
cells might exhibit specific morphological features that indicate mutations in EC, such as
necrosis (Leskela et al., 2020), mitotic index, transitional cell-like features, and
pseudo-endometrioid (Shia et al., 2008). Quantitative image features were extracted
instead of morphological features to yield a more scientific and stable method for
predicting CTNNB1, PIK3CA, PIK3R1, and PTEN mutations. In the present study,
histopathological features were used for the first time to accurately differentiate CTNNB1,
PIK3CA, PIK3R1, and PTEN in EC patients. RF, with features selected by RF,
outperformed all other models in the 32 combinations of machine-learning methods for
predicting CTNNB1, PIK3CA, PIK3R1, and PTEN mutations in this analysis.

Simultaneously, the two types of EC were classified according to the four TCGA
molecular subgroups of endometrial cancer (CN-high, CN-low, MSI, and POLE). Among
the TCGA groups, the MSI group stands out with a predominating role, given that it
represents great biological heterogeneity. The analysis demonstrated a correlation between
molecular subgroups and patient outcomes, where the POLE ultra-mutated and copy
number-high subgroups were associated with superior and unsatisfactory outcomes,
respectively. In contrast, the microsatellite unstable hypermutated and copy number-low
subgroups were linked to an intermediate outcome (Loukovaara, Pasanen & Bützow,
2022). In the current study, an attempt was made to develop a predictive model based on
HIF to aid in the classification of molecular subtypes. Following the configuration of the
machine-learning models for prediction, the empirical analytical results showed that the
predictive model based on the random forest method demonstrated the best overall
statistical performance. The MSI subgroup is typically detected by immunohistochemistry
or genomic analysis. However, owing to cost and resource constraints, MSI testing has not
been extensively used. Notably, recent studies have reported that AI can predict MSI from
histopathological images (Zhou et al., 2021). The use of histopathological features in
conjunction with machine-learning techniques could serve as a cost-effective and efficient
tool to predict the molecular characteristics and subtypes of EC patients. Despite its
promising potential, further comparison with clinical testing is still necessitated.

There is a marked difference in the prognosis of EC depending on the histological types
(Amant et al., 2005). Therefore, contradictory disease mortality rates and prognoses make
the histological type of EC an essential consideration regarding the health of women
(Sorosky, 2012). In order to further investigate the prognosis of EC patients, a predictive
model was developed based on HIF. Our optimal model (RF) achieved a remarkable
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overall performance, which resulted in the AUC in the TCGA test set at 5 years being as
high as 0.803. Even though the use of machine learning together with histopathological
images for predicting the prognosis of lung and colon cancer patients has overwhelmed the
field, related studies in EC are scarce (Fremond et al., 2023). In the present study, our
model portrayed a stable predictive power in the test set, demonstrating the favorable
generality of our model.

Since the occurrence and biological development of tumors are rather complex, multiple
molecular-level data might help discover more features of tumors, which could
subsequently lead to a better prognostic assessment and therapeutic intervention. This
hypothesis led to the integration of different types of data in our models. Some researchers
have coupled HIF with transcriptional data, resulting in significant improvement in EC
survival predictions (Salvesen et al., 2009). In order to further improve the accuracy in
predicting prognosis, our models were also constructed and tested according to different
types of features, including HIF, genomics, transcriptomics, and proteomics data.
Consequently, after training the machine-learning models on these data, it can be
concluded that the predictive performance of a model using image features and one set of
features is generally superior to that of a model using only one type of data. Moreover, the
model combining multi-omic and imaging features was innovative. Astonishingly high
AUC results from our multi-omics prognostic model insinuated that this model could be
conducive to personalized risk stratification for EC patients.

Nevertheless, this study had some limitations that cannot be overlooked. To begin, the
small sample size of positive cases of genetic variation and subtype limited the predictive
accuracy of our models. Secondly, some confounding factors, such as alcohol
consumption, complications, and chemotherapy, were not available in the TMA dataset;
hence, the validity and generalizability of the combined prognostic model remained
untested. Noteworthily, the multivariable Cox analysis demonstrated that although various
interfering factors were present, the multi-group model could still deliver promising
outcomes. Data on other interfering elements, such as optimal chemotherapy disassembly
status and chemotherapy cycles that might have been associated with prognosis, were
missing in the TCGA cohorts. Thus, it might be necessary to gather more information on
confounding factors prior to assessing the prognostic power of the metabolomics models.
Finally, the risk score threshold was based on the median value; for better patient
stratification performance, the threshold of risk score should be tested more rigorously in
large-scale studies.

CONCLUSION
Collectively, this study put forth the great potential to predict genetic abnormalities,
transcription subtypes, and survival outcomes in EC patients using histopathological
features. In addition, the multi-omics predictive model combined with imaging, genomic,
transcriptomic, and proteomic features could enhance the survival prediction of EC
patients and assist in the prescription of individualized medicines for EC patients.
Our model is anticipated to help clinicians assess the therapeutic options and prognosis of
EC patients.
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