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ABSTRACT
Zirconia, a crystalline oxide of zirconium, holds good mechanical, optical, and biolog-
ical properties. The metal-free restorations, mostly consisting of all-ceramic/zirconia
restorations, are becoming popular restorative materials in restorative and prosthetic
dentistry choices for aesthetic and biological reasons. Dental zirconia has increased
over the past years producing wide varieties of zirconia for prosthetic restorations
in dentistry. At present, literature is lacking on the recent zirconia biomaterials in
dentistry. Currently, no article has the latest information on the various zirconia
biomaterials in dentistry. Hence, the aim of this article is to present an overview of
recent dental zirconia biomaterials and tends to classify the recent zirconia biomaterials
in dentistry. This article is useful for dentists, dental technicians, prosthodontists,
academicians, and researchers in the field of dental zirconia.

Subjects Bioengineering, Dentistry
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INTRODUCTION
Zirconia (ZrO2) is a crystalline oxide of zirconium and it holds good mechanical, optical,
and biological properties (Bapat et al., 2022). This biomaterial has three basic chemical
forms; monoclinic, tetragonal, and cubic (Saridag, Tak & Alniacik, 2013; Bocanegra-Bernal
& dela Torre, 2002). The metal-free restorations, mostly consisting of all-ceramic/zirconia
restorations, are becoming popular restorative materials in restorative dentistry choices
for aesthetic and biological reasons (Kongkiatkamon et al., 2021). Recently, there have
been significant improvements in restorative biomaterials including dental zirconia, and
producing wide varieties of zirconia for prosthetic restorations in dentistry (Kontonasaki
et al., 2019; Kontonasaki, Giasimakopoulos & Rigos, 2020; Humagain & Rokaya, 2019;
Amornvit et al., 2021). With the advancement of digital technologies, intraoral scanners,
and CAD/CAM systems, it has become possible to fabricate dental restorations digitally
with easy processing, designing, and high accuracy (Al-Qahtani et al., 2021; Ahmed et al.,
2021).

Pure zirconia exists in the monoclinic form at room temperature and with an increase
in temperature (1,170 ◦C) or low-temperature degradation (LTD), it transforms to
the tetragonal form (Ban, 2021). Further increasing temperature (2,370 ◦C), aging or
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Figure 1 Phases and its transformation of zirconia. (A) monoclinic; (B) tetragonal; (C) cubic structure;
and (D) phases of transformation of zirconia. Modified with permission from Sorrentino et al. (2019).

Full-size DOI: 10.7717/peerj.15669/fig-1

hydrothermal aging, progressive transformation to monoclinic phase takes place (Piconi &
Maccauro, 1999; Sorrentino et al., 2019; Rekow et al., 2011) (Fig. 1). Then cooling, the
tetragonal form transforms back to the monoclinic form. Achieving stable sintered
zirconia ceramic is a little difficult because volumetric change (about 5%) occurs when
the transformation from tetragonal to monoclinic. The zirconia can be monochromatic
with uniform composition, polychromatic multilayer with uniform composition, and
polychromatic multilayer and hybrid composition.

Proper bonding between the zirconia restoration and the tooth is important for the
longevity of the prosthetic restoration (Araújo et al., 2018; Melo et al., 2015; Heboyan et
al., 2023). Zirconia requires surface treatments with acid etching for surface abrasion to
ensure adhesion with luting cement (Araújo et al., 2018). Although there are various
surface treatment protocols have been recommended, common treatment included
alumina particles followed by the application of primers or cements based on MDP
(10-methacryloyloxydecyl dihydrogen phosphate) (Melo et al., 2015; Aung et al., 2019;
Shimizu et al., 2018; Silveira et al., 2022; Alammar & Blatz, 2022). The surface modification
improves the adhesive behavior of the materials (Silveira et al., 2022).

Dental zirconia has increased over the past years producing wide varieties of zirconia
for prosthetic restorations in dentistry. Although some researchers have studied zirconia
and classified dental zirconia in the past, (Ban, 2021; Güth et al., 2019; Nistor et al., 2019;
Grech & Antunes, 2019; Alqutaibi et al., 2022) the current literature is lacking on the recent
zirconia biomaterials in dentistry. The research question is there a recent classification
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of the recent zirconia biomaterials in dentistry? It is found that no article has the latest
information on the various types of zirconia biomaterials in dentistry. Hence, the aim
of this article is to present an overview of recent dental zirconia biomaterials and tends
to classify the recent zirconia biomaterials in dentistry. This article is useful for dentists,
dental technicians, prosthodontists, and researchers in the field of dental zirconia by
providing updated information on the current literatures on various types of zirconia used
in dentistry.

SURVEY METHODOLOGY
Articles on advances in dental zirconia ceramic were searched from January 1989
to December 2022 using Google Scholar, MEDLINE/PubMed, Web of Science, and
ScienceDirect resources. Research and review articles in the English language were only
included in this review. A total of 79 articles were selected and included in this review.
Editorials, Letters to the Editor, and Case Reports were excluded from this review.

Yttria stabilized zirconia
Often in zirconia, various elements are dissolved such as yttrium (Y), cerium (Ce), calcium
(Ca), magnesium (Mg), etc. to make it stable at room temperature (Piconi & Maccauro,
1999; Chevalier, 2006). The addition of Yttria (Y2O3) to zirconia stabilizes the tetragonal
phase (Leib et al., 2015). Following LTD, yttria is exhausted through reaction causing
the phase transformation (Rekow et al., 2011; Chevalier, Cales & Drouin, 1999; Amat et
al., 2019). Yttria-doping can reduce grain growth, stabilize the tetragonal phase, and
substantially improve thermal stability. Furthermore, the thermal stability of the cubic
form of zirconia is obtained by the substitution of some Zr4+ ions (ionic radius of 0.82
Å) with larger ions, e.g., Y3+ (ionic radius of 0.96 Å) in the crystal lattice. This doping of
zirconia results in partially stabilized zirconia (PSZ) (Leib et al., 2015).

The yttria-stabilized dental zirconia is classified into 12 types (Fig. 2). Zirconia (TZP,
tetragonal zirconia polycrystal) are of various types based on the yttria content: (Zhang,
2014; Abdulmajeed et al., 2020; Arcila et al., 2021) 3Y-TZP (3 mole % Y-TZP), 4Y-TZP (4
mole % Y-TZP), 5Y-TZP (5 mole % Y-TZP), and 6Y-TZP (6 mole % Y-TZP). The 3Y-TZP
is early zirconia used in dentistry as a ‘‘white metal’’ (Miyazaki et al., 2013). Zirconia with
lower yttria content (3Y-TZP, 3 mole % Y-TZP) has better mechanical properties and less
translucency whereas 3Y-TZP (3 mole % Y-TZP) with increased yttria content (6Y-TZP,
6 mole % Y-TZP) has more translucency but presents lower mechanical properties. Yttria
content consisting of >8 mol% has a stable cubic phase at room temperature and it is
known as cubic stabilized zirconia (CSZ). Similarly, yttria content consisting of 3-8 mol%
has tetragonal and cubic phases and it is known as partially stabilized zirconia (PSZ). And
yttria content consisting of approx. 3 mol% has tetragonal phases (toughened) about 100%
and it is known as a tetragonal zirconia polycrystal (TZP).

At present multilayer (M) zirconia has been introduced. Similarly, M3Y is highly
translucent and M6Y is super highly translucent (Fig. 2). Some surface defects can be
seen in all types of zirconia under scanning electron microscopy, although the 3Y-TZP
demonstrates higher grain consistency. It has been found that the 5Y-PSZ presents the
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Figure 2 Classification of yttria-stabilized dental zirconia Ban (2021). Y, Yttria, M, multilayer.
Full-size DOI: 10.7717/peerj.15669/fig-2

least strength and the 4Y-PSZ and 3Y-TZP present similar fatigue. It has been found that
higher yttria content has lower mechanical strength but higher translucency of zirconia
(Ban, 2021; Harada et al., 2020; Cho et al., 2020). Similar to yttria, ceria (CeO2) is added to
the zirconia to produce ceria in tetragonal stabilized zirconia (Ce-TZP).

Properties of zirconia
Physical properties
Zirconia is a stable restorative biomaterial. Dental zirconia is resistant to acid erosive
attacks in the mouth although some erosive agents may have a negative effect on the
surface roughness (Tanweer et al., 2022). It has extremely low thermal conductivity and the
thermal expansion coefficient is 10×10−6/◦C and does not depend on the yttria content
(Ban, 2021).

Mechanical properties
Zirconia has the highest hardness among the various restorative materials used in dentistry
(Ban, 2021). Its flexural strength and hardness are extremely large compared to other
restorative materials. Conventional zirconia has higher bi-axial flexural strength compared
to high-translucent monolithic zirconia (Kontonasaki, Giasimakopoulos & Rigos, 2020).
Furthermore, the fracture toughness of 5Y-TZP is almost 50% less compared to that of
3Y-TZP with the cubic phase content because of more yttria content (Belli et al., 2021).
In a recent study, (Liao et al., 2023) showed that the flexural strength value was 584 (158)
MPa for 3Y-TZP and 373 (104) MPa for 5Y-TZP.

Dal Piva et al. (2018) studied the influence of the milling system and aging on zirconia
surface roughness and phase transformation and they found that the surface roughness of
zirconia-based crowns was not influenced by the milling system or low-temperature
degradation. But regarding the phase transformation, autoclaving and pH-cycling
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aging presented a monoclinic phase increase when compared to the control group and
thermocycled group. Similarly, a study by Flinn et al. (2012) on the accelerated aging of
Y-TZP found that the hydrothermal aging of Y-TZP can cause a significant transformation
from tetragonal to monoclinic crystal structure with a significant decrease in the flexural
strength of thin bars. Hence, the aging of zirconia increases the monoclinic phase.

The fracture strength of a zirconia implant is influenced by its design, composition, and
kind of abutment preparation (Bethke et al., 2020). The 1-piece zirconia implant fixture has
twice the fracture strength compared to the 2-piece fixture (Kohal, Finke & Klaus, 2009).
There is a strong correlation between the fracture toughness and fracture loads of ceramic
crowns on zirconia implants during the occlusal contact (Rohr, Märtin & Fischer, 2018).
Therefore, proper selection of zirconia material should be done for the crown whether
aesthetics or strength is needed.

Zirconia is supposed to cause the opposing teeth to wear. But smooth and well-polished
zirconia does not cause toothwear. Abrasivewear on the occlusal part of zirconia restoration
affects the opposing teeth or restoration (Mair, 1992). When the zirconia restoration is a
hard and rough surface, the tooth abrasive wear becomes severe.

Optical properties
Zirconia is an esthetic biomaterial, but its translucency is slightly less compared to the
glass-ceramics. To maintain the translucency of the zirconia and glass-ceramic prostheses,
suitable luting cement should be used (Heboyan et al., 2023; Bilgrami et al., 2022b; Bilgrami
et al., 2022a). The addition of yttria content in zirconia increases the cubic phases and
this increases the translucency, however, the strength is reduced due to a few tetragonal
phases (Fig. 3). 5Y-TZP is more translucent by 20 to 25% but has less flexural strength
by 40 to 50% compared to 3Y (Ban, 2021). Hence, 3Y-TZP can be indicated for bridges,
especially of long spans, and is not suitable for the anterior teeth (Ban, 2021; Liao et al.,
2023). Conversely, 5Y-TZP and M5Y are indicated for veneers and anterior crowns but
are not suitable for long-span bridges (Ban, 2021). Similarly, for the hybrid multilayer and
polychromatic zirconia types, such as M3Y-5Y, their uses are similar to 5Y-TZP which has
low strength (Jitwirachot et al., 2022). Similarly, both 4Y-TZP and M4Y can be used in all
areas requiring sufficient strength and translucency.

Zirconia has greater radio-opacity compared to aluminumand titanium. This is due to its
intrinsically high density and effective atoms which can obtain high-contrast radiographic
images useful for diagnosis (Ban, 2021). Speed sintering can reduce the translucency of the
zirconia. It was found that regular sintering had larger gain sizes and increased translucency
than speed sintering (Kongkiatkamon & Peampring, 2022).

Biological properties
Various animal and human studies conclude that zirconia is a biocompatible biomaterial
(Bapat et al., 2022; Josset et al., 1999; Christel et al., 1989; Uo et al., 2003; Abd El-Ghany &
Sherief, 2016; Zarone et al., 2021). Christel et al. (1989) investigated the effect of yttria-
stabilized zirconia and alumina in vivo (implanted into paraspinal muscles of rats) and
found no cytotoxicity. Similarly, Josset et al. (1999) also found that the human osteoblasts
presented good adhesion and cell spreading, and the cells maintained their proliferation
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Figure 3 The translucency vs flexural strength of dental zirconia Ban (2021).
Full-size DOI: 10.7717/peerj.15669/fig-3

capacity and differentiation ability into osteogenic pathways. Wu et al. (2015) studied the
wettability of ZrO2 and found that its wettability was substantially enhanced by oxygen
plasma treatment for maintaining a stable hydrophilicity surface. Water droplets can wet
the hydrophilic zirconia surface (low contact angle) and this wetting condition that is
suitable for oil-water separation is achieved by engineering the surface chemistry and
surface roughness characteristics (Rasouli et al., 2021). Hydrophilic surface is an important
factor that affects protein absorption and human gingival fibroblasts’ cellular attachment
to implant abutments (Rutkunas et al., 2022; Barberi & Spriano, 2021; Kim et al., 2015)
Generally, a lower contact angle promotes fibroblast attachment (Kim et al., 2015).

Furthermore, zirconia does not cause mutations in the cellular genome (Silva, Lameiras
& Lobato, 2002; Warashina et al., 2003). Moreover, ZrO2 creates a less toxic reaction in
tissue compared to titanium (Degidi et al., 2006). Zirconia also shows less bacterial adhesion
and it is important in maintaining good periodontal health (Scarano et al., 2004). It was
found that zirconia showed less adhesion of bacteria and less biofilm formation compared
to titanium (Ban, 2021; Scarano et al., 2004; Rimondini et al., 2002). Scarano et al. (2004)
found that bacterial adhesion was 12.1% on zirconia vs to 19.3% on titanium.

Sintering of zirconia
CAD/CAM technology used computer-aided design and fabrication of ceramic prostheses
and the process is more time efficient than conventional techniques (Padrós et al., 2020;
Abduo & Lyons, 2013). Sintering is responsible for providing the strengths to the zirconia
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restoration. Various sintering methods have been developed and they affect the structure,
properties, and esthetics of zirconia (Kilinc & Sanal, 2021; Juntavee & Attashu, 2018;
Sanal & Kilinc, 2020). Different studies compared different (slow and fast) sintering
protocols of zirconia (Amat et al., 2019; Kilinc & Sanal, 2021; Ordoñez Balladares et al.,
2022; Ersoy et al., 2015; Liu et al., 2022b). Juntavee & Attashu (2018) studied the role of
sintering duration and temperature on the mechanical properties of zirconia and found
that a long sintering time with high sintering temperature results in increased flexural
strength zirconia. Similarly, Kongkiatkamon & Peampring (2022) evaluated the surface
microstructure, flexural strength, and translucency of 5Y-TZP zirconia using regular and
speed sintering. They found that the regular protocol showed bigger gain sizes and more
translucency than the speed protocol. The speed sintering had higher biaxial flexural
strengths which can be due to changes in the material structure from the degradation
of the metal salts (Sulaiman et al., 2017). Similarly, Liu et al. (2022a) also found that the
Y-PSZ with conventional sintering had a bigger average grain size and fewer fine grains
compared to the speed sintering of zirconia. Ahmed et al. (2020) found no dimensional
change between normal and fast sintering of zirconia. Liu et al. (2022b) investigated the
optical properties of 3Y-TZP and 5Y-TZP and noticed that speed sintering had less lightness
without affecting the surface roughness.

Surface treatment and adhesion of zirconia
Bonding between resin cement and zirconia is difficult to achieve because of their chemical
inertness and lack of silica content (Scaminaci Russo et al., 2019). Hence, surface treatments
of the zirconia restoration increase the adhesive, micro tensile bond strength, and longevity
of the prosthetic restoration (Araújo et al., 2018;Melo et al., 2015; Heboyan et al., 2023). At
present various surface treatments for zirconia and ceramics are available for better bonding
to the tooth structure (Campos et al., 2016; Guarda et al., 2013; Sato et al., 2016). Airborne-
particle abrasion and tribo-chemical silica coating are the pre-treatmentmethods. Adhesion
can be increased after physicochemical conditioning of zirconia (Scaminaci Russo et al.,
2019). One common treatment includes alumina particles followed by the application of
primers or cement-based on10 MDP (methacryloyloxydecyl dihydrogen phosphate) (Melo
et al., 2015; Aung et al., 2019; Shimizu et al., 2018; Silveira et al., 2022; Alammar & Blatz,
2022) However, the effect of the bond strength with the new generation of high-translucent
zirconia materials is not clear and further studies are needed.

Classification of zirconia
The previous classifications of zirconia were done according to the types of polycrystalline
(zirconia, Alumina, PSZ, TZP, and yttria-stabilized dental zirconia; Generation 1–3) (Sato
et al., 2016). Zirconia can be of various types as shown in Table 1. Commonly, zirconia can
be uniform or hybrid in composition and monolayer or multilayer.

Since there are various ceramicmaterials in themarket and it is often confusion regarding
choosing the material. Hence, the authors would like to categorize the zirconia materials
based on their composition, and an indication of the commercially available zirconia
materials (Table 2 and Figs. 4–5).
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Table 1 Dental zirconia materials in the market.

Zirconia Yttria
content
(mol%)

Indications

A. Ammanngirrbach
Super High Translucent (SHT )
1. Ceramill Zolid Fx White 5%
2. Ceramill Zolid Fx Multilayers 5%

Anatomical crowns and bridges (<3 units extending
to the molar region) Veneers, Inlays, Onlays

High Translucent (HT )
Anatomical crowns and 4- to multi-unit bridges

1. Zolid gen x 4%
Multi-unit screw-retained constructions on Ti bases

2. Zolid drs multilayer 4% Crowns and bridges (<3 units up to molar region)
Veneers, inlays, onlays
Individual abutments

3. Zolid ht+ preshades 4% Anatomical crowns and 4- to multi-unit bridges
Multi-unit screw-retained constructions on Ti bases

4. Zolid ht+ white 4% Anatomical crowns and 4- to multi-unit bridges
Multi-unit screw-retained constructions on Ti bases

Low Translucent (LT )
1. Ceramill Zi 3% Custom abutments on titanium bases

Crowns and 4-unit to multi-unit bridge frameworks
Multi-unit, screw-retained restorations on titanium
bases

B. Vita YZ
1. YZ T 3% Anatomical crowns and up to 14-unit bridges in the

anterior and posterior tooth region
Single-tooth and up to 14-unit bridges on screw-
retained restorations in the anterior and posterior
tooth region
Primary telescopes

2. YZ HT 3% Anatomical crowns and up to 14-unit bridges in the
anterior and posterior tooth region
Single-tooth and up to 14-unit bridges on screw-
retained restorations in the anterior and posterior
tooth region
Primary telescopes

3. YZ ST 4% Anatomical crowns and up to 14-unit bridges in the
anterior and posterior tooth region
Single-tooth and up to 14-unit bridges on screw-
retained restorations in the anterior and posterior
region
Inlays, onlays, veneers, table top

4. YZ XT 5% Anatomical single-tooth crowns and up to 3-unit
bridges
Inlays, onlays, veneers, table top

(continued on next page)
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Table 1 (continued)

Zirconia Yttria
content
(mol%)

Indications

5. YZ ST Multicolors 4% Anatomical crowns and up to 14-unit bridges in the
anterior and posterior tooth region
Single-tooth and up to 14-unit bridges on screw-
retained restorations in the anterior and posterior
tooth region
Inlays, onlays, veneers, table top

6. YZ XT Multicolors 5% Anatomical single-tooth crowns and up to 3-unit
bridges
Inlays, onlays, veneers, table top

C. Cercon
1. Cercon base 3% Anatomical crowns and up to 14-unit bridges in the

anterior and posterior tooth region
2. Cercon ht 3% Anatomical crowns and up to 14-unit bridges in the

anterior and posterior tooth region
Primary telescopes

3. Cercon xt 5% Anatomical crowns and bridges (<3 units extending
to the second premolar region)

4. Cercon ht ML 3% Anatomical crowns and up to 14-unit bridges in the
anterior and posterior tooth region
Primary telescopes

5. Cercon xt ML 5% Anatomical crowns and bridges (<3 units extending
to the second premolar region)

D. Lava 3M
1. Lava Plus 3% Full-arch bridges

Splinted crowns up to 4 units
Primary telescopes
Crowns (anterior and posterior)

2. Lava Esthetic 5% 3-unit bridges (<1 pontic between 2 crowns)
Anterior and posterior crowns

3. Lava Chairside Zirconia 3% Single crown
3-unit bridges (<1 pontic between 2 crowns)

E. GC Initial
1. Standard Translucency (ST) 3% Anterior and posterior crown

Hybrid abutment
2. High Translucency (HT) 3% Implant framework

Multi-unit bridge
3. Ultra High Translucency
(UHT)

3% Inlay, onlay, veneer
Anatomical single-tooth crowns and up to 3-unit
bridges

F. Sagemax
1. NexxZr S: High Strength 3% Single crown

Frameworks up to multi-unit frameworks
2. NexxZr T: Translucent 3% Single-unit restorations up to multi-unit bridges
3. NexxZr T Multi: Translucent 3% (cervical)

& 5% (incisal)
Single-unit restorations up to multi-unit bridges

(continued on next page)
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Table 1 (continued)

Zirconia Yttria
content
(mol%)

Indications

4. NexxZr+: Hight Translucent 4%
5. NexxZr Multi: High Translu-
cent

4% (cervical)
& 5% (incisal)

Single-unit restorations up to multi-unit bridges
(white) or 3-unit bridges (preshaded)

G. Dental Direk
1. DD cubeX2® –Super High
Translucent (SHT)

5% High esthetic monolithic crowns and bridges (<3
units, including molar restorations)

2. DD cube ONE® –High
Translucent Plus (HT+)

4% High esthetic monolithic
crowns and bridges (≥ 4 units)
High esthetic veneering

3. DD Bio ZX2 –High Translucent
(HT)

3% Monolithic crowns and bridges (of any span range)

4. DD Bio Z –High Strength (HS) 3% Monolithic crowns and bridges (of any span range)
Implant superstructures
Abutments

H. Katana
1. LT 3%
2. HT 3%
3. HTML 3%

Single-unit frameworks and long-span bridges

4. STML 4% Single-unit or <3-unit posterior bridges
5. UTML 5% Anterior crowns and veneers, inlays/onlays, and

posterior single crowns.
6. YML 3% (cervical)

& 5% (incisal)
Veneers, Inlays, Onlays

Single crown (Anterior and posterior), Longspan
bridge,
Framework

I. Emax Zir CAD
1. MT Multi 4% (dentin) &

5% enamel)
Full contour crown, 3-unit bridge

2. MT 4% Crown, 3-unit bridge, Implant-supported super-
structures

3. LT 3% Crown copings
Multi-unit bridges with <2 pontics

4. MO 3% Crown coping
Multi-unit bridges with <2 pontics

Finally, this review article provides updated information on the various dental types of
zirconia used in dentistry. As this review does not use the PICO method, this review can
be extended to do a more extensive review following the PICOS method.

CONCLUSIONS
Zirconia can be of various types based on the yttria content, uniformor hybrid composition,
monochromatic or polychromatic, andmonolayer ormultilayer. Increased yttria content in
zirconia results in higher translucency but reduces the strength. Zirconia with lower yttria
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Table 2 Current classification of the zirconia-based on the yttria content and indications.

Types Indications

Type 1A: 3Y-TZP (conventional)
(1) Ceramill Zi
(2) Vita YZ T
(3) Cercon base
(4) Kantana LT
(5) Emax Zir CAD LT

–Substructure
–Custom abutment
–Single-tooth and up to 14-unit
bridges on screw-retained restorations
in the anterior and posterior tooth
region (primary telescopic)

Type 1B: 3Y-TZP with reduced alumina
(1) Vita YZHT
(2) Cercon HT
(3) Lava Plus
(4) Lava chairside
(5) GC Standard Translucency (ST)
(6) GCHigh Translucency (HT)
(7) GCUltra High Translucency (UHT)
(8) Nexx Zr S
(9) Nexx Zr T
(10) DDBio Z High Strength (HS)
(11) DDBio ZX2 High Translucent (HT)
(12) Katana HT
(13) Katana HTML
(14) EMax Zr CADMO

–Substructure
–Custom abutment
–Single-tooth and up to 14-unit
bridges on screw-retained restorations
in the anterior and posterior tooth
region (primary telescopic)

Type 2: 4Y-TZP
(1) Zolid gen x
(2) Zolid drs multilayer
(3) Zolid ht+ preshades
(4) Zolid ht+ white
(5) Vita YZ ST
(6) Vita YZ STMulticolor
(7) NexxZr+: Hight Translucent
(8) DD cube ONE® –High Translucent Plus (HT+)
(9) Katana STML
(10) Emax ZircadMT

–Single-tooth and up to 14-unit bridges
on screw-retained restorations in
the anterior and posterior region
–Inlay, onlay, tabletop

Type 3: 5Y-TZP
(1) Ceramill Zolid FxWhite
(2) Ceramill Zolid FxMultilayers
(3) Vita YZ XT
(4) YZ XTMulticolors
(5) Cercon XT
(6) Cercon XTML
(7) LAVA Esthetic
(8) DD cubeX2® –Super High Translucent (SHT)
(9) Katana UTML

− Anatomical crowns and bridges (<3
units extending to the second premolar
region)

Type 4: Combination of 3Y/ 4Y and 5Y-TZP
(1) NexxZr TMulti: Translucent
(2) NexxZrMulti: High Translucent
(3) Katana YML
(4) Emax Zir CADMTMulti

–Single unit –Multiple unit bridge

content (3Y-TZP, 3 mole % Y-TZP) has better mechanical properties and less translucency
whereas 3Y-TZP (3 mole % Y-TZP) with increased yttria content (6Y-TZP, 6 mole %
Y-TZP) has more translucency but presents lower mechanical properties. Speed sintering
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Figure 4 Examples of zirconia-based on the yttria content. A, 3Y-TZP, B, 4Y-TZP, and C, 5Y-TZP.
Full-size DOI: 10.7717/peerj.15669/fig-4

Figure 5 Translucency of zirconia-based on the yttria content. A, 3Y-TZP, B, 4Y-TZP, and C, 5Y-TZP.
Full-size DOI: 10.7717/peerj.15669/fig-5

of zirconia has resulted in higher flexural strength and regular sintering of zirconia has
shown bigger gain sizes and more translucency.
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