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ABSTRACT
Ophiothrix angulata (Say, 1825) is one of themost common andwell-knownophiuroids
in the Western Atlantic, with a wide geographic and bathymetric range. The taxonomy
of this species has been controversial for a century because of its high morphological
variability. Here we integrate information fromDNA sequence data, color patterns, and
geometric morphometrics to assess species delimitation and geographic differentiation
in O. angulata. We found three deeply divergent mtDNA-COI clades (K2P 17.0–
27.9%). ITS2 nuclear gene and geometric morphometrics of dorsal and ventral arm
plates differentiate one of these lineages, as do integrative species delineation analyses,
making this a confirmed candidate species.

Subjects Biodiversity, Marine Biology, Molecular Biology, Taxonomy, Zoology
Keywords Nuclear DNA, Mitochondrial DNA, Morphology, Geometrics morphometrics,
Integrative taxonomy, Caribbean, Gulf of Mexico, Coral reefs

INTRODUCTION
Members of the Class Ophiuroidea, brittle stars, basket stars, and snake stars, are the most
diverse of the five echinoderm classes, and are often abundant and, at times, dominant
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members of marine benthic communities (Kissling & Taylor, 1977; Lewis & Bray, 1983;
Hendler & Littman, 1986; Aronson, 1988; Stöhr, O’Hara & Thuy, 2012; Boissin et al., 2016).
While the taxonomy of ophiuroids was thought to be well known, sequence data has
demonstrated that numerous well-known brittle stars are complexes of cryptic species
(e.g., the cosmopolitan Amphipholis squamata (Boissin, Féral & Chenuil, 2008) and the
Northeastern Atlantic Ophiothrix fragilis (Pérez-Portela, Almada & Turon, 2013; Taboada
& Pérez-Portela, 2016)).

The tropical Western Atlantic (WA) is home to the second major coral reef realm, has
very high diversity and endemicity, and hosts a remarkably abundant, rich, and ecologically
diverse brittle star fauna (Kissling & Taylor, 1977; Stöhr, O’Hara & Thuy, 2012; Sobha,
Vibija & Fahima, 2023). The Ophiotrichidae (Ljungman, 1867) is the third-largest family
of brittle stars and is well-represented in the WA. Ophiuroids have undergone extensive
systematic revision following recent phylogenomic studies, and ophiotrichids were found to
be ‘‘genetically and morphologically coherent’’ (O’Hara et al., 2018). Although ophiuroids
have become well-defined at the family level, substantial work remains on many genera
and species. Ophiothrix is the largest brittle star genus with 96 accepted species (Dos
Santos Alitto et al., 2019; Santana et al., 2020; Stöhr, O’Hara & Thuy, 2023), but neither the
genus nor its subgenera are monophyletic (O’Hara et al., 2017; O’Hara et al., 2018). The
high diversity and morphological variability of ophiotrichids have made their species-level
taxonomy challenging (Clark, 1946; Clark, 1967; Tommasi, 1970; Hoggett, 1991; Hendler,
2005).

Traditional species delineation of ophiuroids has focused on macro-morphological
characters that can show substantial variability and overlap among species, causing
taxonomic uncertainty (Arlyza et al., 2013). An integrative approach that combines
information from live appearance, microstructure, life history, ecology, ethology,
physiology, distribution, and especially DNA sequence data provides information to
resolve species in challenging groups like Ophiothrix (Bickford et al., 2007; Boissin, Féral
& Chenuil, 2008; Padial et al., 2010; Pérez-Portela, Almada & Turon, 2013; O’Hara et al.,
2014a; Richards, De Biasse & Shivji, 2015; Taboada & Pérez-Portela, 2016; Dos Santos Alitto
et al., 2019;Newton et al., 2020). Over the past decade, the use of microstructural characters
has emerged as a valuable tool in systematic studies of brittle stars, revealing their
phylogenetic value (O’Hara et al., 2014b; Thuy & Stöhr, 2016). Among these characters,
arm plates have proven to be particularly important in establishing a congruence with
molecular data, enabling the inference of phylogenetic relationships even at the genus
level (Thuy & Stöhr, 2016). Therefore, these characters offer a valuable approach to analyze
species complexes and contribute to species delimitation.

Ophiothrix angulata (Say, 1825) was one of the first brittle stars and the first ophiotrichid
described for the Americas. It is nearly ubiquitous along the Atlantic coasts of North and
South America in warm temperate to tropical waters, from North Carolina, USA to at
least Venezuela, and throughout the Caribbean islands, Bahamas, and Bermuda (Devaney,
1974; Herrera-Moreno & Betancourt Fernández, 2004; Alvarado, Solís-Marín & Ahearn,
2008; Borrero-Pérez et al., 2008; Del Valle García et al., 2008; Laguarda-Figueras et al., 2009;
Alvarado & Solís-Marín, 2013; Noriega & Fuentes-Carrero, 2014; Sandino et al., 2017; GBIF,
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2022). Records of O. angulata further south are now attributed to other species (Santana et
al., 2017; Santana et al., 2020). The species also has a broad bathymetric distribution from
intertidal to bathyal depths (∼1,000 m; ICML-UNAM 3.34.40: 770 m; MCZ OPH-30910:
1,499 m). This species is capable of inhabiting corals, sponges, live under rocks, and among
turf algae, which gives it a great capacity to adapt to different micro-habitats.

Ophiothrix angulata is highly variable and has a broad latitudinal and bathymetric
distribution that has attracted taxonomic attention (Tommasi, 1970; Clark, 1933; Hendler
et al., 1995; Hendler et al., 1999; Hendler, 2005; Santana et al., 2017). Variation is especially
notable in color (Lyman, 1865; Verrill, 1899; Clark, 1901), and Clark (1918) named
five varieties based on this. The species has also been noted to vary in disc shape, and
arrangement of spinelets around the disc, but Hendler et al. (1995), concluded that this
variation does not seem to sort into species-level units.

The goal of this study was to assess whether the great morphological diversity of
O. angulata is the result of high intra-specific variation or differentiation among multiple
cryptic or pseudo-cryptic species. We tested species boundaries using an integrative
taxonomic approach, by combining mtDNA COI and nrDNA ITS2 sequence data, color
patterns, and geometric morphometrics of dorsal and ventral arm plates. We combined
results from genetic and morphological assessments for species delimitation using an
integrated Bayesian phylogenetic and phylogeographic approach (iBPP) (Solís-Lemus,
Knowles & Ané, 2015). We also analyzed the population diversity and demographic history
of the clades discovered.

MATERIALS & METHODS
Sampling sites and collections
We used 146 Ophiothrix angulata specimens from 24 localities across the West Atlantic
(Fig. 1; Table S1). Thirty-five samples were collected specifically for this project; others
were obtained from collections at the Invertebrate Zoology Collection, Florida Museum of
Natural History, University of Florida (UF); University of West Florida (UWF); Natural
History Museum of Los Angeles County (LACM); Colección Nacional de Equinodermos
‘‘Dra. María Elena Caso Muñoz’’, Instituto de Ciencias del Mar y Limnología, UNAM,
México (ICML-UNAM); Colección Regional de Equinodermos de la Península de Yucatán,
UMDI-Sisal, UNAM, México (COREPY-UNAM), and Museo de Zoología, Escuela de
Biología, Universidad de Costa Rica (MZ-UCR). Field sample collection was approved by
Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA:
Permission number: PPF/DGOPA-082/19). All 146 individuals were sequenced for COI, 14
for ITS2, 46 were selected for geometrics morphometric analyses while living color pattern
was examined for 46 specimens from the UF and COREPY photographic collections.
Twelve additional sequences available from GenBank were also used (Table S1). Nine
terminals from five outgroup species were also sequenced:Ophiothrix cimar Hendler, 2005;
Ophiothrix lineata Lyman, 1860;Ophiothrix stri Hendler, 2005;Ophiothrix suensonii Lütken,
1856 and Ophiactis savignyi (Müller & Troschel, 1842).
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Figure 1 Sampling locations (see Table S1 for details), with the proportion of specimens per clade
are given as pie charts. Clade 1 (green), Clade 2 (blue), and Clade 3 (pink). OS: off Steinhatchee, North
of St. Petersburg and Cedar Key. NWSP, Northwest of St. Petersburg; NSP and SSP, North and South of
St. Petersburg; NFK, North of Florida Keys; FK, Florida Keys; PB, Palm Beach; JA, near Jacksonville; LU,
near Louisiana; TV, Tuxpan Veracruz; SV, Sistema Arrecifal Veracruzano and Monte Pio; CAC, Cayo Ar-
cas area; CAN, Cayo Arenas; ALA, Alacranes Reef; MR, Mayan Riviera; MH, Mahahual; BE, Belize; NI,
Nicaragua; CR, Costa Rica; PA, Panama; StM, St. Martin; CU, Curaçao; GU, Guadeloupe; FG, French
Guiana. ©OpenStreetMap 2022.

Full-size DOI: 10.7717/peerj.15655/fig-1

DNA extraction and sequence alignment
DNA was extracted from ethanol-fixed arm tissue using the Chelex protocol (Walsh,
Metzger & Higuchi, 1991) or the Omega Bio-Tek E.Z.N.A. Mollusc DNA kit according to
the manufacturer’s instructions. The echinoderm barcoding primers COIceF and COIceR
(Hoareau & Boissin, 2010) were used to amplify a 655-base pair (bp) region of COI as
described by Michonneau & Paulay (2014). Electropherograms were checked, assembled
into contigs, and manually edited using Sequencher 4.6 (Gene Code Corps, Ann Arbor,
MI, USA). Consensus sequences were aligned using Muscle (Edgar, 2004), and alignment
was verified by eye using PhyDE v.10.0 (Müller et al., 2010). The sequence alignment was
converted to protein using Genius v8.1.7 (Kearse et al., 2012) to ensure a proper reading
frame and to verify the absence of stop codons. A 527 pb section of the nuclear DNA
internal transcribed spacer-2 (ITS2) was amplified using the primers OphITS2F and
OphITS2R as described by Naughton et al. (2014). Sequences were deposited in GenBank
(COI accession numbers: MT338285–MT338398, ON245084–ON245096; ITS2 accession
numbers: OQ225473–OQ225482).
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Phylogenetic analyses
Phylogenetic analyses using Bayesian Inference (BI) and Maximum Likelihood (ML)
methods were performed separately for COI and ITS2 sequence datasets on the CIPRES
Science Gateway portal (Miller, Pfeiffer & Schwartz, 2010). jModelTest2 (Darriba et al.,
2012) was used on the CIPRES portal to select the best model of molecular evolution
based on Akaike information criteria tests (AIC). ML analyses were done using RAxML-
HPC2 on XSEDE (Stamatakis, 2006; Stamatakis, Hoover & Rougemont, 2008) with the
GTR+GAMMA model of sequence evolution; nodal support values were assessed with
1,000 rapid bootstraps (Felsenstein, 1985). BI analyses were performed using MrBayes
v.3.2.7a on XSEDE (Ronquist et al., 2012), using the GTR+I+G model. The MCMC search
was based on two independent runs of four chains each and 6,000,000 generations (sampled
every 1,000 generations) until the final average and standard deviation were close to 0.01.
Twenty-five percent of the initial trees were discarded as Burn-in. Results were summarized
in Tracer v.1.7.1 (Rambaut et al., 2018) based on the Effective Sample Size-ESS for each
parameter. The gene phylogenies were represented using FigTree v.1.4.4 (Rambaut, 2018)
and annotated using Adobe Illustrator CC v.2017-22.0.1.

Geometric morphometric analyses
We analyzed dorsal arm plates (DAP) and ventral arm plates (VAP) from 46 specimens.
Images of DAP and VAP were obtained through scanning electron microscopy (SEM)
from intermediate-sized specimens with disc diameters (DD) of 2.5 to 5.5 mm to assess
the size-independent variability. The integument was removed from the 4th–8th arm
segments (counted from the first arm segment that contained a regular vertebra and lateral
plates Stöhr, 2005), due to the adult proximal arm plates showing the highest degree of
morphological differentiation, reflecting differences between species (Thuy & Stöhr, 2011).
The integument removal was performed by submergence in 0.3% sodium hypochlorite
solution for 2–8 h, washed with distilled water and 98% ethanol, air-dried, and mounted
on aluminum stubs using carbon tape. The samples were then gold-coated and scanned
using a Hitachi-SU1510 SEM at the LANABIO facility at the Instituto de Biología, UNAM.

In order to organize the data for analyses, the file format of the plate images was
imported into TPS file format using tpsUtil v.1.58. Landmarks and curves were digitized
using tpsDig2 v.2.17 (Rohlf, 2015). Along the externalmargin of eachDAP, five homologous
type II landmarks and sixty-eight evenly-spaced semi-landmarks were digitized (Fig. 2A).
The same procedure was followed for VAP but using four landmarks type II and 66 semi-
landmarks evenly-spaced (Fig. 2B). Geometric morphometric (GM) analyses followed the
outlined byMasonick & Weirauch (2019), using the R package geomorph v.3.2.1 R package
(Adams & Otárola-Castillo, 2013). The GM analyses compared four clades and subclades
defined by COI sequence data set (Table S2): Clade 1A, Clade 1B, Clade 2A, and Clade
3. Generalized Procrustes analysis was used to extract the shape data for comparison,
removal, translation, scaling, and rotation of all selected landmarks. A proxy of size in
GM is centroid size which is the square root of the sum of squared distances of an object’s
landmarks from their centroid or center of gravity.
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Figure 2 DAP and VAP landmarks. Landmarks type II (red) and semi-landmarks (yellow) used for ge-
ometric morphometrics to investigate variation in arm plates in Ophiothrix angulata. Numbers indicate
landmark position. (A) Dorsal arm plate (DAP). (B) Ventral arm plate (VAP). Pe, Proximal edge; De, Dis-
tal edge. Photos credit: Y. Quetzalli Hernández-Díaz.

Full-size DOI: 10.7717/peerj.15655/fig-2

The semi-landmarks digitized for each arm plate were optimized to reduce bending
energy using the function ProcD = False in geomorph, thus providing the best fit during
optimization. Shape variation was analyzed through principal component analysis (PCA)
using the covariance matrix of the individual, and a graphical scatterplot was performed
using the two principal components, which accumulated themaximum variance of the data
(PC1 vs. PC2; S3 Appendix). Thin-plate spline deformation grids were calculated from the
mean shape variance along each PC axis with the shapes v.1.2.5 R package (Dryden, 2018),
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representing the overall shapemodification. To enhance the visualization of data dispersion,
two scatterplots in 3D were constructed based on the first three PCs using the R package car
v.3.0-6 (Fox, Weisberg & Price, 2018; Masonick & Weirauch, 2019). A Procrustes analysis
of variance (ANOVA) was performed on all analyses using the ‘‘procD.lm’’ function
in geomorph. The resulting pairwise Procrustes distances were compared to assess the
significance of differences in mean arm plate shape among the groups. The statistical
significance of the observed variation was assessed through a permutation test of the
randomized model residuals with 999 iterations at an α-value of 0.05.

Measurement error and allometry-test
To evaluate the impact of measurement error, the selected landmarks were digitized twice
on each image (dorsal and ventral arm plates), on different days, by the same observer
(Viscosi & Cardini, 2011). The error was calculated as percent measurement error (%ME)
by comparing the variation among measurements based on a formula developed by
(Bailey & Byrnes, 1990; Yezerinac, Lougheed & Handford, 1992). A Procrustes ANOVA on
the residuals of Procrustes distances was used to compare within and among individual
shape variance components. The allometry was evaluated by regression of the Procrustes
shape coordinates on centroid size using a log10 scale. Interaction between centroid size
and ‘‘clade’’ (dorsal or ventral arm plates grouped by clade) factor was estimated with
Procrustes ANOVA in geomorph v.3.2.1 (Klingenberg, 2016).

Dorsal arm color pattern analysis
Color patterns were examined from live-taken images associated with 46 sequenced
specimens from the UF and COREPY invertebrate image collections (Table S1). Twenty-
five color characters were selected from dorsal arm views (Figs. S1, S2, and S3). All
characters were treated as discrete and unordered (Appendix S1). Disc color characters
were not selected because they showed a great amount of individual variation. Ophiactis
savignyi was used as outgroup species (Fig. S4).

The character matrix was edited in Mesquite v.3.51 (Maddison & Maddison, 2018),
with inapplicable data scored with ‘‘-’’ (Appendix S2). Parsimony analysis was conducted
using TNT v.1.5 (Goloboff & Catalano, 2016). Optimal trees were searched using random
addition sequences of Wagner trees, followed by the TBR algorithm, using 500 replicates,
and saving 10 trees per replicate. The resulting trees were used as starting points for a
round of TBR branch swapping. Bootstrap support values for the strict consensus tree were
determined through 1,000 iterations, with default settings. Visualization, interpretation,
and annotation of the cladogram were performed with FigTree, TNT, and Illustrator,
respectively.

Molecular species delimitation
Two sequence-based species delimitationmethods were employed usingmtDNA data only.
Multi-rate Poisson tree processes (mPTP) is a non-coalescent, sequence-based, maximum
likelihood method that does not require pre-determined taxonomic designations and uses
statistical cutoffs to delineate taxa on a phylogenetic input tree (Zhang et al., 2013; Kapli et
al., 2017). It identifies variation in the pace of branching events, modeling speciation based
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on the number of substitutions. The online version of mPTP (https://mptp.h-its.org/#/tree)
was used to calculate species delimitation, using the Bayesian tree as input, mPTP model
selected, with nine specimens as outgroup taxa. The resulting trees were visualized using
FigTree v.1.4.4.

The Bayeasian program BPP v.4.1.4 (Yang, 2015) was used to infer phylogenetic and
phylogeographic patterns under the multispecies coalescent model (MSC) and to calculate
potential species’ posterior probabilities delimitation (Yang & Rannala, 2010; Yang, 2015).
BPP appears to be relatively robust to the influence of unequal population sizes, rates
of population growth, unbalanced sampling, and mutation rate heterogeneity (Luo et al.,
2018), and has proven effective in analyses of taxon evolution and divergence (Zhang et
al., 2013; Moritz et al., 2018). A 151-taxon dataset and the Bayesian tree were used for all
BPP analyses, because sequences with missing data were eliminated. The estimation of
appropriate starting species divergence times (τ s) and population size parameters (θs)
was initially performed through A00 BPP analysis (Masonick & Weirauch, 2019). This
estimation was based on the expected number of mutations per kilobase, as suggested
by Yang (2015). The parameters for the MSC model were estimated using BPP v4.1.4
(following the A00 analysis from Yang, 2015). The joint species tree estimation and species
delimitation analyses (A11) were carried out with inverse-gamma parameters of θ (5,
0.05) and τ (5, 0.02). The A11 analysis was run for 100,000 generations, sampling every
two steps after discarding the initial 10,000 generations as burn-in. The analysis results
were confirmed by conducting three independent runs for each analysis. Only lineages
with a posterior probability (pp) of ≥ 0.95 were considered well-supported (Masonick &
Weirauch, 2019).

Integrative species delimitation
Morphological and mtDNA data were analyzed in a common coalescent Bayesian
framework using the program iBPP v.2.1.3 (Solís-Lemus, Knowles & Ané, 2015). This
method has been shown to improve species delimitation accuracy by incorporating
molecular and quantitative phenotypic data in the assessment of a priori species assignments
using a guide tree. iBPP analyses were performed using the Bayesian topology as a guide
tree. The same values for demographic parameters θ and τ as in the BPP analysis were
used. The total evidence analyses described below utilized two datasets, as iBPP is capable
of incorporating morphological data represented by quantitative, continuous traits: (a)
multistate character matrix with the 25 arm color-characters as trait data scored through
the color pattern analysis, and (b) PC1 + PC2 values for DAP andVAP as trait data obtained
through theGManalysis. For both analyses, 46 specimenswere used that included sequences
and GM data, and the second included the specimens with sequences and the photographic
record in vivo. To determine if different data types result in congruent delimitations, the
following comparisons were made among data types: sequence data only, coloration data
only, GM data only, sequence and coloration data (iBPPSeq+COL), and sequence and GM
data (iBPPSeq+GM) (Masonick & Weirauch, 2019). Posterior probabilities (pp) at each node
were averaged after performing each analysis three times. After a burn-in phase of 10,000
iterations, every second tree was sampled for a total of 100,000 trees. Well-supported
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delimitations were only considered for nodes on the guide tree that were recovered with
pp values of ≥ 0.95 (Masonick & Weirauch, 2019).

Population diversity
Standard measures of genetic diversity (number of haplotypes, haplotype diversity h, and
nucleotide diversity π) were calculated using Arlequin v.3.5.2.2 (Excoffier & Lischer, 2010).
Unique haplotypes were identified using DnaSP v6.12 (Rozas et al., 2017). Geographical
relationships of mtDNA haplotypes were summarized using the TCS algorithm (Clement et
al., 2002) in the software PopARTv.1.7 (Leigh & Bryant, 2015). To perform the homologous
character comparison, missing data were excluded by trimming sequences to 632 bp. For
comparison of the extent of divergence with other ophiuroid species, evolutionary distance
values were generated in MEGA 11 (Tamura, Stecher & Kumar, 2021) using the Kimura
2-parameter model (Kimura, 1980), support values based on 1,000 bootstraps, including
both transitions and transversions, the rate variation among sites was modeled with a
gamma distribution (shape parameter = 1), codon positions included were 1st + 2nd +
3rd, and missing data were treated as pairwise deletion (Table 1).

Demographic history
To test for past population expansions, the neutrality Fu’s Fs test (Fu, 1997) was
implemented in Arlequin v.3.5.2.2, and significance was assessed with 1,000 permutations.
In addition, the frequency of the distribution of mismatches was obtained in Arlequin and
plotted with the R package ggplot2 (Wickham, 2016) to determine whether the populations
exhibit evidence of spatial/demographic expansions or a stationary population history
(Tajima, 1989). The Raggedness index and the sum of squared deviations (SSD) obtained
in Arlequin were used to analyze the goodness of fit for the population expansion model,
according to Harpending (1994).

RESULTS
Genetic differentiation and spatial distribution
The consensus COI phylogenetic trees showed three deeply divergent (K2P distances
17.0–27.9%; Table 1), highly supported (PP/bootstrap at 100/≥90) clades in Ophiothrix
angulata with both methods (BI and ML) (Fig. 3). Two clades (Clade 2 and Clade 3)
are widespread, whereas Clade 1 has a more restricted range (Fig. 1). The three clades
have overlapping depth distributional ranges down to 45 m, with only Clade 3 extending
deeper, with five sequenced specimens from 45–135 m (Fig. S5). COI haplotype networks
recovered the same groups obtained in the phylogenetic tree. Haplogroup 1 (Clade 1) was
separated from Haplogroup 2 (Clade 2) by 64 mutational steps (m-s), while Haplogroup
(Clade 3) was separated by 110 m-s from Clade 1, and by 96 m-s from Clade 2. Clades 1
and 2 were not differentiated in ITS2, but Clade 3 was divergent (Fig. 4).

Clade 1
Clade 1 (n= 76) was encountered only in the Gulf of Mexico and east Florida, including
the Veracruz platform reefs in the Southern Gulf of Mexico and Northern Gulf of Mexico
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Table 1 Genetic distances (±standard error) between recovered clades ofO. angulata based on a Kimura 2-Parameters model for COI. Inter-
specific distance values are presented below the diagonal. Numbers along the diagonal in bold and brackets represent intra-specific variation. Ge-
netic distances were compared with the congeneric species Ophiothrix lineata and O. suensonii distributed in the Caribbean and Gulf of Mexico;
Ophiothrix cimar distributed in the Caribbean and Ophiactis savignyi (outgroup).

COI Clade 1 Clade 2 Clade 3 O. cimar O. lineata O. suensonii O. savignyi

Clade 1 [0.032± 0.004]
Clade 2 0.170± 0.019 [0.007± 0.001]
Clade 3 0.279± 0.028 0.264± 0.026 [0.053± 0.006]
O. cimar 0.316± 0.032 0.310± 0.033 0.278± 0.028 −

O. lineata 0.276± 0.028 0.253± 0.027 0.254± 0.026 0.133± 0.016 −

O. suensonii 0.304± 0.030 0.278± 0.029 0.274± 0.028 0.243± 0.027 0.264± 0.028 −

O. savignyi 0.323± 0.032 0.302± 0.031 0.319± 0.032 0.279± 0.030 0.263± 0.027 0.302± 0.032 −

at 0–41 m depths (Fig. S5). Although it overlaps in distribution and depth with clades 2
and 3, the latter are widely distributed across the sampled areas (Fig. 1). Three sympatric
subclades can be differentiated within Clade 1 (Figs. 3 and 5), that cooccur in the Northern
Gulf of Mexico and the Florida Keys.

Clade 2
Clade 2 (n= 51) was collected in almost all areas sampled (Northern Gulf of Mexico,
Florida Keys, East Florida, Southern Gulf of Mexico, Western Caribbean, Southwestern
Caribbean, and the Eastern Caribbean; Fig. 1) at 0.5–42 m depths (Fig. S5). Two deeply
divergent (5.1% K2P), allopatric subclades can be differentiated in Clade 2: a widely
distributed subclade 2A (n= 49) that displays a star-like haplotype network (Fig. 5), and
subclade 2B (n= 2) sampled only in Guadeloupe (Eastern Caribbean).

Clade 3
Clade 3 included 31 specimens from Northwest Florida, Florida Keys, Campeche Bank,
Western Caribbean, and Eastern Caribbean (Fig. 1) at 1.5–135 m depths (Fig. S5). This
clade shows high levels of differentiation, with almost all specimens having distinct COI
sequences, separated by multiple substitutions up to ∼5.3% K2P (Fig. 6).

Geometric morphometrics
Procrustes ANOVA showed significant differentiation among clades for DAP and VAP
(p-value < 0.05). Clades 1A, 1B, and 2A clustered together, while Clade 3 separated in the
morpho-space and was significantly different based on pairwise comparisons among clades
for both arm plates (Table S3). Corresponding thin-plate spline (TPS) deformation grids
for PC1 in DAP analysis illustrate the extremes of variation with the extension/shortening
of proximal and lateral edges, while PC2 shows the extension/shortening of the distal
edge (Fig. 7). TPS deformation grids in VAP indicate that a considerable portion of the
variance in PC1 is attributed to the extension/shortening of both, the proximal and distal
edges, as well as and the lateral edges. In contrast, PC2 shows the extension/shortening of
proximal and distal edges (Fig. 8). To further illustrate how clades groups inmorpho-space,
three-dimensional scatterplots of the three principal components (PCs) for both DAP and
VAP analyses are provided (Figs. S6 and S7). Delimitations based on significantly different
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Figure 3 MtDNA bayesian consensus tree. Bayesian consensus tree of COI sequences produced us-
ing the GTR+I+G model in MrBayes v.3.2.7a on XSEDE for Ophiothrix angulata and outgroups. Clade 1
(green), Clade 2 (blue), Clade 3 (pink), and Outgroup (gray). Bayesian posterior probabilities (above), fol-
lowed by ML bootstrap support (below; 1,000 replicates), are indicated at nodes.

Full-size DOI: 10.7717/peerj.15655/fig-3

DAP and VAP shapes tested in GM analysis are shown in Figs. 7 and 8, respectively; the
DAP and VAP analysis results show a correlation with molecular evidence supporting the
three clades’ relationship. The Multivariate Regression showed that 16.7% of the variation
for DAP and 9.0% for VAP was attributable to allometric variation in shape; this variation
showed no significant interaction for any plate between Centroid size and ‘‘clade’’ factor in
Procrustes ANOVA (p-value > 0.05). Measurement errors were low, 1.53% for DAP and
3.05% for VAP.
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Figure 4 MtDNA vs nrDNA trees. A comparison of mtDNA (COI) (left) and nrDNA (ITS2) (right)
phylogenies from the BI analysis are displayed as cladograms for Ophiothrix angulata with Bayesian poste-
rior probabilities displayed above and ML bootstrap (1,000 replicates) support displayed below the nodes.

Full-size DOI: 10.7717/peerj.15655/fig-4

Dorsal arm color pattern analysis
All but four (characters 16, 19, 22, and 25) of the 25 selected color-characters were
parsimony informative, but none showed concordant differences with genetic clade
assignment (Fig. S8). The consensus tree length was 170 steps, with CI = 0.201 and RI =
0.479. Specimens from all clades clustered together.

Molecular species delimitation
BPP analyses recovered Clades 1, 3, and subclades 2A, and 2B as distinct, with posterior
probability values of > 99 for all clades. mPTP species delimitations recovered the same
clades as BPP (Fig. 9).

Integrative species delimitation.
iBPP analyses recovered Clades 1A, 1B, 2, and 3 as distinct for both iBPPSeq+GM and
iBPPSeq, with high support in all runs. iBPPGM separated Clade 3 with high support, but
low support was found between clades 1A, 1B, and 2. iBPPSeq+COL and iBPPCOL did not
show congruence in runs, so all clade specimens clustered together (Fig. S9).

Population diversity
Haplotype diversity (h) and nucleotide diversity (π) ranged from 0.743 to 1.000 and from
0.007 to 0.048, respectively, among the clades (Table 2). TCS network recovered the same
three clades as the phylogenetic analysis of mtDNA. Nucleotide (π) and haplotype (h)
diversity values in the TCS network indicated that Clade 3 was more genetically diverse,
followed by Clade 1, while Clade 2 exhibited lower nucleotide and haplotype diversity
(Table 2).
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Demographic history
Results of Fu’s Fs tests, Raggedness index, and SSD analysis are provided in Table 2. Fu’s
neutrality test gave significant negative values for all clades, and subclades 1A and 1B,
suggesting past demographic expansions. The Raggedness index and SSD were low and
non-significant for all clades and subclades 1A and 1B, respectively, suggesting an unimodal
distribution of mismatches as expected for a demographic expansion. The distribution of
mismatches for Clades 1 and 3 was bimodal (Fig. S10), which may indicate demographic
balance. However, when clades 1A and 1B were analyzed separately, mismatches showed
a unimodal distribution for 1A while continued bimodal for 1B (Fig. S11). The mismatch
distribution of Clade 2 was unimodal (Fig. S10).
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DISCUSSION
Species delimitation in Ophiothrix angulata
Analysis of COI sequence data revealed three deeply-divergent clades within Ophiothrix
angulata in the tropical Western Atlantic, one of which (Clade 3) was also divergent in
ITS2 and geometric morphometrics. Species delineation algorithms recovered the same
three clades using genetic and combined genetic and morphometric data. The deep level
of genetic differentiation with COI among these clades is also consistent with the three
lineages representing separate species (Table 1).

The consistency between morphological and genetic data on differentiating Clade 3,
together with its co-occurrence with clades 1 and 2, demonstrates the lack of gene flow
between Clade 3 and the others, and clearly establishes that it is a separate biological species;
thus, it can be considered a confirmed candidate species (CCS) (Padial et al., 2010). All
three clades co-occur in the Florida Keys, where they were collected on the same day, site,
depth, and habitat (UF10247-1A, UF10248-2A, and UF10250-3 in Table S1), which further
suggests reproductive isolation for Clade 3.

The status of clades 1 and 2 remain open, as they were separated only by COI sequences,
and thus could be species or deep conspecific lineages (DCL) (Padial et al., 2010). While
the distribution of these two clades overlaps and they are sympatric at several localities
surveyed, Clade 1 is mostly known from around central and North Florida, while Clade
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Figure 7 Dorsal arm plate geometric morphometrics. Scatterplots showing shape variation along prin-
cipal component axes. Clade 1A (green). Clade 1B (orange). Clade 2 (blue). Clade 3 (pink). Thin-plate
spline deformation grids accompany each PC axis to show the specimens’ shape at their positive and neg-
ative ends; the arm plate consensus shape is gray. The bar graph depicts the percentage of variance ex-
plained by PC axes.

Full-size DOI: 10.7717/peerj.15655/fig-7

2 was encountered in South Florida, Southern Gulf of Mexico, and the Caribbean. This
distribution largely reflects the differentiation of Gatunian and Callosahatchian faunas
that have been established since the Miocene (Vermeij, 2005) and suggest allopatric
differentiation along this boundary. Additional studies are needed to assess their status.

Clustering sequences into three subclades in Clade 1 and two subclades in Clade 2
is more challenging to interpret. In Clade 2, the two subclades are allopatric, with one
represented by two specimens from the Lesser Antilles, the other widespread, suggesting
geographic differentiation.

Geometric morphometrics and Dorsal arm color pattern
The shape of both the dorsal and ventral arm plates proved to be a useful indicator for
distinguishing Clade 3 from Clades 1-2. Geometric morphometrics has been employed
in echinoderm studies to investigate different approaches to understanding the biology
and classification of the different orders and families. For instance, Martínez-Melo, De
Luna & Buitrón-Sánchez (2017) used GM methods to differentiate between genera in the
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Figure 8 Ventral arm plate geometric morphometrics. Scatterplots showing shape variation along prin-
cipal component axes. Clade 1A (green). Clade 1B (orange). Clade 2 (blue). Clade 3 (pink). Thin-plate
spline deformation grids accompany each PC axis to show the specimens’ shape at their positive and neg-
ative ends; the arm plate consensus shape is gray. The bar graph depicts the percentage of variance ex-
plained by PC axes.

Full-size DOI: 10.7717/peerj.15655/fig-8

Cassidulidae family based on the cryptic morphology of plate shapes in Echinoidea. De los
Palos-Peña et al. (2021), combined scanning electron microscopy and ontogenetic studies
of the odontophore in Luidia superba to understand patterns of size and shape variation.
Similarly, Swisher (2021) studied ontogeny in fossil clypeasteroids and confirmed size
and shape changes in the oral/aboral plates using GM methods. However, our study
incorporates the concept of allometry, which considers the effect of size on shape variation
due to ontogeny and other ecological factors influencing morphology (Benítez et al., 2013;
Klingenberg, 2022).

Closely related species frequently differ in color pattern and color differences are often
among the first visible morphological changes that appear among differentiating species
(Benavides-Serrato & O’Hara, 2008; Hoareau et al., 2013). Ophiothrix angulata displays
high polymorphism in color patterns (Figs. S1, S2, and S3), and color differences have
been suggested to potentially reflect cryptic species differentiation in this species (Clark,
1918; Tommasi, 1970). The absence of correlation between color pattern and genetic clade
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Figure 9 Species delimitation forOphiothrix angulata clades based onmolecular, morphological,
and integrative approaches. Clade 1A (UF7632), Clade 1B (UF11608), Clade 2A (UF10248), and Clade 3
(UF10250). COI phylogeny on the left, representative specimen based on DAP and VAP consensus shape
of major clades in the middle, species delineations on the right. Delineated species are represented by sep-
arate colors. iBPP results are based on (A) COI and arm color information (Seq+COL) and (B) COI and
geometric morphometric data (Seq+GM). ND, no data. Photo credit: Invertebrate Zoology Collection,
Florida Museum of Natural History, University of Florida.

Full-size DOI: 10.7717/peerj.15655/fig-9

Table 2 Summary statistics and demographic analyses for the largest clades ofO. angulata; N= number individuals, Number of haplotypes, h
= haplotype diversity, π = nucleotide diversity± standard deviation, SSD= Sum of squared differences in mismatch analysis, Mismatch distribu-
tion raggedness index (r), results of Fu’s Fs. Clade 1C was not considered because its n= 3.

Clades N Number of
haplotypes

h π SSD Raggedness r Fu’s Fs

SSD p-value r p-value Fs p-value

Clade 1 76 74 0.999± 0.003 0.032± 0.001 0.023 0.129 0.005 0.320 −72.71 0.000
Clade 1A 44 43 0.998± 0.005 0.010± 0.001 0.004 0.143 0.018 0.156 −34.17 0.000
Clade 1B 29 29 1.000± 0.009 0.026± 0.002 0.013 0.187 0.007 0.889 −18.64 0.000
Clade 2 51 23 0.743± 0.068 0.007± 0.002 0.006 0.810 0.015 0.972 −11.73 0.000
Clade 3 31 30 0.998± 0.009 0.048± 0.003 0.004 0.914 0.009 0.574 −08.73 0.007

in our study suggests that color variation is an intra-specific trait. This finding is consistent
with previous studies on the Ophiothrix fragilis complex, a widely distributed species
in the Northeastern Atlantic Ocean. Previous attempts to link genetic lineages (Baric &
Sturmbauer, 1999; Muths et al., 2009; Taboada & Pérez-Portela, 2016, for lineages 1 and 2)
with some of the color variants identified by Koehler (1921) were unsuccessful.
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COI divergence in ophiuroids
COI K2P distances among the three clades (17.0–27.9%) were higher than the mean
inter-specific divergence among most ophiuroid species. In a DNA barcoding study of 503
specimens of 191 ophiuroid species, Ward, Holmes & O’Hara (2008) found intra-specific
variation to range 0–3% (mean = 0.62%), whereas inter-specific divergence within genera
averaged 15%. High levels of genetic divergence encountered in other ophiuroid species
have generally led to the recognition of multiple cryptic species. Examples include the
Ophiothrix fragilis complex: K2P distance = 18.6% (Muths et al., 2009), 15–17% (Pérez-
Portela, Almada & Turon, 2013), 19–22% (Taboada & Pérez-Portela, 2016); Ophioderma
longicaudum complex: K2P distance = 2.2–10.2% (Boissin, Stöhr & Chenuil, 2011),
0.8–10.7% (Weber, Stöhr & Chenuil, 2019); Ophiomyxa vivipara, Ophiacantha vivipara,
Ophiura ooplax, Ophiactis abyssicola and Ophiothrix aristulata complexes: K2P distance
= 2.9–3.7%, 14.1–16.7%, 22%, 6.7%, and 22.9%, respectively (O’Hara et al., 2014a);
and Ophiacantha wolfarntzi complex: K2P distance = 5.4–25.7% (Martín-Ledo, Sands &
López-González, 2013). The differentiation among Clades 1, 2, and 3 in COI is thus in line
with species-level differences in other ophiuroids.

Haplotype diversity and demographic history
Haplotype networks display contrasting topologies, with Clades 1 and 3 showing higher
intra-specific diversity than Clade 2. Clade 1 shows a great diversity of haplotypes in the
Northern Gulf of Mexico off Florida, where all three subclades were present. In contrast,
specimens from Eastern Florida, the Florida Keys, and the Southern Gulf of Mexico each
fell into single and different subclades. This pattern is suggestive of allopatric differentiation
along the periphery of the Clade’s range, but few samples were available from these areas
making interpretation challenging. Historical demography results show evidence of recent
expansion (Fu’s, r, SSD, and mismatches) for subclade 1A.

Clade 2 showed a star-like network suggesting recent population expansion (Allcock
& Strugnell, 2012). Most haplotypes were within 3 m-s of the common one, except for
the two specimens from Guadeloupe that were 30 m-s distant. These results suggest that
continental populations along North and Central America are isolated from the insular
population sampled in the Lesser Antilles, and that the former, at least, underwent a recent
expansion, potentially following the Last Glacial Maximum.

Clade 3 showed the highest haplotype diversity and did not display signs of recent
expansion in all analyses but showed a high diversity of haplotypes. It is noteworthy that
this is the only clade that was represented among deeper water samples, suggesting that
it may have the most extensive depth range, and thus potentially greater physiological
tolerance. The high gene diversity has resulted in a larger population size than the other
clades, suggesting success in exploitation and colonization of habitats. Some haplotypes in
this clade were shared between localities separated by more than 500 km.

CONCLUSIONS
This study provides a broad evaluation of the systematics of one of the most common
ophiuroids in the Tropical Western Atlantic, Ophiothrix angulata. COI sequence data
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revealed three deeply divergent genetic lineages. The high color variability exhibited
by this group did not correlate with lineages suggesting that it represents intra-specific
polymorphism. Clade 3 was separated by mtDNA, nrDNA, molecular species delimitation,
the shape of dorsal and ventral arm plates, and the integrative analysis with mtDNA and
geometric morphometric data. Therefore, we consider it as a confirmed candidate species.
Results demonstrate that a thorough arm morphology analysis can help differentiate
clades within this species complex. Molecular analyses and in situ records show that all
three clades co-occur in some areas. For Clades 1A and 2, Fu’s, r, SSD, and mismatches
showed evidence of recent expansion. Additional geographic sampling combined with
physiological, reproductive, and ecological data incorporating phylogeographic analysis
may further resolve this species complex.
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