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ABSTRACT
Computational drug repositioning approaches are important, as they cost less com-
pared to the traditional drug development processes. This study proposes a novel
network-based drug repositioning approach, which computes similarities between
disease-causing genes and drug-affected genes in a network topology to suggest
candidate drugs with highest similarity scores. This new method aims to identify better
treatment options by integrating systems biology approaches. It uses a protein-protein
interaction network that is the main topology to compute a similarity score between
candidate drugs and disease-causing genes. The disease-causing genes were mapped
on this network structure. Transcriptome profiles of drug candidates were taken from
the LINCS project and mapped individually on the network structure. The similarity
of these two networks was calculated by different network neighborhood metrics,
including Adamic-Adar, PageRank and neighborhood scoring. The proposed approach
identifies the best candidates by choosing the drugs with significant similarity scores.
The method was experimented on melanoma, colorectal, and prostate cancers. Several
candidate drugs were predicted by applying AUC values of 0.6 or higher. Some of the
predictions were approved by clinical phase trials or other in-vivo studies found in
literature. The proposed drug repositioning approach would suggest better treatment
options with integration of functional information between genes and transcriptome
level effects of drug perturbations and diseases.

Subjects Bioinformatics, Genomics, Mathematical Biology, Translational Medicine, Data Science
Keywords Computational drug repositioning, Colorectal cancer, Prostate cancer, Melanoma,
Adamic-Adar, PageRank, Neighborhood scoring

INTRODUCTION
Drug repositioning (DR) aims to find a new use for existing approved drugs in the treatment
of different diseases. In recent decades, DR has been used in the search for novel cancer
treatments that have high mortality rates, and is a popular alternative to the development
of entirely new drugs. Developing a new drug traditionally is a costly process and is quite
time consuming, whereas DR gives higher success rates relatively in shorter times.

There are two general DR approaches: experimental and computational. Duloxetine,
sildenafil, and thalidomide are some of the first experimental examples of DR that have
achieved clinical success (Thor & Katofiasc, 1995; Renaud & Xuereb, 2002; Stephens &
Brynner, 2009; Tansey, 2001). Experimental approaches may be very successful for the
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repositioning of a drug, however, high numbers of FDA-approved drugs and potentital
disease states make it impossible to test all drug-disease combinations with experimental
methods. For this reason, finding the best possible estimates using computational methods
is gaining serious attention. Phenoxybenzamine, sulconasone (topical antifungal), and
vinburnin (vascular expander) are some of the successful treatments identified by
computational methods (Chang et al., 2010; Iskar et al., 2013). The use of computational
drug repositioning (CDR) methods has increase recently, current approaches apply
machine learning (ML) and biological network integration. PREDICT is an ML model
used to find new associations between drugs and diseases (Gottlieb et al., 2011). Firstly,
they collected the data from OMIM, DrugBank, DailyMed, and Drugs.com. After the
construction of drug–drug and disease–disease similarities, these similarities wre exploited
to construct classification features and the subsequent learning of a classification rule. A
0.90 AUC was obtained in their experiments with a 10-fold cross validation and new drugs
were proposed for many diseases listed in OMIM. Other DR approaches have applied ML
models (Aliper et al., 2016; Chyr, Gong & Zhou, 2022; Yang et al., 2022). Although machine
learning is one of the most remarkable methods of recent times, some shortcomings
still exist. For example, an unbalanced data set or small number of samples may lead
over-fitting of machine-learning methods. Different computational drug repositioning
methods have been applied during the COVID-19 pandemic (Yang et al., 2022). A machine
learning DR study integrated knowledge graphs, literature, transcriptome data, and
repurposed the CVL218 compound for the treatment of COVID-19 by providing in-vitro
evidence (Ge et al., 2021). Another machine learning approach evaluates FDA-approved
broad-spectrum antiviral drugs by computing network regulated effects on the COVID-19
disease module (de Siqueira Santos et al., 2022).

Recently, network-based methods have gained more attention (Lotfi Shahreza et al.,
2017). In these approaches, interactions are used to present a physical relationship between
two proteins or a functional similarity between genes within a biological network, which
may represent more than one type of relationship at the same time (Zou et al., 2013; Rider,
Chawla & Emrich, 2013). Network structures represent different biological interactions
that include gene regulatory networks, metabolic networks, protein-protein interaction
(PPI) networks, drug-target/drug-drug/drug-disease/side-effect relationships or disease-
disease relationships (Lotfi Shahreza et al., 2017). Gene expression measurements in the
transcriptome level for drug-treated cells can provide insights about cell’s dynamic
response to the treatment and molecular mechanisms triggered by drugs (Dai & Zhao,
2015). Differential expression profiles of genes vary between disease and control samples.
There are many studies using differential gene expression profiles as fundamental input to
prioritize potential drug targets (Chang, Shoemaker & Wang, 2011; Yeh, Yeh & Soo, 2012;
Isik et al., 2015; Chen et al., 2016b). The Functional Module Connectivity Map (FMCM)
has been designed and used as a DR method in colorectal adenocarcinoma (Chung et al.,
2014). Besides this, there aremany studies that have achieved success using a network-based
approach. Another study known as MNBDR used protein-protein interactions and gene
expression profiles to predict drug candidates for 19 cancer datasets (Chen & Zhou, 2021).
Another study applied three signatures (chemical structure, drug-target association, and
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gene expression of drug treatment) (Lee, Kang & Kim, 2016). Drugs were repositioned
based on the signature similarities of drugs and diseases. The classifiers with structure
or target signatures achieved only 0.62 AUC, however the expression signature reached
up to 0.79 AUC for various cancers. A DR study computed a correlation score between
functional networks of diseases and drug perturbations (Chen et al., 2016a). They reported
repositioned drugs for prostate (0.51−0.69 AUC) and breast (0.51−0.75 AUC) cancers by
using the LINCS drug expression profiles. The NEDNBI model built a gene-disease-drug
network, then applied diffusion process in this network to predict new interactions
between diseases and drugs (Qin et al., 2022). The model was evaluated by a 10-fold cross
validation on several diseases obtained from repoDB and DisGeNet databases. It also
proposed 20 potential treatments for COVID-19. There are also hybrid studies using both
machine-learning and network-based methods (Bahi & Batouche, 2018; Zeng et al., 2019;
Luo et al., 2019; Galan-Vasquez & Perez-Rueda, 2021; Meng et al., 2022; Yan et al., 2022).
Network-based methods are effective for finding new biological modules, however there is
no gold standard to test associations among biological modules.

This study proposes a novel network-based repositioning approach using different
data sources such as functional interaction networks, drug-treated transcriptome profiles,
and disease-causing genes. A functional interaction data between proteins is used as
the main network structure. Network neighborhood metrics are adapted to compute
a similarity score between the disease-causing network and the drug-affected network.
Neighborhood metrics are adapted to utilize differential gene expressions that are obtained
from transcriptome data of drug-treated cells and related patient cohorts. Experimental
results and their computational validations are provided for colorectal cancer, prostate
cancer, and melanoma. The fundamental differences of the proposed DR method include
the integration of gene expression changes into network neighborhood metrics and the
representation of drug-specific expression perturbations as functional network modules.

METHOD
The proposed DR model is based on several network structures that consider the assembly
of disease-causing genes or drug-affected proteins. A functional interaction network
(FIN) was obtained from the literature. Gene expression data for drug-treated cells were
downloaded from the LINCS project. Differentially expressed genes (DEG) were obtained
for each drug-treated cancer cell line. Finally, the DEG set of each drug sample was
mapped on the FIN by using a direct neighbor mapping and drug specific functional
interaction networks (drug-affected protein network; DAPN) were obtained (Figs. 1A and
1C). A different kind of disease-causing gene (DG) was retrieved from the TCGA project
(National Cancer Institute, 2023) using the TCGABiolinks package (Mounir et al., 2019).
After applying statistical analysis to calculate differential mRNA expression for each cohort,
DG was mapped on the FIN using the direct neighbor mapping, this network was named
the disease genes network (DGN) (Figs. 1B and 1D). The similarity between the DAPN and
DGN modules is calculated according to a combined score based on topological closeness
and biological function similarities (Fig. 1E). For this calculation, three network metrics
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Figure 1 The workflow of the proposed model. (A) Mapping of drug affected genes on FIN. (B) Map-
ping of cancer causing genes on FIN. (C) Each drug-affected protein network (DAPN) module is extracted
by considering the direct neighbors of drug-affected proteins. (D) A DGN module is created by consider-
ing direct neighbors of disease-causing genes. (E) Network metrics run on DAPN and DGN to find a sim-
ilarity score by combining AUC scores. (F) The best candidates are listed by ranking the drugs with highest
AUC scores.

Full-size DOI: 10.7717/peerj.15624/fig-1

were applied: Adamic-Adar Coefficient, PageRank, and Neighborhood Scoring. Finally,
a DAPN-DGN similarity score was computed for each metric separately to get an AUC
value of the similarity between the DGN and DAPN modules (Fig. 1E). The similarity
scores (in terms of AUC) were ranked from highest to lowest (Fig. 1F). As a computational
validation, the top-predictions were compared with the known FDA-approved treatments
and clinical studies found for the related cancer.

Functional interaction network
The functional interaction network (FIN) contains the functional interaction data of
proteins and was obtained from the literature (Linghu et al., 2009). The FIN consists of
20,790 unique proteins and 21,952,150 interactions. The biological similarity between
the two proteins was represented as an interaction weight. In order to understand the
interaction between the proteins, the weight distribution was examined. Figure S1 shows
the distribution of weights and expresses biological similarities between proteins, with an
accumulation between 0–0.1. Due to the representing very low biological similarities up to
the 0.1 value, these interactions were excluded from FIN. A pruned FIN was obtained by
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excluding links with less than 0.1 weight value, which contains 15,002 proteins and 334,225
interactions.

Drug treated samples
Transcriptome data for drug-treated cancer cell lines are available in the LINCS project
(Subramanian et al., 2017). This project covers drug-treated experiments for several dosages
and cancer cell lines. The Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al.,
2012) and Chembl databases (Mendez et al., 2019) were used to determine the optimal
dosage for each drug in related cancer types. If an optimal IC50 dosage of a drug was
obtained from these databases, this specified dosage of the drug was used in the proposed
model. Using the selected IC50 doses of drugs, drug-treated cell line data was downloaded
from the LINCS project. The total number of differentially expressed genes for each drug
sample was experimentally decided by applying several z-score thresholds such as |1|, |1.5|
and |2|. Filtering the z-score > |1| represented a more significant number of DEGs for
each drug and drug-affected proteins (DAP) were obtained by filtering the DEG with the
z-score> |1|. The resulting protein list was mapped to the FIN using a direct neighborhood
method. Finally, a drug-affected protein network (DAPN) was individually constructed
for each drug. Details of this network mapping procedure was explained in our previous
work (Cuvitoglu & Isik, 2020). DAPNs was obtained that cover 260, 243, and 220 different
drugs for colorectal cancer (HT-29), prostate cancer (PC3), and melanoma (A375) cell
lines, respectively.

Disease-causing genes
The RNA-sequencing data of colorectal cancer, prostate cancer, and melanoma was used
to identify disease-causing genes for each cancer. For this purpose, the COAD, PRAD, and
SKCM cohorts were downloaded from the TCGA project (National Cancer Institute, 2023)
using the TCGABiolinks (Mounir et al., 2019) package. Primary solid tumor (TP) and
solid tissue normal (NT) samples were extracted for each cancer type. The total number
of TP samples were 285, 497, and 103; the number of NT samples were 41, 52, and 1
for COAD, PRAD, and SKCM cohorts, respectively. A statistical analysis pipeline was
applied to calculate mRNA expression changes for each cohort. The FDR threshold value
of 0.01 and the absolute fold-change (FC) threshold value of 2.0 were used to identify
differentially expressed genes (DEG). The total number of DEG are 1,198, 319, 133 for
colorectal cancer, prostate cancer, and melanoma, respectively. These procedures resulting
in the construction of an individual disease gene network (DGN) for each cancer. The
DGNs were covering 813, 157, and 73 proteins for colorectal cancer, prostate cancer, and
melanoma, respectively.

Network metrics
Three different network metrics were applied to calculate a similarity score based on
topological closeness and biological function similarity between the network of disease
genes (DGN) and the network of drug-affected proteins (DAPN). Disease genes and
drug-affected proteins may not show a high overlap in terms of exact gene matching, since
gene expression changes might occur in close neighborhood or downstream partners.
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Therefore computing a closeness score between these genes in a network topology may
model biochemical responses in a cellular environmentmore realistically. TheAdamic-Adar
coefficient, PageRank, and neighborhood scoring are knownmetrics applied to find central
nodes and to suggest new potential interactions between nodes or to explore vicinity
of nodes in a network. These metrics were adapted to use the interaction weight (as a
biological function) and to integrate z-scores of genes (differential expression) into the
similarity score calculation.

Adamic-Adar
This formula is used to calculate the degrees of common neighbors of two genes (Adamic
& Adar, 2003).

Sxy =
∑

zελx∩λy

1/logkz , (1)

where x and y are different genes, Sxy represents the similarity between the gene x and
y.z is a neighbor node of both x and y.kz is the degree of the node z . To compute this
metric, the ‘similarity’ function in the ‘igraph’ package was applied. In this function, the
method parameter was set to ‘invlogweighted’ to compute the Adamic-Adar coefficient.
At this stage, only the similarity between two genes is obtained, therefore a matrix should
be formed when it runs for all gene pairs. The sum of all of the values of Sxy was used to
generate a similarity score for a gene x . Equation (2) shows that the similarity score (Sx) of
the gene x is expressed by the sum of its similarities with all other y genes in the network.

Sx =
∑
yεN

Sxy , (2)

where N represents all genes in the network. Sxy represents the similarity between x and y
genes; y represents other genes in the network. After obtaining the Adamic-Adar coefficient
(∀Sx) on a gene basis, new formulations (AA1 andAA2) were created to integrate differential
expression of genes into the similarity calculation (Eqs. (3) and 4).

AA1(x)=


Sx ∗0.5‖z(drug ,x)+z(disease,x)‖, if x ε (DGN & DAPN)
Sx ∗0.5‖z(drug ,x)‖, if x ε (DAPN)
Sx ∗0.5‖z(disease,x)‖, if x ε (DGN)

(3)

AA2(x)=


Sx/e‖z(drug ,x)+z(disease,x)‖, if x ε (DGN & DAPN)
Sx/e‖z(drug ,x)‖, if x ε (DAPN)
Sx/e‖z(disease,x)‖, if x ε (DGN)

(4)

In these equations, z(drug ,x) represents the z-score (differential expression) of the
gene x observed after the drug administration; z(disease,x) represents the z-score of the
gene x observed in disease condition. ‖z(drug ,x)+z(disease,x)‖ gives the absolute value
of the sum of these differential gene expression values. The main purpose of this special
formulation is to increase the value of Adamic-Adar coefficient (Sx). When the z-scores of
a gene for a drug and a disease would be in a reverse direction (e.g., one is up-regulated
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and the other is down-regulated), their sum would be close to 0, which is a desirable
effect of drug-treatment in the cell (Chen et al., 2017). Thus, if the expression values of
common genes in DGN and DAPN are damping each other in terms of RNA-sequencing
measurements, this will lead to the ranking of a related gene in higher levels; in other cases
it will lower the ranking of the same gene. If the gene of interest is found in only one of
the networks (either in DGN or DAPN, i.e., it is not a common gene), the Adamic-Adar
coefficient value and the rank of this gene decrease, indicating that this would not be an
important gene in terms of the similarity score.

PageRank
The PageRank algorithm (Page et al., 1999) is an adaptation of random walk and it has
been widely used for network centrality analysis. The Page_rank function in the igraph
package was used, the performance was tested with different damping parameters. Several
trials were designed to fix the damping parameter. Finally, it was assigned to 0.75 which
was the best performing value. When the specified Page_rank function was run with the
damping factor value of 0.75, the ranking value obtained for each gene was expressed as
PR(x). Equations (5) and 6 show that the integration of differential expression values of
genes in the disease and drug-affected networks into the initial PR(x) value, which was
applied by the same technique as explained in the Adamic-Adar coefficient.

PR1(x)=


PR(x)∗0.5‖z(drug ,x)+z(disease,x)‖, if x ε (DGN & DAPN)
PR(x)∗0.5‖z(drug ,x)‖, if x ε (DAPN)
PR(x)∗0.5‖z(disease,x)‖, if x ε (DGN)

(5)

PR2(x)=


PR(x)/e‖z(drug ,x)+z(disease,x)‖, if x ε (DGN & DAPN)
PR(x)/e‖z(drug ,x)‖, if x ε (DAPN)
PR(x)/e‖z(disease,x)‖, if x ε (DGN)

(6)

Neighborhood scoring
This metric prioritizes the distribution of differentially expressed genes within the network
structure, it considers differential expression value of each gene in terms of fold-change
value (Nitsch et al., 2010). The neighborhood scoring of a gene i is:

Xi=α.xi+ (1−α)∗ (
∑

j 6=i,j=wij>ε

xj)/N (7)

where xi is the z-score of the gene i; xj is the z-score of the neighbors of i; N indicates the
total number of neighbors of i; α is a fixed value between 0-1, which indicates a threshold
value for interaction between i and its neighbors.wij denotes the interaction weight between
genes i and j. The value ε indicates the selected threshold value for the wij weight. The FIN
network was updated by removing edges with link weights less than 0.1. For this reason,
the ε threshold value is accepted as 0.1 in here. Different α values were tested and set to
0.7.
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Validation and AUC calculation
Each metric applying different biological hypotheses calculates a score/rank value for each
protein in the network; the network can be the drug-affected protein network (DAPN)
or the disease gene network (DGN). All proteins in the DAPN were ordered by high to
low scores. This sorted list was examined separately for each drug. Proteins were checked
whether their rank was above and below a threshold value (e.g., top100 proteins) which
were a member of the DGN module. The total number of such proteins, which were
ranked above the topp and were a member of the DGN, were recorded as true positive
(TP) proteins. True negatives (TN) were the proteins that had a lower rank than topp and
did not contain genes in the DGN. False positive (FP) proteins were listed higher than the
topp and did not contain genes in the DGN. False negatives (FN) were listed lower than
the topp and contained genes in the DGN. For each drug, TP, TN, FP, and FN values were
determined in the sorted score list according to a threshold value. These values are then
used to complete a single confusion matrix. The confusion matrix refers to a single point in
the receiver operating characteristic (ROC) curve when True Positive rate (TPR) and False
Positive rate (FPR) were computed. Total of 100 different topp threshold values (e.g., 1%,
2%, . . . ,100% of total number of genes available in each DAPN) were applied to obtain 100
individual measurements in the ROC curve. Then an area under the ROC curve (AUC)
score was computed for each drug. This score was called AUCDAPN when DAPN was used
in the metrics and DGN was used as the seed (reference set) for creating the confusion
matrix. This method was implemented for the metrics run on DGN, and DAPNs became
the seed to compute AUCDGN . Finally, individual AUCDAPN and AUCDGN scores were
integrated to compute a combined AUC score as given in Eq. (8).

Combined.AUC =
√
AUCDAPN ∗AUCDGN . (8)

For each drug used to treat a cancer cell line, a Combined.AUC score was obtained, the
Combined.AUC scores were sorted from the highest to lowest value for each network
metric separately. As a result of the adaptations applied on the Adamic-Adar coefficient
and PageRank formulas, the ranking of genes in the AUC calculations should be in a
decreasing order. However, in the neighborhood scoring metric, a gene may be neutralized
by neighboring genes according to their z-score expression values. For this reason, scores
of genes better represent the biological hypothesis when they are ordered from the smallest
to largest in the AUC calculations. Unlike other metrics, the ranking of genes as an
increasing order became more accurate when calculating AUCDGN and AUCDAPN for the
neighborhood scoring metric. The other evaluations metrics (F1.score, precision, recall)
were also computed with the same adaptation applied for the Combined.AUC score.

Other DR methods
In order to compare the proposed method with other DR methods, the MNBDR approach
(Chen & Zhou, 2021), SAveRUNNER (Fiscon & Paci, 2021) and OCTAD (Zeng et al., 2021)
were used. MNBDR identifies dense modules in a protein protein interaction network
and selects significant modules based on a high number of cross-talks among the dense
modules. Later, the PageRank algorithm chooses the important modules of a disease.
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Gene expression data of drug treated samples were integrated into significant modules
to calculate a DR score for a drug-disease pair. To make a fair evaluation, the original
FIN and drug-treated samples of three cancers were used in this experiment. Therefore,
MNBDR was run on the same interaction network (FIN) and gene expression data of the
drug-targeted cells used in this study. The second DR approach is a network-based tool
named SAveRUNNER. It prioritizes potential drugs that are in close neighborhood of
disease genes in the network. It also uses a clustering method to update network similarity.
The drug targets used to run SAveRUNNER in the current study were retrieved from
DrugBank (Wishart et al., 2018). The remaining drugs that did not have target proteins
were searched over the STITCH database (Szklarczyk et al., 2015). The human interactome
used in SAveRUNNER was replaced by FIN. The third DR approach was OCTAD, which
proposes drugs to target cancer patient groups based on their gene expression profiles. It
does not apply a network-based analysis but it uses the drug-treated cancer cell lines data
of the LINCS project (Subramanian et al., 2017), similar to the current study. OCTAD
was run on its web tool by selecting the colorectal cancer, prostate cancer, and melanoma
cohorts of TCGA. In order to select significant results, the threshold for the sRGES score of
OCTAD was set to −0.25 or smaller values, which was the suggested cutoff in its manual.

RESULTS AND DISCUSSION
The experimental results of the new DR method are presented in this section to suggest
new treatment candidates for three cancer types.

Colorectal cancer
After applying the optimal dosage on drug-treated colorectal cancer samples, 260 drugs
were obtained as repositioning candidates. The combined AUC values of the candidate
drugs were computed after computing all network metrics on the DAPNs and the DGN
of colorectal cancer. There were eight and 12 drugs listed by Adamic-Adar-1 and Adamic-
Adar-2, respectively (Table 1) when the significance threshold was set to 0.6 combined
AUC value. Based on the results of Adamic-Adar-2, some of drugs such as ‘‘PHA-793887’’,
‘‘gefitinib’’ and ‘‘nelarabine’’, had better combined AUC values (with an increase of 0.01).
When the significance threshold was set to 0.6 combined AUC value, there are one and
six drugs reported by PageRank-1 and PageRank-2, respectively (Table 2). Based on these
results, PageRank-2 had more significant results than PageRank-1. Table 3 shows the
results of neighborhood scoring metric, returned 17 drugs above the 0.6 combined AUC
value. The newmetric versions (Adamic-Adar-2 and PageRank-2) of metrics have achieved
better results than their initial versions (Adamic-Adar-1 and PageRank-1). On the other
hand, neighborhood scoring predicted the highest number of drugs above the 0.6 AUC
threshold. The other evaluation measures (F1-score, precision, recall) for candidate drugs
are given in Table S9 for the three network metrics. When the optimal IC50 dosages of
the top predicted drugs were analyzed, the IC50 values were almost equally distributed
between five optimal IC50 dosages (0.04, 0.12, 0.37, 1.11, 3.33, and 10 µM) for each metric
(Figs. S2A, S2B, S2C).
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Table 1 DR candidates suggested by the Adamic-Adar-1 and Adamic-Adar-2 metrics for colorectal
cancer.

Adamic-Adar-1 Adamic-Adar-2

Rank Drug Combined.AUC Drug Combined.AUC

1 PHA-793887 0.63 PHA-793887 0.64
2 gefitinib 0.62 gefitinib 0.63
3 BX-795 0.61 nelarabine 0.62
4 pterostilbene 0.61 pterostilbene 0.62
5 nelarabine 0.61 BX-795 0.61
6 olaparib 0.61 Y-39983 0.61
7 lapatinib 0.60 gefitinib 0.61
8 enoxolone 0.60 enoxolone 0.61
9 alisertib 0.61
10 AT-7519 0.60
11 ZM-447439 0.60
12 KIN001-244 0.60

Table 2 DR candidates suggested by the Page Rank-1 and Page Rank-2 metrics for colorectal cancer.

PageRank-1 PageRank-2

Rank Drug Combined.AUC Drug Combined.AUC

1 AT-7519 0.60 AT-7519 0.61
2 dabrafenib 0.60
3 cytarabine 0.60
4 alectinib 0.60
5 dasatinib 0.60
6 Y-39983 0.60

We systematically searched the ClinicalTrials.gov (http://clinicaltrials.gov) website to
explore phase trials that run over the predictions of new DR method. There were some
clinical phase trials for twodrugs (gefitinib, alisertib)predicted by theAdamic-Adar-2metric
and three drugs (dabrafenib, alectinib, dasatinib) suggested by the Page Rank-2 metric.
Seven drugs (quercetin, sorafenib, tozasertib, taselisib, venetoclax, gemcitabine, pazopanib)
predicted by neighborhood scoring had reported clinical trials on colorectal cancer. Some of
these predictions of new DR method also showed promising clinical results (these include:
dabrafenib: NCT04294160, NCT04294160, (Al-Taie et al., 2021); alectinib: NCT04644315;
dasatinib: NCT00920868 (Strickler et al., 2013; Lucchetta & Pellegrini, 2021; Al-Taie et al.,
2021; Scott et al., 2017); alisertib: (Manfredi et al., 2011; Cervantes et al., 2012; Stathias et al.,
2018); pazobanip: NCT00387387 (Brady et al., 2013); gefitinib: NCT00026364 (Meyerhardt
et al., 2007; Wolpin et al., 2006), NCT00025142 (Fisher et al., 2008; Wang et al., 2019; Al-
Taie et al., 2021); sorafenib: NCT00826540 (Xie et al., 2020; Lucchetta & Pellegrini, 2021).
These compounds have been suggested in several studies and clinical trials as new treatment
alternatives for colorectal cancer.
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Table 3 DR candidates suggested by the neighborhood scoring metric for colorectal cancer.

Neighborhood scoring

Rank Drug Combined.AUC

1 GSK-1904529a 0.66
2 KIN001-266 0.65
3 pilaralisib 0.62
4 quercetin 0.62
5 leflunomide 0.62
6 LDN-193189 0.62
7 sorafenib 0.61
8 tozasertib 0.61
9 ZSTK-474 0.61
10 amsacrine 0.61
11 taselisib 0.60
12 venetoclax 0.60
13 gemcitabine 0.60
14 apabetalone 0.60
15 quizartinib 0.60
16 pazopanib 0.60
17 SB-590885 0.60

Prostate cancer
The DR method was run on 243 different drugs for prostate cancer. When the combined
AUC value was set to 0.6, the Adamic-Adar-2 metric recommended twice as many drugs
than Adamic-Adar-1 (Table 4). Adamic-Adar-2 estimated 13 drugs, while Adamic-Adar-1
found six drugs. Tamoxifen was reported to be the best repurposed candidate with a 0.77
AUC by the Adamic-Adar-1 metric, however, it had an even higher score (0.81 AUC)
by the Adamic-Adar-2 metric. There were 10 and 14 drugs reported by PageRank-1 and
PageRank-2, respectively (Table 5). The AUC values increased by 0.02 on a drug basis
in the PageRank-2 metric. PageRank metrics also reported an FDA-approved treatment
(rucaparib) for prostate cancer. Therefore, random-walk based metrics were shown to
propose already-approved treatments and can indicate the reliability of suggested drugs as
new treatment candidates. For prostate cancer results, the new metric versions (Adamic-
Adar-2 and PageRank-2) gave more promising results than the initial testing methods. The
neighborhood scoring metric estimated 14 drugs to be on the same threshold, which was
similar to the number of drugs predicted by PageRank-2. Docetaxel, which is one of the
FDA approved drugs for prostate cancer, is ranked between the results of neighborhood
scoring (Table 6). The other evaluation measures (F1-score, precision, recall) for candidate
drugs are given in Table S10 for the three network metrics. The optimal IC50 dosages of
the top predicted drugs were almost equally distributed between five optimal IC50 dosages
for each metric (Figs. S2D, S2E, S2F).

A search for clinical trials on prostate cancer revealed that five drugs (tamoxifen,
NVP-BEZ235, tretinoin, vorinostat, palbociclib) predicted by the Adamic-Adar-2 metric
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Table 4 DR candidates suggested by the Adamic-Adar-1 and Adamic-Adar-2 metrics for prostate can-
cer.

Adamic-Adar-1 Adamic-Adar-2

Rank Drug Combined.AUC Drug Combined.AUC

1 tamoxifen 0.77 tamoxifen 0.81
2 phenformin 0.71 phenformin 0.70
3 naftopidil 0.66 naftopidil 0.63
4 GSK-1904529A 0.61 GSK-1904529A 0.63
5 QL-XII-47 0.61 QL-XII-47 0.62
6 NVP-TAE226 0.60 NVP-BEZ235 0.62
7 tretinoin 0.61
8 vorinostat 0.61
9 NVP-TAE226 0.61
10 AZD-7762 0.60
11 ACY-1215 0.60
12 JW-7-24-1 0.60
13 palbociclib 0.60

Table 5 DR candidates suggested by the Page Rank-1 and Page Rank-2 metrics for prostate cancer
(FDA-approved drugs are shown in bold).

PageRank-1 PageRank-2

Rank Drug Combined AUC Drug Combined.AUC

1 GSK-1904529A 0.69 GSK-1904529A 0.70
2 ACY-1215 0.65 ACY-1215 0.68
3 NVP-BEZ235 0.62 NVP-BEZ235 0.64
4 GSK-690693 0.62 GSK-690693 0.64
5 MG-132 0.61 rucaparib 0.63
6 AGI-5198 0.61 linsitinib 0.62
7 linsitinib 0.61 MG-132 0.62
8 TAK-715 0.60 AGI-5198 0.62
9 rucaparib 0.60 serdemetan 0.62
10 NVP-BEZ235 0.60 TAK-715 0.62
11 NVP-BEZ235 0.61
12 entinostat 0.60
13 AZD-6482 0.60
14 voxtalisib 0.60

and three drugs (NVP-BEZ235, linsitinib, entinostat) suggested by Page Rank-2 have been
reported in different clinical trials. The neighborhood scoring metric reported four drugs
(irinotecan, gemcitabine, etoposide, linsitinib) that have been observed in clinical trials
as well. Several predictions of the proposed model have promising validations in both
computational studies and clinical trials as new therapy alternatives for prostate cancer
(these include: etinostat: (Turanli & Arga, 2019); etoposide: NCT02861573, NCT03582475
(Luo et al., 2021); gemcitabine: NCT00014456 (Dragnev et al., 2010; Bibby et al., 2021);
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Table 6 DR candidates suggested by the neighborhood scoring metric for prostate cancer (FDA-
approved drugs are shown in bold).

Neighborhood scoring

Rank Drug Combined.AUC

1 phenformin 0.69
2 docetaxel 0.65
3 QL-XII-47 0.64
4 2126458 0.64
5 NU-7441 0.63
6 irinotecan 0.63
7 1904529A 0.63
8 gemcitabine 0.62
9 ciprofloxacin 0.62
10 PHA-793887 0.61
11 etoposide 0.61
12 UNC-1215 0.61
13 OSI-027 0.60
14 linsitinib 0.60

irinotecan: (Wissing et al., 2013); palbociclib: NCT04606446, NCT03878524 (Wang et al.,
2019); tretinoin: NCT03878524; vorinostat: NCT03878524 (Turanli & Arga, 2019).

Melanoma
The DR method tested 220 different drugs for melanoma. When the significance threshold
was set to 0.6, there were 66 and 72 drugs suggested by Adamic-Adar-1 and Adamic-Adar-2,
respectively. Due to difficulty of analyzing such a long candidate list, the combined AUC
threshold was set to 0.7. Ultimately, 12 and 13 drugs were reported by Adamic-Adar-1
and Adamic-Adar-2, respectively (Table 7). Although the two metrics suggested an almost
equal number of candidates, Adamic-Adar-2 had slightly higher AUC values. Additionally,
Adamic-Adar-2 predicted one FDA-approved drug (trametinib) for melanoma treatment
with a 0.72 AUC value. When the combined AUC value was set to 0.7, it resulted in five
and seven drugs proposed by PageRank-1 and PageRank-2, respectively (Table 8). The
PageRank-2 metric achieved slightly higher AUC values than the PageRank-1, which was
similar to results of other cancers. Contrary to other cancer types, neighborhood scoring
metric could not report as many drugs as other metrics for melanoma (Table 9); ultimately,
it only reported four drugs. The optimal IC50 dosages of the top predictions were almost
equally distributed between five optimal IC50 dosages for each metric (Figs. S2G, S2H,
S2I). The other evaluation measures (F1-score, precision, recall) for candidate drugs are
given in Table S11 for three network metrics.

There are several phase trials for three drugs (dasatinib, navitoclax, vorinostat) listed by
Adamic-Adar-2 (Table 7), four drugs (vorinostat, navitoclax, dinaciclib, MK-1775) listed
by PageRank-2 (Table 8) and all the drugs (paclitaxel, imexon, sulforaphane, vorinostat)
predicted by neighborhood scoring (Table 9) for the treatment of melanoma. Some of
these predictions suggested by the new DR method have been used in several studies and
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Table 7 DR candidates suggested by the Adamic-Adar-1 and Adamic-Adar-2 metrics for melanoma
(FDA approved drugs shown in bold).

Adamic-Adar-1 Adamic-Adar-2

Rank Drug Combined.AUC Drug Combined.AUC

1 dasatinib 0.83 dasatinib 0.86
2 sulforaphane 0.81 sulforaphane 0.77
3 avagacestat 0.80 avagacestat 0.77
4 tivozanib 0.74 tivozanib 0.75
5 ZM-447439 0.74 pevonedistat 0.75
6 elesclomol 0.73 ZM-447439 0.74
7 pevonedistat 0.73 betulinic-acid 0.74
8 betulinic-acid 0.72 elesclomol 0.72
9 vorinostat 0.71 navitoclax 0.72
10 OSI-930 0.70 trametinib 0.72
11 navitoclax 0.70 vorinostat 0.71
12 cytarabine 0.70 navitoclax 0.70
13 cediranib 0.70

Table 8 DR candidates suggested by the Page Rank-1 and Page Rank-2 metrics for melanoma.

PageRank-1 PageRank-2

Rank Drug Combined.AUC Drug Combined.AUC

1 vorinostat 0.75 vorinostat 0.75
2 cytarabine 0.73 cytarabine 0.74
3 MK-1775 0.71 MK-1775 0.73
4 sulforaphane 0.70 navitoclax 0.71
5 navitoclax 0.70 tivozanib 0.70
6 amonafide 0.70
7 dinaciclib 0.70

Table 9 DR candidates suggested by the neighborhood scoring metric for melanoma.

Neighborhood scoring

Rank Drug Combined.AUC

1 paclitaxel 0.78
2 imexon 0.75
3 sulforaphane 0.74
4 vorinostat 0.70

clinical trials in the search for new treatment alternatives for melanoma(these include:
vorinostat: NCT00121225 (Haas et al., 2014; Choi et al., 2022; Wang et al., 2018; Nihal,
Roelke & Wood, 2010); MK-1775: (Margue et al., 2019); imexon: NCT00327600 (Weber et
al., 2010); paclitaxel: NCT01107665 (Fruehauf et al., 2018).
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Comparison with other DR methods
The proposed method was compared with three DR models: MNBDR (Chen & Zhou,
2021), SAveRUNNER (Fiscon & Paci, 2021) and OCTAD (Zeng et al., 2021).

MNBDR
The results of this study were first compared with MNBDR which also used protein-
protein interactions and gene expression profiles (Chen & Zhou, 2021). We used the top
10% predictions of both DR approaches to make a fair evaluation.

The top 10% of the predictions resulted in 26 candidate drugs for the treatment of colon
cancer. PageRank-2 identified four common drugs (dasatinib, dinaciclib, PF-562271, BMS-
345541) while Adamic-Adar-2 (PF-562271, BMS-345541, dinaciclib) and neighborhood
scoring (Ro-4987655, dasatinib, alpelisib) showed three mutual drugs using the MNBDR
method (Table S1).

A total of 24 drugs in the ranked lists for prostate cancer were compared. PageRank-2
had five mutual drugs (NVP-BEZ235, MG-132, voxtalisib, YM-155, mitoxantrone) with
MNBDR, while Adamic-Adar-2 had four common drugs (NVP-BEZ235, PHA-793887,
mitoxantrone, JNK-9L). Although Adamic-Adar-2 and PageRank-2 identified two FDA-
approved drugs (rucaparib, mitoxantrone) for prostate cancer, MNBDR suggested only one
drug (mitoxantrone) in the top-ranked predictions. Neighborhood scoring predicted one
FDA-approved drug (docetaxel) and two mutual drugs (irinotecan, PHA-793887) using
MNBDR (Table S2).

PageRank-2 predicted six mutual drugs (vorinostat, amonafide, dinaciclib, alisertib,
etoposide, SN-38) with MNBDR in the top-ranked 22 drugs in melanoma. Neighborhood
scoring and Adamic-Adar-2 had five mutual drugs (paclitaxel, vorinostat, PF-562271,
SN-38, podophyllotoxin) and single mutual drug (vorinostat ) using MNBDR, respectively
(Table S3).

SAveRUNNER
SAveRUNNER was the second method used to compare the results of this study (Fiscon &
Paci, 2021). This method uses human interactome and disease genes.

For colorectal cancer results, the predictions of this method returned 32 candidate drugs.
Out of these predictions, four of them were mutual drugs between two studies. Adamic-
Adar-2 identified three common drugs (enoxolone, gefitinib, sorafenib); one common drug
was listed by PageRank-2 (dabrafenib) and neighborhood scoring (sorafenib) (Table S4).

A total of 28 drugs were predicted by SAveRUNNER for prostate cancer. Five drugs
were mutually predicted by both methods. Adamic-Adar-2 identified two common drugs
(naftopidil, tamoxifen) and neighborhood scoring listed three common drugs (ciprofloxacin,
etoposide, irinotecan). PageRank-2 did not identify any common drug with SAveRUNNER
(Table S5).

The repositioned drugs for melanoma were very limited, only one drug (avl-292)
was listed by SAveRUNNER (Table S6). The fewer number of disease genes covered in
melanoma may have resulted in such a short list prediction. There is no drug to treat
melanoma that was mutually predicted by the current method and SAveRUNNER.
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OCTAD
The third tool used to compare the results of this study was OCTAD (Zeng et al., 2021),
which retrieves repositioned drugs based on a comparison of expression profiles of disease
genes and drugs; it does not integrate any network data in computations.

This method retrieved 214 candidate drugs with significant sRGES scores (≤−0.25)
for colorectal cancer. Six of these were mutual drugs between two studies. Neighborhood
scoring identified three common drugs (amsacrine, gemcitabine, ZSTK-474); two common
drugs (dabrafenib, dasatinib) were listed by PageRank-2 and one mutual drug (PHA-
793887) was returned by Adamic-Adar-2 (Table S7).

A total of 471 repositioned drugs were returned by OCTAD with significant scores for
prostate cancer. Fourteen drugs were mutual between two studies. Adamic-Adar-2 listed
six common drugs (mitoxantrone, NVP-BEZ235, palbociclib, PHA-793887, tamoxifen,
vorinostat ); seven common drugs (entinostat, MG-132, mitoxantrone, NVP-BEZ235,
palbociclib, serdemetan, YM-155) were returned by PageRank-2 and five mutual drugs
(etoposide, gemcitabine, irinotecan, OSI-027, PHA-793887) were listed by neighborhood
scoring (Table S8).

There were 636 candidate drugs with significant scores formelanoma. Eight of these were
mutual drugs between two studies. PageRank-2 identified six common drugs (amonafide,
cytarabine, etoposide, pevonedistat, SN-38, vorinostat ); four common drugs (cytarabine,
elesclomol, pevonedistat, vorinostat ) were listed by Adamic-Adar-2, and four common
drugs (cytarabine, PF-562271, SN-38, vorinostat ) were returned by neighborhood scoring
(Table S12).

These results revealed that each metric proposed in this study may list different drugs
as potential candidates. When four DR methods were considered, several drugs were
mutually predicted at least by three methods (Table 10). Dabrafenib and dasatinib were the
mutual drugs suggested for colorectal cancer. Etoposide, irinotecan, NVP-BEZ235, MG-132,
mitoxantrone, PHA-793887, tamoxifen, and YM-155 were other common drugs proposed
for prostate cancer. Amonafide, etoposide, PF-562271, SN-38 and vorinostat were mutual
drugs suggested for melanoma. Six drugs (dinaciclib, etoposide, gemcitabine, PHA-793887,
PF-562271, vorinostat ) were concurrently proposed as candidate treatments of two cancers.
Additionally, almost half of these drugs were also considered in clinical trials for colorectal
cancer, prostate cancer, and melanoma, as was shown in previous sections. Hence, these
repositioned candidates are quite promising, further experiments should be conducted in
a laboratory environment.

CONCLUSION
CDR is a complex procedure and it should consider the chemical and metabolic effects
of drugs and measurements of diseases at transcriptome level. CDR cannot make a final
treatment decision, however it can suggest the prospective drug-disease combinations that
have higher potentials for treatment. Then, these predictions should be evaluated by wet
laboratory experiments in cellular levels and animal models.

In this study, drug-treated transcriptome data from the LINCS project were used for
three cancer types (colorectal, prostate, melanoma) individually. RNA-sequencing data for
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Table 10 Mutually suggested candidates by four DRmethods (drugs predicted by three or more methods are shown in bold).

Cancer type FDA-Approved Drug name Current study MNBDR SAveRUNNER OCTAD

Colon Cancer alpelisib NS X
Colon Cancer amsacrine NS X
Colon Cancer BMS-345541 AA, PR X
Colon Cancer dabrafenib PR X X
Colon Cancer dasatinib PR, NS X X
Colon Cancer dinaciclib AA, PR X
Colon Cancer enoxolone AA X
Colon Cancer gefitinib AA X
Colon Cancer gemcitabine NS X
Colon Cancer PF-562271 AA, PR X
Colon Cancer PHA-793887 AA X
Colon Cancer RO-4987655 NS X
Colon Cancer sorafenib NS X
Colon Cancer ZSTK-474 NS X
Prostate Cancer ciprofloxacin NS X
Prostate Cancer FDA-Approved docetaxel NS
Prostate Cancer entinostat PR X
Prostate Cancer etoposide NS X X
Prostate Cancer gemcitabine NS X
Prostate Cancer irinotecan NS X X X
Prostate Cancer JNK-9L AA X
Prostate Cancer MG-132 PR X X
Prostate Cancer FDA-Approved mitoxantrone AA, PR X X
Prostate Cancer naftopidil AA X
Prostate Cancer NVP-BEZ235 AA, PR X X
Prostate Cancer OSI-027 NS X
Prostate Cancer palbociclib AA X
Prostate Cancer PHA-793887 AA, NS X X
Prostate Cancer serdemetan PR X
Prostate Cancer tamoxifen AA X X
Prostate Cancer vorinostat AA X
Prostate Cancer voxtalisib PR X
Prostate Cancer YM-155 PR X X
Melanoma amonafide PR X X
Melanoma alisertib PR X
Melanoma cytarabine AA, PR, NS X
Melanoma dinaciclib PR X
Melanoma elesclomol AA X
Melanoma etoposide PR X X
Melanoma paclitaxel NS X
Melanoma pevonedistat AA, PR X

(continued on next page)
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Table 10 (continued)

Cancer type FDA-Approved Drug name Current study MNBDR SAveRUNNER OCTAD

Melanoma PF-562271 NS X X
Melanoma podophyllotoxin NS X
Melanoma SN-38 PR, NS X X
Melanoma FDA-Approved trametinib AA X
Melanoma vorinostat AA, PR, NS X X

Notes.
AA, Adamic-Adar; NS, Neighborhood Scoring; PR, PageRank.

these cancer types were obtained from the TCGA project. To the best of our knowledge,
the construction of individual drug-affected network modules is a novel contribution
for CDR. The application of network neighborhood metrics to compute a similarity
between networks is another unique adaptation in this domain. The specific z-score
adaptations integrated into these metrics made significant improvements in predictions of
these metrics. All metrics predicted several drugs above the determined AUC threshold.
Some of the suggested drugs were approved by either clinical phase trials or other in-
vivo/animal studies. Based on these contributions, the proposed CDR method has yielded
promising results for different cancer types. As a summary, this novel CDR method should
be considered alongside more traditional computational treatment recommendation
approaches.

This study demonstrates that the proposed method can be applied for different size
of data sets. In the future, a new functional interaction network may be adapted for
different purposes. Different weight attributes may be integrated on metrics rather than
gene expression values or new network analysis metrics might be easily tested on this
process. The proposed method is open for enrichment in terms of different adaptations.
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