

Large-sized fossil hamsters from the late middle Pleistocene locality 2 of Shanyangzhai, China, and discussion on the validity of *Cricetinus* and *C. varians* (Rodentia: Cricetidae)

Kun Xie 1, Yunxiang Zhang Corresp., 1, Yongxiang Li 1

Corresponding Author: Yunxiang Zhang Email address: yxzhang@nwu.edu.cn

A detailed morphological description and comparative study were carried out on hundreds of large-sized hamster remains collected from the late Middle Pleistocene Locality 2 of Shanyangzhai (Syz 2), Hebei Province, China. The comparisons show that these fossils are highly similar to the extant Tscherskia triton in size and morphology (such as degree of alternating of the opposite main cusps on M1-3 very small, M3 with axioloph, the mesolophids of m1-2 present but rarely reaching the lingual margin of teeth), although slight differences between the two are still exist, so all of these fossils have been referred to a chronosubspecies of this extant species—T. triton varians. The skull and molar morphology of C. varians and T. triton were compared in detail to clarify the long-disputed issue of the validity of Cricetinus Zdansky, 1928 and C. varians Zdansky, 1928. The results showed that the differences between the two are very slight, therefore the *C. varians* can only be treated as a chronosubspecies of *T. triton*, i.e., *T. triton varians*, and the *Cricetinus* should be regarded as junior synonym of Tscherskia. Meanwhile, we tentatively suggest that among the seven species once referred to Cricetinus in Eurasia, C. europaeus, C. gritzai, C. janossyi and C. koufosi should be transferred to Tscherskia, while C. beremendensis should be transferred to Allocricetus, and C. mesolophidos to Neocricetodon. On present evidence, Tscherskia may have originated from Neocricetodon during the Early Pliocene in Europe and then spread to Asia, and T. triton is its only extant representative which now only inhabits in East Asia.

¹ Department of Geology, Northwest University, Xi'an, Shaanxi Province, China

1 Large-sized fossil hamsters from the late Middle 2 Pleistocene locality 2 of Shanyangzhai, China, and discussion on the validity of Cricetinus and C. varians 4 (Rodentia: Cricetidae) 5 6 7 8 Kun Xie, Yunxiang Zhang, Yongxiang Li 9 10 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 11 229 North Taibai Road, Xi'an, 710069, China 12 13 Corresponding Author: 14 Yunxiang Zhang Email address: yxzhang@nwu.edu.cn 15 16 Abstract 17 18 A detailed morphological description and comparative study were carried out on hundreds of large-sized hamster remains collected from the late Middle Pleistocene Locality 2 of 19 Shanyangzhai (Syz 2), Hebei Province, China. The comparisons show that these fossils are 20 highly similar to the extant *Tscherskia triton* in size and morphology (such as degree of 21 22 alternating of the opposite main cusps on M1-3 very small, M3 with axioloph, the mesolophids 23 of m1-2 present but rarely reaching the lingual margin of teeth), although slight differences between the two are still exist, so all of these fossils have been referred to a chronosubspecies of 24 25 this extant species—*T. triton varians*. The skull and molar morphology of *C. varians* and *T.* 26 triton were compared in detail to clarify the long-disputed issue of the validity of Cricetinus Zdansky, 1928 and C. varians Zdansky, 1928. The results showed that the differences between 27 28 the two are very slight, therefore the *C. varians* can only be treated as a chronosubspecies of *T.* 29 triton, i.e., T. triton varians, and the Cricetinus should be regarded as junior synonym of 30 Tscherskia. Meanwhile, we tentatively suggest that among the seven species once referred to 31 Cricetinus in Eurasia, C. europaeus, C. gritzai, C. janossyi and C. koufosi should be transferred 32 to Tscherskia, while C. beremendensis should be transferred to Allocricetus, and C. mesolophidos to Neocricetodon. On present evidence, Tscherskia may have originated from 33 *Neocricetodon* during the Early Pliocene in Europe and then spread to Asia, and *T. triton* is its 34 only extant representative which now only inhabits in East Asia. 35 Introduction 36 37 The late Middle Pleistocene Locality 2 of Shanyangzhai (village) has yielded very abundant 38 vertebrate fossils and one of the most common among them are the remains of hamsters——so

46

47

48

49

50

51 52

53

54

55 56

57

58

59

60 61

62

63

64 65

66

67

68 69

70

71

72

73

74

75

76

77 78

far more than 50 skulls, 2500 jaws and very numerous isolated teeth have been discovered.

These materials can easily be divided into the large-sized group and the small-sized group. The material of the small-sized group has been described by Xie and Li (2016), with two hamster species *Cricetulus longicaudatus* and *C. barabensis* being recognized. The aim of the present paper is to deal with the remains of the large-sized group, making detailed morphological description and comparative study on them.

The genus Cricetinus and its type species C. varians were erected by Zdansky (1928) on the basis of fossils from the famous Middle Pleistocene Locality 1 of Zhoukoudian (i.e., the Peking Man Site), Beijing. Since then, hamster remains of several other Pleistocene mammal fossil sites have been continuously referred to C. varians, making it one of the most common micromammal species of Pleistocene faunas in northern China (refer to the synonymy of *Tscherskia triton* varians given below). Kretzoi (1959) founded the second species of Cricetinus, C. europaeus, based on the material from the Pliocene fauna of the Csarnóta 2 in the Villány Mountains, southern Hungary. Since Kretzoi, five other hamster species have been allocated to *Cricetinus* successively (e.g., Hír, 1994; Wu & Flynn, 2017), which makes Cricetinus a widely distributed genus, both spatially and temporally. However, the validity of *Cricetinus* and *C. varians* have long been questioned by many researchers since 1930s (e.g., Pei, 1936; Teilhard de Chardin & Pei, 1941; Teilhard de Chardin & Leroy, 1942; Gu, 1978; McKenna & Bell, 1997), and the core of the debate is whether the Cricetinus and C. varians are the junior synonyms of the Tscherskia and T. triton, respectively. In present paper, on the basis of a detailed description for material of large-sized hamster from Locality 2 of Shanyangzhai, we discuss in detail the long-disputed issue of the validity of Cricetinus and C. varians to benefit our understanding of the origin and evolution of living Cricetinae taxa.

It is worth pointing out here that *Tscherskia* has long been regarded as a subgenus of Cricetulus since the work of Argyropulo (1933) and a few researchers even tend to hold to this view until recently (e.g., Chen & Gao, 2000; Wang, Wu & Qiu, 2020). However, several molecular phylogenetic studies in recent years have demonstrated that Cricetulus in traditional sense (usually including C. barabensis, C. longicaudatus, C. migratorius, C. kamensis, C. triton) is polyphyletic, and the subgenera *Tscherskia* and *Urocricetus* (the Tibetan hamster) should be treated as two independent genera (e.g., Neumann et al., 2006; Steppan & Schenk, 2017; Lebedev et al., 2018; Ding et al., 2020; Romanenko et al., 2021). Furthermore, C. migratorius (the grey hamster) should also represents an independent genus and Lebedev et al. (2018) have coined a new genus name *Nothocricetulus* for it. According to the above researches, compared with Tscherskia, Cricetulus is usually more closely related to Nothocricetulus, Cricetus and Allocricetulus. Except for the evidence from molecular phylogenetic studies, morphologically, T. triton also obviously differs from the members of Cricetulus (in traditional sense) (Musser & Carleton, 2005) (Figures S1 to S3). For example, T. triton has significantly larger body size than the later: average body length of the former is ca.157 mm, by contrast, the same measurement of the later ranges in ca. 90-100 mm (according to the data provided by Chen & Gao, 2000). For another example, we find that the M3 of T. triton bears an axioloph (sensu Freudenthal &

- 79 Daams, 1988) (see "Discussion" for details), which to the best of our knowledge is unique
- among all species of the living Cricetinae. The presence of the axioloph undoubtedly indicates 80
- the uniqueness of *Tscherskia* in Cricetinae, although its taxonomic significance remains to be 81
- further studied. For above reasons, we follow the prevailing opinion of researchers over the last 82
- 83 two decades and no longer consider the *Tscherskia* as a subgenus of *Cricetulus* but as a separate
- 84 genus.

88

89

Geologic setting

Shanyangzhai Village (119°32′14.00″E, 40°5′17.82″N) is located in the central part of 86

87 Haigang District, Hebei Province, China, about 20 kilometers from Bohai Bay. The Ordovician

limestone of Majiagou Formation south of the village is exposed to many fossil-bearing fissures

- or cave deposits due to quarrying. To date, four mainly fossiliferous localities have been
- discovered, which are respectively numbered Localities 1, 2, 3, 4 of Shanyangzhai (Syz 1-4 for 90
- short) in order of south to north (Fig.1), and judging from their mammalian components they 91
- may have different ages. The fossils from Syz 1 and Syz 3 are mainly macromammal, in contrast 92
- Syz 2 and Syz 4 have yielded extensive micromammal fossils (Niu, Zhang & Fa, 2003; Kong, 93
- 2009; Wang et al., 2010; Zhang et al., 2010; Li & Zhang, 2011, 2013; Li, Zhang & Ao, 2013; Li, 94
- Zhang & Li, 2013; Li, Zhang & Zheng, 2013; Zhang & Li, 2015; Li, Li & Zhang, 2016; Xie & 95
- Li, 2016; Chen et al., 2021). Although most parts of the native strata of Syz 2 have been 96
- disturbed by activity of quarrying, on the whole, the Syz 2 which yielded the fossils studied in 97
- present paper may have an age of late Middle Pleistocene (Zhang et al., 2010). This is mainly for 98
- its overall similarity in faunal composition with the Middle Pleistocene fauna of Locality 1 of 99
- Zhoukoudian (it is usually accepted that the age of the main fossiliferous deposits, i.e. 1-11 100
- layers, is ca. 0.6-0.2 Ma, Hu, 1985; Zhang, 2004; Chen & Zhou, 2009; Liu et al., 2014), and 101
- 102 Jinniushan (ca. 0.31-0.2 Ma, Liu et al., 2014). We took a silty clay sample (field number 09SS1,
- laboratory number 11695) about 2 m below the fossil-bearing horizon at Syz 2 and dated its 103
- absolute age using ESR (electron spin resonance) technique at the State Key Laboratory of 104
- 105 Earthquake Dynamics, Institute of Geology of China Earthquake Administration. The result
- 106 indicates an age of 300 ± 30 ka, so the age of the fossil deposits located above the sampling site
- should be some later. Kong (2009) dated the fauna at $(1.8 \pm 0.2) \times 10^5$ years to $(2.0 \pm 0.2) \times 10^5$ 107
- years ago using TL (thermo-luminescence) technique, but the exact sampling layers of Kong 108
- (2009) need further verification. Based on the above results of absolute age dating and faunal 109
- 110 comparison, we tentatively date the Syz 2 to the late Middle Pleistocene, ca. 0.2 Ma.

Material, methods and abbreviation

112 Material

111

- 113 The hamster fossils from Syz 2 studied in the present paper are stored in the Department of
- Geology, Northwest University (Xi'an, Shaanxi Province, China). For comparison, we observed 114
- nearly 50 specimens of skull (including mandible) of extant *Tscherskia triton* (the greater long-115
- 116 tailed hamster) stored in the College of Life Sciences, Northwest University, which are all
- collected from Shaanxi Province. Judging from the collection sites written on the labels of these 117
- 118 specimens, they might belong to the subspecies T. triton incanus and T. triton collinus (and

- perhaps T. triton triton and T. triton fuscipes) according to the subspecies and their geographical
- distribution of *T. triton* summarized by Chen & Gao (2000).
- 121 Methods
- For the description of molar occlusal morphology, we mainly follow Freudenthal & Daams
- 123 (1988), Freudenthal, Hugueney & Moissenet (1994) and Li et al. (2018). The skull
- morphological terminology mainly follows that of Wang & Qiu (2018) and Voss (1988).
- Measurements of skull and mandible mainly follow Yang et al. (2005) and Xia et al. (2006). All
- measurements were made by ZEISS Smartzoom5 automated digital microscope. Some images
- have been reversed for convenience of comparison and indicated by an underlined label.
- 128 Abbreviation
- NWU, Northwest University, Xi'an; IVPP, Institute of Vertebrate Paleontology and
- Paleoanthropology, Beijing; Syz 1-4, Locality 1, 2, 3, 4 of Shanyangzhai; ZKD, Zhoukoudian (=
- 131 Choukoutien); JNS, Jinniushan; RZD, Renzidong; Loc, Locality.
- 132 **Results**
- 133 Systematic palaeontology
- 134 Mammalia Linnaeus, 1758
- 135 Rodentia Bowdich, 1821
- 136 Cricetidae Rochebrune, 1883
- 137 Cricetinae Fisher, 1817
- 138 Tscherskia Ognev, 1914
- 139 1928 Cansumys, Allen
- 140 1928 Cricetinus, Zdansky
- 141 1929 Asiocricetus, Kishida
- **Type species** *Tscherskia albipes* Ognev, 1914 (= *Cricetus (Cricetulus) triton* de Winton, 1899).
- 143 Referred species T. europaeus (Kretzoi, 1959); T. rusa (Storch, 1974)?; T. gritzai (Topachevski
- 144 et Skorik, 1992); *T. janossyi* (Hír, 1996); *T. koufosi* (Koliadimou, 1996).
- 145 Geographic distribution and geologic age Southeastern Europe, Early Pliocene (MN 15, ca. 5-
- 146 3.5 Ma) to early Middle Pleistocene (ca. 0.7 Ma); Southwestern Asia, Holocene?; northern
- 147 China, transitional region between northern and southern China, except T. sp. from Youhe fauna
- with an age of Late Pliocene (ca. 3.15-2.59 Ma), all other reliable material of *Tscherskia* with an
- age not earlier than Middle Pleistocene. 5 199
- 150 **Diagnosis** medium-sized cricetids usually between *Cricetulus* and *Cricetus*; molars
- brachyodont; mesolophes of M1-3 usually present, either free or connected to the metacone, but
- rarely reaching the buccal tooth edge; M3 with an anteroposteriorly directed axioloph rather than
- an anterolaterally extended protolophule II; anteroconid of m1 divided or undivided; mesolophid
- on m3 almost always present and well-developed; the mesolophid also often present on m1 and
- m2, but rarely reaching the lingual tooth edge (modified from Xie, Zhang & Li, 2021).
- 156 **Remarks** Hír (1996a, 1997) once proposed the diagnosis of *Cricetinus* (i.e. *Tscherskia*) as
- 157 follows: "the undivided anteroconid on the m1 molars with a smooth and convex oral surface;
- the mesolophids missing or short on the m1-m2 molars; M1-M2 crowns characterized by the

- missing or weekly developed mesolophes; the posterior metalophule rare on M2." Our
- observation demonstrates that the diagnosis proposed by Hír are not comprehensive and worthy
- of further revision, so the diagnosis of *Tscherskia* is redefined here as above.
- 162 *Tscherskia triton* (de Winton, 1899)
- 163 *Tscherskia triton varians* (Zdansky, 1928) (Figs 2-6, Tables 1-7)
- 164 1927 Cricetulus cfr. songarus, Young, p.24 (part)
- 165 1928 Cricetinus varians, Zdansky, p.54
- 166 1930 Cricetinus varians, Schaub, p.37
- 167 1931 Cricetinus varians, Pei, p.12
- 168 1932 Cricetinus varians, Young, p.4
- 169 1934 Cricetinus varians, Schaub, p.30
- 170 1934 Cricetinus varians, Young, p.58
- 171 1936 cf. *Cricetinus varians*, Teilhard de Chardin, p.16 (part)
- 172 1936 Cricetinus varians, Pei, p.59
- 173 1939 Cricetinus varians, Pei, p.153
- 174 1940 Cricetinus (Cricetulus) varians, Pei, p.42 (part?)
- 175 1941 *Cricetulus varians*, Teilhard de Chardin & Pei, p.49 (part)
- 176 1942 Cricetulus (Cricetinus) varians, Teilhard de Chardin & Leroy, p.35, p.93 (part)
- 177 1977 Cricetulus varians, Gai & Wei, p.290
- 178 1978 Cricetulus triton, Gu, p.164
- 179 1980 Cricetulus varians, Zhang, Zou & Zhang, p.156
- 180 1983 Cricetulus varians, Zheng, p.231
- 181 1984 Cricetinus varians, Zheng, p.185
- 182 1985 Cricetulus varians, Zhang et al., p.73
- 183 1985 Cricetinus varians, Zheng et al., p.117
- 184 1986 Cricetulus varians, Zhang, Wei & Xu, p.36
- 185 1990 Cricetulus triton, Sun & Jin, p.35
- 186 1993 Cricetinus varians, Zheng & Han, p.65
- 187 1996 Cricetinus varians, Cheng et al., p.38 (part?)
- 188 2002 Cricetinus varians, Jin, p.95
- 189 2004 Cricetinus varians, Jin et al., p.284
- 190 2004 Cricetulus triton, Tong et al., p.855
- 191 2009 *Cricetinus varians*, Jin et al., p.177 (?)
- 192 2010 Cricetinus varians, Zhang et al., p.73
- 193 2015 Tscherskia triton, Liu et al., p.610
- 194 2017 Tscherskia triton, Chen et al., p.847
- 195 2018 Cricetulus varians, Tong et al., p.287
- 196 2018 Cricetinus varians, Wu et al., p.1396
- 197 2020 Cricetulus varians, Wang, Wu & Qiu, p.104
- 198 2021 Cricetulus varians, Huang et al., p.269

- 199 2021 Cricetulus triton, Huang et al., p.269
- **Lectotype** As already mentioned, Zdansky (1928) coined *Cricetinus* and *Cricetinus varians* 200
- based on the large-sized hamster material from Locality 1 of Zhoukoudian, which included 8 201
- maxillary fragments, 9 larger and some smaller mandibular fragments, 1 isolated M1 and 3 202
- 203 isolated m1, but no holotype was designated by him for the new genus and its type species, so all Typitypes?
- of these specimens should be viewed as the syntype. Wang, Wu & Qiu (2020, pp.104-105) 204
- selected IVPP RV 340020 (original catalogue number C/C. 1049), an anterior portion of skull 205
- with right M1-3 and left M1-2 figured by Young (1934, Text-fig. 19, 1, 1a, 1b; Pl. 5, fig. 9) and 206
- Zheng (1984a, Fig. 1, C), the lectotype of C. varians. However, this designation should be 207
- 208 considered invalid according to ICZN (1999, Art. 74.2), because IVPP RV 340020 does not
- belong to the syntype, although it is also collected from Locality 1, even possible from the same 209
- layer as the syntype (Young, 1934, p.63). Therefore, the fragmentary right upper jaw with Ml-3 210
- figured by Zdansky (1928, Taf. 5, Fig. 4) is here designated as lectotype for *Tscherskia triton* 211
- 212 varians (Lagrelius Collection kept in Museum of Evolution, Uppsala University, Sweden), and
- other specimens in the type series should be viewed as the paralectotype. The paralectotype 213
- listed by Wang, Wu & Qiu (2020, p.104) are also invalid for reason same to that discussed for 214
- the lectotype and should only be viewed as referred specimens. 215
- 216 Type locality and geologic age Locality 1 of Zhoukoudian, Beijing. The deposits of Locality 1,
- also known as Zhoukoudian Formation, are about 40 meters in thickness and traditionally 217
- divided into 1 to 13 layers from top to bottom, representing a period from ca. 0.78 Ma to 0.2 Ma. 218
- 219 This division scheme was published by Jia (1959), who adopted the similar scheme first
- proposed by Teilhard de Chardin & Young (1929), and has been widely adopted from then. 220
- 221 Zdansky (1923, p.86) also published two profiles of deposits of Locality 1 (called Loc. 53 by
- Zdansky) from which the type specimens of C. varians and other fossils studied by Zdansky 222
- (1928) were collected. Teilhard de Chardin & Young (1929, p.179, footnote) considered that the 223
- sections given by Zdansky (1923, p.86) correspond probably to some part of their layers 5 and 6, 224
- 225 although they also stated that a precise correlation with the Zdansky's 1923 profile was rather
- difficult to establish. If Teilhard de Chardin and Young are right, according to Xu et al. (1997, 226
- p.219. Table 1), their layers 5 and 6 should basically correspond to layers 4 to 6 of Jia (1959)'s 227
- scheme, which cover a period ca. 0.3 0.4 Ma in the Middle Pleistocene (Chen & Zhou, 2009, 228
- Table 1). 229
- 230 Geographic distribution and geologic age Northern China, transitional region between
- northern and southern China, late Early Pleistocene to Late Pleistocene. 231
- Referred specimens from Svz 2 21 incomplete skulls (NWUV 1489.a1-21); 10 maxillae with 232
- bilateral toothrows (NWUV 1489.b1-10); 73 left maxillae (NWUV 1489.c1-73); 74 right 233
- maxillae (NWUV 1489.d1-74); 185 left mandibles (NWUV 1489.e1-185); 215 right mandibles 234
- (NWUV 1489.f1-215); 3 mandibles with bilateral branches (NWUV 1489.g1-3); 55 left M1s 235
- (NWUV 1489.h1-55): 54 right M1s (NWUV 1489.i1-54): 46 left M2s (NWUV 1489.i1-46): 35 236
- right M2s (NWUV 1489.k1-35); 2 left M3s (NWUV 1489.11-2); 8 right M3s (NWUV 237
- 238 1489.m1-8); 16 left m1s (NWUV 1489.n1-16); 22 right m1s (NWUV 1489.o1-22);15 left m2s

- 239 (NWUV 1489.p1-15); 19 right m2s (NWUV 1489.q1-19); 7 left m3s (NWUV 1489.r1-7); 8 right
- m3s (NWUV 1489.s1-8). 240
- **Measurements** see Tables 1-2 and Supplementary datasets 1, 3, 5, 7. 241
- **Diagnosis** *Tscherskia triton varians* is very similar to living *T. triton* in size and most characters 242
- 243 of molars (see "Discussion"), but the former has slightly higher frequencies of mesolophid on
- m1 and m2 (see Table 7). In most measurements of the skull and mandible, the mean values of 244
- the T. t. varians may be lightly greater than those of living T. triton. 245
- **Remarks** The small differences between *T. triton varians* and recent *T. triton* can only be 246
- noticed when there are statistically abundant specimens. The reason for which we refer all the 247
- items listed in synonymy, in most of which the material is scarce, to *T. triton varians* is only on 248
- account of the geologic age of them, and so this can only be viewed as a makeshift treatment. 249
- 250 **Description**
 - (1) Skull

254

255 256

257

258

259

260 261

262

263

264 265

266

267

268 269

270 271

272 273

274

275

276

277

) Skull

The description of the skull is mainly based on the relatively well-preserved NWUV 1489.a8, while also referring to other specimens (Fig. 2).

Dorsal view: the nasal is posterical while also referring to other specimens (Fig. 2).

with the frontal and then gradually widens forward, and after reaching the widest size, it is slightly narrower again at the anterior border of the nasal. The anterior-most point of the orbit is at the transverse level slightly in front of the posterior end of the nasal. The skull width of NWUV 1489.a7 is larger than normal due to vertical extrusion, but it preserves the complete interparietal, the shape of which is approximately pentagonal just as in extant T. triton. The frontal crest appears more clearly in adults, especially elderly individuals, extending backwards from the upper edge of the orbit, beyond the parietal, and at least to the anterior border of the interparietal.

Lateral view: the upper outline of the skull is gently arced, but this shape is often lost due to extrusion. The alveolus of the upper incisor forms a well-defined semicircular crest on the lateral surfaces of the premaxilla and maxilla. The upper part of the infraorbital foramen is fan-shaped and lower part of it is slit-like. The outer wall of the zygomatic plate is slightly concave; both its anterior and posterior edges are slightly arc-shaped, with the former slightly convex anterodorsally and the latter slightly concave anterodorsally; the two edges are nearly parallel. The anterior root of the zygomatic arch is much weaker and about 2-3 times narrower the width of the zygomatic plate. The supraorbital foramen is small, situated behind the interorbital constriction and just below the supraorbital margin.

Ventral view: the incisive foramen is narrow and long, with a significant distance between its posterior edge and the anterior edge of M1. Premaxillary-maxillary suture traverses the incisive foramen at around the anterior 2/5 of the foramen. The anterior-most point of the zygomatic plate is at about the same transverse level of the middle of the incisive foramen. The masseteric tubercle is located at the base of the zygomatic plate and has a rough surface. Two posterior palatine foramina are almost located on the connection line of the posterior roots of two M2s.

281 282

283

284

285

286

287

288

289

290 291

292

293294

295

296

297

298299

300

301

302

303 304

305

306

307 308

309 310

311

312313

314315

316317

The posterior border of the hard palate slightly exceeds the posterior edge of M3 or is flush with it. The two molar series are not completely parallel but slightly diverge anteriorly.

(2) Mandible

The lower edge of mandible (Fig. 3) extends forward in an arc from the base of angular process. The mental foramen is small and round, located anteroventral to the anterior root of m1. The masseteric ridge is thin but clearly present, ending underneath of m1 and posterodorsal of the mental foramen. The coronoid process is comparatively fine and hook-shaped, extending posterodorsally. There is a noticeable bulge at the base of the condylar process and situated anteroventral to the mandibular notch on the buccal side of the mandible, which is formed by the posterior end of the lower incisor. The angular process extends in posteroventral direction. The mandibular notch extends slightly further than the notch between the condylar process and the angular process in anterior direction, while the latter is slightly wider than the former. The mandibular foramen is oval, situated at the base of the condylar process. The groove between the alveolus of molars and the base of the coronoid process inclines gently to the posteroventral direction, not as steep as that in murines; in the middle of the groove is a small foramen, whose function is not clear. The area on inner side of the mandible and under the molar series usually bears many small foramina.

Measurements of skulls and mandibles are shown in Table 1 and Supplementary datasets 1, 3.

(3) Teeth

The anterior end of the upper incisor (I2) points ventrally, and its posterior end terminates in an anteroventral position to the infraorbital foramen. The enamel layer covers the whole labial surface, which is smooth without ridge on it, and small part of the lateral surface.

The structures of upper molars are shown in Fig. 4. The M1 is kidney-shaped, with an obtuse anterior edge, a comparatively straight buccal edge, but obviously protruding outward at the metacone, and an arc-shaped lingual edge. The degree of alternating of the opposite main cusps on M1 is very small, as well as on M2 and M3. The anterocone is broad and always splits posteriorly into two equal-sized cusps. The anterocone of some specimens also has a certain degree of separation from mesial surface, and in a few specimens the separation degree is comparatively large. The lingual anterolophule is always present, and the buccal anterolophule is present in most of the specimens with a frequency of 89.1% (41/46). A very small number of specimens have the spur of the anterolophule (3.9%, 6/154), all of which are thin and weak, with five cases reaching the buccal margin of tooth (Fig. 4B). The frequency of protolophule I is 57.4% (27/47). The protolophule II is relatively thin and weak, and even missing in a few specimens. The loph that connects the anterior arm of the hypocone and metacone is very thick. In our opinion this loph should be viewed as the mesoloph, because in most specimens there is an obvious trace of connection between the loph and the metacone, which implies the loph does not derive from the metacone. In a few specimens, however, this loph can be completely fused with the metacone without any trace, so it is difficult to determine whether the metalophule I is involved in the formation of the loph in these specimens. There is no specimen whose mesoloph end is free. The metalophule II is present but weakly developed in most specimens. The

 posterosinus is small and shallow, and only vestige of it can be observed on specimens with severe abrasion. The tooth is four-rooted.

The M2 is approximately square. The buccal anteroloph is more developed than the lingual one, with sometimes the latter is nearly absent. The position of the buccal anteroloph is also higher than the lingual one. Protolophule is double. The mesoloph is similar to that of M1, but relatively thicker. It also has either merged with the metacone or has an obvious trace of connection between it and the metacone, but never has a free end. In some specimens, the mesoloph can reach the tooth edge by clinging to the anterior wall of the metacone (Fig. 4 B, F). The metalophule II is always present, but comparatively weak. The posterosinus is also very small. The tooth has four roots.

The posterior portion of M3 is distinctly reduced, with the hypocone and metacone being much smaller than those of M1 and M2, resulting in the occlusal outline of M3 resembling a relatively obtuse equilateral triangle. The buccal anteroloph is also more developed and located higher than the lingual one, while the lingual one is either absent or extremely weak. The protolophule I is always present. The most remarkable feature of M3 is the presence of the axioloph, which departs from the junction of the protolophule I and the anterior arm of the protocone and extends anteroposteriorly, forming a small groove between it and the protocone. Sometimes the central part of the groove is closed due to the proximity or fusion of the axioloph and paracone, so that a small pit is formed in the upper part of the groove (Fig. 4 D, F). The morphology of the mesoloph is similar to that in M1 and M2. The metalophule II and posterosinus are not present. The mid-segment of the posteroloph (or the posterior arm of the hypocone) can sometimes be inflated into a small cusp, sandwiched between the hypocone and metacone (Fig. 4C, G). The tooth has three roots.

In a very few specimens, the upper molars possess morphological variation of some structures. For instance, protolophule II on M2 may occasionally have a form similar to that on M3; and vice versa.

The anterior part of the lower incisor (i2) extends anterodorsally. The posterior end of the lower incisor terminates at the base of the condylar process and forms a noticeable bulge on the buccal side of the mandible. The enamel layer covers the whole labial surface, which is smooth without ridge on it, and nearly half part of the lateral surface.

The structures of the lower molars are shown in Fig. 5. The occlusal outline of m1 is comparatively long and thin, and gradually narrows from back to front. The anteroconid on most of the specimens is bisected into two generally equal-sized cusps (93.0%, 80/86). In these specimens, the vast majority of the anteroconids are posteriorly slightly bifid, and the anteroconids rarely have a comparatively large degree of separation on their posterior side; on its anterior side, the anteroconid is only weakly divided (within young individuals) or undivided (within middle aged and elderly individuals). A small part of the specimens' anteroconids are split into three small cusps (7.0%, 6/86) (Fig. 5E). The undivided anteroconids only appear on heavily worn specimens. In overwhelming majority of specimens the anterolophulid is single (97.6%, 82/84), and it either connects to the buccal anteroconulid (70.7%, 58/82), or connects to

371

372

373

374

375

376

377

378

379 380

381

382

383 384

385

386

387 388

389

390

391

392 393

394

395 396

397

358 behind the middle of the two anteroconulids (26.8%, 22/82), or connects to the lingual anteroconulid (2.4%, 2/82); in a very few specimens the anterolophulid has two branches (2.4%, 359 2/84), connecting respectively to two anteroconulids. The bottom of the anteroconid is far higher 360 than the bottom of the protosinusid. With the frequency being 43% (44/103), the mesolophids on 361 362 all specimens are low, weak and short; they connect to the metaconid (18.2%, 8/44), or have a free end (81.8%, 36/44). In the latter case, the longest mesolophid does not exceed 1/2 of the 363 distance from the base to the lingual tooth edge. In most cases it just appears as a spinous 364 process. The transitional part from the hypoconid to posterolophid is very thin, but then the 365 posterolophid quickly swells into a defined cusp; however, it usually does not close the 366 posterosinusid. Cingula usually exist at the entrances of the protosinusid and sinusid, even 367 sometimes forming a small but defined ectostylid at entrance of the latter. The tooth has two 368 369 roots.

The occlusal outline of m2 is a rounded square, with tooth width greater than that of m1 and m3. The lingual anterolophid is weakly developed or absent, whereas the buccal one is always well developed. The mesolophid is present in 95.2% (158/166) of specimens, and has various morphologies, which can be generally divided into four types: I. having a free end; II. being connected to the metaconid; III. reaching the lingual tooth edge (10.2%, 16/157) (Fig. 5A); or IV. being connected to the entoconid (2.5%, 4/157). Within these four morphotypes, types I and II are present in most specimens, but the boundaries between these two types are sometimes difficult to distinguish. The length of the mesolophid also varies, but most do not exceed 1/2 of the distance from the base to lingual tooth edge. The morphology of the posterolophid and the development situation of cingulum are similar to those on m1, except that the lingual edge of the mesosinusid of m2 sometimes can also bear the cingulum. The tooth has two roots.

Posterior part of the m3 is usually contracted, but there are also a small number of specimens with no obvious contraction (Fig. 5G). In most cases, the entoconid is significantly reduced compared to that of m1 and m2, whereas the hypoconid is often just slightly reduced. Similar to m2, the lingual anterolophid of m3 is also weakly developed and the buccal one is comparatively more developed; but with a difference that the lingual anterolophid of almost all the m3s is present. All but one of the specimens possess a mesolophid (99.2%, 129/130). The morphology of mesolophid is also varied and can be divided into five types: I. having no branch, being connected to the lingual tooth edge (59.4%, 76/128) (Fig. 5 A, C, E, G); II. having two branches, with one being connected to the lingual tooth edge and the other to the metaconid (35.2%, 45/128) (Fig. 5 B, F); III. having three branches, with they being respectively connected to the lingual tooth edge, the metaconid and the junction of the hypoconid and entoconid (0.8%, 1/128); IV. having no branch, being connected to the metaconid (3.9%, 5/128) (Fig. 5D); or V. having a free end (0.8%, 1/128). The posterolophid is somewhat different from that of m1 and m2, which mainly shows in that it usually merges with the entoconid to close the posterosinusid. The posterolophid also has a certain degree of swelling, and it makes the posterolophid very similar to a cusp when undergoing slight wear, so that on the posterior part of m3 there are three side-by-side cusps. The cingulum usually does not exist at the entrance of the sinusid, but is

401 402

403

404

405

406 407

408

409

430

431

432

433

434

435

436

437

398 often relatively developed at entrance of the mesosinusid and sometimes merges with the end of mesolophid to form a small cusp. The tooth has two roots. 399

As in the upper molars, there is also a variation in some structures of the lower molars within a small number of specimens. For example, the m3 of NWUV 1489.e169 exhibits the ectomesolophid, and this is the only exception in all lower molars; at the same time, on this specimen, not only the mesolophid on m3 but that on m1 and m2 forks into two branches, and this special morphology is also unique in all specimens. In addition, as described above, some rare morphotypes, such as the anterolophulid of m1 has two branches, the mesolophid of m2 being connected to the entoconid, the III and V types in mesolophid morphotypes of m3, can also be regarded as morphological variations, because they are all very unusual.

Measurements of molars are shown in Table 2 and Supplementary datasets 5, 7.

Discussion

Identification of large-sized hamster material from Svz 2

410 The classification issues of Cricetinae fossils found in Quaternary deposits of China and living 411 412 taxa of Cricetinae inhabiting China are all very disputable now. Combining our own observations and recent research progress (e.g., Lebedev et al., 2018; Wang, Wu & Oiu, 2020), we 413 414 preliminarily suggest that the following 12 genera should be included in the Cricetinae found from the beginning of Quaternary to the present in China (sorted by chronological order; in 415 416 parentheses are the common junior synonyms): Cricetus Leske, 1779; Cricetulus Milne-Edwards, 1867; Urocricetus Satunin, 1902; Phodopus Miller, 1910; Tscherskia Ognev, 1914 (= 417 418 Cricetinus Zdansky, 1928, Cansumys Allen, 1928); Allocricetus Schaub, 1930; Sinocricetus 419 Schaub, 1930; Allocricetulus Argyropulo, 1932; Neocricetodon Schaub, 1934 (=Kowalskia Fahlbusch, 1969); Bahomys Chow et Li, 1965; Amblycricetus Zheng, 1993; Nothocricetulus 420 421 Lebedev, Bannikova, Neumann, Ushakova, Ivanova et Surov, 2018. Of these genera, Allocricetus, Sinocricetus, Neocricetodon, Bahomys and Amblycricetus are extinct, and the rest 7 422 are living. In living genera, Allocricetulus and Nothocricetulus have only very scarce and 423 doubtful fossil records (Cai et al., 2004, 2013), while Cricetus and Urocricetus have no fossil

424 425 records in China at all so far. Except that the relationship between *Tscherskia* and *Cricetinus* will be discussed in detail below, it is obviously beyond the scope of this paper to give the detailed 426 reasons for our above conclusion here, because it involves the discussion of the relationship 427 between many synonyms which needs to be elaborated in a special paper. 428 429

Except for *Tscherskia*, the differences between the large-sized hamster material from Syz 2 and other genera listed above are marked. The material of Syz 2 is distinguished from nearly of all these genera by the characters such as the mesolophids of m1-2 present but rarely reaching the lingual margin of teeth, M3 with axioloph, the degree of alternating of the opposite main cusps on M1-3 very small. In addition, unlike *Neocricetodon* and *Amblycricetus*, whose mesoloph(id)s usually reach the tooth edge, the mesoloph(id)s of larger hamster material from Syz 2 barely reach the tooth edge; unlike *Bahomys* and *Sinocricetus* with comparatively higher crowns, the crowns of material from Syz 2 are low; the sizes of molar, skull and mandible of material from Syz 2 are significantly larger than those of *Cricetulus* (Figures 2 to 5, S1 to S3),

PeerJ

Phodopus, Urocricetus, Allocricetulus and Nothocricetulus, but significantly smaller than Cricetus. Some researchers (Zheng et al., 1985, p.117; Cheng et al., 1996, p.40; Jin et al., 2009, p.178) considered that the lack of the mesolophid on m1-2 of *Allocricetus* is the main character distinguishing it from Cricetinus (i.e. Tscherskia), but actually this is the character of Cricetulus, not Allocricetus, because although Allocricetus do not bear mesolophid on m1, but can develop mesolophid on m2 of some specimens (Table 7). Some other researchers argued that the most important morphological character of *Cricetinus* (i.e. *Tscherskia*) is the undivided anteroconid of m1 (Kretzoi, 1959; Hír, 1996a, 1997), while those of Allocricetus and Cricetulus are almost always well divided (Hír, 1994, 1996a), but the observation on molars of extant T. triton shows that the anteroconids of the m1 in many specimens have a certain level of separation that Hír considered Allocricetus to have (Hír, 1994, Fig. 4). In Cricetulus, the separation degree of anteroconid of m1 of the type species C. barabensis is actually very small, while the C. longicaudatus indeed has a well divided anteroconid of m1.

Meanwhile, the great similarity between the large-sized hamster material from Syz 2 and the extant *Tscherskia* (i.e., *T. triton*) is easily recognized (Figures 2 to 5, S1 to S3). The molar measurements of the former are very similar to those of the extant *T. triton*, and some of the measurements are even identical (Table 2). Morphologically, the characters of molars and skulls of the former, such as the degree of alternating of the opposite main cusps on M1-3 very small, the anterocene of M1 posteriorly deeply bifid with nearly equal sized buccal and lingual cones, the mesolophs of M1-3 connected to the metacone rather than free, M3 with axioloph, the anteroconid of m1 undivided or weakly divided, the mesolophids of m1-2 present but rarely reaching the lingual margin of teeth, nearly all m3s with well-developed mesolophids, the interparietal pentagonal, also closely resembles the extant *T. triton*. Therefore, we can confidently refer the large-sized hamster remains from Syz 2 to *T. triton*.

In most measurements of the skull and mandible, however, the mean values of material from Syz 2 are lightly greater than that of the extant *T. triton* (Table 1, 2), although the measurements of every single molar of the former and the later are almost identical (Table 2, Fig. 6). As will be shown below, there are also small differences on molar morphology between the material of Syz 2 and the extant species. Therefore, it may be more reasonable to further refer these materials from Syz 2 to a chronosubspecies of *T. triton*, i.e., *T. triton varians* (=*Cricetinus varians*, see below for details) on consideration of these differences. In addition, the mean values of lengths of upper and lower toothrows (M1-3 and m1-3) of material from Syz 2 are also lightly greater than that of the extant *T. triton* (Table 2), but the measurements of single molar imply that this phenomenon and even certain measurements of the skull and mandible may likely result from burial deformation (see discussion in Xie, Zhang & Li, 2021).

It is worth explaining the character "axioloph" in a little more detail here. The M3s of *T. triton varians* from Syz 2 and the extant *T. triton* both possess an anteroposteriorly directed axioloph, which departs from the junction of the protolophule I and anterior arm of protocone, and forms a groove between it and the protocone (Figures 4, S3). In fact, this structure seems to have been noticed by Zdansky (1928) and Schaub (1930) in syntype of *T. triton varians* from Locality 1 of

498

499

500

501 502

503

504

505506

507

508

509

510

511

512

513

514

515

516

517

478 Zhoukoudian. The term "axioloph", along with other several terms, was first introduced by Freudenthal & Daams (1988, p.137) to facilitate descriptions of cricetids M3. They defined the 479 axioloph as "an axial connection between paracone and hypocone, fundamentally composed of 480 the posterior protolophule and the posterior part of the (ancient) entoloph". Morphologically, 481 482 axiolophs of M3s of Syz 2 and the extant T. triton are obviously distinct from the protolophule IIs of the small-sized hamster from Syz 2, and even of all other living taxa of Cricetinae, whose 483 protolophule IIs depart from the posterior wall of paracone and extend in the anteromedial 484 direction, so not forming a groove between it and the protocone (Figure S3). By contrast, fossil 485 taxa of Cricetinae of Eurasia since late Miocene seems relatively more often to develop an 486 axioloph on M3, especially in genus Neocricetodon (=Kowalskia), such as Neocricetodon 487 moldavicus (see Sinitsa & Delinschi, 2016), Neocricetodon hanae (see Qiu, 1995), 488 Neocricetodon vinanensis (see Zheng, 1984b), Neocricetodon lii (see Zheng, 1993). This seems 489 to demonstrate a close affinity between *Neocricetodon* and *Tscherskia*, although the axioloph is 490 also present in some other genera such as *Nannocricetus primitivus* (Zhang, Zheng & Liu, 2008) 491 and seems more often present in cricetids genera of older geologic age (before late Miocene). 492 493 such as *Democricetodon*, *Megacricetodon*. The phylogenetic significance of the axioloph will 494 not be better understood until a comprehensive phylogenetic analysis covering the taxa mentioned above is conducted, and the homologous structure of the axioloph itself also needs to 495 be further studied. 496

Discussion on the validity of Cricetinus and Cricetinus varians

When Zdansky (1928) erected Cricetinus and Cricetinus varians, he only had the skull specimens of extant Cricetus cricetus and Cricetulus phaeus (the latter is now considered a subspecies of *Nothocricetulus migratorius*) for comparison, so he apparently did not have the chance to notice the obvious similarity between the fossils from Locality 1 of Zhoukoudian and extant T. triton in molar morphology. Zdansky (1928, p.57) seemed to have realized that his study might have the defect that extant specimens used to directly compare with the fossils were too few, so he stated in the monograph that "maybe later a generic identity with one of these [extant] genera will result." (translated from German). Sure enough, soon after that, there were doubts about the validity of the genus and species. Schaub (1930, 1934) soon noticed C. varians and T. triton were very similar in molar morphology, although he still retained the independent status of C. varians. Teilhard de Chardin (1940, p.56) concluded that he "failed to detect any difference between a 'Cricetinus' dentition and the dentition of f.i. Tcherskia in North China'. Teilhard de Chardin & Pei (1941) emphasized again that except for the somewhat larger size, the large-sized hamster fossils from Locality 13 of Zhoukoudian (early Middle Pleistocene in age) did not show any appreciable difference from T. triton in either skull or teeth morphology, and the main reason for them to keep the specific name of "varians" for the Pleistocene form was "mainly a question of geologic convenience". Zheng & Han (1993) stated that it was very difficult to separate C. varians from T. triton now living in North China and Northeast China in size and molar morphology. In spite of these queries, however, large numbers of remains of such hamsters found in Pleistocene deposits of China were eventually referred to C. varians. In the

- meantime, as already mentioned, in the Pliocene and Pleistocene deposits of Eurasia there were
- 519 constantly new fossil hamster species that had been referred to *Cricetinus* since Kretzoi (1959).
- 520 Therefore, it is necessary to clarify the issue of validity of *Cricetinus* and *C. varians*.
- To discuss the validity of *Cricetinus*, the validity of *C. varians*, its type species, must be
- discussed first. However, not only are the material that Zdansky (1928) used in the establishment
- 523 of C. varians scarce, but also the description for them is simple and the plates are very blurred
- **524** either. All of these make it difficult to compare them with *T. triton* directly. Fortunately, Zheng
- 525 (1984a) revised most of the hamster fossils collected from the Zhoukoudian area, including C.
- *varians* specimens from Locality 1 (type locality) and Localities 3, 9, 13, 15, making it possible
- 527 to conduct detailed comparisons with these materials. Except for the material from Zhoukoudian,
- 528 we also compared the material from other fossil sites in China which have yielded abundant C.
- 529 *varians* fossils. In the following discussion, we will make detailed comparisons of skulls and
- 530 teeth morphology between C. varians and extant T. triton.

531 (1) Comparison of skull morphology of C. varians and T. triton

- When Zheng (1984a) revised the hamster fossils from the Zhoukoudian, he proposed several
- characters of skull that can be used to differentiate between C. varians and extant T. triton.
- However, Xie, Zhang & Li (2021) analyzed these characters proposed by Zheng (1984a) and
- 535 concluded that these differences between *C. varians* and *T. triton* skulls were very dubious and
- 536 need further verification, and so it is not necessary to repeat it here again.
- Topachevski and Skorik (1992, p.181) have also suggested three differences in skull morphology
- between Cricetinus and Tscherskia. Judging from the context, these views seem to be only based
- on the observation of the holotype (a maxillary fragment with M1-3) of *Cricetinus gritzai* rather
- than the specimens of type species (*C. varians*) of the genus. The first is *Cricetinus* differs from
- 541 Tscherskia in having a wider and more concave masseteric plate (i.e. "zygomatic plate" in
- present paper). However, Topachevski and Skorik (1992) did not provide any measurements of
- 543 the zygomatic plates of *Cricetinus* and *Tscherskia* to demonstrate it, although the degree of
- depression of the surface of the zygomatic plate seems difficult to quantify. Even if this view is
- 545 true, having a wider and more concave zygomatic plate may only be a feature of the *Cricetinus*
- 546 gritzai species, not the feature of the whole Cricetinus genus, because our observations show that
- 547 there is no obvious difference in the characteristics of the zygomatic plate between the
- 548 Tscherskia triton varians from Syz 2 and the living T. triton (Figures 2, S1). The second is
- 549 *Cricetinus* develops stronger ridges along the posterior side of the incisive foramina [the rim of
- area for lateral masseter?] than that of *Tscherskia*. Nevertheless, we also failed to discover any
- appreciable difference of the ridges between T. t. varians from Syz 2 and the living T. triton
- 552 (Figures 2, S1). The third is the position of the masseteric tuberosities in *Cricetinus* is more
- similar to that in *Cricetus* than in *Tscherskia*. Our observations show that the position of the
- posterior margin of the masseteric tuberosities in living *Cricetus Cricetus* (closer to the posterior
- edge of the incisive foramen) appears to be slightly further back than that in living *Tscherskia*
- 556 *triton* (closer to the middle of the incisive foramen). The position of the masseteric tuberosities
- of T. t. varians from Syz 2 is more similar to that in living T. triton rather than C. cricetus

PeerJ

Manuscript to be reviewed

- 558 (Figures 2, S1). In conclusion, since the three distinguishing characters between *Cricetinus* and
- 559 Tscherskia proposed by Topachevski and Skorik (1992) may be based on only one specimen of
- 560 *C. gritzai* (the holotype), and we failed to detect the above differences between extant *T. triton*
- and T. t. varians from Syz 2, so the validity of the above differences, in our opinion, is
- 562 questionable.
- 563 (2) Comparison of teeth morphology between C. varians and T. triton
- 564 ① Comparison of the teeth size
- Table 2 and Fig. 6 respectively show the measurements and the scatter diagrams of *C. varians*
- 566 from Zhoukoudian in Beijing (Zheng, 1984a), Jinniushan in Liaoning Province (Zheng & Han,
- 567 1993) and Renzidong in Anhui Province (Jin et al., 2009), and of *T. triton* from Syz 2 and of the
- extant *T. triton*. It can be seen that, except the material from Renzidong, which are obviously
- smaller, the averages of molar size of the material from other localities are quite close to each
- other, and the ranges of these data also considerably overlap. In other words, we cannot
- 571 distinguish C. varians from T. triton through their size. As for the material from Renzidong, its
- obvious smaller size and obviously older geologic age—the age of Renzidong is ca. 2 Ma (Jin,
- 573 Qiu & Zheng, 2009), while other localities are all Middle Pleistocene—make its identification as
- 574 *C. varians* very dubious. Perhaps the material from Renzidong represents a new form.
- By the way, with the hamster material originally identified as *Cricetinus varians* (or *Cricetinus*
- 576 cf. varians, Cricetulus (Cricetinus) varians) from several Early Pleistocene sites in China being
- assigned to *Allocricetus* (e.g., Localities 12, 18 of Zhoukoudian, Gongwangling of Lantian,
- 578 Shaanxi) (Zheng, 1984a), East cave of Zhoukoudian is currently the only Early Pleistocene site
- 579 yielding C. varians fossils other than Renzidong in China. However, the length of M1-3 of
- 580 Cricetinus varians from East cave is merely 4.83 mm (Cheng et al., 1996, Table 3-11, p.40),
- smaller than the lower end of the range of variation of that measurement in "typical" C. varians
- and extant *Tscherskia triton* (Table 2). More importantly, the m1s of *C. varians* from East cave
- totally lack mesolophid (Cheng et al., 1996, p.40), which is remarkably different from "typical"
- 584 *C. varians* and extant *T. triton* (Table 3). Therefore, the material identified as *C. varians* from
- East cave clearly warrants reconsideration of its attribution. Given the above explanations,
- except the *Tscherskia* sp. from the Late Pliocene Youhe fauna (Xie, Zhang & Li, 2021), there is
- 587 no reliable material of *Tscherskia* in China earlier than the Middle Pleistocene.
- 588 ② Comparison of the teeth structure
- In a hamster individual, the molars which are symmetrically distribute in the mouth (the left and
- right M3, for instance) may have minor morphological differences; therefore, the characters of
- both the left and right teeth of large-sized hamster from Syz 2 and the living *T. triton* were
- 592 statistically analyzed in the present study. The material of *C. varians* used for comparison here is
- 593 mainly from Zhoukoudian (Zheng, 1984a) and Jinniushan (Zheng & Han, 1993).
- **m1** In the extant *T. triton*, the specimens with the mesolophid account for 30% of all specimens
- 595 (Table 3). The mesolophids of these specimens are all weakly developed and of very short
- length: the longest mesolophid does not exceed 1/5 of the distance from the base to the edge of

- the tooth, and in the majority of cases it only shows up as a tiny bulge. The mesolophid is either
- 598 connected to the metaconid (9.5%, 2/21) or has a free end (90.5%, 19/21).
- The localities in Table 3 from top to bottom are roughly ranked in accordance with the geologic
- age from oldest to youngest (ZKD Loc.1, ca. 0.6-0.2 Ma; Jinniushan, ca. 0.31-0.2 Ma; ZKD
- Loc.3, late Middle Pleistocene; Syz 2, ca. 0.2 Ma). Although the frequency of mesolophid of C.
- 602 *varians* and *T. triton* in different geologic ages is not the same, there is not an obvious
- 603 interruption between them, and the later the age is, the lower the frequency of the mesolophid
- will be. From the viewpoint of the similarity of other aspects of teeth characters and the
- practicality of classification, instead of regarding these different frequencies of mesolophid as
- the interspecific, even intergeneric differences, it is better to regard them as the evolutionary
- 607 trend of one species, namely the mesolophid gradually reduces.
- 608 m2 Table 4 presents the frequencies of mesolophids on m2 of *T. triton* and *C. varians*. As the
- 609 table shows, during geologic history the frequencies of mesolophids on m2 of *T. triton* and *C.*
- 610 varians were all very high and very close to each other, showing no obviously decreased trend,
- although in the extant *T. triton* the frequency is slightly lower. Except for the Jinniushan locality,
- 612 the situation of proportions of morphotype iii of specimens from other localities and extant
- species is also similar to the situation of frequency of mesolophid. Therefore, the characters of
- mesolophid of m2 of *T. triton* and *C. varians* further prove the consistency of the two, and it
- seems more reasonable to explain the difference of the frequencies in the evolutionary trend of
- one species, namely the reducing of the mesolophid.
- 617 m3 Table 5 shows the frequencies of mesolophids on m3 of *T. triton* and *C. varians*. It can be
- seen from the table that the mesolophid exists in almost all of the specimens. The ratios of " the
- 619 mesolophid extends to the lingual edge" are all high, but the regularity is not obvious. The
- 620 comparison of the proportions of more detailed morphological characters is difficult due to the
- lack of data. But overall, the characters of m3 of *T. triton* and *C. varians* are still quite consistent.
- 622 M1 The lingual anterocone and protocone on M1 of T. triton and C. varians are always
- 623 connected by a anterolophule, while the other anterolophule behind the buccal anterocone is not
- always present. Table 6 shows that "the anterolophule behind the buccal anterocone" has a higher
- frequency in both T. triton and C. varians, but since the statistical data of C. varians is based on
- a relatively small amount of material, the reliability of comparison is reduced. The frequencies of
- "the protolophule I" are not stable and seem that there is no regularity.
- 628 M2 and M3 There is little difference between M2 and M3 of *T. triton* and *C. varians*.
- In summary, C. varians and T. triton show considerable consistency in the characters of skulls
- and teeth. Although there are still small differences between teeth morphology of them, these
- differences all change continuously and can only be noticed when there are statistically abundant
- materials. Therefore, we consider that C. varians can only be treated as a chronosubspecies of T.
- 633 triton, i.e., T. triton varians, and Cricetinus should be discarded as junior synonym of
- 634 Tscherskia.
- 635 Referred species of *Tscherskia*

anogo-

668

669

670

671

672

673

674

636 Except for *Cricetinus varians*, there are other 6 species in Eurasia that have been referred to Cricetinus: 637 Cricetinus europaeus Kretzoi, 1959. The type locality of this species is Csarnóta 2 in Hungary. 638 Most researchers believe that the geologic age of this site is MN 15 (Venczel & Gardner, 639 640 2005). The type specimens of *C. europaeus* are only three molars, but an M2 of these three molars was later identified as C. janossyi by Hír (1996b). Hír (1994) discovered additional 641 material of this species and described them in detail when he examined the material from the 642 type locality, so the nature of the species is now relatively clear. Although C. europaeus is one of 643 the earliest *Cricetinus* species in Europe (Hír, 1994), it seems to have rather advanced characters. 644 For example, the ratios of presence of mesolophid on m1 and m2 are even lower than those of 645 extant T. triton (Table 7), but because of the paucity of the material, this observation needs to be 646 tested with more material in the future. 647 Cricetinus gritzai Topachevski & Skorik, 1992. The type locality of this species is Odessa, 648 649 Ukraine. The important character of this species is that all m1s and partial m2s have a mesolophid (Koufos et al., 2001). On the one hand, this character illustrates its more primitive 650 nature (in other species of Cricetinus or Tscherskia, the frequency of mesolophid of m1 is 70% 651 at most). On the other hand, the character itself is also unique, because in cricetids the frequency 652 653 of mesolophid of m1 is almost always lower than that of m2, but in this species the situation is just the opposite. In addition, other molars of C. gritzai are slightly smaller than T. triton in size, 654 but only the M3 is significantly larger than that of T. triton (Topachevsky & Skorik, 1992). If 655 this is not a statistical error (because there is only one M3), it may also illustrate the primitive 656 nature of *C. gritzai*. 657 658 Cricetinus beremendensis Hír, 1994. The type locality of this species is Beremend 15 in Hungary, of an geologic age of 2.7 Ma (Hír, 1994; Pazonyi, 2011). Molar morphology of this 659 species, especially the degree of development of the mesolophid, is far from other species 660 currently classified in Cricetinus, but very similar to Allocricetus ehiki and A. bursae in size and 661 662 structure (Table 7), so it seems more reasonable to place this form in *Allocricetus* Schaub, 1930. Cricetinus janossyi Hír, 1996. The type locality of this species is Osztramos 7 in Hungary of 663 an geologic age of about 2.3 Ma (Hír, 1996b; Pazonvi, 2011). The molar structures of this 664 species are very similar to that of T. triton varians from Syz 2 (Table 7), but the former is 665 666 slightly larger than the latter in size, and the ages of the two are far from one another. C. janossyi

Hungary at the same time as *C. europaeus*. *Cricetinus koufosi* Koliadimou 1996. The type locality of this species is Ravin Voulgarakis of Mygdonia basin of Greece (Koufos et al., 2001). The age of Ravin Voulgarakis has been dated to Nagyharsanyhegy phase of Biharian (ca. 1.2-0.7 Ma) (Koufos et al., 2001), so the species is the latest among several species of *Cricetinus* in Europe. In addition, this species has also been discovered in Marathoussa of Mygdonia basin, with the age of the locality being dated to Betfia phase of Biharian (ca. 1.5-1.2 Ma) (Koufos et al., 2001). Many molar characters of this species

is also one of the earliest species of *Cricetinus* in Europe, first appeared in Csarnóta 2 of

are still unclear, but the lack of mesolophid on m1 of it may indicate its relatively progressive nature.

Cricetinus mesolophidos Wu & Flynn, 2017. Xie, Zhang & Li (2021) concluded that it was more reasonable to place *C. mesolophidos* in *Neocricetodon* rather than in *Cricetinus* (i.e. *Tscherskia*).

In summary, we suggest that *C. europaeus*, *C. gritzai*, *C. janossyi* and *C. koufosi* should be transferred to *Tscherskia*, while *C. beremendensis* should be transferred to *Allocricetus*, and *C. mesolophidos* to *Neocricetodon*. However, this treatment is provisional, because the characters of some of these species are still unclear. Except the type species *T. triton*, the type locality of other four species of *Tscherskia* are located in a small area covered by several neighboring countries in southeastern Europe, thus there is a huge geographic distance between *T. triton* and other species, which makes the above classification somewhat uncertain (Kretzoi, 1959; Hír, 1994). In addition, Storch (1974) described a species *T. rusa* from the Holocene (dated between 2200–700 B.C.) of northern Iran, whose geographic location and age are highly confusing. Although we have included it in the referred species of *Tscherskia*, the validity of this species and whether it should be referred to *Tscherskia* obviously deserve further examination. Table 7 is a summary of comparisons of frequencies of mesolophids on m1-3 between the species of *Cricetinus*, *Tscherskia* and some related genera (*Cricetulus*, *Nothocricetulus* and *Allocricetus*).

Origin and dispersal of Tscherskia

Zheng (1984a, b), Zheng et al. (1985) and Zheng & Han (1993) considered that *Cricetinus* (junior synonym of *Tscherskia*) was very likely to have originated from the genus *Kowalskia* (junior synonym of *Neocricetodon*), the idea that had been tentatively proposed by Fahlbusch (1969). Qiu & Li (2016) remarked that this view was very worthy of further study. We also agree with this opinion, and the reasons for this deduction have already been fully explained by Zheng (1984b) (as discussed above, the presence of axioloph in both genera seems also imply this), so it is not necessary to repeat them here again.

The question now is: when and where (Asia or Europe) did *Tscherskia* originate? According to the current evidence, the earliest appearance of *Tscherskia* in Europe is earlier than that in Asia. The earliest species of *Tscherskia* in Europe are *T. europaeus* and *T. janossyi*, both of which occurred at Csarnóta 2 (MN 15, ca. 5-3.5 Ma) in Hungary (Hír, 1994; Venczel & Gardner, 2005). In Asia, the earliest *Tscherskia* is *T.* sp. (the material is a fragmentary mandible with m2-m3) of Youhe fauna from Linwei District, Shaanxi Province, China (Xie, Zhang & Li, 2021), with an age of Late Pliocene (ca. 3.15-2.59 Ma, Yue & Xue, 1996). However, as has already been stated above, other reliable materials of *Tscherskia* in China (or Asia) are all of the geologic age not earlier than Middle Pleistocene. This nearly blank fossil record of *Tscherskia* in East Asia before Middle Pleistocene is a major challenge to the idea of the East Asian origin of *Tscherskia*, although the species similar in morphology to *Tscherskia triton* (e.g., *Neocricetodon yinanensis*) has been found in Late Pliocene (?) in China. In terms of the diversity of the *Tscherskia* species,

713 Europe also has a significantly higher diversity than Asia. Therefore, on present evidence,

Tscherskia seems more likely to have originated from *Neocricetodon* during the Early Pliocene

- 715 in Europe and then spread to Asia, and maybe there is another dispersal event of same direction
- 716 taken placed in Early Pleistocene, which can explain the absence of the reliable fossil record of
- 717 *Tscherskia* during the Early Pleistocene in China. Of course, this view still needs the verification
- 718 of more material in the future.

Conclusions

- The detailed morphological description and comparative study show that hundreds of large-
- sized hamster remains collected from the late Middle Pleistocene Locality 2 of Shanyangzhai
- 722 (Syz 2) should be referred to a chronosubspecies of the extant *Tscherskia triton—T. triton*
- 723 *varians. T. triton varians* is very similar to extant *T. triton* in size and most characters of molars,
- but the former has slightly higher frequencies of mesolophid on m1 and m2. In most
- measurements of the skull and mandible, the mean values of the former may be lightly greater
- 726 than those of the later. To clarify the long-disputed issue of the validity of *Cricetinus* Zdansky,
- 727 1928 and C. varians Zdansky, 1928, we compared in detail the C. varians and T. triton from the
- aspects of skull and molar morphology, and the results showed that the differences between the
- 729 two are very slight, therefore the *C. varians* can only be treated as a chronosubspecies of *T.*
- 730 *triton*, i.e., *T. triton varians*, and the *Cricetinus* should be discarded as junior synonym of
- 731 *Tscherskia*. We tentatively suggest that among the seven species once referred to *Cricetinus* in
- 732 Eurasia, C. europaeus, C. gritzai, C. janossyi and C. koufosi should be transferred to Tscherskia,
- 733 while C. beremendensis should be transferred to Allocricetus, and C. mesolophidos to
- 734 Neocricetodon. On present evidence, Tscherskia may have originated from Neocricetodon during
- 735 the Early Pliocene in Europe and then spread to Asia, and *T. triton* is its only extant
- 736 representative which now only inhabits in East Asia.

737 Acknowledgements

- 738 We wish to express our sincere appreciation to Prof. Qiu Zhuding for improving the
- 739 manuscript, to Prof. Zheng Shaohua for beneficial discussion and to Prof. Wu Wenyu for her
- varm help (all of them are with the Institute of Vertebrate Paleontology and Paleoanthropology,
- 741 Chinese Academy of Sciences, China). We thank the editor Dr. Kenneth De Baets, reviewers
- 742 Drs. Maxim Sinitsa, János Hír and Jordi Agustí, for their comments, which substantially
- 743 improved the original manuscript. We thank Li Zhixuan (College of Life Sciences, NWU), Wang
- 744 Kaifeng and Wang Yan (Shannxi Institute of Zoology, China), Zhang Lixun and Liao Jicheng
- 745 (School of Life Sciences, Lanzhou University, China), Zhang Yanming (Northwest Institute of
- 746 Plateau Biology, Chinese Academy of Sciences, China) for their friendly help in the process of
- observing specimens of extant hamsters. We also thank Prof. Robert F Diffendal, Jr. for his
- 748 linguistic help.

750 References

749

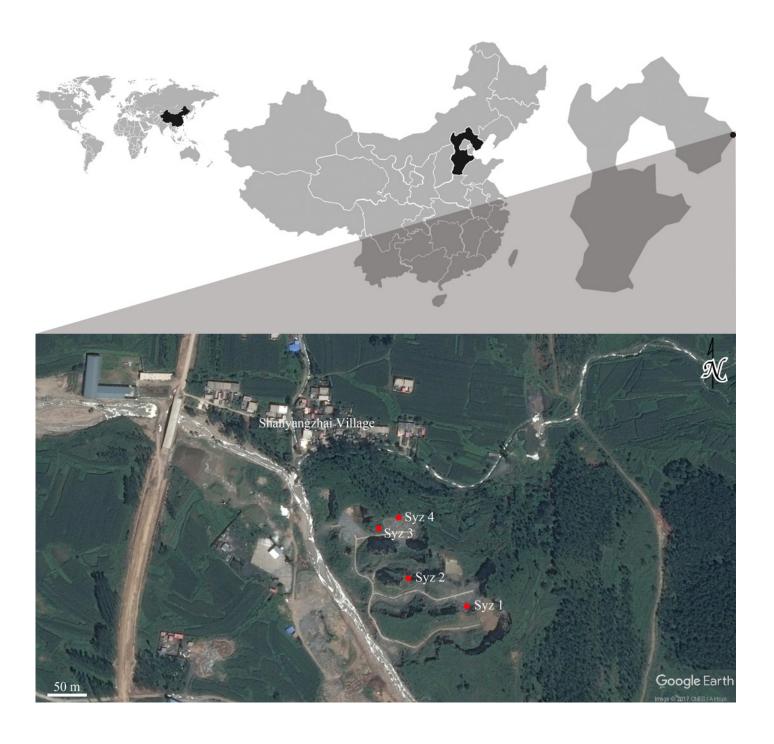
- 751 Allen GM. 1928. A new cricetine genus from China. Journal of Mammalogy 9:244–246.
- 752 Argyropulo Al. 1933. Die Gattungen und Arten der Hamster (Cricetinae Murray, 1866) der
- 753 Paläarktik. Zeitschrift für Säugetierkunde 8:129–149.

- Cai BQ, Zhang ZQ, Zheng SH, Qiu ZD, Li Q, Li Q. 2004. New advances in the stratigraphic
- study on representative sections in the Nihewan Basin, Hebei. In: *Professional Papers of*
- 756 Stratigraphy and Palaeontology, Number 28. Beijing: Geology Press, 267–285.
- 757 Cai BQ, Zheng SH, Liddicoat JC, Li Q. 2013. Review of the Litho-, Bio-, and Chronostratigraphy
- 758 in the Nihewan Basin, Hebei, China. In: Fossil Mammals of Asia: Neogene Biostratigraphy and
- 759 Chronology. New York: Columbia University Press, 218–242.
- 760 Chen W, Gao W. 2000. Cricetinae. In: Luo Z X, Chen W, Gao W (Eds.), Fauna Sinica,
- 761 *Mammalia, Vol. 6: Rodentia Part III: Cricetidae*. Beijing: Science Press, 20–90.
- 762 Chen Y, Li YX, Shi JS, Zhang YX, Xie K. 2021. Pleistocene fossil snakes (Squamata, Reptilia)
- 763 from Shanyangzhai Cave, Hebei, China. *Historical Biology* 33:699–711.
- 764 Chen SK, Pei J, Yi J, Wei GB, Pang LB, Wu Y, Hu X. 2017. Preliminary report on the
- 765 mammalian fauna from Yumidong cave, Wushan, Chongqing, and its chronological analysis.
- 766 Quaternary Sciences 37:845-852.
- 767 Chen TM, Zhou LP. 2009. Dating of the Peking Man site: A comparison between existing
- 768 chronology and the ²⁶Al/¹⁰Be burial ages. *Acta Anthropologica Sinica* 28:285–291.
- 769 Cheng J, Tian MZ, Cao BX, Li LY. 1996. The new mammalian fossils from Zhoukoudian
- 770 (Choukoutien) Beijing and their environmental explanation. Wuhan: China University of
- 771 Geosciences Press.
- 772 Chow MC, Li CK. 1965. Mammalian fossils in association with the mandible of Lantian Man at
- 773 Chen-chia-ou, in Lantian, Shensi. *Vertebrata PalAsiatica* 9:377–393.
- 774 Ding L, Zhou Q, Sun Y, Feoktistova NY, Liao J. 2020. Two novel cricetine mitogenomes: Insight
- into the mitogenomic characteristics and phylogeny in Cricetinae (Rodentia: Cricetidae).
- 776 *Genomics* 112:1716–1725.
- 777 Fahlbusch V. 1969. Pliozäne und Pleistozäne Cricetinae (Rodentia, Mammalia) aus Polen. Acta
- 778 Zoologica Cracoviensia 14:99–138.
- 779 Freudenthal M, Daams R. 1988. Cricetidae (Rodentia) from the type-Aragonian; the genera
- 780 Democricetodon, Fahlbuschia, Pseudofahlbuschia nov. gen., and Renzimys. Scripta Geologica,
- 781 Special Issue 1:133–252.
- 782 Freudenthal M, Hugueney M, Moissenet E. 1994. The genus *Pseudocricetodon* (Cricetidae,
- 783 Mammalia) in the upper Oligocene of the province of Teruel (Spain). Scripta Geologica 104:57-
- 784 114.
- 785 Gai P, Wei Q. 1977. The discovery of Upper Paleolithic Hutouliang Site. Vertebrata PalAsiatica
- 786 15:287–300.
- 787 Gu YM. 1978. New Cave Men and their living environment. In: *Institute of Vertebrate*
- 788 Paleontology and Paleoanthropology, Chinese Academy of Sciences (Ed.). Collected Papers of
- 789 Paleoanthropology. Beijing: Science Press, 158–174.
- 790 Hír J. 1993a. *Cricetulus migratorius* (Pallas, 1773) (Rodentia, Mammalia) population from the
- 791 Toros Mountains (Turkey) (With a special reference to the relation of *Cricetulus* and *Allocricetus*
- 792 genera). Folia Historico Naturalia Musei Matraensis 18:17–34.
- 793 Hír J. 1993b. Allocricetus ehiki Schaub, 1930 (Rodentia, Mammalia) finds from Villány 3 and
- 794 Esztamos 3 (Hungary). Fragmenta Mineralogica et Palaeontologica 16:61–80.
- 795 Hír J. 1994. Cricetinus beremendensis sp. n. (Rodentia, Mammalia) from the Pliocene fauna of
- 796 Beremend 15. (S Hungary). Fragmenta Mineralogica et Paleontologica 17:71–89.

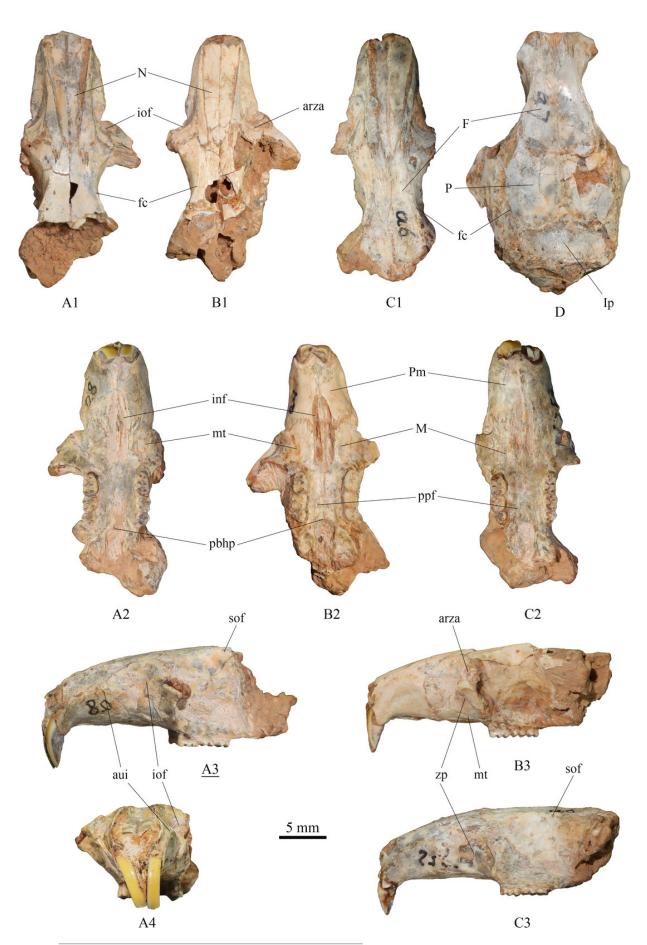
- 797 Hír J. 1996a. New results in the study of Hungarian Plio-Pleistocene cricetids. Acta Zoologica
- 798 Cracoviensia 39:213–218.
- 799 Hír J. 1996b. Cricetinus janossyi sp. n. (Rodentia, Mammalia) from the Pliocene fauna of
- 800 Osztramos 7. (N Hungary). Fragmenta Mineralogica et Palaeontologica 18:79–90.
- 801 Hír J. 1997. A short scetch of the evolution and stratigraphy of the Plio-Pleistocene cricetids
- 802 (Rodentia, Mammalia) in Hungary. Folia Historico Naturalia Musei Matraensis 22:43–49.
- 803 Hu CK. 1985. History and progress of mammalian fossil research of Locality 1 of Zhoukoudian.
- 804 In: Multi-disciplinary study of the Peking Man Site at Zhoukoudian. Beijing: Science Press.
- Huang YP, Fu RY, Li X, Hui ZY. 2021. The study of the animal fossils from Jinniushan. In:
- 806 School of Archaeology and Museology, Peking University; Liaoning Provincial Academy of
- 807 Cultural Relics and Archaeology (Eds.). The Jinniushan Hominin Site. Beijing: Cultural Relics
- 808 Press, 168-285.
- 809 ICZN. 1999. International Code of Zoological Nomenclature (4th Edition). London: International
- 810 Trust for Zoological Nomenclature.
- 311 Jia LP. 1959. Report on 1958's excavation at Peking Man Site. *Palaeovertebrata et*
- 812 Paleoanthropologia 1:21–26.
- 313 Jin CZ. 2002. Chiroptera and Rodentia. In: Wu R K, Li X X, Wu X Z, Mu X N (Eds.). Homo
- 814 erectus from Nanjing. Nanjing: Jiangsu Science and Technology Publishing House, 91–101.
- 315 Jin CZ, Dong W, Gao X, Liu W, Liu JY, Zheng LT, Han LG, Xie XC, Cui N, Zhang YQ. 2004.
- Preliminary report on the 2002 excavation of Jinpendong site at Wuhu, Anhui Province. Acta
- 817 Anthropologica Sinica 23:281–291.
- 318 Jin CZ, Qiu ZX, Zheng JJ. 2009. Chapter 5 The characters of the mammalian fauna from the
- 819 Renzidong Cave and its zoogeographical significance. In: Jin C Z, Liu J Y (Eds.). Paleolithic site
- 820 the Renzidong cave, Fanchang, Anhui Province. Beijing: Science Press, 336–346.
- 321 Jin CZ, Zhang YQ, Wei GB, Cui N, Wang Y. 2009. Rodentia. In: Jin C Z, Liu J Y (Eds.).
- 822 Paleolithic site the Renzidong cave, Fanchang, Anhui Province. Beijing: Science Press, 166–
- 823 220.
- 824 Kishida K. 1929. A synopsis of Corean hamsters. *Lansania*, *Tokyo* 1:1–160.
- 825 Koliadimou KK. 1996. Palaeontological and Biostratigraphical study of the Neogene/Quaternary
- 826 micromammals from Mygdonia basin. Doct thesis, Univ. Thessaloniki: 612.
- 827 Kong FD. 2009. Research on Shanyangzhai Fauna and Their Living Environment of
- 828 Qinhuangdao. Journal of EMCC 19:1–8.
- 829 Koufos GD, Vassiliadou KV, Koliadimou KK, Syrides GE. 2001. Early Pleistocene small
- 830 mammals from Marathoussa, a new locality in the Mygdonia basin, Macedonia, Greece.
- 831 Deinsea 8:49–102.
- 832 Kretzoi M. 1959. Insectivoren, Nagetiere und Lagomorphen der jungstpliozanen Fauna von
- 833 Csarnota im Villanyer Gebirge (Sudungarn). Vertebrata Hungarica 1:237–246.
- 834 Lebedev V, Bannikova A, Neumann K, Ushakova M, Ivanova N, Surov A. 2018. Molecular
- 835 phylogenetics and taxonomy of dwarf hamsters *Cricetulus* Milne-Edwards, 1867 (Cricetidae,
- 836 Rodentia): description of a new genus and reinstatement of another. *Zootaxa* 4387:331–349.
- 837 Li Q, Stidham TA, Ni X, Li L. 2018. Two new Pliocene hamsters (Cricetidae, Rodentia) from
- 838 southwestern Tibet (China), and their implications for rodent dispersal 'into Tibet.' Journal of
- 839 Vertebrate Paleontology 37: e1403443.

- 840 Li YX, Li J, Zhang YX. 2016. Fossil *Scapanulus oweni* (Eulipotyphla, Mammalia) from the
- 841 Shanyangzhai Cave, Middle Pleistocene, Qinhuangdao, China. Quaternary International
- 842 392:197–202.
- Li YX, Zhang YX. 2011. The *Crocidura* fossils (Insectivora, Mammalia) from cave deposits in the
- 844 Middie Pleistocene of Shanyangzhai site, Hebei Province, China. Quaternary Sciences 31:667-
- 845 674.
- 846 Li YX, Zhang YX. 2013. New *Neomys* fossils (Soricidae, Insectivora) from the Middle
- 847 Pleistocene of China. Quaternary international 286:81–84.
- 848 Li YX, Zhang YX, Ao H. 2013. Sorex fossils (Soricidae, Insectivora) from the Middle Pleistocene
- cave site of Shanyangzhai, Hebei Province, China. Quaternary International 298:187–195.
- 850 Li YX, Zhang YX, Li J. 2013. Distribution of several insectivora and the drying trend since the
- Pleistocene in North China. *Quaternary international* 313:240–247.
- Li YX, Zhang YX, Zheng YH. 2013. *Erinaceus europaeus* fossils (Erinaceidae, Insectivora) from
- the Middle Pleistocene cave site of Shanyangzhai, Hebei Province, China. *Quaternary*
- 854 International 286:75–80.
- Liu JY, Wagner J, Chen PF, Sheng GL, Chen J, Jiang Zuo QG, Liu SZ. 2015. Mass mortality of
- a large population of the spotted hyenas (*Crocuta ultima*) at the Lingxian-dong cave,
- 857 Qinhuangdao, Hebei Province: a hyena communal den with its palaeoecological and
- 858 taphonomical interpretation. *Quaternary Sciences* 35:607–621.
- 859 Liu W, Wu XJ, Xing S, Zhang YY. 2014. Human Fossils in China. Beijing: Science Press.
- McKenna MC, Bell SK. 1997. Classification of mammals: above the species level. New York:
- 861 Columbia University Press.
- 862 Musser GG, Carleton MD. 2005. Superfamily Muroidea. In: Wilson D E, Reeder D M (Eds.).
- 863 Mammals Species of the World: A Taxonomic and Geographic Reference. Baltimore: The Johns
- 864 Hopkins University Press, 894–1531.
- 865 Neumann K, Michaux J, Lebedev V, Yigit N, Colak E, Ivanova N, Poltoraus A, Surov A, Markov
- 866 G, Maak S, others. 2006. Molecular phylogeny of the Cricetinae subfamily based on the
- mitochondrial cytochrome b and 12S rRNA genes and the nuclear vWF gene. *Molecular*
- 868 phylogenetics and evolution 39:135–148.
- Niu PS, Zhang YJ, Fa L. 2003. Formation period and environment of speleothem in the Liujiang
- 870 Basin inferred from the Shanyangzhai mammal fossils. *Marine Geology & Quaternary Geology*
- 871 23:117–122.
- 872 Ognev SI. 1914. Die Säugetiere aus dem Südlichen UssuriGebiete. Journal de la Section
- 873 Zoologique de la Société Impériale des Amis des Sciences Naturalles, d'Antropologie et
- 874 *d'Ethnographie* 2:101–134.
- 875 Pazonyi P. 2011. Palaeoecology of Late Pliocene and Quaternary mammalian communities in
- 876 the Carpathian Basin. *Acta Zoologica Cracoviensia-Series A: Vertebrata* 54: 1–32.
- 877 Pei WC. 1931. Mammalian remains from Locality 5 at Chouk'outien. *Palaeontologia Sinica*.
- 878 Series C 7:16.
- Pei WC. 1936. On the mammalian remains from Locality 3 at Choukoutien. *Palaeontologia*
- 880 *Sinica, Series C* 7:120.
- 881 Pei WC. 1939. A Preliminary Study on a New Palæolithic Station known as locality 15 within the
- 882 Choukoutien Region. Bulletin of the Geological Society of China 19:147–187.

- 883 Pei WC. 1940. The Upper Cave fauna from Choukoutien. Palaeontologia Sinica, New Series C
- 884 Number 10:1-84.
- 885 Pradel A. 1981. Biometrical remarks on the hamster Cricetulus migratorius (Pallas 1773)
- 886 (Rodentia, Mammalia) from Krak des Chevaliers (Syria). Acta Zoologica Cracoviensia 25:271–
- 887 292.
- 888 Qiu ZD. 1995. A new cricetid from the Lufeng hominoid locality, late Miocene of China.
- 889 Vertebrata PalAsiatica 33:61-73.
- 890 Qiu ZD, Li Q. 2016. Neogene Rodents from Central Nei Mongol, China. Beijing: Science Press.
- 891 Romanenko SA, Lebedev VS, Bannikova AA, Pavlova SV, Serdyukova NA, Feoktistova NY,
- 392 Jiapeng Q, Yuehua S, Surov AV, Graphodatsky AS. 2021. Karyotypic and molecular evidence
- supports the endemic Tibetan hamsters as a separate divergent lineage of Cricetinae. Scientific
- 894 reports 11:1-9.
- 895 Schaub S. 1930. Quartäre und jungtertiäre Hamster. Abhandlungen der Schweizerischen
- 896 Palaeontologischen Gesellschaft 49:1–49.
- 897 Schaub S. 1934. Über einige fossile Simplicidentaten aus China und der Mongolei.
- 898 Abhandlungen der Schweizerischen Palaeontologischen Gesellschaft 54:1–39.
- 899 Sinitsa MV, Delinschi A. 2016. The earliest member of *Neocricetodon* (Rodentia: Cricetidae): a
- 900 redescription of *N. moldavicus* from Eastern Europe, and its bearing on the evolution of the
- 901 genus. Journal of Paleontology 90:771–784.
- 902 Steppan SJ, Schenk JJ. 2017. Muroid rodent phylogenetics: 900-species tree reveals increasing
- 903 diversification rates. *PloS one* 12:e0183070.
- 904 Storch G. 1974. Neue Zwerghamster aus dem Holozan von Aserbeidschan, Iran (Rodentia:
- 905 Cricetinae). Senckenbergiana Biologica 55:21–28.
- 906 Sun YF, Jin CZ. 1990. Micromammal fossils. In: Gulongshan cave site: a Upper Paleolithic site
- 907 at Dalian City. Beijing: Beijing Science and Technology Press, 27–43.
- 908 Teilhard de Chardin P. 1936. Fossil mammals from Locality 9 of Choukoutien. Palaeontologia
- 909 Sinica, Series C 7:61.
- 910 Teilhard de Chardin P. 1940. The fossils from Locality 18 near Peking. Palaeontologia Sinica,
- 911 New Series C Number 9:1–94.
- 912 Teilhard de Chardin P, Leroy P. 1942. Chinese fossil mammals: a complete bibliography
- analysed, tabulated, annotated and indexed. *Géobiologia* 8:1–142.
- 914 Teilhard de Chardin P, Pei WC. 1941. The fossil mammals from Locality 13 of Choukoutien.
- 915 Palaeontologia Sinica, New Series C Number 11:1–106.
- 916 Teilhard de Chardin P, Young CC. 1929. Preliminary report on the Chou Kou Tien fossififerous
- 917 deposits. Bulletin of the Geological Society of China 8:173–202.
- 918 Tong HW, Shang H, Zhang SQ, Chen FY. 2004. A preliminary report on the newly found
- 919 Tianyuan Cave, a Late Pleistocene human fossil site near Zhoukoudian. Chinese Science
- 920 Bulletin 49:853-857.
- 921 Tong HW, Wu XJ, Dong Z, Sheng JC, Jin ZT, Pei SW, Liu W. 2018. Preliminary report on the
- 922 mammalian fossils from the ancient human site of Hualong Cave in DongZhi, Anhui. Acta
- 923 Anthropologica Sinica 37:284–305.
- 924 Topachevsky VA, Skorik AF. 1992. Neogenovye i pleystocenovye nizhie khomiakoobraznye
- 925 yuga Vostochnoy Evropy. Kiev: Naukova Dumka.



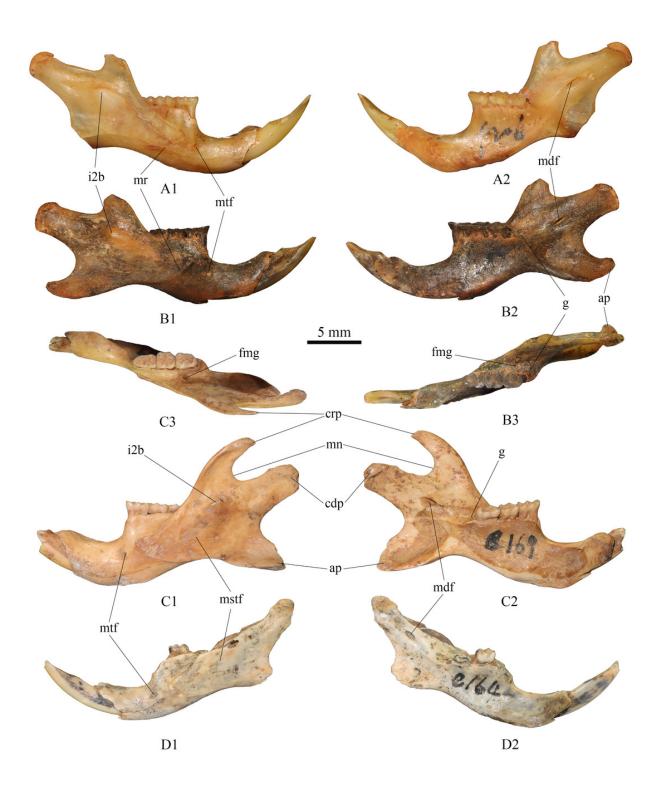
- 926 Venczel M, Gardner JD. 2005. The geologically youngest albanerpetontid amphibian, from the
- 927 lower Pliocene of Hungary. *Palaeontology* 48: 1273–1300.
- 928 Voss RS. 1988. Systematics and ecology of ichthyomyine rodents (Muroidea): patterns of
- 929 morphological evolution in a small adaptive radiation. Bulletin of the American Museum of
- 930 Natural History. 188: 259–493.
- 931 WU BL, DENG CL, KONG YF, LIU SZ, SUN L, LI SH, GE JY, WANG Y, JIN CZ, ZHU RX. 2018.
- 932 Magnetostratigraphy of the fluvio-lacustrine sequence on the Guangongtan section in
- 933 Longzhong Basin, NW China. Chinese Journal of Geophysics 61:1390–1399.
- 934 Wang BY, Qiu ZX. 2018. Late Miocene Pararhizomyines from Linxia Basin of Gansu, China.
- 935 Beijing: Science Press.
- 936 Wang BY, Wu WY, Qiu ZD. 2020. Cricetidae. In: Qiu Z D, Li C K, Zheng S H (Eds.),
- 937 Palaeovertebrata Sinica, Volume III, Basal Synapsida and Mammals, Fascicle 5(2) (Serial no.
- 938 18-2): Glires II: Rodentia II. Beijing: Science Press, 10–152.
- 939 Wang W, Zhang YX, Li YX, Gong HJ. 2010. A new species of *Lepus* (Lagomorpha, Mammalia)
- 940 from the Middle Pleistocene of the Liujiang Basin in Qinhuangdao of Hebei Province, China.
- 941 Vertebrata PalAsiatica 48:63–70.
- 942 Wu WY, Flynn LJ. 2017. The hamsters of Yushe basin. In: Flynn L J, Wu W Y (Eds.). Vertebrate
- 943 Paleobiology and Paleoanthropology Series. Late Cenozoic Yushe basin, Shanxi province,
- 944 China: Geology and fossil mammals, Volume II: Small Mammal Fossils of Yushe Basin.
- 945 Dordrecht: Springer, 123–137.
- 946 Xia L, Yang QS, Ma Y, Feng ZJ, Zhou LZ. 2006. A guide to the measurement of mammal skull
- 947 III: Rodentia and Lagomorpha. *Chinese Journal of Zoology* 41:68–71.
- 948 Xie K, Li YX. 2016. Middle Pleistocene dwarf hamster of Shanyangzhai fauna in Qinhuangdao
- 949 area, China. Quaternary Sciences 36:322–331.
- 950 Xie K, Zhang YX, Li YX. 2021. Revision to Kowalskia from the Houhecun Fauna and a New
- 951 Discovery of Tscherskia (Cricetidae, Rodentia) from the Youhe Fauna of Weinan, Shaanxi
- 952 Province, China. Acta Geologica Sinica English Edition 95:1073–1079. DOI: 10.1111/1755-
- 953 6724.14776.
- 954 Xu QQ, Jin CZ, Tong HW, Dong W, Liu JY, Cai BX. 1997. Three glacial cycles during Peking
- 955 Man's time. In: Tong Y S, Zhang Y Y, Wu W Y et al. (Eds.). Evidence for Evolution—Essays in
- 956 Honor of Prof. Chungchien Young on the Hundredth Anniversary of His Birth. Beijing: China
- 957 Ocean Press, 209–226.
- 958 Yang QS, Xia L, Ma Y, Feng ZJ, Quan GQ. 2005. A guide to the measurement of mammal skull
- 959 I : basic measurement. *Chinese Journal of Zoology* 40:50–56.
- 960 Young CC. 1927. Fossile Nagetiere aus Nord-China. Palaeontologia Sinica, Series C 5:82.
- 961 Young CC. 1932. On the fossil vertebrate remains from Localities 2, 7 and 8 at Choukoutien.
- 962 Palaeontologia Sinica, Series C 7:24.
- 963 Young CC. 1934. On the Insectivora, Chiroptera, Rodentia and Primates other than
- 964 Sinanthropus from Locality 1 at Choukoutien. *Palaeontologia Sinica*, *Series C* 8:160.
- 965 Yue LP, Xue XX. 1996. Palaeomagnetism of Chinese Loess. Beijing: Geology Press.
- 966 Zdansky O. 1923. Über Ein Säugerknochenlager in Chou-K'ou-Tien, Provinz Chihli. Bulletin of
- 967 the Geological Survey of China 5:83–90.
- 968 Zdansky O. 1928. Die Säugetiere der Quartärfauna von Chou-K'ou-Tien. Palaeontologia Sinica,
- 969 Series C 5:146.


- 970 Zhang SS. 2004. Beijing Annals, World Cultural Heritage Volume, The Peking Man Ruins
- 971 Annals. Beijing: Beijing Press.
- 272 Zhang ZH, Fu RY, Chen BF, Liu JY, Zhu MY, Wu HK, Huang WW. 1985. A preliminary report
- 973 on the excavation of Paleolithic site at Xiaogushan of Haicheng, Liaoning, Province. Acta
- 974 Anthropologica Sinica 4:70–81.
- 975 Zhang YX, Li YX. 2015. The environment change and the migrate of some insectivora since the
- 976 Pleistocene in China. 45:905–912.
- 277 Zhang YX, Li YX, Wang W, Gong HJ. 2010. Middle Pleistocene mammalian fauna of
- 978 Shanyangzhai cave in Qinhuangdao area, China and its zoogeographical significance. Chinese
- 979 *Science Bulletin* 55:72–76.
- 280 Zhang ZH, Wei HB, Xu ZH. 1986. Fossils of animal. In: *Miaohoushan: a site of early Paleolithic*
- 981 in Benxi County, Liaoning. Beijing: Wenwu Press, 35–66.
- 282 Zhang ZQ, Zheng SH, Liu LP. 2008. Late Miocene cricetids from the Bahe Formation, Lantian,
- 983 Shaanxi Province. *Vertebrata PalAsiatica* 46:307–316.
- 284 Zhang ZH, Zou BK, Zhang LK. 1980. The discovery of fossil mammals at Anping, Liaoning.
- 985 Vertebrata PalAsiatica 18:154–162.
- 21:230 Zheng SH. 1983. Micromammals from the Hexian Man Locality. *Vertebrata PalAsiatica* 21:230
- 987 240.
- 988 Zheng SH. 1984a. Revised determination of the fossil Cricetine (Rodentia, Mammalia) of
- 989 Choukoutien district. Vertebrata PalAsiatica 22:179–197.
- 290 Zheng SH. 1984b. A new species of *Kowalskia* (Rodentia, Mammalia) of Yinan, Shandong.
- 991 Vertebrata PalAsiatica 22:251–260.
- 292 Zheng SH. 1993. *Quaternary rodents of Sichuan-Guizhou area, China*. Beijing: Science Press.
- 993 Zheng SH, Han DF. 1993. Mammalian fossils. In: Memoirs of Institute of Vertebrate
- 994 Palaeontology and Palaeoanthropology, Academia Sinica: Comprehensive study on the
- 995 *Jinniushan paleolithic site*. Beijing: Science Press, 43–128.
- 296 Zheng SH, Yuan BY, Gao FQ, Sun FQ. 1985. Fossil mammals and their evolution. In: *Loess*
- 997 and the Environment. Beijing: Science Press, 113–141.

Geographic locations of Syz 1~4. Satellite photo credit: Google Earth.

Skulls of Tscherskia triton varians from Syz 2.

(A) NWUV 1489.a8, incomplete skull; (B) NWUV 1489.a21, incomplete skull; (C) NWUV 1489.a6, incomplete skull; (D) NWUV 1489.a7, incomplete skull. (A1), (B1), (C1), (D), dorsal view; (A2), (B2), (C2), lateral view; (A3), (B3), (C3), ventral view; (A4), anterior view. The underlined label indicates the image has been reversed. Abbreviations: arza, anterior root of the zygomatic arc; aui, alveolus of the upper incisor; F, frontal; fc, frontal crest; inf, incisive foramen; iof, infraorbital foramen; Ip, interparietal; M, maxilla; mt, masseteric tubercle; N, nasal; P, parietal; pbhp, posterior border of the hard palate; Pm, premaxilla; ppf, posterior palatine foramen; sof, supraorbital foramen; zp, zygomatic plate.

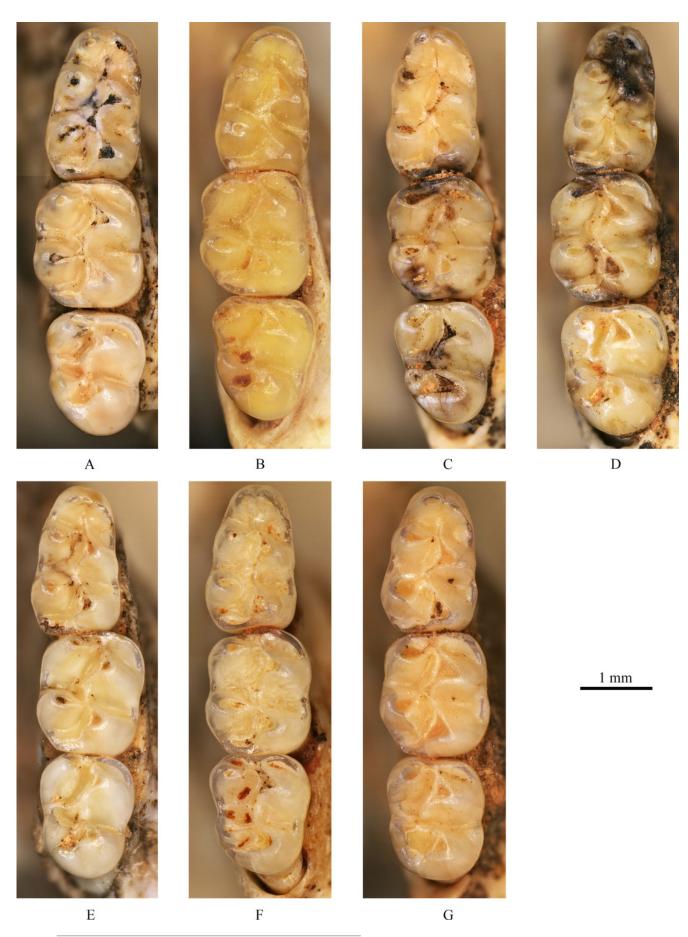

PeerJ reviewing PDF | (2022:12:80883:1:1:NEW 13 Mar 2023)

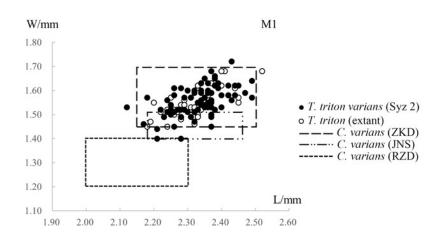
Mandibles of Tscherskia triton varians from Syz 2.

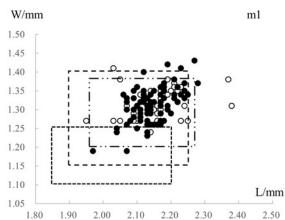
(A) NWUV 1489.f206, right mandible; (B) NWUV 1489.f207, right mandible; (C) NWUV 1489.e169, left mandible; (D) NWUV 1489.e164, left mandible. (A1), (B1), (C1), (D1), buccal view; (A2), (B2), (C2), (D2), lingual view; (B3), (C3), occlusal view. Abbreviations: ap, angular process; cdp, condyloid process; crp, coronoid process; fmg, foramen in the middle of the groove (g); g, groove between the alveolus of molars and the base of the coronoid process; i2b, bulge formed by i2; mdf, mandibular foramen; mn, mandibular notch; mr, masseteric ridge; mstf, masseteric fossa; mtf, mental foramen.

PeerJ

Upper molars of *Tscherskia triton varians* from Syz 2.


(A) NWUV 1489.a5; (B) NWUV 1489.a14; (C) NWUV 1489.a21; (D) NWUV 1489.b1; (E) NWUV 1489.c3; (F) NWUV 1489.c5; (G) NWUV 1489.c16. The arrow indicates the axioloph.


Lower molars of *Tscherskia triton varians* from Syz 2.


(A) NWUV 1489.f8; (B) NWUV 1489.f13; (C) NWUV 1489.f22; (D) NWUV 1489.f28; (E) NWUV 1489.f31; (F) NWUV 1489.f49; (G) NWUV 1489.f56.

Scatter diagrams of lengths of M1s and m1s of *Cricetinus varians* and *Tscherskia triton*.

What der the Proton Mean

Table 1(on next page)

Measurements and comparisons of skulls and mandibles of *Tscherskia triton varians* from Syz 2 and extant T. $triton (mm)^{\#}$

2 3
4
5
6
7
8
9
10

		T.	triton var	ians of Sy	z 2				extant	T. triton		
	N	Min.	Mean	Max.	SD	CV	N	Min.	Mean	Max.	SD	CV
Palatal length	4	16.39	18.01	20.04	1.57	8.7%	40	13.72	17.21	20.13	1.70	9.9%
Upper diastema length	13	9.19	10.83	12.00	0.86	7.9%	46	7.64	9.98	12.31	1.15	11.5%
Length of the incisive foramen	11	6.26	7.11	7.93	0.51	7.2%	46	4.81	6.35	7.66	0.76	12.0%
Anterior palatal breadth	21	3.14	3.60	4.06	0.27	7.4%	44	2.39	3.18	3.78	0.31	9.8%
Posterior palatal breadth	11	3.34	3.78	4.02	0.18	4.7%	39	2.48	3.21	4.02	0.29	9.1%
Width of nasal *	6	1.88	2.18	2.34	0.16	7.4%	45	1.95	2.44	3.31	0.29	12.0%
Frontal suture length	1		9.66				43	8.83	10.68	12.62	0.95	8.9%
Parietal suture length	1		5.78				41	5.33	6.38	7.49	0.51	8.0%
Interparietal length	1		5.83				42	2.70	3.88	6.16	0.58	15.0%
Interparietal width	1		10.79				40	7.70	9.11	10.47	0.68	7.5%
Lower diastema length	21	4.89	5.76	6.70	0.56	9.7%	38	4.77	5.70	6.67	0.46	8.0%
Depth of mandible under anterior edge of alveolus	65	3.54	4.48	6.52	0.50	11.2%	40	3.55	4.56	5.91	0.52	11.4%
Depth of mandible between two roots of m1	78	4.31	5.27	6.63	0.48	9.2%	40	3.60	4.91	6.59	0.71	14.4%
Depth of mandible between two roots of m2	142	3.84	4.80	6.05	0.45	9.4%	40	3.04	4.36	6.05	0.68	15.7%
Depth of mandible between two roots of m3	162	2.83	3.87	4.98	0.44	11.3%	37	2.74	3.57	5.10	0.59	16.4%
Depth of mandible under posterior edge of alveolus	187	2.42	3.33	4.21	0.32	9.6%	40	2.40	3.17	4.44	0.42	13.2%
Length of mandible from the condyle	2	20.38	22.24	24.09	1.86	8.3%	38	16.05	20.30	24.99	2.07	10.2%
Distance from coronion to gonion ventrale	1		13.13				29	7.58	10.23	12.95	1.36	13.3%

[#] See Supplementary datasets 1~4 for raw data.

* "Width of nasal" here refers to the distance between the two junctions of the nasal, premaxilla and frontal.

Table 2(on next page)

Measurements and comparisons of molars of Tscherskia triton and Cricetinus varians $(mm)^{\#}$

		M1~3	N	11	N	12	N	13	m1~3	n	nl	n	12	n	13
		L	L	W	L	W	L	W	L	L	W	L	W	L	W
	N	34	83	84	83	84	47	46	56	89	105	106	107	74	73
T.	Min.	5.05	2.12	1.40	1.69	1.44	1.21	1.27	5.40	1.97	1.19	1.65	1.39	1.65	1.27
triton	Mean	5.44	2.33	1.56	1.85	1.56	1.43	1.40	5.67	2.14	1.31	1.81	1.54	1.78	1.43
varians of	Max.	5.69	2.49	1.72	2.00	1.78	1.55	1.48	5.98	2.28	1.43	1.96	1.70	1.93	1.56
Syz 2	SD	0.15	0.07	0.06	0.06	0.06	0.07	0.04	0.13	0.06	0.04	0.06	0.05	0.06	0.05
	CV	2.8%	3.2%	4.0%	3.4%	3.9%	5.2%	3.1%	2.4%	2.6%	3.4%	3.4%	3.2%	3.4%	3.6%
	N	12	21	20	18	18	14	14	49	56	56	57	57	51	50
С.	Min.	5.25	2.15	1.45	1.65	1.45	1.35	1.25	4.70	1.90	1.15	1.60	1.30	1.60	1.20
varians	Mean	5.60	2.32	1.56	1.80	1.59	1.44	1.41	5.52	2.06	1.30	1.72	1.43	1.71	1.36
of ZKD *	Max.	5.85	2.50	1.70	1.90	1.65	1.50	1.50	5.85	2.25	1.40	1.90	1.55	1.90	1.55
*	SD	0.19	0.10	0.07	0.06	0.07	0.05	0.06	0.20	0.08	0.06	0.09	0.05	0.09	0.06
	CV	0.4%	4.3%	4.6%	3.5%	4.2%	3.3%	4.1%	3.6%	3.9%	4.5%	5.1%	3.7%	5.0%	4.7%
C.	N	5	9	9	9	9	5	5	12	20	20	18	18	12	12
varians	Min.	5.28	2.18	1.40	1.77	1.44	1.42	1.30	5.33	1.96	1.20	1.70	1.36	1.67	1.30
of JNS **	Mean	5.42	2.34	1.46	1.95	1.52	1.49	1.38	5.59	2.07	1.29	1.73	1.45	1.79	1.35
**	Max.	5.60	2.46	1.51	2.00	1.60	1.57	1.50	6.00	2.27	1.38	2.00	1.60	2.00	1.47
С.	N		35	35	25	25	1	1	2	52	52	50	50	18	2
varians	Min.		2.0	1.2	1.5	1.25			4.95	1.85	1.1	1.45	1.15	1.4	1.15
of RZD ***	Mean		2.15	1.31	1.64	1.32	1.7	1.5	4.98	2.01	1.14	1.59	1.3	1.59	1.26
444	Max.		2.3	1.4	1.8	1.4			5	2.2	1.25	1.65	1.4	1.7	1.3
	N	42	47	47	47	47	42	42	36	39	38	39	39	36	36
	Min.	5.01	2.18	1.45	1.64	1.47	1.30	1.26	5.26	1.95	1.24	1.68	1.41	1.66	1.32
extant T.	Mean	5.36	2.32	1.55	1.82	1.59	1.43	1.40	5.58	2.16	1.32	1.81	1.51	1.78	1.40
1. triton	Max.	5.79	2.52	1.68	2.00	1.75	1.67	1.62	5.86	2.38	1.41	1.94	1.63	1.99	1.58
	SD	0.15	0.07	0.06	0.08	0.05	0.08	0.06	0.15	0.09	0.04	0.06	0.05	0.07	0.06
	CV	2.7%	3.1%	3.7%	4.2%	3.4%	5.4%	4.1%	2.8%	4.0%	3.1%	3.4%	3.5%	4.0%	4.3%

^{2 #} See Supplementary datasets 5~8 for raw data.

^{*} quoted from Zheng (1984a); ** quoted from Zheng & Han (1993); *** quoted from Jin et al. (2009).

Table 3(on next page)

Comparisons of mesolophids of m1s between *Tscherskia triton* and *Cricetinus varians*

Species and locality	frequency of mesolophid on m1
C. varians of ZKD Loc. 1	70% (40/57)
C. varians of JNS	67%
C. varians of ZKD Loc. 3	61% (54/89)
T. triton varians of Syz 2	43% (44/103)
extant T. triton	30% (21/69)

Table 4(on next page)

Comparisons of mesolophids of m2s between *Tscherskia triton* and *Cricetinus varians*

Species and locality	frequency of	proportion of each morphotype of mesolophid on m2				
Species and locality	mesolophid on m2	I or II*	III*	IV*		
C. varians of ZKD Loc. 1	93% (53/57)		11.3% (6/53)			
C. varians of JNS	91% (20/22)		0 (0/20)			
C. varians of ZKD Loc. 3	97% (86/89)		14.0% (12/86)			
T. triton varians of Syz 2	95% (158/166)	87.3% (137/157)	10.2% (16/157)	2.5% (4/157)		
extant T. triton	87% (60/69)	96.6% (58/60)	1.7% (1/60)	1.7% (1/60)		

* I, having a free end; II, being connected to the metaconid; III, reaching the lingual tooth edge; IV, being connected to the entoconid.

U

PeerJ reviewing PDF | (2022:12:80883:1:1:NEW 13 Mar 2023)

Table 5(on next page)

Comparisons of mesolophids of m3s between *Tscherskia triton* and *Cricetinus varians*

1		
1		
		1
		ı

~	frequency of	proportion of each morphotype of mesolophid on m3						
Species and locality	mesolophid on m3	I*	II* III*		IV*	V*		
C. varians of ZKD Loc. 1	100% (57/57)	71%**						
C. varians of JNS	100%		100%**					
C. varians of ZKD Loc. 3	100% (89/89)	100% (89/89) 91%**						
			5.3% (122/128)	3.9%	0.8%			
T. triton varians of Syz 2	99.2% (129/130)	59.4% (76/128)	35.2% (45/128)	0.8% (1/128)	(5/128)	(1/128)		
extant T. triton		98	.4% (62/63)	1.6%				
	100% (63/63)	44.4% (28/63)	49.2% (31/63)	4.8% (3/63)	(1/63)	0 (0/63)		

* I, having no branch, being connected to the lingual tooth edge; II, having two branches, with one being connected to the lingual tooth edge and the other to the metaconid; III, having three branches; IV, having no branch, being connected to the metaconid; V, having a free end. ** being connected to the lingual tooth edge

Table 6(on next page)

Comparisons of anterolophules and protolophules I of M1s between *Tscherskia triton* and *Cricetinus varians*

Species and locality	frequency of the anterolophule behind the buccal anterocone	frequency of the protolophule I		
C. varians of ZKD Loc. 1, 3		76%		
C. varians of JNS	100% (9/9)	≥30%		
T. triton varians of Syz 2	89.1% (41/46)	57.4% (27/47)		
extant T. triton	71.6% (53/74)	37.2% (32/86)		

Table 7(on next page)

The comparisons of frequencies of mesolophids on m1-3s between the species of *Cricetinus, Tscherskia, Cricetulus, Nothocricetulus* and *Allocricetus*

Spe		Localities	Geologic age	frequency of	frequency of	frequency of	Sources	
present paper	original references	200mmes	Stologic age	mesolophid on m1	mesolophid on m2	mesolophid on m3	5041005	
Tscherskia triton (type species)	/	Shaanxi Province, China	recent	30% (21/69)	87% (60/69)	100% (63/63)	present paper	
	/	Syz 2, Hebei Province, China	late Middle Pleistocene	43% (44/103)	95% (162/170)	100% (134/134)	present paper	
T. triton varians	Cricetinus varians	ZKD Loc. 3, Beijing, China	late Middle Pleistocene or Late Pleistocene	61% (54/89)	97% (86/89)	100% (89/89)	Zheng, 1984a	
	Cricelinus varians	Jinniushan, Liaoning Province, China	late Middle Pleistocene	67%	91% (20/22)	100%	Zheng & Han, 1993	
		ZKD Loc. 1 (type locality), Beijing, China	Middle Pleistocene	70% (40/57)	93% (53/57)	100% (57/57)	Zheng, 1984a	
T. triton varians?	Cricetinus varians	Renzidong, Anhui Province, China	early Early Pleistocene	present	present	present	Jin et al., 2009	
T. europaeus	Cricetinus europaeus	Csarnóta 2 (type locality), Hungary	Pliocene	33.3% (2/6)	71.4% (5/7)	100% (5/5)	Hír, 1994	
T. gritzai	Cricetinus gritzai	Odessa (type locality), Ukraine	Pliocene	present	present	present	Topachevsky & Skorik, 1992	
T. janossyi	Cricetinus janossyi	Osztramos 7 (type locality) and Csarnóta 2, Hungary	Pliocene	38.9% (7/18)	95% (19/20)	100% (15/15)	Hír, 1996b	
T. koufosi	Cricetinus koufosi	Mygdonia basin (type locality), Greece	Early Pleistocene	0	-	-	Koufos et al., 2001	
Neocricetodon mesolophidos	Cricetinus mesolophidos	Yushe basin (type locality), Shanxi Province, China	Pliocene	100%	100%	perhaps 100%	Wu & Flynn, 2017	
Cricetulus barabensis (type species)	/	Shaanxi Province, China	recent	0 (0/8)	0 (0/8)	0 (0/8)	present paper	
C. longicaudatus	/	Shaanxi Province, China	recent	0 (0/23)	0 (0/23)	26.1% (6/23)	present paper	
Nothocricetulus	Cricetulus	Krak des Chevaliers, Syria	recent	0?	0?	very often	Pradel, 1981	
migratorius (type species)	migratorius	Meydan, Toros Mountains, Turkey	Holocene	0?	10%	81%	Hír, 1993a	
		Tarko Rockshelter 1, Hungary		0?	10%	85%		
Allocricetus bursae		Tarko Rockshelter 2-10, Hungary	anda Middla	0?	2%	60%		
	/	Tarko Rockshelter 11-12, Hungary	early Middle Pleistocene	0?	16%	84%	Hír, 1993a	
(type species)		Tarko Rockshelter 13-15, Hungary	rieistocene	0?	28%	100%		
		Tarko Rockshelter 16-18, Hungary		0?	33%	93%		
A. ehiki		Villány 3 and Esztramos 3, Hungary	Early Pleistocene	0?	52%	91%	Hír, 1993a, b	
A. eniki	/	ZKD Loc. 12, 18, Beijing, China	Early Pleistocene	5% or 0?	4%	100% (47/47)	Zheng, 1984a	
A. beremendensis	Cricetinus beremendensis	Beremend 15 (type locality) and Csarnóta 4, Hungary	Pliocene	0% (0/72)	14.8% (9/61)	100% (53/53)	Hír, 1994	