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ABSTRACT
Background. Kawasaki disease (KD) is amulti-systemic vasculitis that primarily affects
children and has an unknown cause. Although an increasing number of studies linking
the gut microbiota with KD, the unchallengeable etiology of KD is not available.
Methods. Here, we obtained fecal and oral samples from KD patients and healthy
controls, and then we use high-throughput sequencing to examine the diversity and
composition of microbiota.
Results. Results showed that both in the gut and oral microbiota, the diversity of KD
patients was significantly lower than that of the healthy controls. In the gutmicrobiota, a
higher abundance of Enterococcus (40.12% vs less than 0.1%), Bifidobacterium (20.71%
vs 3.06%), Escherichia-Shigella (17.56% vs 0.61%), Streptococcus (5.97% vs 0.11%)
and Blautia (4.69% vs 0.1%) was observed in the KD patients, and enrichment of
Enterococcus in the patients was observed. In terms of oral microbiota, the prevalence
of Streptococcus (21.99% vs 0.1%), Rothia (3.02% vs 0.1%), and Escherichia-Shigella
(0.68% vs 0.0%) were significantly higher in the KD patients, with the enrichment of
Streptococcus and Escherichia-Shigella. Additionally, significant differences in microbial
community function betweenKDpatients andhealthy controls in the fecal sampleswere
also observed, which will affect the colonization and reproduction of gut microbiota.
Conclusions. These results suggested that the dysbiosis of gut and oral microbiota are
both related to KD pathogenesis, of which, the prevalence of Enterococcus in the gut
and higher abundance of Streptococcus and Escherichia-Shigella in the oral cavity will
be a potential biomarker of the KD. Overall, this study not only confirms that the
disturbance of gut microbiota is a causative trigger of KD but also provides new insight
into the oral microbiota involved in KD pathogenesis.

Subjects Microbiology, Molecular Biology, Cardiology, Gastroenterology and Hepatology,
Pediatrics
Keywords Kawasaki disease, Oral microbiota, Gut microbiota, Streptococcus, Illumina sequencing

INTRODUCTION
Kawasaki disease (KD), which was first reported by Dr. Tomisaku Kawasaki, is an acute
febrile illness of early childhood. The age-specific incidence rate of KD is highest in children
under 1 year old (Uehara & Belay, 2012). The KD has now become one of the leading
causes of acquired heart disease in children in developed countries because its’ pathology
is self-limited vasculitis that primarily involves the coronary arteries. The prognosis of KD
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depends on the extent of cardiac involvement, and up to 20%–25% of patients will develop
coronary aneurysms (McCrindle et al., 2017). It has been reported in children of all races
although it was first reported in Japan.

However, the etiology of KD remains obscure. The clinical and epidemiological features
suggest an infectious origin or trigger. The clinical features of KD are a self-limited illness
including fever, rash, mucositis, etc., which appear like peculiar infectious diseases, such as
streptococcal infections, and atypical measles (Burgner & Harnden, 2005; Esposito, Polinori
& Rigante, 2019). In addition, the seasonality of cases (Nakamura et al., 2008), the age
distribution of KD (Uehara & Belay, 2012), the occurrence of community outbreaks, and
the high incidence rate in siblings of KD (Kinumaki et al., 2015) implied that this disease
is transmissible in children. Based on these, the reasonable theory behind the disease
is that KD may be triggered by one or more infectious agents (Newburger et al., 2004).
Nevertheless, no exact causative agent has been identified so far, although researchers have
tried their best to isolate the bacteria, viruses, and fungi with conventional inoculation.

Meanwhile, some genome-wide association studies (GWAS) revealed susceptibility loci
involved in immune disorders and cardiovascular status (Burgner et al., 2009; Onouchi et
al., 2012). Many studies have demonstrated that the immune system plays an important
role in KD patients. For example, the levels of chemokines and cytokines, such as
interleukin (IL)-1, IL2, Il-6, IL-17, IL-23, and tumor necrosis factor- α are reported to be
elevated in the acute phase of patients (Greco et al., 2015; Jia et al., 2010). The elevations of
neutrophils (lipopolysaccharide binding), plasma proteins, and antibody reactivity against
mycobacterial heat-shock protein (HSP60) were observed in the convalescent sera in several
previous reports (Kinumaki et al., 2015; Takeshita et al., 2002b). These factors are mostly
related to the secondary infections of some pathogens, including bacteria (Streptococcus
pyogenes, Klebsiella pneumoniae, Staphylococcus aureus) (Principi, Rigante & Esposito, 2013)
and viruses (Epstein-Barr virus, parvovirus B19, rotavirus, dengue virus, and influenza
virus) (Joshi et al., 2011; Principi, Rigante & Esposito, 2013). It is worth noting that the
relationship between KD and coronavirus disease 2019 (COVID-19) was also recently
documented due to the pandemic, and the hyperinflammation induced by COVID-19
may act as a primer for KD development in some patients (Moreira, 2020; Verdoni et al.,
2020; Viner & Whittaker, 2020). These extensive studies promote the identification of the
pathogenesis and pathophysiology of KD and further suggest that infectious agents induce
the onset of the disease.

The dysregulation of the gut microbiota may lead to autoimmune diseases through
aberrant immune system development. For adults, the intestinal microbiota is considered
to be inter-individually variable and intra-individually stable, which plays a crucial role
in protecting the mucosal immune system. However, the gut microbiome of infants and
children is more easily disturbed by diet, formula feeding, and other life events, including
infection and antibiotic treatment (Kinumaki et al., 2015; Morotomi et al., 2011). Thus,
more and more researchers are focused on the link between the intestinal microbiota and
patients with KD. TheKD children often have gastrointestinal symptoms and complications
(Eladawy et al., 2013). Based on the culturedmethods, someprevious studies have identified
possible causative microbial agents of KD, such as Gram-negative bacteria capable of
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producing HSP60 and Gram-positive cocci that induce the V β2T cell expansion. Another
study suggested that the lack of Lactobacilli (Takeshita et al., 2002a) during the acute phase
of KD patients could be a possible reason. Along with the development of metagenomic
analyses, several studies sought to find more relationships between uncultured intestinal
microbiota and KD. In 2015, Kinumaki et al. (2015) first analyzed the fecal microbiome
of 28 KD patients by using metagenomics and revealed that Streptococcus spp. were more
abundant in the acute phase and suggested KD-related streptococci might be involved
in the pathogenesis of KD. Recently, Kaneko et al. raised a new viewpoint that dysbiosis
is the pathogenesis of KD, and more information on the gut microbiota in the feces of
antibiotic-naive KD patients is needed (Kaneko et al., 2020).

Nevertheless, few studies have focused on the oral microbiota of KD patients. More than
700 kinds of microorganisms were colonized in the human oral cavity, and large studies
were carried out to elucidate the relationship between oral microbes and human diseases,
including diabetes, preterm birth, and cardiovascular diseases, etc. (Gomez et al., 2020; Li et
al., 2021;Matsha et al., 2020;Xian et al., 2018). The disturbance of oralmicrobes in systemic
diseases is repeatable, which suggests that oral microbes can reflect the status of disease
and health in real-time and are of great value in disease risk early warning and curative
effect prediction (Peng et al., 2022). Besides, the oral administration of Porphyromonas
gingivalis (a representative periodontopathic bacterium) was demonstrated to alter the gut
microbiota composition (dysbiosis) by reducing gut barrier function and modulating the
gut immune system (Kato et al., 2018). Increasing evidence suggests that oral microbes may
alter the gut microbiome by invading the intestine, causing imbalances in the microecology
and affecting the digestive system (Gao et al., 2018). Thus, obtaining the oral microbes of
KD patients is of great value to elucidate the etiology of KD.

This study aims to compare differences in oral and gutmicrobes betweenKDpatients and
healthy controls. A comparative metagenomic approach was used, and the information
could be a complement to the understanding of the microbiome and infections in the
pathogenesis of KD.

MATERIALS & METHODS
Samples collection
Ten samples of children (five from the KDpatients, and other five from the healthy) without
antibiotic treatment were collected from the Affiliated Hospital of Putian University. All of
the KD patients enrolled in this study were collected in the acute phase before admission,
both fecal and oral samples were collected on the first day they arrived hospital. KD
diagnosis meets the criteria established by the KD Research Committee of American Heart
Association (McCrindle et al., 2017). The controls were collected from the healthy children
and were not treated with any medicine for 1 month before sample collection. Both fecal
and oral samples were collected. Finally, one fecal sample of KD patients was excluded
due to poor sample quality after DNA amplification. Thus, only nine fecal samples (five
from the patients and four from the healthy controls) and 10 oral samples (five from the
patients and five from the healthy controls) were subjected to the following sequencing
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and analysis. Both the KD patients and healthy controls were collected with fecal and oral
samples. The basic information of all samples were listed in Table S1. Samples were stored
in the 5 ml tubes and immediately frozen at −80 ◦C until use. This study was approved by
the ethics committee of the Affiliated Hospital of Putian University (No: 202183), and the
informed consent was signed by parents.

DNA extraction and amplification
Total DNA extraction was performed using the E.Z.N.A.® soil DNA Kit (Omega Bio-
tek, Norcross, GA, USA) according to the manufacturer’s instructions. DNA quality
and concentration were detected using the NanoDrop one UV–vis spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). By using the primers 338F (5′-
ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′),
the V3-V4 region of the bacterial 16S rRNA gene, which has about 465 bases, was amplified.
The PCR settings were as followings: initial denaturation at 95 ◦C (3 min), then 27 cycles
of denaturing at 95 ◦C (30 s), annealing at 55 ◦C (30 s), and extension at 72 ◦C (45 s),
followed by a single extension at 72 ◦C (10 min), and finish at 4 ◦C. Each PCR had the
following ingredients: 5× TransStart FastPfu buffer 4 µL, 2.5 mM dNTPs 2 µL, 0.8 µL
each of the forward primer and reverse primers (5 µM each), TransStart FastPfu DNA
Polymerase 0.4 µL, template DNA 10 ng, and finally ddH2O up to 20 µL. A triplicate of
each PCR reaction was run.

Illumina Miseq sequencing
PCR products were purified by using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA) and quantified using Quantus™ Fluorometer (Promega,
USA) both following the instructions of the manufacturer. Purified amplicons were pooled
in equimolar amounts and paired-end sequencing were performed on an Illumina MiSeq
platform (Illumina, San Diego, USA) according to the standard protocols by a commercial
company (Majorbio Bio-Pharm Technology Co. Ltd., Shanghai, China) using the MiSeq
Reagent Kit v3. The raw reads were deposited into the NCBI Sequence Read Archive (SRA)
database (accession number: PRJNA928221).

Processing of sequencing data
Fastp version 0.20.0 (Chen et al., 2018) was used to quality-filter the raw data of paired-end
sequences after it had been first assembled using FLASH version 1.2.11 (Magoc & Salzberg,
2011). Sequencing reads with exact matches to barcodes was recognized as authentic
sequences and assigned to the appropriate samples after the potential chimera sequences
were filtered. Using UPARSE version 7.1 (Edgar, 2013), operational taxonomic units
(OTUs) with a 97% similarity criterion were grouped, and chimeric sequences were found
and eliminated. Using a confidence threshold of 80%, RDP Classifier version 2.2 (Wang
et al., 2007) was used to assess the taxonomy of each OTU representative sequence against
the 16S rRNA database (eg. Silva v138).

Statistical analysis
The alpha-diversity (including Chao index, Shannon index, and Simpson index) of bacteria
was performed by using Mothur version 1.30.1 (Schloss et al., 2009). The differences
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between groups were displayed by the Partial least square discriminant analysis (PLS–DA)
and nonmetric multidimensional scaling (NMDS) based on Bray–Curtis dissimilarity. The
differences between the case and healthy control groups were analyzed by the Analysis of
similarity (ANOSIM). Statistical significance was defined as a P-value of less than 0.05.

RESULTS
Differences in microbial diversity among KD patients and healthy
controls
In total, nine fecal specimens (five KD patients and four healthy control) and 10 oral
specimens (five KD patients and five healthy control) were sequenced successfully. After
quality control processes of sequences, 836,786 sequences were obtained from all samples,
with an average of 44,041 sequences per sample (Table S2). A total of 495 OTUs were
obtained from all samples, including 262 OTUs and 314 OTUs from fecal samples and
oral samples, respectively. Compared to the KD patients, higher OTUs were obtained in
the healthy control group both in oral (258 in control vs 238 in KD patients) and fecal
samples (219 in control vs 175 in KD patients) (Fig. S1). The rarefaction curve showed
that the sequencing depth was sufficient, as the curve reached a plateau in all samples (Fig.
S2), indicating that most microbiota species were captured. Alpha diversity indices were
calculated to evaluate the microbiota’s richness and diversity. Although slightly higher
microbiota richness was observed in the healthy controls, no significant differences in
richness were detected between the two groups (P = 0.066, >0.05) neither in oral samples
nor in fecal samples. This may be attributed to the small number size of samples, as the
error bar of the Sobs index was high (Fig. 1B). However, the diversity from KD patients
was significantly lower than that from the healthy controls (P = 0.0199, <0.05). Similarly,
a significantly lower Shannon index of oral bacteria was observed in the KD patients
(P = 0.0216, <0.05) as well (Fig. 1). These results suggested that KD diseases could induce
the loss of biodiversity in both the oral and gut microbiomes.

The difference between the two groups of KD patients and healthy controls was evaluated
via beta diversity by performing PLS-DA and NMDS based on Bray–Curtis dissimilarity
(Fig. 2). Although the number of samples was small, the results showed that the microbiota
of KD patients was distinct from that of healthy controls both in the oral and fecal samples
(R= 0.7527, P = 0.001, ANOSIM). The separation trend of the fecal samples was more
significant than that of the oral samples. PCA and PCoA also demonstrated the distinction
between the four groups (Fig. S3A). Furthermore, the heatmap of sample hierarchical
clustering showed that most of the samples from each group could be clustered well based
on microbiota at the genus level (Fig. S3B).

Differences in the composition of bacterial communities in KD patients
and healthy controls
The taxonomic composition of bacteria was analyzed from phyla to genera and
visualized in the form of a bar diagram (Fig. 3). The five major phyla in all groups were
Firmicutes, Bacteroidota, Proteobacteria, Actinobacteria, and Fusobacteriota. However,
the distribution of these phyla abundances was different between KD patients and healthy
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Figure 1 The alpha diversity indices of oral and gut microbiota. Shannon index of fecal samples (A).
Sobs index of fecal samples (B). Shannon index of oral samples (C). Sobs index of oral samples (D). Pa-
tient F and Control F represent fecal samples from KD patients and healthy, respectively; Patient O and
Control O represent oral samples from KD patients and healthy, respectively.

Full-size DOI: 10.7717/peerj.15662/fig-1

controls (Fig. 3A). In fecal samples, Firmicutes (59.5%) was first dominant in the patients,
followed by Actinobacteria (22.0%) and Proteobacteria (17.8%). On the contrary, the
Bacteroidota (47.9%) was the first dominant in the healthy control, with an obvious
decrease of Firmicutes (44.1%) and a significant decreasing of Actinobacteria (4.25%) and
Proteobacteria (3.4%). This indicated that the decreasing of Bacteroidota could be one of
the factors related to KD disease. In oral samples, Firmicuteswas also the dominant phylum
in healthy controls (41.4%), but with an obvious increase in the KD patients (71.2%).
Compared to healthy controls, the Proteobacteria (21.79% of healthy controls vs 6.08%
of KD patients), Bacteroidota (15.71% of healthy controls vs 8.17% of KD patients), and
Fusobacteriota (9.70% of healthy controls vs 2.41% of KD patients) were all decreased in the
KD patients, except for the slightly increasing of Actinobacteria (9.4% of healthy controls
vs 11.7% of KD patients) (Fig. S4).
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At the genus level, large differences were observed between the KD patients and healthy
controls (Fig. 3B). In the fecal samples of KD patients, the main genera of the microbiome
include Enterococcus (40.12%), Bifidobacterium (20.71%), Escherichia-Shigella (17.56%),
Streptococcus (5.97%) and Blautia (4.69%). However, the dominant genera in the fecal
samples of healthy controls included the Bacteroides (41.29%), Faecalibacterium (7.19%),
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Figure 3 The relative abundance of bacterial communities at the phylum (A) and genus (B) levels. Pa-
tient F and Control F represent fecal samples from KD patients and healthy, respectively; Patient O and
Control O represent oral samples from KD patients and healthy, respectively.
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Bifidobacterium (4.17%), and Blautia (3.06%). In comparison, the relative abundance of
Enterococcus (less than 0.1%), Escherichia-Shigella (0.61%), and Streptococcus (0.11%) in
fecal samples was significantly lower in the healthy controls. Interestingly, Streptococcus
(60.49%) was the first dominant genus in the oral samples of KD patients, followed by
Rothia (10.09%),Veillonella (4.91%),Neisseria (3.49%),Prevotella (3.15%) andEscherichia-
Shigella (0.68%). Compared to the KD patients, the relative abundance of Streptococcus
(21.99%) and Rothia (3.02%) was significantly lower in the oral samples of healthy
controls. Not surprisingly, the other genera were all increased in the healthy controls,
including Veillonella (11.94%), Neisseria (11.99%) and Prevotella (8.88%), Haemophilus
(6.68%),Actinomyces (5.57%) and Fusobacterium (5.10%) (Fig. S5). These results suggested
that the microbiota in oral samples from healthy controls is more diverse.

Potential bacterial biomarkers of KD patients
The LEfSe analysis at the genus level (LDA score>2.0, p< 0.05) was performed to find
the potential bacterial biomarkers related to the KD disease. In the fecal samples, only
the Enterococcus was significantly enriched in KD patients, with the SCFA-producing
microbiota including Bacteroides, Faecalibacterium, Clostridium, Parabacteroides, and
Prevotella significantly reduced in the KD patients (Fig. 4A). It is worth noting that the
Streptococcus and Escherichia-Shigella (although the relative abundance of Escherichia-
Shigella in the KD patients was only 0.68%) were enriched in the oral samples of KD
patients, while the Haemophilus, Actinomyces, Leptotrichia and other genera were enriched
in the healthy controls (Fig. 4B).

Functional capability analysis
The functional gene composition of microbiota in oral and fecal samples was analyzed
by the PICRUSt2 (T student test) to differentiate the normal biological function between
KD patients and healthy controls. In total, 263 KEGG Level 3 modules were obtained
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for all samples. For KEGG level 1, no significant differences were observed between the
KD patients and healthy controls neither in oral nor in fecal samples (Figs. 5A, 5B).
However, when looking into the KEGG level 2 (Fig. 5C), Xenobiotics biodegradation and
metabolism and Membrane transport were significantly higher in the fecal samples of KD
patients (P < 0.05), while the immune system, environmental adaptation, transport, and
catabolism and glycan biosynthesis and metabolism were much higher in the fecal samples
of healthy controls (P < 0.05). Although some differences in the KEGG pathway at level 2
were observed in oral samples between KD and healthy controls (Fig. 5D), no significance
was detected as the corrected P value was higher than 0.05 (p> 0.05).

DISCUSSION
The microbiota plays a crucial role in human health and physiology, and dysbiosis of
microbiota has been demonstrated to be associated with immune-mediated disorders,
rheumatologic diseases, infections, and disorders of the nervous system (Esposito, Polinori
& Rigante, 2019). Indeed, the relationship between the microbiota of humans and the
immune system is very close. The microbiota inhabits the intestine, oral cavity, skin,
and other surfaces of the human body and has an impact on human health and also
on the prevention of disease (Esposito, Polinori & Rigante, 2019; Robinson & Pfeiffer,
2014). Nonetheless, the relationship between microbiota and Kawasaki syndrome is
not fully understood, although a few studies have demonstrated that the alteration of gut
microbiota is associated with KD pathogenesis (Chen et al., 2020; Shen et al., 2020). For
example, several infectious agents (including bacteria and viruses) have been demonstrated
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to be associated with KD pathogenesis (Joshi et al., 2011; Kinumaki et al., 2015), but these
speculations need to be further confirmed by more data.

Increasing evidence suggests that the gut microbiota of healthy individuals is different
from that of KD patients. Kinumaki et al. (2015) first reported the gut microbiota of KD
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children by usingmetagenomic sequencing technology. The composition of gut microbiota
was significantly different between the acute and non-acute phases of KD patients and
five Streptococcus spp. (S. pneumonia, pseudopneumoniae, oralis, gordonii, and sanguinis)
were markedly increased in the acute phase patients (Kinumaki et al., 2015). The authors
believed that gut microbiota disorders were closely related to KD pathogenesis. To note,
this former study only investigated the gut microbiota of KD patients at different phases
(acute and non-acute) without a healthy control group. Although only 10 samples were
collected from KD patients and healthy controls due to the small number of volunteers,
differences in microbiota between KD patients and healthy controls were still observed
in the present study. Other previous studies revealed that KD patients seem to exhibit
a disorder of gut microbiota, and the decreasing of microbial diversity was commonly
observed in KD patients when compared with the healthy controls (Khan et al., 2020; Shen
et al., 2020). Here, our study also suggested that the diversity of gut microbiota in KD
patients is significantly lower than that of healthy controls. Beta diversity showed that the
compositions of gut microbiota in the healthy controls were distinct from those in the KD
patients as well.

Nevertheless, the relationship between oral microbes and KD has not been reported.
Similar to the gut microbiota in our study, a significantly lower biodiversity of oral
microbiota was observed inKDpatients, and the beta diversity indicated that themicrobiota
was also significantly different between KD and healthy controls. These results implied
that the gut microbiota and the oral microbiota could be involved in KD. Oral microbial
infection is demonstrated to affect other parts of the human body, which is relevant to
various systemic diseases (Falcao & Bullon, 2019). Many studies have been convinced that
the changes in oral microbiota are associated with human chronic diseases, including
cancer (Tuominen & Rautava, 2021), diabetes (Matsha et al., 2020), and inflammatory
bowel disease (IBD) (Read, Curtis & Neves, 2021). Indeed, evidence suggested that changes
in oral microbiota could induce the dysbiosis of gut microbiota by reducing gut barrier
function and modulating the gut immune system (Gao et al., 2018; Kato et al., 2018). These
effects could finally lead to the occurrence of autoimmune diseases, such as KD. Given that
KD is most probably triggered by infectious agents (Newburger et al., 2004), the differences
in oral microbiota between KD patients and healthy controls should receivemore attention.
Thus, more oral samples should be collected from KD patients to further elucidate the
relationship between oral microbiota and KD. In addition, the lack of information on the
level of inflammatory markers in the present study should also be considered in the future.

It is worth noting that some of the human pathogens were significantly increased in KD
patients. In the fecal samples, a higher abundance of Enterococcus, and Escherichia-Shigella
was observed in the gut microbiota of KD patients compared with healthy controls.
Some Escherichia-Shigella was the pathogenesis of shigellosis (the clinical symptoms
included watery diarrhea, inflammatory bacillary dysentery with abdominal cramps, and
fever) (Schroeder & Hilbi, 2008). The Enterococcus pathogens usually result in nosocomial
infections, including those of the urinary tract, peritoneum, and respiratory tract (Treitman
et al., 2005). Meanwhile, Enterococcus has a high capacity for biofilm formation. The
biofilms produced by Enterococcus can activate the body to secrete some superantigens and
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induce a strong inflammatory response which was considered a possible pathogenesis of KD
(Guiton et al., 2010; Kusuda et al., 2014). Here, we notice that Enterococcuswas significantly
enriched in the gut microbiota in KD patients, which indicated it as a potential biomarker
of this disease. Similarly, Streptococcus and Escherichia-Shigella were enriched in the oral
samples of KD patients. Streptococcus has been widely identified in KD patients and
demonstrated to possess potential superantigenic properties, but most of them have been
reported in the gut microbiota (Khan et al., 2020; Kinumaki et al., 2015; Nagata et al.,
2009). We noticed that the Streptococcus in gut microbiota is also relatively higher in the
KD patients compared with the healthy controls (5.97% vs 0.11%) in this study. To date,
our study is the first to report that Streptococcus in the oral microbiota might be involved
in the pathogenesis of this disease. This result further supports that the differences in oral
microbiota between KD patients and healthy controls could be a cause of alteration of gut
microbiota.

Our study also observed significant differences in microbial community function
between KD patients and healthy controls in the fecal samples. In KD patients, the immune
system, environmental adaptation, transport and catabolism, and glycan biosynthesis
and metabolism were weakened, which agreed with former studies suggesting that this
metabolism could affect the colonization and reproduction of gut microbiota (Chen et
al., 2020). Xenobiotic biodegradation and metabolism and membrane transport were
enhanced in the KD patients which may be related to the enrichment of Enterococcus in the
gut microbiota.

CONCLUSIONS
In this study, we report that the diversity of microbiota in the gut and oral environment
will be significantly reduced in KD patients compared with healthy controls. Additionally,
the prevalence of Enterococcus, Escherichia-Shigella in gut microbiota, and Streptococcus in
the oral cavity could be potentially involved in the KD pathogenesis. Our results confirmed
that gut microbiota is related to KD pathogenesis and first provided the new view that oral
dysbacteriosis is another etiology of KD. These findings explore our understanding of the
KD pathogenesis and new treatments of this disease. However, larger samples are necessary
and the relationship between the inflammatory markers and the microbiota should also be
considered in future studies.
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