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ABSTRACT
A growing body of evidence suggests that anesthetics impact the outcome of patients
with cancer after surgical intervention. However, the optimal dose and underlying
mechanisms of co-administered anesthetics in lung tumor therapy have been poorly
studied. Here, we aimed to investigate the role of combined anesthetics propofol,
sufentanil, and rocuronium in treating lung cancer using an orthogonal experimental
design and to explore the optimal combination of anesthetics. First, we evaluated the
effects of the three anesthetics on the proliferation and invasion of A-549 cells using
Cell Counting Kit 8 and Transwell migration and invasion assays. Subsequently, we
applied the orthogonal experimental design (OED) method to screen the appropriate
concentrations of the combined anesthetics with the most effective antitumor activity.
We found that all three agents inhibited the proliferation of A-549 cells in a dose-
and time-dependent manner when applied individually or in combination, with the
highest differences in the magnitude of inhibition occurring 24 h after combined
drug exposure. The optimal combination of the three anesthetics that achieved the
strongest reduction in cell viability was 1.4 µmol/L propofol, 2 nmol/L sufentanil,
and 7.83 µmol/L rocuronium. This optimal 3-drug combination produced a more
beneficial result at 24 h than either single drug. Our results provide a theoretical basis
for improving the efficacy of lung tumor treatment and optimizing anesthetic strategies.

Subjects Biochemistry, Cell Biology, Molecular Biology
Keywords A459 cells, Anesthetics drugs, Orthogonal experimental design, CCK-8,
Transwell assay

INTRODUCTION
Lung cancer is the leading cause of cancer-related mortality worldwide (Naccache et
al., 2018; Wang et al., 2019), with combined surgical resection and targeted therapy,
immunotherapy, chemotherapy, or radiotherapy being the primary approaches for treating
the disease. Although surgical intervention is the most effective method to improve patient

How to cite this article Tan J, Wang L, Song X, Zhang Y, Song Z, Duan M. 2023. Optimization of a tri-drug treatment against lung can-
cer using orthogonal design in preclinical studies. PeerJ 11:e15672 http://doi.org/10.7717/peerj.15672

https://peerj.com
mailto:songzhenghuan@njmu.edu.cn
mailto:dml1200@126.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.15672
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.15672


prognosis, the long-term clinical outcome of lung cancer is still unoptimistic, with five-year
survival rates under 15% (He et al., 2020).

Perioperative anesthesia management of patients undergoing surgical procedures is
essential for good surgical outcomes. Propofol, sufentanil, and rocuronium are common
anesthetic medications administered during surgical interventions, often in combination,
and have recently attracted much scientific attention owing to their antitumor effects.

Each has specific clinical significance in surgical intervention and has shown antitumor
properties in preclinical studies. Propofol is an intravenous sedative-hypnotic drug used
to induce and maintain anesthesia due to its rapid onset and offset of action, making it
an ideal medication for surgical procedures. Yu et al. (2019) investigated the antitumor
properties of propofol in preclinical studies and demonstrated it inhibits proliferation,
migration, and invasion of human melanoma cells by regulating microRNA-137 and
fibroblast growth factor 9 (FGF9). Zhang et al. (2020) uncovered that propofol inhibits
invasion and promotes apoptosis of colon cancer cells by preventing the interaction
between signal transducer and activator of transcription 3 (STAT3) and theHOX anti-sense
intergenic RNA (HOTAIR) promoter, suppressing the Wnt pathway via WIF1. Similarly,
Sun et al. (2021) showed propofol inhibits cervical cancer progression by controlling the
HOTAIR/miR-129-5p/RPL14 axis. Sufentanil is a potent opioid analgesic often used as an
adjunct to general anesthesia. Its clinical significance lies in its ability to provide efficient
analgesia during surgery and minimize the risk of adverse effects associated with opioid
administration. Wu et al. (2014) studied its antitumor effects and found it suppresses
the viability of gastric cancer SGC-7901 cells and induces their apoptosis in vitro. Guan,
Huang & Lin (2022) demonstrated that sufentanil regulates the Wnt pathway to inhibit
various functions of lung cancer cells, including proliferation, migration, invasion, and
epithelial-mesenchymal transition.

Rocuronium is a nondepolarizing neuromuscular blocking agent that facilitates
endotracheal intubation and muscle relaxation during an operation, allowing easy and
safe surgical access. Jiang et al. (2016) evidenced that rocuronium bromide promotes
invasion, adhesion, and growth of breast cancer MDA-231 cells.

A combination of rocuronium and propofol can provide excellent intubating conditions,
reducing the discomfort of propofol administration. Combining opioids with rocuronium
is also beneficial for intubation conditions and attenuates pain during administration
(Costa, Mourão & Vale, 2022). Moreover, the individual antitumor effects of propofol,
sufentanil, and rocuronium make them potential candidates for combination therapy
in the surgical management of lung cancer. Although the combined administration of
these drugs in lung cancer surgical intervention has gained considerable attention due
to the clinical significance and antitumor effects of individual drugs, the optimal dose
of co-administered anesthetics and the underlying mechanisms of the antitumor effects
associated with drug co-administration against lung cancer are unclear. We hypothesized
that these drugs each have a multi-targeted action, inhibiting cancer cell proliferation,
inducing apoptosis, and suppressing tumor growth and invasion. Therefore, synergistic
antitumor effects of propofol, sufentanil, and rocuronium may provide a more effective
treatment approach for patients with lung cancer and improve the disease outcome.
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Orthogonal tests are increasingly used in experimental studies to investigate the
influences of multiple factors and levels on test results with orthogonal tables (Wu et
al., 2021). These tests allow choosing of representative combinations for experimentation,
whose respective impacts are analyzed to determine their optimal combination, offering a
cost-effective, fast, and economic strategy for experiment design (Feng et al., 2019; Gao et
al., 2015;Muheem et al., 2017; Zhao et al., 2017). Here, we present an analysis of the factors
affecting the proliferation of lung cancer A-549 cells based on an orthogonal experimental
design. We identified propofol and sufentanil as critical factors for A-549 cell viability
and confirmed the optimal combination treatments that exerted synergistic reductions
in viability. These comprehensive assessments could provide the basis for identifying
appropriate types and combinations of therapeutic targets, which may improve patient
prognosis.

MATERIALS AND METHODS
Biological reagents and cell cultures
Lung cancer A-549 cells were purchased from and authenticated at the Institute of
Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences (Shanghai, China). The cells were grown in Dulbecco’s Modified
Eagle Medium (DMEM) medium (Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, China,
KGM12800N) containing 10% FBS (#10099141; Gibco, MA, USA) and 1% penicillin-
streptomycin (#15140122; Gibco, MA, USA). All cell cultures were incubated at 37 ◦C in a
humidified atmosphere incubator with 5%CO2. The anesthetics were purchased as follows:
propofol, Selleck Chemicals (Huston, TX, USA); sufentanil, Jiangsu Enhua Pharmaceutical
Co., Ltd (China); and rocuronium, Zhejiang Xianju Pharmaceutical Co., Ltd (China).

Drug treatment
We selected the median, 1/3 of the median, and 3× the median of the concentration
ranges suggested by a Chinese consensus for intravenous anesthesia (Yun, 2016). For the
cell viability assay, A-549 cells were incubated with propofol (1.4, 4.2, and 12.6 µmol/L),
sufentanil (0.67, 2, and 6 nmol/L), and rocuronium (2.61, 7.83, and 23.5 µmol/L) for 12,
24, 36, and 48 h.

Cell viability assay
The survival rate of A-549 cells was determined using a Cell Counting Kit 8 (CCK-8)
(Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, China), following the manufacturer’s
instructions. The cells were seeded at 1× 105 cells per well into 96-well plates containing
propofol, sufentanil, rocuronium or a combination of the three anesthetics at the indicated
concentrations and times. The CCK-8 solution was added to each well, followed by a 3-h
incubation at 37 ◦C. The absorbance at 450 nm was determined with a microplate reader,
and data were analyzed using SoftMax Pro software (SoftMax Pro software version 6.4;
Molecular Devices LLC, San Jose, CA, USA). Three duplicates of all samples were analyzed.
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Table 1 Three levels of the three factors in the orthogonal design. Three factors, namely propofol,
sufentanil, and rocuronium. Each factor had three concentration levels. Propofol concentration levels
were designated as Level 1 (1.4 µmol/L), Level 2 (4.2 µmol/L), and Level 3 (12.6 µmol/L). Sufentanil
concentration levels were categorized as Level 1 (0.67 nmol/L), Level 2 (2 nmol/L), and Level 3 (6
nmol/L). Rocuronium concentration levels were denoted as Level 1 (2.61 µmol/L), Level 2 (7.83 µmol/L),
and Level 3 (23.5 µmol/L).

Factor Propofol
(µmol/L)

Sufentanil
(nmol/L)

Rocuronium
(µmol/L)

1 1.4 0.67 2.61
2 4.2 2 7.83Level

3 12.6 6 23.5

Table 2 Results of the orthogonal design evaluationmethod.

Experimental
number

Factor Mean± SD P-value

Propofol Sufentanil Rocuronium

1 1 1 1 0.751± 0.124 P = 0.0061**

2 1 2 3 0.751± 0.124 P = 0.0061**

3 1 3 2 0.680± 0.119 P = 0.0003**

4 2 1 3 0.712± 0.069 P = 0.0011**

5 2 2 2 0.728± 0.165 P = 0.0023**

6 2 3 1 0.587± 0.121 P < 0.0001**

7 3 1 2 0.681± 0.023 P = 0.0003**

8 3 2 1 0.701± 0.227 P = 0.0007**

9 3 3 3 0.538± 0.051 P < 0.0001**

K1 2.18 2.14 2.04
K2 2.03 2.18 2.09
K3 1.92 1.8 2
R 0.09 0.13 0.03

Notes.
Propofol: 1, 2, and 3 represent 1.4, 4.2, and 12.6µmol/L, respectively;
Sufentanil: 1, 2, and 3 represent 2/3, 2, and 6 nmol/L, respectively; rocuronium:1, 2, and 3 represent 2.61, 7.83, and 23.5
µmol/L, respectively.
K1, K2, and K3 represent the mean scores for each factor with different levels, respectively. R indicates the range of average in-
hibition rates of various factors (range = maximum average inhibitory rate + minimum average inhibitory rate). Data were an-
alyzed as mean± standard deviation using the orthogonal experiment intuitionistic analytical method.
*p< 0.05.
**p< 0.01.

Orthogonal experimental design (OED)
Our preliminary experimental results revealed that propofol, sufentanil, and rocuronium
influence A-549 cell viability at different concentrations. Each drug constituted one
factor, so three factors and three concentrations of each drug were evaluated. Each of the
concentrations represented 1 level (Table 1). Thus, a 3-factor, 3-level L9(33) OED was
selected and applied to the experiments (Table 2) (Manhas, Kumar & Chaubey, 2022).
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Transwell assay
Serum-starved A-549 cells (5 × 104) were suspended in 200 µL of serum-free DMEM
medium containing 1.4 µmol/L propofol, 2 nmol/L sufentanil, and 7.83 µmol/L
rocuronium. A mixture of serum free-medium and pretreated cells was seeded into
the upper chamber of matrigel-coated inserts (Corning Inc., Corning, NY, USA). For
the migration experiment, the upper chamber was coated with glue without a Matrigel
matrix, while the lower chamber was filled with culture medium containing 10% FBS and
incubated at 37 ◦C for 24 h. Non-migratory or non-invasive cells were gently removed
from the upper chamber with a cotton bud, fixed, and stained using 4% paraformaldehyde
and 0.1% crystal violet (#C0121; Beyotime Institute of Biotechnology). The invasive cells
in 5 randomly selected visual fields were counted under a TS100-F inverted microscope
(Nikon Corporation, Tokyo, Japan) at 200× magnification. The average number of cells
passing through the membrane was calculated using ImageJ version 1.8.0.

Wound-healing assay
The migration ability of A-549 cells was assessed with a scratch wound assay. In brief, the
cells were seeded into 6-well plates at 5× 105 cells/well and cultured to confluence. A gapwas
created in the cell monolayer by scratching it with a pipetting tip. The debris was removed
with phosphate-buffered saline, and a serum-free medium was added. Micrographs were
recorded at 0 and 24 h, and a migration distance analysis was performed using ImageJ
software. The healing rate (%) was calculated as follows: (0 h scratch width −24 h scratch
width)/0 h scratch width ×100%.

Annexin V-fluorescein isothiocyanate (FITC)/PI double-labeling and
flow cytometry
The cells were seeded into a 6-well plate at 2× 105cells/well and treated with optimal
concentrations of the combined drugs. After 48 h, the cells were trypsinized, collected,
and resuspended in PBS for cell counting. Cell concentration was adjusted to 5× 105

cells/mL, and the cells were stained with Annexin V-FITC and PI (Kaiji Biotechnology
Development, Co., Ltd., Nanjing, China) for 15 min at room temperature. Flow cytometry
analysis was performed using a flow cytometer (BD Biosciences) with excitation at 380 nm
and emission at 525 nm. Results were recorded and analyzed using CELLQuest software
(BD Biosciences).

Western blot analysis
Total protein was extracted from cells using Radio Immunoprecipitation Assay (RIPA) lysis
buffer and quantified with a BCA Protein Assay Kit (Beyotime Biotechnology, Shanghai,
China). The proteins were separated on a 10% sodium dodecyl sulfate and polyacrylamide
gel by electrophoresis according to the molecular weights. The separated proteins were
transferred onto polyvinylidene fluoride membranes (Millipore) using a semidry transfer
system and immobilized for subsequent immunodetection. The membranes were blocked
with 5% non-fat milk to prevent nonspecific binding and probed with primary antibodies
overnight at 4 ◦C. The primary antibodies used were anti-PARP1 (ab191217; Abcam) at
1:1500 dilution or anti- β-actin (ab8227; Abcam) at 1:2500 dilution. The membranes were
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washed with tris-buffered saline (TBST) and Tween 20 buffer, followed by incubation
with a fluorescent-labeled DyLight 680 goat anti-mouse IgG secondary antibody (A23710,
Abbkine Scientific Co., Ltd, Wuhan, China) at 1:20000 dilution. The secondary antibody
was conjugated with a Horseradish Peroxidase (HRP) label, enabling primary antibody
detection. The membranes were washed with TBST buffer to remove any unbound
secondary antibody, and the protein signal was visualized and quantified using an Odyssey
Fc Imager (LI-COR Biosciences, Lincoln, NE, USA).

Statistical analysis
Data were expressed as mean± SD and statistically analyzed using SPSS software version 13
(SPSS Inc., Chicago, IL, USA). The results were displayed as graphs using GraphPad Prism
version 8.0.2 (GraphPad Software, Inc., San Diego, CA, USA). The differences between
different treatment groups were assessed using a 1-way analysis of variance (ANOVA)
corrected for multiple comparisons (Bonferroni test). Statistical significance was inferred
when P < 0.05.

RESULTS
We used the orthogonal experimental design (OED) to examine the effectiveness of a
co-treatment with propofol, sufentanil, and rocuronium on the proliferation of lung
adenocarcinoma A-549 cells. Because the traditional OED design involves 27 trials, the
exhaustive examination of all possible combinations would demand an unreasonably high
workload. Thus, using the L9 (33) orthogonal array, we obtained nine formulations with
direct and variance analysis to determine the degree of influence of each anesthetic in the
combined treatment (Table 2). Our data showed that the inhibition of cell proliferation
significantly increased with treatment time when the cells were co-treated with the three
drugs using different combinations of drug concentrations. Moreover, the differences in
the magnitude of inhibition were most noticeable at 24 h, with later time points showing
insignificant differences (Fig. 1). We also calculated a range for the test index under
various factors and levels and revealed that sufentanil had the largest range (range, 0.13),
followed by propofol (range, 0.09) and rocuronium (range, 0.03). (Tables 2 and 3). Finally,
we determined the optimal concentrations of the three drugs for the co-treatment were
1.4 µmol/L propofol, 2 nmol/L sufentanil, and 7.83 µmol/L rocuronium. This optimal
combination of the three drugs caused a stronger inhibition of A-549 cell proliferation
than either treatment with an individual drug at 24 h, as illustrated in Fig. 2 (P < 0.01).

Effect of propofol, sufentanil, and rocuronium on A-549 cell
proliferation
The effect of propofol, sufentanil, and rocuronium on the proliferation of A-549 cells was
evaluated using the CCK8 assay. Propofol treatment significantly inhibited the proliferation
of A-549 cells compared with control cells. The inhibition of cell proliferation was observed
at 3 different concentrations of the drug (1.4, 4.2, and 12.6 µmol/L) and at various time
points (12, 24, 36 and 48 h) after the treatment. The proliferation of A-549 cells was
inhibited under all propofol concentrations at 12 h posttreatment (control, 1.00± 0.08; 1.4
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Figure 1 Selection of optimal combinations of anesthetic agents using the orthogonal design exper-
imental method. (A) Viability of lung adenocarcinoma A-549 cells under the combined treatment with
propofol, sufentanil, and rocuronium at different drug concentrations. The selected optimal parameter
combination was 1.4 µmol/L propofol, 2 nmol/L sufentanil, and 7.83 µmol/L rocuronium. (B) Compari-
son of cell viability under the optimal combination of drugs and mock treatment (control). The inhibitory
effect of various concentrations of the anesthetic agents on the proliferation of A-549 cells was assessed
at 12 and 48 h posttreatment. The differences in the extent of inhibition were the most prominent at the
24-h time point. The data represent the mean± SD from 3 independent experiments.P, propofol; 1, 1.4
µmol/L; 2, 4.2 µmol/L; and 3, 12.6 µmol/L.S, sufentanil; 1, 0.67 nmol/L; 2, 2 nmol/L; and 3, 6 nmol/L.R,
rocuronium; 1, 2.61 µmol/L; 2, 7.83 µmol/L; and 3, 23.5 µmol/L.PSR 111 (propofol 1.4 µmol/L, sufen-
tanil 0.67 nmol/L, and rocuronium 2.61 µmol/L), PSR123 (propofol 1.4 µmol/L, sufentanil 2 nmol/L,
and rocuronium 23.5 µmol/L), PSR132 (propofol 1.4 µmol/L, sufentanil 6 nmol/L, and rocuronium
7.83 µmol/L), PSR213 (propofol 4.2 µmol/L, sufentanil 0.67 nmol/L, and rocuronium 23.5 µmol/L),
PSR222 (propofol 4.2 µmol/L, sufentanil 2 nmol/L, and rocuronium 7.83 µmol/L), PSR231 (propofol 4.2
µmol/L, sufentanil 6 nmol/L, and rocuronium 2.61 µmol/L), PSR312 (propofol 12.6 µmol/L, sufentanil
0.67 nmol/L, and rocuronium 7.83 µmol/L),PSR321 (propofol 12.6 µmol/L, sufentanil 2 nmol/L, and
rocuronium 2.61 µmol/L), PSR333 (propofol 12.6 µmol/L, sufentanil 6 nmol/L, and rocuronium 23.5
µmol/L), PSR122 (propofol 1.4 µmol/L, sufentanil 2 nmol/L, and rocuronium 7.83 µmol/L).

Full-size DOI: 10.7717/peerj.15672/fig-1

Table 3 Analytical results of the variance of the co-combination drugs.

Source of
variation

Mean-square F P

(Intercept) 4.174 6674.599 0.000**

sufentanil 0.014 22.818 0.042*

rocuronium 0.001 1.038 0.491
propofol 0.006 9.25 0.098
R2: 0.971

Notes.
The data were evaluated by ANOVA. Sufentanil was the most effective component in the reduction of A549 cell proliferation.
*p< 0.05.
**p< 0.01.

µmol/L propofol, 0.80 ± 0.12; 4.2 µmol/L propofol, 0.73 ± 0.09; 12.6 µmol/L propofol,
0.70 ± 0.08) (Fig. 3A), and a similar inhibitory effect was observed at 24 h (control, 1.00
± 0.02; 1.4 µmol/L propofol, 0.78 ± 0.01; 4.2 µmol/L propofol, 0.68 ± 0.02; 12.6 µmol/L
propofol, 0.63 ± 0.01) (Fig. 3B). The inhibitory effect was maintained at 36 h (control,
1.00 ± 0.04; 1.4 µmol/L propofol, 0.84 ± 0.03; 4.2 µmol/L propofol, 0.75 ± 0.05; 12.6
µmol/L propofol, 0.70± 0.04) (Fig. 3C) and 48 h posttreatment (control, 1.00± 0.02; 1.4
µmol/L propofol, 0.86 ± 0.01; 4.2 µmol/L propofol, 0.78 ± 0.05; 12.6 µmol/L propofol,
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Figure 2 Comparison of cell viability between single-agent treatments and treatments with the opti-
mal combination of agents. Significantly stronger inhibition of lung adenocarcinoma A-549 cell prolifer-
ation was achieved by the optimal combination of propofol, sufentanil, and rocuronium than either drug.
The data represent the mean± SD from 3 independent experiments. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001 vs control group; #P < 0.05, ##P < 0.01, ###P < 0.001, ####P < 0.0001 vs PSR122 group.
PSR122 stands for PSR, propofol, sufentanil, and rocuronium; 1, 1.4 µmol/L propofol; 2, 2 nmol/L sufen-
tanil; and 2, 7.83 µmol/L rocuronium.

Full-size DOI: 10.7717/peerj.15672/fig-2

0.70± 0.01) (Fig. 3D). These results indicate that propofol inhibits A-549 cell proliferation
for a prolonged time, suggesting an inhibitory effect of propofol on the growth of lung
cancer cells.

Sufentanil inhibited the viability of A-549 cells but only at specific concentrations and
time points. For instance, at 0.67 nmol/L concentrations, sufentanil had no effect on A-549
cell proliferation compared with control cells (1.00 ± 0.1). By contrast, at 2 and 6 nmol/L,
it significantly inhibited cell proliferation at 12, 24, 36 and 48 h (control group: 1.00±0.03,
1.00 ± 0.01, 1.00 ± 0.03, and 1.00 ± 0.01; 2 nmol/L group: 0.57 ± 0.01, 0.59 ± 0.02, 0.79
± 0.05, and 0.66 ± 0.01; and 6 nmol/L group: 0.86 ± 0.06, 0.89 ± 0.04, 0.71 ± 0.01, and
0.90 ± 0.04, as shown in Figs. 4A, 4B, and 4D). These results indicate that intermediate to
high doses of sufentanil effectively suppress the growth of A-549 cells from 0 to 48 h, and
low dose cannot exert this effect.

Rocuronium inhibited the proliferation of A-549 cells at 7.83 µmol/L and 23.5 µmol/L
compared with the control cells (Fig. 5). The inhibitory effect at either drug concentration
was apparent at 12 h (control, 1.00 ± 0.01; 7.83 µmol/L rocuronium, 0.62 ± 0.06; 23.5
µmol/L rocuronium, 0.48 ± 0.02) (Fig. 5A), 24 h (control, 1.01 ± 0.06; 7.83 µmol/L
rocuronium, 0.62 ± 0.01; 23.5 µmol/L rocuronium, 0.54 ± 0.01) (Fig. 5B), 36 h (control,
1.00± 0.05; 7.83 µmol/L rocuronium, 0.65± 0.05; 23.5 µmol/L rocuronium, 0.52± 0.03)
(Fig. 5C), and 48 h posttreatment (control, 1.00 ± 0.02; 7.83 µmol/L rocuronium, 0.69
± 0.03; 23.5 µmol/L rocuronium, 0.62 ± 0.02) (Fig. 5D).
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Figure 3 Effects of propofol treatment on the viability of lung adenocarcinoma A-549 cells at different
drug concentrations and treatment times. Cell viability was evaluated at 12 h (A), 24 h (B), 36 h (C), and
48 h posttreatment (D). The data represent the mean± SD from 3 independent experiments. ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 vs control group.

Full-size DOI: 10.7717/peerj.15672/fig-3

The three-drug treatment inhibited the migration, invasion, and proliferation of the
lung adenocarcinoma cell line, confirming the inhibitory effect of the combined drugs
on lung cancer cells. Transwell and wound-healing assays were used to assess migration
and invasion of A-549 cells co-treated with the three drugs and explore their antitumor
effects. The results indicated that the invasion and migration of A-549 cells were markedly
restrained following the co-treatment (P < 0.05) (Figs. 6A, 6B, 6C).

The 3-drug combination induces apoptosis of A-549 cells
Because the three drugs repress cell proliferation, we evaluated whether they also influence
apoptosis of A-549 cells using Annexin V FITC/PI staining and flow cytometry. We verified
this result by investigating the expression of the apoptosis marker poly (ADP-ribose)
polymerase 1 (PARP1) in A-549 cell extracts by Western blotting. We treated the cells
with the three anesthetics at optimal concentrations and observed PARP1 expression after
one to three half-lives of each drug. As shown in Fig. 6D, the PARP1 protein levels were
significantly upregulated in the cells co-treated with the three drugs and gradually lowered
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Figure 4 Effects of sufentanil treatment on the viability of lung adenocarcinoma A-549 cells at dif-
ferent drug concentrations and treatment times. Cell viability was evaluated at 12 h (A),24 h (B), 36 h
(C), and 48 h posttreatment (D). The data represent the mean± SD from three independent experiments.
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 vs control group.

Full-size DOI: 10.7717/peerj.15672/fig-4

with the decrease in drug concentration (i.e., with each consecutive half-life). The flow
cytometry analysis showed that the drug-treated group significantly promoted apoptosis
of A-549 cells (Fig. 6E). These results suggest that the optimal treatment may inhibit the
ability of cell proliferation by promoting apoptosis.

DISCUSSION
Despite the remarkable advances in lung cancer treatment, surgical resection has remained
the most effective and potentially curative treatment modality. However, during the
perioperative period, a surgical procedure may facilitate the entry of circulating tumor
cells into the bloodstream (Cristofanilli et al., 2004; Pachmann et al., 2005; Pelaz et al.,
2017), allowing them to disseminate the tumor at distant sites. In some patients with
prostate cancer, for example, surgical resection rapidly reduces the circulating cells
within 24 h posttreatment, while in others, these cells persist for months (Stott et al.,
2010). Because circulating tumor cells have proliferative potential, finding an effective
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Figure 5 Effects of rocuronium treatment on the viability of lung adenocarcinoma A-549 cells at dif-
ferent drug concentrations and treatment times. (A) A-549 Cell viability was evaluated at 12 h (A),24 h
(B), 36 h (C), and 48 h posttreatment (D). The data represent the mean± SD from three independent ex-
periments. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 vs control group.

Full-size DOI: 10.7717/peerj.15672/fig-5

strategy for their elimination is essential for lowering the risk of tumor repopulation after
surgical resection and improving the prognosis. Anesthesia is a crucial component of an
operation and may impact tumor development and prognosis. Propofol, sufentanil, and
rocuronium are the most utilized drugs in total intravenous anesthesia, with anesthetic
and widespread non-anesthetic effects (Bundscherer et al., 2015; Jiang et al., 2017; Tian
et al., 2020). Propofol, for instance, possesses antioxidant, immunomodulatory, and
neuroprotective properties (Vasileiou et al., 2009). Sufentanil induces postoperative
analgesia, which reduces postoperative pain, improves liver function following an
operation, and alleviates immunosuppression in rats with hepatocellular carcinoma that
underwent hepatectomy (Peng et al., 2020).

A growing body of research suggests that anesthetic drugs are associated with tumor
suppression. Cancerous tumors are characterized by uncontrolled cell proliferation, and
many anti-cancer drugs work by disrupting the process (Mens & Ghanbari, 2018; Peng
et al., 2020). Thus, we devised a concentration gradient to test the inhibitory effects of
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propofol, sufentanil, and rocuronium on lung cancer A-549 cells. We found that each
had a specific inhibitory effect on the proliferation of these cells. For example, propofol
suppressed cell proliferation at various concentrations and treatment times, consistent
with the findings of other investigations (Huang, Lei & Liu, 2020; Liu & Liu, 2018; Sun &
Gao, 2018). Therefore, propofol may function as an ideal anesthetic agent in lung cancer
surgical intervention due to its sustained inhibitory effect on cancer cell proliferation.

Evidence indicates that opioid-induced cell proliferation is concentration-dependent
(Wu et al., 2014). While tumor growth is promoted by applying low or single doses
of opioids, it is restricted under high or chronic opioid exposure (Kumar et al., 2017).
We showed that medium (2 nmol/L) or high-dose sufentanil (6 nmol/L) inhibited cell
proliferation, but low- (0.67 nmol/L) dose (2 nmol/L) did not, agreeing with the previous
study (Tegeder et al., 2003). We believe the discrepancy between the effects observed after
exposure to different doses of sufentanil may be due to the different mechanisms of action
at these concentrations. While at lower concentrations, sufentanil may not have reached
the threshold for inducing cell proliferation inhibition, at higher concentrations, sufentanil
may have exerted the inhibitory effect on cell proliferation via different pathways or
mechanisms. In addition, other factors, such as differences in treatment duration, may
have contributed to the observed differences.

Research into rocuronium mainly focuses on its effects on neuromuscular aspects
(Koo et al., 2020; Zhang et al., 2019) and rarely on lung cancer cell function. We found
that rocuronium inhibited lung tumor cell proliferation at regular and high-dose
concentrations. We assume high concentrations of this drug significantly repressed tumor
cell proliferation because they may be toxic to cells. Therefore, the growth rate of lung
cancer cells decreased at a blood CB concentration of 23.5 µmol/L. This result suggests
that rocuronium should be used at an appropriate dose during a surgical procedure, which
is beneficial for the prognosis of patients with lung cancer (Jiang et al., 2017). Because the
components of multi-drug anesthesia probably have additional potential targets, efficacy
may be achieved through synergistic and dynamic interactions between them. Thus, the
combined use of different anesthetic drugs may have an inhibitory effect on tumor cells
during an operation. In clinical practice, anesthetics such as rocuronium, sufentanil, and
propofol are often administered together to patients. Specific anesthetic agents and doses
are applied in different types and locations of surgery (Eger 2nd, 2001). For example, Lu
& Xu (2006) established in a retrospective study that patients with cancer undergoing
an operation under total intravenous anesthesia had a better outcome than those under
volatile inhalation anesthesia, suggesting that intravenous co-administration of anesthetic
agents may contribute to killing tumor cells released into the circulation.

The OED was a central part of this study since it determines the level status of each
factor and the interaction between, determining their optimal combination with a minimal
number of sampling tests (López-Cacho et al., 2012; Zhou et al., 2012). We first used L9
(33) array to test the inhibitory effects of the three drugs at three concentrations on the
proliferation of A-549 cells. We evaluated a total of nine combinations of the drugs and
identified their optimal concentrations for the combined drug treatment. While all nine
combinations inhibited the proliferation of human lung adenocarcinoma A-549 cells versus
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control cells to varying degrees, the differences in the extent of inhibition were the most
obvious at 24 h and when cells were exposed to the optimal drug concentrations. One
possible explanation for the lack of significant differences at extended time points is that
the inhibitory effects of the combined drugs on A-549 cell viability may have reached a
plateau, resulting in similar levels of inhibition over time. Alternatively, other factors, such
as cell cycle arrest or cellular adaptation, may have come into play at extended time points,
reducing the observed differences.

This study showed that sufentanil exerted the most pronounced suppressive effect on
lung cancer cells, followed by propofol and rocuronium in descending order. Interestingly,
while the variance analysis revealed that only sufentanil could significantly inhibit cell
proliferation, the combined drugs in optimal combination inhibited tumor growth better
than either drug.

The first explanation for these results may stem from the heterogeneity and diversity of
tumor cells within and between tumors, driving differences in the sensitivity of lung
cancer cells to different narcotic drugs. The second reason is that tumor cells and
their microenvironment interact in a complex and multifaceted manner to promote
proliferation and metastasis (Guan, 2015; Quail & Joyce, 2013). Hence, any changes in the
microenvironment in response to a narcotic treatmentmay impact tumor cell proliferation,
migration, and invasion in culture. Although these mechanisms were not addressed in this
study, we can suggest several from recent evidence that indicates tumor cell growth
inhibition arises by blocking specific signaling pathways. For example, propofol inhibits
A-549 cell growth, migration, and invasion by miR-372 downregulation (Sun & Gao,
2018). Zheng et al. (2020) found that propofol inhibits the growth of NSCLC cells and
accelerates their apoptosis by regulating the miR-21/PTEN/AKT pathway in vitro and in
vivo. Moreover,Xing et al. (2018) demonstrated that propofol inhibits the viability of A-549
cells and triggers their apoptosis via an ERK1/2-dependent pathway. Similarly, sufentanil
may prevent lung cancer cells from proliferating and undergoing interstitial transition by
obstructing the Wnt pathway (Guan, Huang & Lin, 2022).

Considering all these points, combinatory drug therapy may benefit from the cross-
sensitization in tumor cells caused by the cross-modulation of molecular pathways targeted
by a single drug (Arroyo et al., 2020). We speculate that the success of our 3-drug optimal
combination in a clinical setting would depend on its ability to block/activate the signaling
output of specific molecular pathways, which may exert synergistic effects on tumor
suppression. Therefore, combining several single effective drugs can induce the same or
greater extent of cell death or lower proliferation. These potential functions of the signaling
pathway could exist simultaneously, or one may have a precedence role over the others. In
addition, the effects of various factors on cell inhibition were directly described in the study
while searching for the optimal combination conditions for inhibiting cell proliferation.
However, since an individual factor in OED optimization is a multivariable combination,
others may have a greater impact on cell inhibition.

Therefore, unlike single-variable optimization, an individual variable cannot simply
reflect its changes in action. A reason for this may be the different trends observed in a plot
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as a function of each factor and could explain why sufentanil had higher effectiveness than
the other drugs in the three-drug combination.

A hallmark characteristic of cancer cells is their capability to migrate to nearby and
distant tissues. This study revealed that the combined treatment with three anesthetics
distinctly reduced the migratory and invasive abilities of A-549 cells, supporting the anti-
migratory and anti-invasive role of the three-drug combination. In addition, the three-drug
combination upregulated the expression of the apoptosis-related protein PARP1 in A-549
cells. These findings indirectly confirm that the three-drug combination has synergistic
antitumor effectiveness in an in vivo lung cancer model.

Although this study offers valuable insights, it has some limitations. First, it was
conducted in vitro using human lung adenocarcinoma A-549 cells, which may not
fully recapitulate the complex tumor microenvironment and systemic effects in vivo.
Therefore, while the orthogonal design allows the systematic optimization of multiple
factors, it may not have the statistical power to identify the optimal conditions with high
confidence.Moreover, because optimal drug dose, timing, and duration are essential for the
effectiveness of the three-drug treatment, the orthogonal design may not accurately reflect
the optimal doses and scheduling in clinical practice. Additionally, possible interactions
between the three anesthetics should be considered; certain drugs affect the potency or
toxicity of others when used in combination with implications for patient safety. Therefore,
further preclinical and clinical studies are necessary to evaluate the safety and efficacy of
the three-drug treatment before clinical use. Second, our study focused on the effects of
propofol, sufentanil, and rocuronium on A-549 cell viability and proliferation but did not
investigate the molecular mechanisms involved in the antitumor activity of these drugs.
Hence, the underlying mechanisms of the antitumor effects exerted by the combined
anesthetics demand future research for elucidation. Despite these limitations, our findings
provide invaluable preliminary evidence of the antitumor activity of co-administered
propofol, sufentanil, and rocuronium, warranting further preclinical and clinical studies
to fully understand their therapeutic value in patients with cancer undergoing surgery.

CONCLUSION
Here, we present a first comprehensive analysis of the factors influencing the proliferation
of lung cancer A-549 cells, using experimentally single and combined applications of
three clinically relevant intravenous anesthetic agents. Utilizing the OED method, we
identified the critical factors affecting the growth of A-549 cells and defined optimal
tri-drug combination conditions. Our experimental findings may serve as preliminary
guidance on the compatibility of three anesthetic doses for patients with lung cancer
undergoing surgical procedures. Importantly, our results represent the basis for future
large-sample, randomized clinical trials.
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