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ABSTRACT
Maize is one of the major crops in the world and the most productive member of the
Gramineae family. Since cold stress affects the germination, growth, and productivity
of corn seeds, the present study aimed to investigate the effect of seed biopriming with
Trichoderma harzianum on the tolerance of two genotypes of maize seedlings to cold
stress. This study was conducted in triplicates in factorial experiment with a complete
randomized block design (CRBD). The study was conducted in the greenhouse and
laboratory of the University of Mohaghegh Ardabili, Ardabil, Iran. Experimental
factors include two cultivars (AR68 cold-resistant and KSC703 cold-sensitive maize
cultivars), four pretreatment levels (control, biopriming with T. harzianum, exogenous
T. harzianum, and hydropriming), and two levels of cold stress (control and cold at
5 ◦C) in a hydroponic culture medium. The present study showed that maize leaves’
establishment rate and maximum fluorescence (Fm) are affected by triple effects (C*,
P*, S). The highest establishment (99.66%) and Fm (994 units) rates were observed in
the KP3 control treatment. Moreover, among the pretreatments, the highest (0.476
days) and the lowest (0.182 days) establishment rates were related to P0 and P3
treatments, respectively. Cultivar A showed higher chlorophyll a and b, carotenoid
content, and establishment rate compared to cultivar K in both optimal and cold
conditions. The highest root dry weight (11.84 units) was obtained in cultivar A
with P3 pretreatment. The pretreatments with T. harzianum increased physiological
parameters and seedling emergence of maize under cold and optimal stress conditions.
Pretreatment and cultivar improved catalase activity in roots and leaves. Higher leaf
and root catalase activity was observed in the roots and leaves of cultivar K compared
to cultivar A. The cold treatment significantly differed in peroxidase activity from the
control treatment. Cultivar K showed higher catalase activity than cultivar A. The main
effects of pretreatment and cold on polyphenol oxidase activity and proline content
showed the highest polyphenol oxidase activity and proline content in hydropriming
(H) treatment. Cold treatment also showed higher polyphenol oxidase activity and
proline content than cold-free conditions.
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INTRODUCTION
Maize (Zea mays L.) is one of the most important cereals in the world (Zhao et al., 2021;
Langyan et al., 2021). Based on the World Food and Agriculture Organization (FAO)
reports in 2017, the area under maize cultivation is around 188 million hectares, and
the annual production of this plant is about one billion and 60 million tons (Huzsvai et
al., 2020; Wani et al., 2021). The area under cultivation of maize in Iran was about 130
thousand hectares in 2017, with average grain and forage yields of about seven and 45 tons
per hectare, respectively (Bijanzadeh, Naderi & Egan, 2019; Zarei et al., 2020). At the same
time, the maize plant is highly efficient in suitable environmental and growth conditions
but is very sensitive to environmental stresses such as water shortage and cold (Sagar et
al., 2022; Kusale et al., 2021). Stress at low temperatures limits the production of cereals,
especially maize, in cold regions, causing a lot of damage and reducing the growth rate of
plants in some years (Shiyab et al., 2013).

Crops, mainly maize, are constantly exposed to environmental stresses; that significantly
affect crop yields each year. Low temperature is the critical non-biotic stimulus that limits
crop production in autumn cultivation in dry and temperate regions (Sheikh et al., 2022;
Baba et al., 2021). Therefore, plant tolerance to cold stress is essential for winter survival,
healthy growth, and production. (Oberschelp et al., 2020; Ouellet & Charron, 2013). Many
plant species, mainly tropical and subtropical, including maize, cotton, cucumber, and
soybeans, are damaged when exposed to frost at low but above zero temperatures (Yang,
Wu & Cheng, 2011).

Plant death occurs at low temperatures due to protein deposition, freezing of intercellular
water, water movement from the protoplasm to the intercellular space, and the formation
of ice crystals within the protoplasm (Jalilian et al., 2009). The main effect of cold stress is
related to its negative impact on cell membranes, leading to cell dehydration and damage
(Mehrabi & Fazeli-Nasab, 2012; Serraj & Sinclair, 2002). Usually, due to cold stress, young
seedlings show signs of reduced leaf development, wilting, and chlorosis. Furthermore,
they show accelerated aging and diminished growth in acute cases, finally leading to plant
death (Hussain et al., 2018). Photosynthesis is affected by low temperatures after a short
exposure (between a few h to a few days) so that plant growth and, thus, plant yield are
decreased, as fewer carbohydrates will be available to be used in seed production (Mehrban
& Fazeli-Nasab, 2017; ORT, 2002).

Plants have different defense mechanisms against various stresses. Under cold stress
conditions, plants accumulate high amounts of compatible solution compounds (Ahmad,
Lim & Kwon, 2013). These compounds are unchangeable in physiological pH and non-
toxic in high concentrations, maintaining osmotic pressure. Moreover, they stabilize the
structure of proteins andmembranes under stress conditions (Baba et al., 2021), which play
an essential role in cell adaptation to various stresses. Proline is one of the most important
of these compounds, which is synthesized from glutamate and ornithine pathways, and
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its synthesis is significantly increased under cold stress conditions (Ashraf & Foolad, 2007;
Naidu, Fukai & Gunawardena, 2005).

Furthermore, the assessment of chlorophyll fluorescence parameters as a suitable and
non-destructive method has been used to specify plant species differences in terms of
tolerance to environmental stresses and as an essential factor in quantifying the reaction
of resistant and cold-sensitive maize cultivars (Dobrowski et al., 2005). In this regard, one
of the ways to control the effects of this stress is to use biological managing agents such as
Trichoderma fungi. Stimulation of root growth, production and absorption of nutrients,
and thus increasing plant resistance to environmental stresses, are significant features of
this fungus (Hoyos-Carvajal, Orduz & Bissett, 2009). It contribute for the improvement
of the plant resistance towards diseases, the plant’s growth as well as its productivity.
Trichoderma sp. has been used as an effective biocontrol agent against wide range of plant
pathogens. It helps in induction of systemic resistance, increase the uptake of nutrient,
promote degradation of any pesticides that can bring negative impact to the soil (Enshasy
et al., 2020).

Inoculation of T. harzianum increased fresh weight and lateral roots in tomato plants.
Trichoderma species are present in all soil types and are the most common cultivable
fungi (Chacón et al., 2007). Trichoderma is used in soil for biological control against soil
pathogens, enhancing nutrient uptake, excretion of toxins, promoting sugar and amino
acid transfer in plant roots, and induction of plant growth and resistance to environmental
stresses (Zope, Jadhav & Sayyed, 2019;Mastouri, Björkman & Harman, 2010;Zhang, Gan &
Xu, 2019b). It is reported that using Trichoderma strains increases cumin biochemical and
morphological parameters under drought stress in greenhouse conditions. The biopriming
method treats seeds using a solution containing live microorganisms such as fungi and
bacteria. This study used Trichoderma fungus for biopriming treatment (Zhang, Gan & Xu,
2019b).

Trichoderma sp. is among the soil hyphae that are found all over the world. They use
a wide range of compounds as sources of carbon and nitrogen. This genus has a global
distribution and, as a soil fungi, causes wood rot in some cases (Chen & Zhuang, 2017).
This study aimed to assess the morphological, physiological, and seedling emergence
indicators and their relationship to biological treatments (Trichoderma inoculant) in
sensitive and cold-resistant maize cultivars and to gain a deep insight into the biotic and
abiotic mechanism involved in facilitating the destructive effects of cold stress in plants.

MATERIALS AND METHODS
This study was carried out in triplicates as a factorial experiment with a CRBD in the
research greenhouse and laboratory of the Agriculture and Natural Resources Department,
the University ofMohaghegh Ardabili, Ardabil, Iran (38.2106◦N, 48.2952◦E). Experimental
factors included two cultivars (AR68 cold-resistant and KSC703 cold-sensitive maize
cultivars), four pretreatment levels (control, biopriming with Trichoderma, exogenous
Trichoderma, and hydropriming (treatment with distilled water), and two levels of cold
stress (control and cold at 5 ◦C) in a hydroponic culture medium.
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Preparation of fungal suspension and exogenous Trichoderma-treated
seeds
T. harzianum was obtained from the culture repository of Department of Plant Production
and Genetic Engineering, University of Mohaghegh Ardabili, Ardabil, Iran. The needed
suspension population was created in a Petri dish using potato dextrose agar (PDA))
culture media, then cultivated in a zigzag pattern on the PDA culture medium using a
loop (laboratory tube) and in an incubator. The spores were placed into Erlenmeyer sterol
with culture media after 11 days of fungal growth and profuse sporulation. Next, a fungus
suspension was made using a hemocytometer slide (counting spores) with a multiple of
107 in sterile distilled water. Finally, for seed bio-priming, the seeds at room temperature
(25−20 ◦C) for 10 h h in distilled water (control) or fungal suspension (inoculation
treatments) were placed (Fazeli-Nasab et al., 2021). Following washing with distilled water,
the seeds were kept in water for 12 h, then 10 g/kg of seeds T. harzianum was added to the
seed mass, considering a specified calibrated pH. The seed moisture was increased in the
laboratory afterward. For this purpose, first, the seeds were poured into a mesh clot with
tiny pores. Then it was placed on a plastic base inside a water-containing sealed container
(The volume of water in the container was so much that the water did not come into
contact with the mesh cloth containing the seeds). Then the lid of the container was closed
so that the moisture inside the container space could be absorbed by the seeds and not let
the light shine on them. Finally, for exogenous Trichoderma (suspension) application, 10 g
of T. harzianum and the nutrient solution were added to the samples. The nutrient solution
in this study was prepared using deionized distilled water, according to the instructions
provided by Hoagland & Arnon (1950). To irrigate and create natural conditions for the
plots, the nutrient solution was prepared, checked for pH before each irrigation, and added
to the cultured samples. The nutrient solution pH was adjusted to 6.5 using 1% NaOH and
HCl solution. Finally, after pre-testing in the laboratory, collecting data, and analyzing the
results, a 48 h cold stress period was applied at the temperature range of 0−5 ◦C.

Hydropriming treatment was conducted by placing maize seeds in distilled water for
12 h at 25 ◦C. Next, bio-priming treatment was performed by soaking seeds in water for
12 h and adding 10 g/kg of seeds T. harzinum to the seed mass. Then the seed’s moisture
was increased in the lab by incubating at 25 ◦C and placing it in a dark condition. After 48
h, they were prepared for a bio-priming test using exogenous T. treatment.

Preparing pots and planting seeds
Preparation of pot and planting of seeds was carried out in triplicates in factorial experiment
with a complete randomized block design (CRBD). Following the application of various
bio-priming methods in the main experiment, maize seeds were planted in pots containing
mineral iron-free medium-size perlite with a grain size of 3 to 5 mm (Kimia-Pars, Tehran,
Iran). Perlite was chosen over soil due to its characterisitic features such as light weight,
high porosity and high moisture holding capacity compared to soil. Irrigation was carried
out using relevant nutrient solutions. Subsequent irrigation with ordinary water was
based on the drop of culture medium humidity to 70% FC. The next time Hoogland
and Arnon nutrient solution (pH = 6.5) was used again to compensate for nutrient
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depletion. Eighteen days after planting, the leaf emergence indicators were measured.
At each sampling stage, control and treatment seedlings were sampled separately. The
samples were immediately transferred to ice and subsequently refrigerated at −70 ◦C. The
following traits were measured during the experiment under control and stress conditions.
The leaf emergence index of the soil plant analysis development (SPAD) was measured with
a chlorophyll meter (SPAD-502; Minolta, Chiyoda, Japan). Quantum Performance (Fv
(Variable fluorescence)/Fm(maximum fluorescence)) was measured using a fluorometer
(American Optics Science, USA). Photosynthetic pigments, including chlorophyll and
carotenoids, were also measured (Lichtenthaler & Wellburn, 1983). For this purpose, 0.1
g of leaf tissue was gradually crushed with 80% acetone until Chlorophyll entered the
acetone solution. Finally, the solution volume reached 2.5 ml by adding 80% acetone. The
resulting solution was centrifuged at 400 rpm for 10 min, and then the optical absorption
of the supernatant was read at 470, 646.8, and 663.2 nm using a spectrophotometer. The
chlorophyll and carotenoids contents were calculated according to the following Eqs.
(1)–(4):

Chl a= 12.25 A 663.2−2.798 A 646.8 (1)

Chlb= 21.50 A 646.8−5.10 A 663.2 (2)

Chl Total=Ca+Cb (3)

Carotenoid x=
(1000 a 470−1.82Ca−85.02cb)

198
. (4)

The plants were adapted to darkness in greenhouse conditions using leaf clips for 20
min. Then the fluorescence rate for each treatment was evaluated at a light intensity of
1,000 micromoles (photons) per square meter per second. Fm (maximum fluorescence
after illuminating a saturated light pulse to a dark-adapted plant), Fo (the amount of
fluorescence after a dark-adapted plant is illuminated by a dim beam of modulated light),
Fv (basic or instantaneous fluorescence intensity), and Fv/Fm (maximum quantum yield
of photosystem II in the dark-adapted state) was calculated according to the following
formula (5):

Fv/Fm=
Fm−FO

Fm
. (5)

Measurement of the physiological traits
Measurement of soluble protein
The Bradford method measured seedling soluble protein content (Bradford, 1976). The
extraction buffer was prepared using potassium dihydrogen phosphate (KH2PO4) and
sodium hydroxide (NaOH) based on the Dean method (Dean, 1985). For this purpose,

Afrouz et al. (2023), PeerJ, DOI 10.7717/peerj.15644 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.15644


990 µl of Bradford solution was poured into 2 ml microtubes, where 10 µl of the extract
was added. After holding for 1 min. to complete the reaction, the solution was poured into
1 cc cuvettes. The absorbance was read at 595 nm using a spectrophotometer.

Measurement of catalase activity
Catalase activity was measured according to the method of Cakmak & Horst (1991). To
calculate the enzyme activity, 100 µl of 30 mM H2O2 and 100 µl of protein extract were
added to 2.8 ml of 25 mM sodium phosphate buffer (pH = 6.8). The absorbance was read
for 1 min. using a spectrophotometer at 240 nm.

Measurement of polyphenol oxidase activity
The polyphenol oxidase activity was measured according to the method of Raymond,
Rakariyatham & Azanza (1993). First, some test tubes were placed in a water bath at 40 ◦C,
and then 2.5 ml of 0.2 M phosphate buffer solution with a pH of 6.8 was added to each
tube. Then 0.2 ml of 0.02 M pyrogallol was added to the tubes to bring the temperature
to 40 ◦C. In the next step, 2 ml of enzyme extract was added to each tube, and adsorption
changes were recorded at 430 nm at 4 min intervals. Enzyme activity was expressed as
changes in adsorption rate at 430 nm per mg of protein per min (Raymond, Rakariyatham
& Azanza, 1993).

Measurement of proline levels
Proline level wasmeasured using the Bates method (Bates, Waldren & Teare, 1973). For this
purpose, 0.3 g of fresh tissue plant sample was grounded with 1.5 ml of 3% sulfosalicylic
acid and centrifuged. Then 400 µl of the clear supernatant solution was mixed with 2 ml of
glacial acetic acid and 2 ml of ninhydrin reagent and placed in a hot water bath (100 ◦C) for
one h. The reaction was stopped in an ice-water bath. Next, 4 ml of toluene was added to
this solution and stirred vigorously for about 20 s. Then, the test tubes were kept constant
until the two phases were separated. Pink toluene phase absorption was measured at 520
nm with a spectrophotometer. The proline content was calculated using a standard curve.

Statistical analysis
After conducting the normality test (based on the Shapiro–Wilk test), an analysis of variance
(ANOVA) of variables was performed using Statistix 10 software. The mean comparison
was performed using the HSD method at a 5% probability level. The graphs were drawn
using EXCEL software.

RESULTS
Analysis of variance of the interactions of the cultivar (V), cold (S), and pretreatment (P) on
stand establishment percentage and Fm showed significant results at a 1% probability level
(Tables 1 and 2). Moreover, the dual interactions of the cultivar (C) and pretreatment (P)
were substantial for root length, root volume, and root dry weight at a 1% probability level
and leaf length and leaf dry weight at a 5% probability level. Root volume, root dry weight,
chlorophyll content, and Fv/Fm were also significantly affected by the dual interaction of
cultivars (C) and cold (S) (P ≤ 0.05) (Table 1). The double interactions of cold (S) and
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Table 1 Analysis of variance (mean square) for the effect of biological and non-biological inoculation on the measured traits of maize geno-
types AR68 and KSC703 under cold conditions.

Source DF Seedling
emergence rate

Seedling
emergence

Root
peroxidase OD
change/ mg
protein/ min

Root
Catalase
(mMH2O2/min)

Root
length

Root
Volume

Root dry
weight

Stress (S) 1 0.02005 5418.75** 1722.81* 2.62 39.69 4.934 0.143
Cultivar (C) 1 0.14421** 1704.08 2850** 1155.03** 3236.87** 297.694** 190.898**

Pretreatment (P) 3 0.18591** 1178.5** 246.9 802.28** 181.28** 87.024** 81.056**

S*C 1 0.00002 320.33** 456.31 208.35 50.37 15.221* 9.915*

S*P 3 0.004 96.14** 20.94 29.33 121.05* 4.045 1.295
C*P 3 0.00091 37.81** 15.36 29.31 226.22** 26.354** 15.471**

S*C*P 3 0.00127 73.83** 11.16 40.39 65.78 3.087 0.95
Error 32 0.00497 1.31 298.7 67.68 40.93 2.036 2.347
C.V – 21.37 1.44 20.17 20.52 21.13 23.54 22.04

Notes.
ns, * and **ns, * and ** are non-significant at 5 and 1% probability levels, respectively.

pretreatment (P) on root length were also statistically significant (P ≤ 0.05). The main
effect of pretreatment (P) was statistically significant on establishment rate, chlorophyll b,
carotenoid content, Fv/Fm, Fo, stand establishment percentage, root catalase activity, leaf
catalase activity, leaf catalase activity, leaf polyphenol oxidase activity and proline content.
Furthermore, the simple effect of cold (S) on chlorophyll b content, root peroxidase
activity, leaf polyphenol oxidase activity, proline content, leaf length, and leaf dry weight
was statistically significant (Table 2).

Morphological characteristics
Establishment percentage and rate
The biopriming with Tricohderma positively impacted the growth in maize. Control
treatment (Fig. 1A) showed less growth, hydropriming (Fig. 1B) resulted in some
improvement while biopriming with Trichoderma (Fig. 1C) significantly improved the
vigor in maize under green house conditions.
The results on mean comparison showed that C P S triple effects affect the establishment

percentage in maize plants. The highest (99.66%) and the lowest (49.66%) establishment
percentages were obtained by K-ET-Control treatment and K-C-Cool treatment,
respectively (Fig. 2). Among all pretreatments applied, the highest (0.476 days) and the
lowest (0.182 days) establishment rates were related to ET and C treatments, respectively.
Among the cultivars, cultivar A showed a better establishment rate than cultivar K (Table 3).
The highest amount of leaf catalase activity (41.6 mM H2O2/min) was obtained from the
H treatment, which was not statistically significant compared to the B and ET treatments.
Cultivar K showed higher leaf catalase activity. Among the five levels of priming, the
highest root chlorophyll b (5.31 units) and carotenoid content (142.18 units) were related
to ET treatment. Cultivar A significantly differed in chlorophyll b and carotenoid content
compared to cultivar K (Table 3).
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Table 2 Analysis of variance (mean square) for the effect of biological and non-biological inoculation on the measured traits of maize geno-
types AR68 and KSC703 under cold conditions.

Source DF Leaf
catalase
(mM
H2O2/min)

Leaf
peroxidase OD
change/ mg
protein/ min

Leaf
polyphenol
oxidase OD
change/ mg
protein/ min

Proline
(mg/gFW)

Soluble protein
(mg/gFW)

Leaf
Length (cm)

Leaf
dry weight (g)

Stress (S) 1 20.216 451.043 1374.29** 11.2759** 0.1788 1070.69** 0.02556*

Cultivar (C) 1 378.097* 969.487 98.23 1.3897 68.1038* 2965.74** 0.0462**

Pretreatment (P) 3 336.676** 195.051 386.54* 11.1256** 23.1507 2976.63** 0.13656**

S*C 1 0.791 19.802 64.96 0.3039 25.693 225.77 0.00034
S*P 3 6.487 21.655 58.46 0.4478 0.6721 118.06 0.00481
C*P 3 27.982 14.392 13.29 0.3519 0.3327 325.81* 0.01969*

S*C*P 3 54.722 10.5 16.98 1.3661 0.8094 121.59 0.00009
Error 32 55.892 244.057 126.4 1.2927 14.8712 57.26 0.00502
C.V – 21.46 20.07 20.20 20.35 20.10 22.66 20.99

Source DF Chl a
(mg/gFW)

Chlb (mg/gFW) Carotenoeid
(mg/gFW)

Fvm Fo Fm

S 1 78.073 5.6708* 27 0.01044 3888 50830**

C 1 645.489** 11.1814** 121035** 0.02623 140.1 239419**

P 3 51.89 4.6495** 10284** 0.01025* 28032.7** 337086**

S*C 1 98.734* 2.6563 130 0.14719* 1452 419628**

S*P 3 6.858 0.0995 712 0.00017 1207.8 65715**

C*P 3 2.649 0.1785 783 0.00126 1503.4 207105**

S*C*P 3 4.635 1.5513 287 0.00023 390.4 215401**

Error 32 19.333 0.8511 614 0.02497 974.7 19
C.V – 20.45 20.39 22.56 20.07 20.95 0.6

Notes.
ns, * and **ns, * and ** are non-significant at 5 and 1% probability levels, respectively.

Root length
A comparison of the mean interaction of cultivar and pretreatment showed the highest root
length (45.75 cm) in cultivar A with ET pretreatment, which was not statistically significant
with A-B and A-H. The lowest root length (19.25 cm) was observed in the K cultivar and
ET pretreatment (Fig. 3A). Comparing the mean interaction of cold pretreatment, control
treatment with ET pretreatment showed the highest root length (37.05 cm). The lowest
root length (20.35 cm) was observed in the control treatment (C) (Fig. 3B).

Root volume
Root volume was also affected by the interaction of cultivar pretreatment and cultivar cold.
The highest (12.38 cm3) and the lowest (2.22 cm3) root volumes were observed in cultivar A
with ET pretreatment and cultivar K without pretreatment, respectively (Fig. 4A). Based on
the comparison of the mean interaction of cultivar cold, it can be shown that cultivar A has
a higher root volume than cultivar K, so the highest root volume (87.95 cm3) was observed
in cultivar A without cold treatment, showing no significant difference as compared to the
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Figure 1 The maize cultivars in control (A) hydropriming (B) and biopriming with Trichoderma (C)
under green house conditions.

Full-size DOI: 10.7717/peerj.15644/fig-1

Figure 2 Comparison of the average of triple interactions (C * P * S) on the percentage of maize plant
establishment. Each column and treatment similar letter or letters indicates no significant difference
based on the HSD test. C, Control; H, Hydropriming; B, Biopriming and ET, Exogenous Trichoderma.

Full-size DOI: 10.7717/peerj.15644/fig-2
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Table 3 Mean comparison of the effects of pretreatment and seed variety onmeasured traits of maize.

Sources
change

FD Seedling
emergence
rate
(day)

Root catalase
(mM
H2O2/min)

Leaf catalase
(mM
H2O2/min)

Chlb
(mg/gFW)

Carotenoeid
(mg/gFW)

C 0.182d 31.23c 28.11b 3.80c 72.19c

H 0.370b 50.32a 41.06a 4.59ab 119.29b

B 0.289c 36.53bc 34.94a 4.38bc 105.60b
Pretreatment

ET 0.476a 42.25b 35.21a 5.31a 142.18a

A 0.384a 39.85b 32.02b 5.01a 160.03a
V

K 0.275b 44.94a 37.64a 4.04b 59.60b

Notes.
Each column and treatment similar letter or letters is indicative no significant difference based on the HSD test.
C, Control; H, Hydropriming; B, Biopriming; ET, Exogenous Trichoderma.

Figure 3 Comparison of the average interaction (cultivar * pretreatment) (A) and (cold * pretreat-
ment) (B) onmaize root length. Each column and treatment similar letter or letters indicates no signif-
icant difference based on the HSD test. C, Control; H, Hydropriming; B, Biopriming and ET, Exogenous
Trichoderma.

Full-size DOI: 10.7717/peerj.15644/fig-3

same cultivars with cold treatment. On the other hand, the lowest root volume (26.88 cm3)
was observed in the K cultivar in cold-free conditions (Fig. 4B).

Root dry weight
Comparing the mean interaction of cultivar pretreatment, the highest (11.84 g) and the
lowest Root dry weight (3.22 g) was observed in cultivar A with ET pretreatment and
cultivar K with no pretreatment, respectively (Fig. 5A). Moreover, a comparison of the
mean interaction of the cold * cultivar indicated the best (93.45 g) and the worst (44.47 g)
treatments in cultivar A and cultivar K, respectively, in cold-free conditions (Fig. 5B).

Leaf length and dry weight
A comparison of the mean interaction of cultivar pretreatment on leaf length and leaf
dry weight showed that the highest (59 cm) and the lowest leaf length (13.3 cm) in
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Figure 4 Comparison of the average interaction (cultivar* pretreatment) (A) and (cold * pretreat-
ment) (B) on the maize root volume. Each column and treatment similar letter or letters indicate no sig-
nificant difference based on the HSD test. C, Control; H, Hydropriming; B, Biopriming and ET, Exoge-
nous Trichoderma.

Full-size DOI: 10.7717/peerj.15644/fig-4

Figure 5 Comparison of the average interaction (cultivar * pretreatment) (A) and (cultivar * cold) (B)
on the dry weight of maize root. Each column and treatment similar letter or letters indicates no signif-
icant difference based on the HSD test. C, Control; H, Hydropriming; B, Biopriming and ET, Exogenous
Trichoderma.

Full-size DOI: 10.7717/peerj.15644/fig-5

cultivar A with H pretreatment and cultivar K with no pretreatment, respectively (Fig. 6A).
Furthermore, cultivar K with ET pretreatment and cultivar K with no pretreatment showed
the highest (0.463 g) and the lowest (0.134 g) leaf dry weight, respectively (Fig. 6B).

Physiological characteristics
Root and leaf catalase activity
A comparison of the mean of the main effects of pretreatment and cultivar on catalase
activity in roots and leaves showed the highest root catalase activity (50.32 mMH2O2/min)
and leaf catalase activity (41.6 mMH2O2/min) was in B treatment among all pretreatments.
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Figure 6 Comparison of the average interaction (cultivar * pretreatment) on leaf length (A) and leaf
dry weight (B) of maize. Each column and treatment similar letter or letters indicates no significant dif-
ference based on the HSD test. C, Control; H, Hydropriming; B, Biopriming and ET, Exogenous Tricho-
derma.

Full-size DOI: 10.7717/peerj.15644/fig-6

Furthermore, more catalase activity was observed in the roots and leaves of cultivar K than
in cultivar A (Table 3).

Root and leaf peroxidase activity
A comparison of the mean of the main effects of cultivar and cold on root peroxidase
activity showed significant results. The cold treatment significantly differed from the
control treatment based on the peroxidase activity (Fig. 7A). Among cultivars, cultivar K
showed higher catalase activity than cultivar A (Fig. 7B). None of the direct, double, and
triple interaction effects were significant for leaf peroxidase activity levels (Table 1).

Leaves polyphenol oxidase activity and proline and soluble proteins
content
Comparing the mean of the main effects of pretreatment and cold on polyphenol oxidase
activity and proline content showed the highest polyphenol oxidase activity (61.88 µg
protein−1min−1) and proline content (6.49 µg/g of fresh leaf weight) in H treatment.
Cold treatment also showed higher polyphenol oxidase activity and proline content than
cold-free conditions (Table 4). Moreover, comparing the mean of the main effect of the
cultivar on soluble protein content showed higher soluble protein content in cultivar A
than in cultivar K (Fig. 8A).

Vegetation indicators
Leaves Chlorophyll a, Chlorophyll b, and carotenoids content
A comparison of the mean interaction of cultivar and pretreatment on Chlorophyll a
content showed higher Chlorophyll content in both optimal and cold conditions in
cultivar A than in cultivar K (Fig. 8B). Our results on the main effects of pretreatment
and cultivar on chlorophyll b and carotenoid content indicated the highest chlorophyll
b (5.41 units) and carotenoids (142.18 units) content in ET treatment as compared with
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Figure 7 Comparison of the mean of the main effect of cold (A) and cultivar (B) onmaize leaf peroxi-
dase activity. Each column and treatment similar letter or letters indicates no significant difference based
on the HSD test.

Full-size DOI: 10.7717/peerj.15644/fig-7

Table 4 Mean comparison of the effects of pretreatment and seed variety onmeasured traits of maize.

Sources
change

FD Polyphenol oxidase
(µg protein−1min−1)

Proline content
(µg/g of fresh leaf weight)

C 49.10b 4.49b

H 61.88a 6.49a

B 53.11ab 5.06b
Pretreatment

ET 58.55a 6.28a

Control 50.31b 5.10b
Cold stress

Cool 61.01a 6.07a

Notes.
Each column and treatment similar letter or letters is indicative no significant difference based on the HSD test.
C, Control; H, Hydropriming; B, Biopriming; ET, Exogenous Trichoderma.

other treatments. Also, cultivar A showed a higher chlorophyll b and carotenoid range than
cultivar K (Table 2).

Fm and Fv/Fm values
Comparison of the mean of cultivar cold interaction on Fv/Fm value in maize leaves
showed the highest Fv/Fm value (0.851%) in cultivar K in cold-free conditions, which was
not significantly different from that of cultivar A in cold conditions. In cold conditions, the
lowest Fv/Fm value (0.693%) was observed in cultivar A (Fig. 8C). Like the establishment
percentage, C P S triple effects also affected the Fm value. The highest (994%) and the
lowest (143.33%) Fm value was observed in the K-ET-Control treatment and K-C-Cool
treatment, respectively (Fig. 8D).

DISCUSSION
Cold stress is abiotic stress that decreases seedling characteristics and a plant’s vegetative
growth. Measurement of the establishment percentage as a significant parameter in both
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cultivars under stress conditions showed a reduction of cold stress conditions compared to
optimal conditions. It is related (Lahlali et al., 2014) that cold stress impairs chlorophylls
and enzymes activity, protein synthesis, and chloroplast membrane function. Under
these conditions, part of plant energy is spent on maintaining the plant in stressful
situations instead of on plant growth, reducing its growth. The decrease in germination
and establishment percentage is probably due to the interruption at the beginning of the
germination process. The interruption seems to be because the seeds need some time
to repair stress-induced damage to the membrane and other cell parts, reactivate the
antioxidant defense system and prevent oxidative stress. Moreover, repairing such cracks
is possible only after water absorption by seeds (Manisha, Rajak & Jat, 2017).

Trichoderma sp. secrets xylanase and cellulase that can directly stimulate the production
of ethylene in the plant for the immune response in the presence of pathogens), antibiotic
production, penetration of pathogenic bacteria and fungi, Elimination of poisoning, and
increased transfer of sugar and amino acids in plant roots cause induction resistance to
stress and biological control of soil diseases (Harman, 2006).

In addition, Trichoderma sp. exhibits many beneficial features such as solubilization
of minerals (Whipps, 2001), reduction of phenolic compounds secreted from the roots,
acceleration of seed germination, increase in plant resistance under stress conditions
(Lorito et al., 2010; Shoresh, Harman & Mastouri, 2010) and production of the beneficial
metabolites like harzianic acid. The increase in growth caused by T. harzianum in the plant
has been due to the increase in the root area, thus increasing its ability to search for food
and, ultimately, access to more food, especially in poor soils (Yedidia et al., 2001).

Similar to our results, Soltani et al. (2009) found that under stress conditions, the
percentage of germination and emergence of resistant seed lots is significantly higher than
those of sensitive lots. Our results showed that maize morphological characteristics are
affected by cold treatment, and biological pretreatment with Trichoderma can improve
these morphological indicators, as was previously reported (Piri et al., 2021). Trichoderma
strains promote germination, root growth, plant growth, and establishment percentage
due to the production of growth regulators such as auxin, cytokinin, and cytokinin-like
molecules such as zeatin gibberellin (Osiewacz, 2002). Alizadeh & Salari (2016) reported
that Trichoderma fungus activates the plant’s defense system and enhances its resistance
to stress by colonizing the plant roots. Also, in a study (Yedidia et al., 2001), T203 isolates
of T. harzianum increased the cucumber shoot length by 45% compared to the control.
Possible mechanisms of Trichoderma-induced increased shoot length can be through
promoting the efficiency of nutrient transport from soil to roots through pathways similar
to mycorrhizal fungi (Jabborova et al., 2022; Saboor et al., 2021; Najafi et al., 2021; Bastami
et al., 2021). Plant peroxidases are significant in plant activities such as interfering with
lignin biosynthesis, auxinmetabolism, scavenging oxygen free radicals, providing resistance
to oxidative stress, wound healing, etc. (Sobkowiak et al., 2004). There are strong reasons
that cold stress in different plants can result in the accumulation of reactive oxygen species
(Li, Zhang & Shan, 2007; Zhang et al., 2019a). The activity of antioxidant enzymes is not
the only plant defense mechanism in reducing oxidative damage; plant biological stimuli
through proline synthesis may also reduce the damage caused by free radicals involved
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Figure 8 (A) Comparison of the mean of the main effect of cultivar on the soluble protein content of
maize leaves. (B) Comparison of the average interaction (cultivar * cold) on the chlorophyll a of maize
leaves. Each column and treatment similar letter or letters indicates no significant difference based on
the HSD test. (C) Comparison of the average interaction (cultivar * cold) on Fvm of maize leaves. Each
column and treatment similar letter or letters is indicates no significant difference based on the HSD
test. (D) Comparison of the mean of three triple interactions (C * P * S) on the Fm of maize. Each col-
umn and treatment similar letter or letters indicates no significant difference based on the HSD test. C,
Control; H, Hydropriming; B, Biopriming and ET, Exogenous Trichoderma.

Full-size DOI: 10.7717/peerj.15644/fig-8

in oxidative stress (Caverzan et al., 2012). The effect of inoculation of mustard root with
Trichoderma under salinity stress has been investigated. In inoculated plants, dry and wet
weight, root length and plant height, oil content, amount ofmicro andmacro elements, and
activity of catalase, superoxide dismutase, and glutathione peroxidase increased (Ahmad et
al., 2015). In another research, the influence of inoculation of tomato root withTrichoderma
has been investigated. The results revealed that the plant inoculated with Trichoderma had
higher minerals and levels of antioxidant activity than the control plant (Singh, Singh &
Singh, 2013).

Chlorophyll synthesis is one of the most sensitive processes to temperature changes
and is used as a quantitative method to measure cold sensitivity in different plant species
(Colom & Vazzana, 2001). Chlorophyll stability has been proposed as a criterion for
stress resistance in resistant cultivars selection. Ghassemi-Golezani et al. (2010) reported a
significant decrease in chlorophyll a and b content of seedling leaves with increasing plant
stress. T. harzianum enhanced cucumber chlorophyll content due to increased cytokinin
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production in leaves, producing chloroplasts with expanded granules and chlorophyll (Lo
& Lin, 2002).

Environmental stresses such as water stress and frost reduce the Fv/Fm ratio to estimate
the maximum quantum yield of photosystem II. For example, when plants are exposed to
frost stress, leaf metabolism is severely disrupted, and its regenerating ability is reduced,
increasing photosystem II vulnerability to light (Hekneby, Antolín & Sánchez-Díaz, 2006).
Therefore, the degree of cold tolerance in plants can be specified by measuring the Fv/Fm
ratio (Baker & Rosenqvist, 2004). Similarly, Cornejo-Ríos et al. (2021) investigated the effect
of tomato seeds pretreatment with Trichoderma on traits such as seedling emergence, leaf
number, and growth rate, reporting that each of these studied traits was enhanced by seed
inoculation due to an increase in chlorophyll content.

Inoculating maize seedlings with Trichoderma atroviride increased total chlorophyll,
carotenoids, relative water content, superoxide dismutase, ascorbate peroxidase, and
catalase activity (Guler et al., 2016). The effect of Trichoderma asperellum on the cucumber
plant has been investigated. The results show that inoculation of cucumber with
Trichoderma sp. allows the plant to produce more salicylic acid, jasmonic acid, and
defense proteins when exposed to stress than non-inoculated plants (Segarra et al., 2007).
Under drought stress, inoculation of tomatoes with Trichoderma improved and reduced
the adverse effects of drought stress on the control plant (without inoculation). In plants
inoculated with Trichoderma, root and shoot growth, chlorophyll, carotenoids, phenols,
proline, soluble proteins, auxin, and gibberellin increased (Mona et al., 2017). Different
species of Trichoderma, in addition to the ability to produce auxin with the ability to
make organic acids such as gluconic acid, citric acid, and fumaric acid, reduce soil pH and
ultimately increase the solubility and absorption of essential micronutrients needed for
plant growth such as iron, manganese, magnesium and phosphates (Vinale et al., 2008).
The effect of growth hormones such as cytokines secreted by Trichoderma sp. on plant
growth has also been identified (Benítez et al., 2004). As the greenhouse study involved
statistically designed experiments, the results of green house study can be replicated at field
level.

CONCLUSION
The development and yield of crops are influenced by the genetic characteristics of the plant
and its growing conditions. Cold stress can limit the growth of tropical plants like maize by
increasing free radicals, producing toxic metabolites, and altering membrane properties.
Trichoderma bio-treatments improved the growth and emergence of maize under stress
conditions by increasing the physiological parameters of these antioxidant enzymes,
which can prevent the formation of toxic compounds by modulating or eliminating free
radicals. The results of the present study showed that cold stress diminished morphological
characteristics and emergence rate in sensitive and cold-resistantmaize cultivars by reducing
physiological traits and seedling emergence. Nevertheless, the application of biological and
non-biological pretreatments was able to moderate the destructive effects of cold stress to
some extent. The exogenous application of Trichoderma sp. significantly promoted maize’s
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growth and yield parameters. Application of Trichoderma sp. can help to mitigate the
damging effects of cold stress while promoting the physiological, morphological and yield
parameters of e maize.
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