
Pharmacophagy in green lacewings (Neuroptera: Chrysopidae:
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Green lacewings (Neuroptera: Chrysopidae) are voracious predators of aphids and other
small, soft-bodied insects and mites. Earlier, we identified the first lacewing pheromone
from field-collected males of the goldeneyed lacewing, Chrysopa oculata Say;
(1R,2S,5R,8R)-iridodial is released from thousands of microscopic dermal glands on the
abdominal sternum of males, along with comparable amounts of nonanal, nonanol and
nonanoic acid. Iridodial-baited traps attract C. oculata and other Chrysopa spp. males into
traps, while females come to the vicinity of, but do not usually enter baited traps. Despite
their healthy appearance, normal fertility and usual amounts of C9 compounds, laboratory-
reared C. oculata males do not produce iridodial. However, we observed that goldeneyed
lacewing males caught alive in iridodial-baited traps sometimes try to eat the lure, and in
Asia Chrysopa spp. males reportedly eat the native plant, Actinidia polygama (Siebold &
Zucc.) Maxim. (Actinidiaceae) to obtain the iridoid, neomatatabiol. These observations
prompted us to investigate why laboratory-reared Chrysopa green lacewings do not
produce iridodial. Lacewing adult males fed various monoterpenes reduced carbonyls to
alcohols and saturated double bonds, but did not convert these compounds to iridodial.
Males fed the bicyclic iridoid aphid pheromone component, (4aS,7S,7aR)-nepetalactone,
converted ~75% to dihydronepetalactone, but did not produce iridodial; however, wild C.
oculata males collected in May often contained traces of dihydronepetalactone. On the
other hand, adult males fed the second common aphid pheromone component,
(1R,4aS,7S,7aR)-nepetalactol, converted this compound to iridodial. In California the peak
late-season attraction of green lacewings to nepetalactol (the lactone is unattractive)
occurs at least a month earlier than the peak in aphid oviparae (the pheromone producing
morph of aphids), consistent with the hypothesis that Chrysopa males feed on oviparae to
obtain nepetalactol as a precursor to iridodial. Adult males from laboratory-reared C.
oculata larvae fed nepetalactol failed to produce iridodial, and wild C. oculata males
collected early in the spring produce less iridodial than males collected later in the season.
Therefore, we further hypothesize that Asian Chrysopa eat A. polygama to obtain iridoid
precursors in order to make their pheromone, and that other iridoid-producing plants
elsewhere in the world must be similarly usurped by male Chrysopa species to sequester
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pheromone precursors. Whether or not sequestration of iridodial precursors from oviparae
and/or iridoid-containing plants is truly the explanation for lack of pheromone in
laboratory-reared Chrysopa awaits further research .
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ABSTRACT  24	
  

Green lacewings (Neuroptera: Chrysopidae) are voracious predators of aphids and other 25	
  

small, soft-bodied insects and mites. Earlier, we identified the first lacewing pheromone 26	
  

from field-collected males of the goldeneyed lacewing, Chrysopa oculata Say; 27	
  

(1R,2S,5R,8R)-iridodial is released from thousands of microscopic dermal glands on the 28	
  

abdominal sternum of males, along with comparable amounts of nonanal, nonanol and 29	
  

nonanoic acid. Iridodial-baited traps attract C. oculata and other Chrysopa spp. males 30	
  

into traps, while females come to the vicinity of, but do not usually enter baited traps. 31	
  

Despite their healthy appearance, normal fertility and usual amounts of C9 compounds, 32	
  

laboratory-reared C. oculata males do not produce iridodial. However, we observed that 33	
  

goldeneyed lacewing males caught alive in iridodial-baited traps sometimes try to eat the 34	
  

lure, and in Asia Chrysopa spp. males reportedly eat the native plant, Actinidia polygama 35	
  

(Siebold & Zucc.) Maxim. (Actinidiaceae) to obtain the iridoid, neomatatabiol. These 36	
  

observations prompted us to investigate why laboratory-reared Chrysopa green lacewings 37	
  

do not produce iridodial. Lacewing adult males fed various monoterpenes reduced 38	
  

carbonyls to alcohols and saturated double bonds, but did not convert these compounds to 39	
  

iridodial. Males fed the bicyclic iridoid aphid pheromone component, (4aS,7S,7aR)-40	
  

nepetalactone, converted ~75% to dihydronepetalactone, but did not produce iridodial; 41	
  

however, wild C. oculata males collected in May often contained traces of 42	
  

dihydronepetalactone. On the other hand, adult males fed the second common aphid 43	
  

pheromone component, (1R,4aS,7S,7aR)-nepetalactol, converted this compound to 44	
  

iridodial. In California the peak late-season attraction of green lacewings to nepetalactol 45	
  

(the lactone is unattractive) occurs at least a month earlier than the peak in aphid oviparae 46	
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(the pheromone producing morph of aphids), consistent with the hypothesis that 47	
  

Chrysopa males feed on oviparae to obtain nepetalactol as a precursor to iridodial. Adult 48	
  

males from laboratory-reared C. oculata larvae fed nepetalactol failed to produce 49	
  

iridodial, and wild C. oculata males collected early in the spring produce less iridodial 50	
  

than males collected later in the season. Therefore, we further hypothesize that Asian 51	
  

Chrysopa eat A. polygama to obtain iridoid precursors in order to make their pheromone, 52	
  

and that other iridoid-producing plants elsewhere in the world must be similarly usurped 53	
  

by male Chrysopa species to sequester pheromone precursors. Whether or not 54	
  

sequestration of iridodial precursors from oviparae and/or iridoid-containing plants is 55	
  

truly the explanation for lack of pheromone in laboratory-reared Chrysopa awaits further 56	
  

research.  57	
  

 58	
  

INTRODUCTION 59	
  

With ~ 6000 living species, Neuroptera is one of the smaller orders of insects (Winterton 60	
  

et al. 2010), but most larval neuropterans are predacious, often in agricultural systems, 61	
  

lending added importance to this group (Tauber et al. 2009).  Of foremost agricultural 62	
  

importance are the green lacewings (Chrysopidae), particularly Chrysoperla and 63	
  

Chrysopa species, whose larvae are voracious predators of aphids and other soft-bodied 64	
  

insects and mites (McEwen et al. 2007). The meticulous illustrations of male-specific 65	
  

dermal glands in Chrysopa (Principi 1949) by the grande dame of neuropterists, Maria 66	
  

Matilde Principi (Pantaleoni 2015), inspired our identification of the first pheromone for 67	
  

green lacewings (Zhang et al. 2004).   68	
  

 Field-collected male goldeneyed lacewings, Chrysopa oculata Say, release 69	
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(1R,2S,5R,8R)-iridodial with comparable amounts of nonanal, nonanol and nonanoic acid 70	
  

(Zhang et al. 2004); iridodial-baited traps attracted C. oculata males into traps and 71	
  

females to the vicinity of baited traps (Chauhan et al. 2007). Subsequently, we found that 72	
  

the same iridodial stereoisomer similarly attracted adults of C. nigricornis Burmeister in 73	
  

the western U.S. (Zhang et al. 2006a), and C. septempunctata Wesmael in China (Zhang 74	
  

et al. 2006b). However, our efforts to pursue pheromone research of exotic chrysopids 75	
  

was thwarted by the discovery by one of us (JRA) that, despite their healthy appearance, 76	
  

normal fertility and usual amounts of C9 compounds, laboratory-reared C. oculata males 77	
  

produced no iridodial (unpublished data). Furthermore, an observation by another of us 78	
  

(Q-HZ) that C. nigricornis males caught alive in traps baited with iridodial tried to eat the 79	
  

lure (unpublished observation), combined with previous reports of Chrysopa 80	
  

septempunctata eating the iridoid-containing plant known as silver leaf, Actinidia 81	
  

polygama (Siebold & Zucc.) Maxim (Actinidiaceae; native to Asia) (Hyeon et al. 1968) 82	
  

(Supplemental Figure 1, compounds 5 and 6), prompted us to pursue the feeding studies 83	
  

reported herein in an effort to explain this phenomenon. 84	
  

 85	
  

MATERIALS AND METHODS  86	
  

Chemical standards 87	
  

 (Z,E)-nepetalactone [= (4aS,7S,7aR)-nepetalactone] was prepared from catnip oil, 88	
  

dihydronepetalactone was from hydrogenation of the lactone, (Z,E)-nepetalactol [= 89	
  

(1R,4aS,7S,7aR)-nepetalactol] was from reduction of the lactone, and 1R,2S,5R,8R-90	
  

iridodial was derived from the (Z,E)-nepetalactone as previously described (Chauhan et 91	
  

al., 2004). The standard of 8-hydroxygeraniol was a gift from Dr. Wilhelm Boland 92	
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(Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, 93	
  

Germany). Geranyl and farnesyl pyrophosphates were from Sigma-Aldrich (Saint Louis, 94	
  

MO) as were the following volatile standards (> 95%) geraniol, citronellol, citronellal, 95	
  

linalool, citral, 6-methyl-5-hepten-2-one, 8-hydroxycitronellol, and 8-hydroxycitronellal.   96	
  

 97	
  

Lacewing collection and rearing 98	
  

Adults of C. oculata for the laboratory colony were collected in May of 2008 by sweep 99	
  

net from wild herbaceous vegetation bordering deciduous trees at the Beltsville 100	
  

Agricultural Research Center (BARC), Prince George’s County, Maryland, USA. Quart 101	
  

wide-mouth Mason® canning jars (Mason Highland Brands, LLC, Hyrum, UT) were used 102	
  

to maintain the adult insects. The jars were positioned horizontally, and nylon organdy 103	
  

cloth (G Street Fabrics, Rockville, MD) held in place by the screw-top rim used to seal 104	
  

the jars. Jars were provisioned with live parthenogenic pea aphids [Homoptera: Aphidae: 105	
  

Acyrthosiphon pisum (Harris)] (supplied by Dr. John Reese, Kansas State University), 106	
  

eggs of the Angoumois grain moth (Gelechiidae: Sitotroga cerealella (Oliver); Kunafin 107	
  

“the Insectary”, Quemado, TX), and a 10% honey solution. A 5 x 12 cm piece of 108	
  

cardboard was used as a feeding platform. Honey solution was provided in a shell vial 109	
  

with a loose-fitting sponge stopper (4 ml, 15 x 45 mm; Fisher Scientific, Pittsburgh, PA) 110	
  

secured at one end of the cardboard with a rubber band. An adhesive strip of a Post-it® 111	
  

paper (50 x 40 mm; 3M, St. Paul, MN) was gently applied to the Sitotroga eggs, and the 112	
  

paper was glued (UHUstic®, UHU GmbH & Co., Bühl, Germany) to the other end of the 113	
  

cardboard with the band of moth eggs exposed. The cardboard feeding platform thus 114	
  

prepared was inserted in the bottom of the horizontal jar, and live pea aphid clones (up to 115	
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several hundred) were added to the cage. Ten to twenty adults could be kept per jar, 116	
  

adding fresh aphids and moth eggs every other day or so, and adding fresh honey solution 117	
  

as needed. In jars used as mating cages (5-10 pairs/jar), a piece of light blue colored 118	
  

paper (providing a color contrast to the green eggs that are laid singly on stalks) was 119	
  

inserted inside the length of the jar as an oviposition substrate. Servicing of these jars was 120	
  

accomplished by working in a cage (30 x 30 x 60 cm; BioQuip Products, Rancho 121	
  

Dominguez, CA, USA) open at one end, and illuminated at the top of the other end by a 122	
  

fluorescent light. Adults from mating jars were moved to new jars weekly, the food 123	
  

platform was removed from the jar with freshly laid lacewing eggs, and the eggs that had 124	
  

been laid were allowed to hatch. Using a camel hair brush, two first-instar larvae were 125	
  

transferred to each plastic cup (3/4 oz., snap-on lids; Solo Cup Company, Urbana, IL) 126	
  

with a layer of Sitotroga eggs in the bottom. Cups provisioned with only Sitotroga eggs 127	
  

were usually sufficient for both larvae to complete all 3 instars and pupate; more than two 128	
  

larvae per cup usually resulted in cannibalism. Lacewing pupae were transferred to the 129	
  

bottom compartment of mosquito breeders (BioQuip Products) and, upon emergence, the 130	
  

adults were removed from the top compartment. The colony was maintained in an 131	
  

environmental chamber set at 25 oC, 72% relative humidity, and 16:8 h (L:D) 132	
  

photoperiod. 133	
  

  In addition to chemical feeding trials, some C. oculata males were reared as 134	
  

above with access to foliage of Nepeta cataria (Catnip) (Mountain Valley Seed Inc., Salt 135	
  

Lake City, UT; lot #G2217); some were antennectomized 1-5 days after emergence; and 136	
  

some larvae were reared as above, plus fed pea aphid clones. Lacewings are unusual 137	
  

among insects in that adults have chewing mouthparts whereas larvae have 138	
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piercing/sucking mouthparts (Tauber et al. 2009); therefore, some larvae were reared 139	
  

with methylene blue dye in a preliminary experiment to verify that larvae ingested 140	
  

materials from the honey water bottles, as did adults.  Adult males from these treatments 141	
  

were subsequently chemically sampled and analyzed as described below.  142	
  

 143	
  

Scanning election microscopy 144	
  

Live wild C. oculata males were anesthetized with CO2, mounted on copper specimen 145	
  

holders (16 × 29 × 1.5 mm thick) with cryoadhesive, and immersed in liquid N2. The 146	
  

frozen specimens were transferred to an Oxford CT1500 HF cryo-preparation system, 147	
  

and examined using a low temperature scanning electron microscope (LTSEM; Hitachi 148	
  

S-4100) operated at 2.0 kV (Erbe et al. 2003). Micrographs were recorded on Polaroid 149	
  

Type 55 P/N film. 150	
  

 151	
  

Chemical feeding, extraction of dermal glands, and chemical analysis 152	
  

Each of the chemical standards listed above were individually fed to adult laboratory-153	
  

reared C. oculata males at 1 μg/μl in the 5% aqueous honey solution for ca. 4 days prior 154	
  

to analysis. Abdominal cuticle extracts (segments 3–8) for chemical analyses of C. 155	
  

oculata male-produced volatiles were prepared the same day as analysis as previously 156	
  

described (Zhang et al. 2004). Wild males collected by sweep net, Beltsville MD, USA, 157	
  

14 May – 1 June, 2009, were dissected in like manner the same day as collected.   158	
  

 Gas chromatography (GC) and coinjections were performed in splitless mode 159	
  

using an HP 6890 GC equipped with a DB-5 column (0.25 μm film thickness, 30 m x 160	
  

0.32 mm ID; J & W Scientific, Folsom, CA). Helium was used as the carrier gas, 161	
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programming from 50◦C/2 min, to 250◦C at 10◦C/min, then held for 10 min. GC-mass 162	
  

spectrometry (GC-MS) analyses were performed with an Electron impact ionization (EI) 163	
  

mass spectra were obtained at 70 eV with an Agilent Technologies 5973 mass selective 164	
  

detector interfaced with 6890N GC system equipped with either an HP-5MS (30 m×0.25 165	
  

mm i.d.×0.25 μm film) column programmed from 50◦C/2 min, rising to 230◦C at 166	
  

15◦C/min, then held for 15 min, or using a DB-WaxETR column (0.25 μm film 167	
  

thickness, 30 m × 0.25 mm ID; J &W Scientific, Folsom, CA) programmed at 50◦C/2 168	
  

min, rising to 230◦C at 15◦C/min, then held for 15 min. 169	
  

 170	
  

RESULTS 171	
  

In C. oculata adult males the dermal glands (Güsten 1996) are elliptical (~12 x 7.5 μm) 172	
  

with a central slit (Fig. 1), and occur on the 3rd–8th abdominal sternites (~800, 2100, 173	
  

2500, 2500, 2300 and 1500, respectively); corresponding dermal glands are absent in 174	
  

females (Zhang et al. 2004). Similarly appearing male-specific dermal glands occur on 175	
  

both abdominal tergites and sternites in C. septempunctata (Principi 1949), whose males 176	
  

were abundantly captured in iridodial-baited traps in China (Fig. 2) (Zhang et al. 2006b).  177	
  

 Analyses of C. oculata revealed that nonanal and nonanol were abundant in 178	
  

extracts of the abdominal sternites of males regardless of whether they were collected in 179	
  

the wild or reared in the laboratory; however, iridodial was absent in extracts of 180	
  

laboratory-reared C. oculata males (Fig. 3A and B; Table 1).  Conspecific females did 181	
  

not produce detectable amounts of the C9 compounds or iridodial (data not shown). 182	
  

Access of C. oculata males to catnip foliage did not stimulate production of iridodial, nor 183	
  

did feeding geranyl or farnesyl pyrophosphates. Removing the antennae of C. oculata 184	
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males had no effect on production of iridodial, and rearing C. oculata males in isolation 185	
  

from conspecific males did not result in production of iridodial (data not shown). 186	
  

Providing pea aphid clones to larvae during rearing yielded at most only traces of 187	
  

iridodial in the ensuing adult males, although the methylene blue uptake by larvae 188	
  

verified uptake from the honey water solution. In wild males collected by sweep netting 189	
  

foliage in early spring (i.e. not from iridodial-baited traps) the mean iridodial percentage 190	
  

relative to the abundances of nonanal and nonanol was 14.30 % (+SEM = 3.72) (Table 191	
  

1). Analysis of one male caught in one iridodial-baited trap (14 May 2008, Beltsville, 192	
  

MD) to which the captured males had access to the lure, showed that this male produced 193	
  

more iridodial than the normal mean abundance for nonanol in wild-caught males (64.42 194	
  

+ 4.73; Table 1). 195	
  

 Feeding naturally common monoterpene alcohols and aldehydes to C. oculata 196	
  

males did not stimulate production of iridodial (Table 2, experiment numbers 1-8). 197	
  

However, this series of feeding trials did reveal that males evidently possess reductase 198	
  

and saturase enzymes capable reducing aldehydes to alcohols, and of saturating double 199	
  

bonds in these molecules. These reactions appeared to be unidirectional; for example, 200	
  

geranial was completely converted to geraniol (Table 2, experiment number 4), whereas 201	
  

geraniol was slightly isomerized to nerol but aldehydes were not produced (Table 2, 202	
  

experiment number 6). Furthermore, the abundances of C9 compounds were not affected; 203	
  

nonanal, nonanol and nonanoic acid occurred in ratios within their ranges for wild-caught 204	
  

males for all experiments shown in Table 2.  Feeding 8-hydroxygeraniol did not stimulate 205	
  

production of iridodial, nor did feeding geranyl or farnesyl pyrophosphates (data not 206	
  

shown).  207	
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 Feeding male goldeneyed lacewings the common aphid pheromone components, 208	
  

(4aS,7S,7aR)-nepetalactone and (1R,4aS,7S,7aR)-nepetalactol, produced more positive 209	
  

results. While feeding nepetalactone did not result in production of iridodial, about 75% 210	
  

of this lactone was converted to the dihydronepetalactone (Table 2, experiment number 211	
  

9). Interestingly, dihydronepetalactone was detected at low, but unequivocal levels in 212	
  

some samples from wild C. oculata males (Supplemental Figures 2 and 3). Chrysopa 213	
  

oculata males fed (1R,4aS,7S,7aR)-nepetalactol converted this compound to 214	
  

(1R,2S,5R,8R)-iridodial (82.7%; Table 2, experiment number 10; Fig. 3C), with two later 215	
  

eluting 168 MW compounds accounting for 17.3% of the other newly appearing 216	
  

components, as well as (Z)-4-tridecene from the defensive prothoracic glands (Fig. 3C, 217	
  

compound c) (Aldrich et al. 2009).  Two additional feeding experiments were conducted 218	
  

as for experiment 10 (Table 2) except the GC-MS analysis used a 30m HP-5 column; one 219	
  

of these experiments (N = 4 males) resulted in 100% conversion to (1R,2S,5R,8R)-220	
  

iridodial, while the second (N = 9 males) showed 54.90% conversion to (1R,2S,5R,8R)-221	
  

iridodial with two later eluting 168 MW components (14.70% and 30.40%, respectively). 222	
  

The mass spectra of the 168 MW compounds from experiment 10 (Table 2; Fig. 3C) did 223	
  

not match the spectra of the later eluting 168 MW compounds seen in the latter 224	
  

experiment using 9 males analyzed using the HP-5 column.         225	
  

   226	
  

 227	
  

DISCUSSION 228	
  

Coincidence of male-specific dermal glands with extraction of (1R,2S,5R,8R)-iridodial 229	
  

from the 3rd–8th abdominal sternites strongly implicates these glands as the pheromone 230	
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source (Zhang et al. 2004). Surprisingly, only males are caught in traps baited with this 231	
  

iridodial (Zhang et al. 2004; Zhang et al. 2006a; Zhang et al. 2006b); however, females 232	
  

are drawn to the vicinity of, but seldom enter, iridodial-baited traps (Chauhan et al. 233	
  

2007), presumably because the close-range substrate-borne vibrational signals to which 234	
  

females are ultimately attracted are disrupted by trapping males (Henry 1982). The C9 235	
  

compounds are unattractive to C. oculata, quantitatively much less variable than 236	
  

iridodial, and inhibitory to iridodial attraction, suggesting these compounds play a role 237	
  

independent from that of iridodial (Zhang et al. 2004).   238	
  

 Previous laboratory rearing studies with Chrysopa oculata showed that males 239	
  

produced fertile matings when fed only sugar and water, whereas females needed to feed 240	
  

on pea aphid clones in order to mate and produce fertile eggs (Tauber and Tauber 1973). 241	
  

Our results support these finding, but also make it clear that C. oculata males are unable 242	
  

to make pheromone on this feeding regimen. Iridodial production in C. oculata males 243	
  

was not stimulated by 1) antennectomy of sexually mature C. oculata males, which in 244	
  

some group-reared insects stimulates pheromone production (e.g. Dickens et al. 2002); 2) 245	
  

providing access to catnip plants, Nepeta cataria, containing the nepetalactone aphid 246	
  

pheromone component (Pickett et al. 2013); or 3) rearing C. oculata males in isolation, 247	
  

which in some insects is required for maximal pheromone production (Ho et al. 2005; 248	
  

Khrimian et al. 2014).   249	
  

 Feeding monoterpene alcohols and aldehydes to C. oculata males did not 250	
  

stimulate production of iridodial either, but this series of feeding trials revealed that 251	
  

males are capable of reducing aldehydes to alcohols and of saturating double bonds. 252	
  

Feeding 8-hydroxygeraniol, which is a precursor to biosynthesis of iridodials in some 253	
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insects (Hilgraf et al. 2012), did not stimulate production of iridodial, nor did feeding 8-254	
  

hydroxycitronellol. On the other hand, males fed the common aphid pheromone 255	
  

component, (4aS,7S,7aR)-nepetalactone, converted ~75% to dihydronepetalactone, and 256	
  

males fed the other common aphid pheromone component, (1R,4aS,7S,7aR)-nepetalactol, 257	
  

converted this bicyclic iridoid to (1R,2S,5R,8R)-iridodial. Interestingly, analyses of wild 258	
  

C. oculata males collected in May often revealed the presence of dihydronepetalactone. 259	
  

 One interpretation of these data is that C. oculata males must eat aphid oviparae 260	
  

to obtain nepetalactol in order to make their pheromone. Indeed, in northern California 261	
  

the peak late-season attraction of green lacewings to nepetalactol (nepetalactone is 262	
  

unattractive) occurs at least a month earlier than the peak in aphid oviparae (Symmes 263	
  

2012), consistent with the hypothesis that Chrysopa males feed on oviparae to obtain 264	
  

nepetalactol as a precursor for iridodial. These dynamics indicate there is sufficient time 265	
  

for Chrysopa males to feed on oviparae, produce iridodial, mate, and have conspecific 266	
  

females’ offspring reach the prepupal overwintering stage (Uddin et al. 2005). However, 267	
  

adult males from laboratory-reared C. oculata larvae fed nepetalactol still failed to 268	
  

produce wild-type levels of iridodial even though wild C. oculata males collected early in 269	
  

the spring produce less iridodial than do males collected later in the season (Zhang et al. 270	
  

2004). Although some aphids produce oviparae under stressed conditions in summer 271	
  

(Hardie 1985), it seems unlikely that these oviparae are a reliable or abundant enough 272	
  

source to sustain Chrysopa male pheromone production. Therefore, we further 273	
  

hypothesize the raison d'être that Asian Chrysopa eat fruit and foliage of silver leaf (A. 274	
  

polygama) is to obtain iridoid precursors necessary to make their pheromone; other 275	
  

iridoid-producing plants (e.g. Hilgraf et al. 2012; Prota et al. 2014) elsewhere in the 276	
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world must be similarly usurped by male Chrysopa species to sequester iridoid 277	
  

pheromone precursors.  278	
  

 Thus, Chrysopa spp. lacewings, whose adults are predacious distinguishing them 279	
  

from closely aligned green lacewings in the genus Chrysoperla whose adults are not 280	
  

predacious (Tauber et al. 2009), appear to exhibit pharmacophagy: that is, they “search 281	
  

for certain secondary plant substances directly, take them up, and utilize them for specific 282	
  

purpose other than primary metabolism” (Boppré 1984). A prime example of 283	
  

pharmacophagy are male Bactrocera fruit flies (Tephritidae) that feed on plants to obtain 284	
  

their pheromone precursor, methyl eugenol (Tan and Nishida 2012). Indeed, males of 285	
  

certain lacewings [i.e. Ankylopteryx exquisite (Nakahara) (Pai et al. 2004), and Mallada 286	
  

basalis (Walker) (Oswald 2015; Suda and Cunningham 1970)] are also powerfully 287	
  

attracted to methyl eugenol for unknown reasons (Tan and Nishida 2012). In addition, 288	
  

certain chrysomelid beetle larvae discharge iridoid allomones that may be synthesized de 289	
  

novo, which is considered ancestral, or produced via the more evolutionarily advanced 290	
  

mechanism, sequestration from plants (Kunert et al. 2008). Increasingly, pharmacophagy 291	
  

is being recognized as a widespread phenomenon in insects, and Wyatt (2014) has 292	
  

extended the concept of pharmacophagy to include molecules produced by bacteria that 293	
  

are used as pheromones, such as locust phase-change pheromones produced by gut 294	
  

bacteria. If male Chrysopa spp. lacewings actually do seek out aphid oviparae to obtain 295	
  

nepetalactol as a precursor to iridodial, and in this regard it should be noted that only 296	
  

Chrysopa males are attracted to nepetalactol (Koczor et al. 2015), then the concept of 297	
  

pharmacophagy must be further extended to include this type of predator/prey interaction. 298	
  

Whether or not sequestration of iridodial precursors from oviparae and/or iridoid-299	
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containing plants is truly the explanation for lack of pheromone in laboratory-reared 300	
  

Chrysopa awaits further research.   301	
  

 302	
  

CONCLUSIONS 303	
  

Goldeneyed lacewing males, Chrysopa oculata (Neuroptera: Chrysopidae), produce 304	
  

(1R,2S,5R,8R)-iridodial as an aggregation pheromone from specialized dermal glands on 305	
  

the abdomen; however, seemingly normal laboratory-reared males of C. oculata do not 306	
  

produce iridodial. Feeding studies with C. oculata showed that males of these predatory 307	
  

insects fed one of the common aphid sex pheromone components, (1R,4aS,7S,7aR)-308	
  

nepetalactol, sequester this compound and convert it to the stereochemically correct 309	
  

lacewing pheromone isomer of iridodial. These data, combined with literature accounts 310	
  

of other Chrysopa species from the Oriental region that feed on iridoid-producing plants, 311	
  

suggest these (and some other) lacewing species must obtain precursors from aphid 312	
  

oviparae and/or certain plants containing iridoids in order to make pheromone. The 313	
  

phenomenon, known as pharmacophagy, whereby an insect searches for certain 314	
  

secondary plant substances and sequesters the chemicals for a specific purpose other than 315	
  

primary metabolism, is widespread among phytophagous insects but, to our knowledge, 316	
  

is unknown among lacewings or other predacious insects. Our findings, if verified, have 317	
  

significant implications for lacewing-based biological control of aphids and other small 318	
  

arthropod pests.       319	
  

 320	
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Figure 1  Scanning electron micrographs of the male-specific dermal 
glands of Chrysopa oculata. Low temperature scan (Erbe et al., 2003) with 
insert showing close-up of two dermal glands. 
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Figure 2  Male Chrysopa septempunctata captured in pheromone-baited 
trap, Shengyang, China (Zhang et al., 2006). Chrysopa females come to the 
vicinity of iridodial-baited traps, but are seldom caught (Chauhan et al., 2007).	
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Figure 3  Total ion chromatograms of abdominal cuticular extracts of male 
Chrysopa oculata; A) field-collected, B) laboratory-reared and, C) laboratory-
reared fed (1R,4S,4aR,7S,7aR)-dihydronepetalactol (see Table 2). (Column = 
30m DB-WAXetr: a = nonanal ; b = nonanol ; c = (Z)-4-tridecene;   1 = (1R,2S,5R,
8R)-iridodial; d & e = 168 MW isomers.)  
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Table 1 Volatiles from abdominal cuticle of field-collected and laboratory- 
reared Chrysopa oculata males. Wild C. oculata males were collected by 
sweep net, Beltsville, Maryland, and C. oculata laboratory-reared males (see text 
for details) were sampled for comparisons. Abdominal cuticle (segments 3–8) for 
chemical analyses were prepared as described previously (Zhang et al., 2004).        
 

 
Source / Date 

 Compound (%)   
Na Nonanal Nonanol Iridodial b % ∑c 

Field / 14 May 2009 4 13.06 80.68 2.35 96.09 
Field / 18 May 2009 2 15.81 80.16 2.12 98.09 
Field / 22 May 2009 1 10.31 42.01 38.13 90.45 
Field / 28 May 2009 1 30.09 50.06 16.11 96.26 
Field / 28 May 2009 1 13.56 67.55 16.19 97.30 
Field / 28 May 2009 1 8.84 74.88 14.06 97.78 
Field / 1 June 2009 1 32.24 54.82 9.94 97.00 
Field / 1 June 2009 1 13.69 65.20 15.53 94.42 

Mean: 13.95 64.42 14.30 95.92 
 +SEM: 3.81 4.73 3.72  

Lab / 27 June 2008d 8 21.28 76.26 0 97.54 
Lab / 13 Aug 2008d 5 21.37 69.34 0 90.71 
Lab / 24 Nov 2008d 6 11.20 86.12 0 97.32 
Lab / 24 Nov 2008d 7 18.60 75.74 0 94.34 
Lab / 5 Jan 2009e 5 16.58 79.42 0 96.00 

Mean: 17.81 77.38 0 95.18 
 +SEM: 1.88 1.73   

a In samples where N>1, multiple males were pooled and analyzed as a single  

sample by GC-MS on a 30 m DB-WaxETR column.   

b (1R,2S,5R,8R)-Iridodial (Chauhan et al., 2004). 

e Percentage of total volatiles; nonanoic acid (poorly resolved 

  chromatographically) accounted for the majority of non-included volatiles. 

d Reared singly as adults. 

e Reared in a group as adults. 
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Table 2  Compounds produced by laboratory-reared Chrysopa oculata males fed 
various exogenous terpenoids.  Sampling and rearing methods described in text; 1 µg/µl 
test compound in honey water, analyzed by gas chromatography-mass spectrometry using 
a 30 m DB-WaxETR column.   

 
No. 

 
Na 

Compound  
fedb   

Compound(s) produced from treatment (%)c 
           a                      b                      c                       d  

 
1 
 

 
8 
   

(16) 
	
  

(3.3) 
	
  

(9.7) 
	
  

(71) 

2	
   12	
  
   

	
  
(9.9) 

	
  
(8.3) 	
  

(42.3) 
	
  

(39.5) 

3	
   9	
     
(100) 

	
   	
   	
  

4	
   10	
  
 	
  

(100)	
  

	
   	
   	
  

5	
   7	
  
 	
  

(95.3)	
  
	
  

(4.7)	
  

	
   	
  

6	
   5	
  
 	
  

(4.3) 
	
  

(95.7) 

	
   	
  

7	
   15	
  
 	
  

(100) 

	
   	
   	
  

8	
   15	
  
 	
  

(100)	
  

  	
  

9	
   12	
  
 	
  

(23.3) 
	
  

(76.7) 

	
   	
  

10	
   10	
  
 	
  

(82.7) 
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a Number of males pooled for analysis. 

b Sources of standards listed in text; 1) 3,7-dimethyl-1,6-octadien-3-ol (linalool), 2) 

(Z/E)-3,7-dimethyl-2,6-octadienal (citral: 43% Z-isomer, neral + 57% E-isomer, 

geranial), 3) 6-methyl-5-hepten-2-one, 4) 2,6-dimethyl-5-heptenal (citronellal), 5) 2,6-

dimethyl-5-heptenol (citronellol), 6) (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), 7) 

(E)-3,7-dimethyl-8-hydroxy-6-octen-1-al (8-hydroxycitronellal), 8) (E)-2,6-dimethyloct-

2-ene-1,8-diol (8-hydroxycitronellol), 9) (4aS,7S,7aR)-nepetalactone and, 10) 

(1R,4S,4aR,7S,7aR)-dihydronepetalactol. Purities of all standards (except for iridodial) 

were > 95%; synthetic and natural iridodial analyzed by GC existed with two later eluting 

168 MW isomers (Fig. 3; compounds d and e), here accounting for 10.2% and 7.1%, 

respectively, of the 168 MW compounds. 

c Abdominal cuticle (segments 3–8) for chemical analyses of C. oculata male-produced 

volatiles were prepared as described previously (Zhang et al., 2004). Compounds 

produced from fed precursors for which synthetic standards were available were verified 

by coinjections: 2c & 6a) nerol; 2d, 5b & 6b) geraniol; 4a & 5a) citronellol; 9a) 

(4aS,7S,7aR)-nepetalactone; 9b) (4aS,7S,7aR)-­‐dihydronepetalactone and, 10a) 

(1R,2S,5R,8R)-iridodial. Other compounds were tentatively identified by near matches to 

mass spectra of compounds in the National Institute of Standards and Technology (NIST) 

mass spectral library: 1a) 3,7-dimethyl-6-octen-3-ol (1,2-dihydrolinalool); 1b) (Z)-3,7-

dimethyl-2,6-octadien-1-ol; 1c) 2,6-dimethyl-7-octene-2,6-diol; 1d) (E)-2,6-dimethyl-

2,7-octadiene-1,6-diol; 2a & 3a) 6-methyl-5-hepten-2-ol; 2b) 3,7-dimethyl-6-octen-1-ol.  	
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Compound 7a and 8a yielded a less than a perfect match for 3,7-dimethyl-1,7-octanediol; 

based upon previously seen glandular reactions, this compound is likely 2,6-dimethyl-

1,8-octanediol.   
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Suppl.	
  Figure	
  1	
  	
  Structures	
  of	
  Chrysopa	
  semiochemicals:	
  1:	
  (1R,2S,5R,8R)-­‐
iridodial,	
  2:(1R,4S,4aR,7S,7aR)-­‐dihydronepetalactol,	
  3:	
  (4aS,7S,7aR)-­‐
nepetalactone,	
  4:	
  dihydronepetalactone,	
  5:	
  (1R,4S,4aR,7S,7aR)-­‐
dihydronepetalactol	
  ,	
  6:	
  (1R,4R,4aR,7S,7aR)-­‐dihydronepetalactol	
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Suppl.	
  Figure	
  2	
  	
  GC	
  and	
  MS	
  data	
  of	
  abdominal	
  cu?cular	
  extracts	
  from	
  Chrysopa	
  	
  
Oculata	
  males	
  	
  a)	
  &	
  b)	
  collected	
  28	
  May,	
  2009,	
  sweeping	
  vetch,	
  Beltsville,	
  MD.	
  
	
  (4	
  =	
  dihydronepetalactone	
  (column	
  =	
  30m	
  HP-­‐5;	
  condiEons	
  described	
  in	
  text)	
  
	
  	
  

4	
  
4	
  

A	
  
B	
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Suppl.	
  Figure	
  3	
  	
  GC-­‐MS	
  data	
  for	
  dihydronepetalactone	
  (4),	
  2	
  July	
  2014.	
  	
  
Analyzed	
  on	
  an	
  HP	
  6890N	
  GC	
  coupled	
  in	
  series	
  with	
  an	
  HP	
  5973	
  mass	
  	
  
selecEve	
  detector	
  using	
  a	
  30m	
  DB-­‐5	
  capillary	
  column	
  (250	
  µm	
  x	
  0.25	
  µm	
  film	
  	
  
Thickness;	
  Agilent	
  Technologies,	
  Wilmington,	
  DE,	
  USA),	
  	
  50	
  °C	
  for	
  5	
  min,	
  to	
  
	
  280	
  °C	
  at	
  10	
  °C/min,	
  hold	
  3	
  min.	
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