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A detailed morphological description and comparative study were conducted on numerous
large-sized hamster remains collected from the late Middle Pleistocene Locality 2 of
Shanyangzhai (Syz 2), Hebei Province, China. The comparisons reveal that these fossils are
highly similar to the extant Tscherskia triton in size and morphology, including the small
degree of alternating between the main opposite cusps on M1-3, the presence of axioloph
on M3, and mesolophids on m1-2 that are present but seldom reach the lingual margin of
the teeth, among other features. However, minor differences between the two still exist.
Consequently, all these fossils are designated as a chronosubspecies of the extant species,
T. triton varians comb. nov. The skull and molar morphologies of Cricetinus varians and T.
triton were meticulously compared to resolve the long-standing debate regarding the
validity of Cricetinus Zdansky, 1928, and C. varians Zdansky, 1928. The findings indicate
that the differences between the two are slight; as a result, C. varians can only be
considered a chronosubspecies of T. triton, i.e., T. triton varians comb. nov., and Cricetinus
should be recognized as a junior synonym of Tscherskia. We tentatively propose that,
among the seven species once referred to Cricetinus in Eurasia, C. europaeus, C. gritzai, C.
janossyi, and C. koufosi should be reassigned to Tscherskia, while C. beremendensis
should be transferred to Allocricetus, and C. mesolophidos to Neocricetodon. Excluding
Tscherskia sp. from the Late Pliocene Youhe fauna, there are no reliable Tscherskia fossils
in China earlier than the Middle Pleistocene. Based on the current evidence, Tscherskia
may have originated from Neocricetodon during the Early Pliocene in Europe and
subsequently spread to Asia. T. triton is its sole surviving representative, which now
exclusively inhabits East Asia.
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Abstract

A detailed morphological description and comparative study were conducted on numerous large-
sized hamster remains collected from the late Middle Pleistocene Locality 2 of Shanyangzhai
(Syz 2), Hebei Province, China. The comparisons reveal that these fossils are highly similar to
the extant Tscherskia triton in size and morphology, including the small degree of alternating
between the main opposite cusps on M1-3, the presence of axioloph on M3, and mesolophids on
m1-2 that are present but seldom reach the lingual margin of the teeth, among other features.
However, minor differences between the two still exist. Consequently, all these fossils are
designated as a chronosubspecies of the extant species, 7. triton varians comb. nov. The skull
and molar morphologies of Cricetinus varians and T. triton were meticulously compared to
resolve the long-standing debate regarding the validity of Cricetinus Zdansky, 1928, and C.
varians Zdansky, 1928. The findings indicate that the differences between the two are slight; as a
result, C. varians can only be considered a chronosubspecies of 7. triton, i.e., T. triton varians
comb. nov., and Cricetinus should be recognized as a junior synonym of Tscherskia. We
tentatively propose that, among the seven species once referred to Cricetinus in Eurasia, C.
europaeus, C. gritzai, C. janossyi, and C. koufosi should be reassigned to Tscherskia, while C.
beremendensis should be transferred to Allocricetus, and C. mesolophidos to Neocricetodon.
Excluding Tscherskia sp. from the Late Pliocene Youhe fauna, there are no reliable Tscherskia
fossils in China earlier than the Middle Pleistocene. Based on the current evidence, Tscherskia
may have originated from Neocricetodon during the Early Pliocene in Europe and subsequently
spread to Asia. T. triton is its sole surviving representative, which now exclusively inhabits East
Asia.
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Introduction

The late Middle Pleistocene Locality 2 of Shanyangzhai (village) has yielded abundant
vertebrate fossils and one of the most common among them are the remains of hamsters
far more than 50 skulls, 2500 jaws, and very numerous isolated teeth have been discovered.
These materials can be readily divided into two groups based on size. Xie and Li (2016) have
described the small-sized group, recognizing two hamster species, Cricetulus longicaudatus and
C. barabensis. The present paper focuses on the remains of the large-sized group, providing a
detailed morphological description and comparative study of these specimens.

The genus Cricetinus and its type species C. varians were erected by Zdansky (1928) on the
basis of fossils from the renowned Middle Pleistocene Locality 1 of Zhoukoudian (i.e., the
Peking Man Site), Beijing. Since then, hamster remains from several other Pleistocene mammal
fossil sites have been continuously referred to C. varians, making it one of the most common
micromammal species of Pleistocene faunas in northern China (refer to the synonymy of
Tscherskia triton varians below). Kretzoi (1959) founded the second species of Cricetinus, C.
europaeus, based on material from the Pliocene fauna of Csarnoéta 2 in the Villany Mountains,
southern Hungary. Following Kretzoi, five other hamster species have been successively
allocated to Cricetinus (e.g., Hir, 1994; Wu & Flynn, 2017), rendering Cricetinus a widely
distributed genus, both spatially and temporally. However, the validity of Cricetinus and C.
varians has long been questioned by many researchers since the 1930s (e.g., Pei, 1936; Teilhard
de Chardin & Pei, 1941; Teilhard de Chardin & Leroy, 1942; Gu, 1978; McKenna & Bell, 1997).
The crux of this debate revolves around whether Cricetinus and C. varians are junior synonyms
of Tscherskia and T. triton, respectively. In the present study, we examine the long-disputed
issue of the validity of Cricetinus and C. varians based on a detailed description of large-sized
hamster material from Locality 2 of Shanyangzhai, in order to enhance our understanding of the
origin and evolution of extant Cricetinae taxa.

It is worth pointing out that, since Argyropulo (1933)’s work, Tscherskia has long been
considered a subgenus of Cricetulus, with a few researchers maintaining this view until recently
(e.g., Chen & Gao, 2000; Wang, Wu & Qiu, 2020). However, several molecular phylogenetic
studies in recent years have demonstrated that Cricetulus in the traditional sense (usually

SO

including C. barabensis, C. longicaudatus, C. migratorius, C. kamensis, C. triton) is
polyphyletic. As a result, the subgenera Tscherskia and Urocricetus (the Tibetan hamster) should
be treated as two independent genera (e.g., Neumann et al., 2006; Steppan & Schenk, 2017;
Lebedev et al., 2018; Ding et al., 2020; Romanenko et al., 2021). Furthermore, C. migratorius
(the grey hamster) should also be recognized as an independent genus, and Lebedev et al. (2018)
have proposed a new genus name, Nothocricetulus, for it. According to these studies, Cricetulus
is generally more closely related to Nothocricetulus, Cricetus, and Allocricetulus when compared
to Tscherskia. In addition to molecular phylogenetic evidence, morphological differences
between T. triton and members of Cricetulus (in the traditional sense) are also apparent (Musser
& Carleton, 2005) (Figures S1 to S3). For instance, 7. triton has a considerably larger body size
than the latter: the average body length of the former is approximately 157 mm, while the same
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measurement for the later ranges approximately from 90-100 mm (based on data provided by
Chen & Gao, 2000). Moreover, we find that the M3 of T. rifon bears an axioloph (sensu
Freudenthal & Daams, 1988) (see “Discussion” for details), a feature that is, to the best of our
knowledge, unique among all living Cricetinae species. The presence of the axioloph
undoubtedly highlights the uniqueness of Tscherskia within Cricetinae, although its taxonomic
significance warrants further investigation. For above reasons, we follow the prevailing opinion
of researchers over the last two decades and no longer consider Tscherskia as a subgenus of
Cricetulus, but rather as a distinct genus.
Geologic setting

Shanyangzhai Village (119°32'14.00"E, 40°5'17.82"N) is situated in the central part of
Haigang District, Hebei Province, China, approximately 20 kilometers from Bohai Bay. The
Ordovician limestone of the Majiagou Formation south of the village reveals numerous fossil-
bearing fissures or cave deposits due to quarrying activities. To date, four primary fossiliferous
localities have been discovered, numbered Localities 1, 2, 3, and 4 of Shanyangzhai (abbreviated
as Syz 1-4) in order from south to north (Fig.1). Based on their mammalian components, these
localities may have different ages. The fossils from Syz 1 and Syz 3 primarily consist of
macromammals, whereas Syz 2 and Syz 4 have yielded an abundance of micromammal fossils
(Niu, Zhang & Fa, 2003; Kong, 2009; Wang et al., 2010; Zhang et al., 2010; Li & Zhang, 2011,
2013; Li, Zhang & Ao, 2013; Li, Zhang & Li, 2013; Li, Zhang & Zheng, 2013; Zhang & Li,
2015; Li, Li & Zhang, 2016; Xie & Li, 2016; Chen et al., 2021). Although the majority of the
original strata of Syz 2 site have been disrupted by quarrying activities, the Syz 2, from which
the hamster fossils studied in this paper were obtained, is generally considered to date back to the
late Middle Pleistocene (Zhang et al., 2010). This estimation mainly results from the overall
faunal resemblance between Syz 2 and the Middle Pleistocene fauna of Zhoukoudian Locality 1
(where the age of the primary fossiliferous deposits, i.e., layers 1-11, is generally considered to
be ca. 0.6-0.2 Ma, Hu, 1985; Zhang, 2004; Chen & Zhou, 2009; Liu et al., 2014) and Jinniushan
(ca. 0.31-0.2 Ma, Liu et al., 2014). We obtained a silty clay sample (field number 09SS1,
laboratory number 11695) from about 2 meters below the fossil-bearing horizon at Syz 2 and
determined its absolute age using the electron spin resonance (ESR) technique at the State Key
Laboratory of Earthquake Dynamics, Institute of Geology of China Earthquake Administration.
The test result demonstrates an age of 300 + 30 ka for the sample, implying that the fossil
deposits located above the sampling site should be somewhat younger than this age. Kong (2009)
dated the fauna between (1.8 £ 0.2) x 103 years and (2.0+0.2) x 10 years ago using the thermo-
luminescence (TL) technique, but the precise sampling layers in Kong (2009) require further
verification. Based on the aforementioned absolute age dating results and faunal comparisons,
we tentatively date Syz 2 to the late Middle Pleistocene, approximately 0.2 Ma.
Material, methods, and abbreviation
Material

The hamster fossils from Syz 2 examined in this study are housed in the Department of
Geology, Northwest University (Xi'an, Shaanxi Province, China). For comparative purposes, we
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observed about 50 skull specimens (including mandibles) of extant Tscherskia triton (the greater
long-tailed hamster) stored in the College of Life Sciences, Northwest University. All of these
specimens were collected from Shaanxi Province. Based on the collection sites indicated on the
labels of these specimens, they might belong to the subspecies 7. triton incanus and T. triton
collinus (and possibly T. triton triton and T. triton fuscipes), following the subspecies
classification and geographical distribution of 7. #riton summarized by Chen & Gao (2000).
Methods

The skull morphological terminology primarily follows Wang & Qiu (2018) and Voss (1988).
For the description of molar occlusal morphology, we mainly follow Freudenthal & Daams
(1988), Freudenthal, Hugueney & Moissenet (1994), and Li et al. (2018). Anatomical
abbreviations for upper molars are M1, M2, and M3, while lower molars are represented by m1,
m2, and m3. Measurements of the skull and mandible mainly follow the methodology described
by Yang et al. (2005) and Xia et al. (2006). For molar measurements, L and W denote the
maximum length and width, respectively. All measurements were obtained using a ZEISS
Smartzoom5 automated digital microscope. Some images were reversed for ease of comparison
and are indicated by an underlined label. Annotations of the synonymy list are in accordance
with Matthews (1973). This work and the nomenclatural act it contains have been registered in
ZooBank (https://zoobank.org/ urn:lsid:zoobank.org:act:833CA9EC-1051-4C8E-A032-
04DF2AC46994).
Abbreviation

NWU, Northwest University, Xi’an; [VPP, Institute of Vertebrate Paleontology and
Paleoanthropology, Beijing; Syz 1-4, Locality 1, 2, 3, 4 of Shanyangzhai; ZKD, Zhoukoudian (=
Choukoutien); JNS, Jinniushan; RZD, Renzidong.
Results
Systematic palaeontology
Mammalia Linnaeus, 1758
Rodentia Bowdich, 1821
Cricetidae Rochebrune, 1883
Cricetinae Fisher, 1817
Tscherskia Ognev, 1914
1928 Cansumys, Allen
1928 Cricetinus, Zdansky
1929 Asiocricetus, Kishida
Type species Tscherskia albipes Ognev, 1914 (= Cricetus (Cricetulus) triton de Winton, 1899).
Referred species 7. europaeus (Kretzoi, 1959); T. rusa (Storch, 1974) ?; T. gritzai (Topachevski
et Skorik, 1992); T. janossyi (Hir, 1996); T. koufosi (Koliadimou, 1996).
Geographic distribution and geologic age Southeastern Europe, Early Pliocene (MN 15, ca. 5-
3.5 Ma) to early Middle Pleistocene (ca. 0.7 Ma); Southwestern Asia, Holocene ?; northern
China, transitional region between northern and southern China, except 7. sp. from Youhe fauna
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with an age of Late Pliocene (ca. 3.15-2.59 Ma) (Yue & Xue, 1996; Xie, Zhang & Li, 2021), all
other credible material of Tscherskia with an age not earlier than Middle Pleistocene.

Diagnosis Medium-sized cricetids typically between Cricetulus and Cricetus; molars
brachyodont; mesolophes of M1-3 usually present, either free or connected to the metacone, but
rarely reaching the buccal tooth edge; M3 with an anteroposteriorly directed axioloph rather than
an anterolaterally extended protolophule II; anteroconids of m1 either divided or undivided;
mesolophids on m3 almost always present and well-developed; mesolophids also often present
on ml and m2 but rarely reaching the lingual tooth edge (modified from Xie, Zhang & Li, 2021).
Remarks Hir (1996a, 1997) once proposed the diagnosis of Cricetinus (i.e., Tscherskia) as
follows: “the undivided anteroconid on the m1 molars with a smooth and convex oral surface;
the mesolophids missing or short on the m1-m2 molars; M1-M2 crowns characterized by the
missing or weekly developed mesolophes; the posterior metalophule rare on M2.” Our
observation demonstrates that the diagnosis proposed by Hir is not comprehensive and warrants
further revision. Therefore, the diagnosis of Tscherskia is redefined here as stated above.

Tscherskia triton (de Winton, 1899)

Tscherskia triton varians comb. nov. (Zdansky, 1928) (Figs 2-6, Tables 1-7)
p1927 Cricetulus cfr. songarus Pallas — Young, p.24

*1928 Cricetinus varians gen. et sp. nov. — Zdansky, p.54

.1930 Cricetinus varians Zdansky — Schaub, p.37

1931 Cricetinus varians Zdansky — Pei, p.12

1932 Cricetinus varians Zdansky — Young, p.4

.1934 Cricetinus varians Zdansky — Schaub, p.30

1934 Cricetinus varians Zdansky — Young, p.58

p1936 cf. Cricetinus varians Zdansky — Teilhard de Chardin, p.16
1936 Cricetinus varians Zdansky — Pei, p.59

1939 Cricetinus varians Zdansky — Pei, p.153

p?1940 Cricetinus (Cricetulus) varians Zdansky — Pei, p.42

p1941 Cricetulus varians (Zdansky) — Teilhard de Chardin & Pei, p.49
p1942 Cricetulus (Cricetinus) varians (Zdansky) — Teilhard de Chardin & Leroy, p.35, p.93
1977 Cricetulus varians (Zdansky) — Gai & Wei, p.290

1978 Cricetulus triton (Zdansky) — Gu, p.164

1980 Cricetulus varians (Zdansky) — Zhang, Zou & Zhang, p.156
1983 Cricetulus varians (Zdansky) — Zheng, p.231

1984 Cricetinus varians Zdansky — Zheng, p.185

1985 Cricetulus varians (Zdansky) — Zhang et al., p.73

1985 Cricetinus varians Zdansky — Zheng et al., p.117

1986 Cricetulus varians (Zdansky) — Zhang, Wei & Xu, p.36

1990 Cricetulus triton (de Winton) — Sun & Jin, p.35

1993 Cricetinus varians Zdansky — Zheng & Han, p.65
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p?1996 Cricetinus varians Zdansky — Cheng et al., p.38

2002 Cricetinus varians Zdansky — Jin, p.95

2004 Cricetinus varians Zdansky — Jin et al., p.284

2004 Cricetulus triton (de Winton) — Tong et al., p.855

72009 Cricetinus varians Zdansky — Jin et al., p.177

2010 Cricetinus varians Zdansky — Zhang et al., p.73

2015 Tscherskia triton (de Winton) — Liu et al., p.610

2017 Tscherskia triton (de Winton) — Chen et al., p.847

2018 Cricetulus varians (Zdansky) — Tong et al., p.287

2018 Cricetinus varians Zdansky — Wu et al., p.1396

2020 Cricetulus varians (Zdansky) — Wang, Wu & Qiu, p.104

2021 Cricetulus varians (Zdansky) — Huang et al., p.269

2021 Cricetulus triton (de Winton) — Huang et al., p.269

Lectotype As previously mentioned, Zdansky (1928) established Cricetinus and Cricetinus
varians based on large-sized hamster material from Locality 1 of Zhoukoudian, which included 8
maxillary fragments, 9 larger and some smaller mandibular fragments, 1 isolated M1, and 3
isolated m1s. However, Zdansky did not designate a holotype for the new genus and its type
species, so all these specimens should be considered the syntypes. Wang, Wu & Qiu (2020,
pp-104-105) selected IVPP RV 340020 (original catalogue number C/C. 1049), an anterior
portion of the skull with right M1-3 and left M1-2 figured by Young (1934, Text-fig. 19, 1, la,
1b; PL 5, fig. 9) and Zheng (1984a, Fig.1, C), as the lectotype of C. varians. However, this
designation should be considered invalid according to ICZN (1999, Art. 74.2), because IVPP RV
340020 does not belong to the syntypes, although it was also collected from Locality 1, possibly
even from the same layer as the syntypes (Young, 1934, p.63). Therefore, the fragmentary right
upper jaw with M1-3 figured by Zdansky (1928, Taf. 5, Fig. 4) is here designated as the
lectotype for Tscherskia triton varians (Lagrelius Collection housed in the Museum of
Evolution, Uppsala University, Sweden), and other specimens in the type series should be
considered the paralectotypes. The paralectotypes listed by Wang, Wu & Qiu (2020, p.104) are
also invalid for the same reason discussed for the lectotype and should only be viewed as
referred specimens.

Type locality and geologic age Locality 1 of Zhoukoudian, Beijing. The deposits of Locality 1,
also known as Zhoukoudian Formation, are about 40 meters in thickness and traditionally
divided into 1 to 13 layers from top to bottom, representing a period from approximately 0.78
Ma to 0.2 Ma. This division scheme was published by Jia (1959), who adopted a similar scheme
first proposed by Teilhard de Chardin & Young (1929), and has been widely followed since.
Zdansky (1923, p.86) also published two profiles of deposits of Locality 1 (called Loc. 53 by
Zdansky) from which the type specimens of C. varians and other fossils studied by Zdansky
(1928) were collected. Teilhard de Chardin & Young (1929, p.179, footnote) considered that the
sections given by Zdansky (1923, p.86) correspond probably to some part of their layers 5 and 6,
although they also stated that a precise correlation with Zdansky’s 1923 profile was rather
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difficult to establish. If Teilhard de Chardin and Young are correct, according to Xu et al. (1997,
p.219, Table 1), their layers 5 and 6 should essentially correspond to layers 4 to 6 of Jia (1959)’s
scheme, which cover a period of approximately 0.3 - 0.4 Ma in the Middle Pleistocene (Chen &
Zhou, 2009, Table 1).

Geographic distribution and geologic age Northern China, transitional region between
northern and southern China, late Early Pleistocene to Late Pleistocene.

Referred specimens from Syz 2 21 incomplete skulls (NWUV 1489.a1-21); 10 maxillae with
bilateral toothrows (NWUYV 1489.b1-10); 73 left maxillac (NWUYV 1489.c1-73); 74 right
maxillae (NWUYV 1489.d1-74); 185 left mandibles (NWUV 1489.e1-185); 215 right mandibles
(NWUYV 1489.1f1-215); 3 mandibles with bilateral branches (NWUV 1489.g1-3); 55 left M1s
(NWUYV 1489.h1-55); 54 right M1s (NWUV 1489.11-54); 46 left M2s (NWUYV 1489.j1-46); 35
right M2s (NWUYV 1489.k1-35) ; 2 left M3s (NWUV 14809. 11-2); 8 right M3s (NWUV
1489.m1-8); 16 left m1s (NWUV 1489.n1-16); 22 right m1s (NWUV 1489.01-22);15 left m2s
(NWUV 1489.p1-15); 19 right m2s (NWUV 1489.q1-19); 7 left m3s (NWUV 1489.r1-7); 8 right
m3s (NWUYV 1489.51-8).

Measurements Refer to Tables 1-2 and Supplementary datasets 1, 3, 5, 7.

Diagnosis Tscherskia triton varians is highly similar to extant 7. friton in size and most of the
molar characters (see “Discussion’). However, the former exhibits slightly higher frequencies of
mesolophids on m1 and m2 (refer to Table 7). In the majority of skull and mandible
measurements, the mean values for 7. ¢ varians may be slightly larger than those of extant 7.
triton.

Remarks The minor differences between 7. triton varians and extant 7. triton can only be
observed when a statistically significant number of specimens are available. The reason for
referring all items listed in the synonymy, most of which have limited material, to 7. triton
varians is solely based on their geologic age. Thus, this should be considered a temporary
expedient.

Description

(1) Skull

The skull description primarily relies on the relatively well-preserved specimen NWUV
1489.a8, with reference to other specimens (Fig. 2).

Dorsal view The nasal exhibits a narrow posterior and a wide anterior aspect. At its junction
with the frontal, it is narrowest, then gradually widening anteriorly, and slightly narrowing again
at the anterior border. The anterior-most point of the orbit is slightly anterior to the transverse
level of the posterior end of the nasal. NWUYV 1489.a7 has a larger skull width than normal due
to post-mortem deformation, but it retains the complete interparietal, which is approximately
pentagonal in shape, resembling that of extant 7. triton. The frontal crest is more pronounced in
adults, particularly in elderly individuals, extending posteriorly from the upper edge of the orbit,
beyond the parietal bone, and reaching at least the anterior border of the interparietal bone.

Lateral view The upper contour of the skull presents a gentle arc, but this shape is often lost
due to post-mortem deformation. The alveolus of the upper incisor creates a well-defined
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semicircular crest on the lateral surfaces of the premaxilla and maxilla. The upper portion of the
infraorbital foramen is fan-shaped, while its lower portion is slit-like. The outer wall of the
zygomatic plate is slightly concave. Both the anterior and posterior edges of the zygomatic plate
exhibit a gentle arc shape; the former is slightly convex anterodorsally, and the latter is slightly
concave anterodorsally, with the two edges nearly parallel. The anterior root of the zygomatic
arch is weak, measuring about 2-3 times narrower the width of the zygomatic plate. The small
supraorbital foramen is situated posterior to the interorbital constriction and just below the
supraorbital margin.

Ventral view The incisive foramen is elongated and narrow, with an obvious distance
separating its posterior edge from the anterior edge of M 1. The premaxillary-maxillary suture
traverses the incisive foramen at about the anterior 2/5 of the foramen. The anterior-most point of
the zygomatic plate approximately aligns with the center of the incisive foramen in the
mediolateral direction. The masseteric tubercle is positioned at the base of the zygomatic plate,
exhibiting a rough surface. Two posterior palatine foramina are almost situated on the connecting
line of the posterior roots of the two M2s. The posterior border of the hard palate extends slightly
beyond the posterior edge of M3 or is flush with it. The two molar series are not completely
parallel, but slightly divergent anteriorly.

(2) Mandible

The lower edge of the mandible (Fig. 3) extends anteriorly in an arc from the base of the
angular process. The mental foramen is small and round, located anteroventral to the anterior
root of m1. The masseteric ridge is thin yet clearly evident, ending beneath m1 and posterodorsal
to the mental foramen. The coronoid process is slender and hook-shaped, extending
posterodorsally. A noticeable bulge formed by the posterior end of the lower incisor is present at
the base of the condylar process, situated anteroventral to the mandibular notch on the buccal
side of the mandible. The angular process extends in a posteroventral direction. The mandibular
notch extends slightly further anteriorly than the notch between the condylar process and the
angular process, with the latter slightly wider than the former. The mandibular foramen is oval
and located at the base of the condylar process. The groove between the alveolus of molars and
the base of the coronoid process slopes gently in the posterior direction, not as steep as that of
murines; a small foramen of unclear function is situated in the middle of the groove. On the inner
side of the mandible, numerous small nutrient foramina are typically found in the area beneath
the molar series.

Measurements of skulls and mandibles are provided in Table 1 and Supplementary datasets 1,
3.

(3) Teeth

I2 The anterior end of the upper incisor (I12) points ventrally, and its posterior end terminates
in an anteroventral position relative to the infraorbital foramen. The enamel layer covers the
entire labial surface of 12, which is smooth and devoid of ridges, and also extends to cover a
small portion of the lateral surface.
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M1 The occlusal morphologies of upper molars are illustrated in Fig. 4. The M1 is kidney-
shaped, with an obtuse anterior edge, a comparatively straight buccal edge (but with a noticeable
outward protrusion at the metacone), and an arc-shaped lingual edge. The degree of alternating
of the opposite main cusps on M1 is small, as is the case for M2 and M3. The anterocone is
broad and always splits posteriorly into two equal-sized cusps. In some specimens, the
anterocone also exhibits a certain degree of separation from the mesial surface, and in a few
cases, this separation is even pronounced. The lingual anterolophule is invariably present, while
the buccal anterolophule is observed in 89.1% (41/46) of specimens. A small number of
specimens (3.9%, 6/154) exhibit the spur of the anterolophule, which is thin and weak, with five
instances extending to the buccal margin of the tooth (Fig. 4B). The presence of the protolophule
I is detected in 57.4% (27/47) of specimens. The protolophule II is relatively weak, and even
absent in a few specimens. The loph connecting the anterior arm of the hypocone and the
metacone, in our opinion, should be viewed as the mesoloph, as in most specimens, there is an
obvious contact trace between the loph and the metacone, implying that the loph does not
originate from the metacone. In a few specimens, however, this loph can be completely fused
with the metacone without any trace, making it difficult to determine whether the metalophule I
contributes to the formation of the loph in these cases. No specimens exhibit a mesoloph with a
free end. The metalophule II is present but weakly developed in most specimens. The
posterosinus is small and shallow, with only a vestige observable in specimens exhibiting severe
abrasion. The tooth has four roots.

M2 The M2 is approximately square in shape. The buccal anteroloph is more developed than
its lingual counterpart, with the latter occasionally nearly absent. The position of the buccal
anteroloph is also elevated compared to the lingual one. The protolophule is double. The
mesoloph resembles that of M1 but is relatively thicker. It may either merge with the metacone
or display an evident contact trace between them, yet it never has a free end. In some specimens,
the mesoloph extends to the tooth edge by adhering to the anterior wall of the metacone (Fig. 4
B, F). The metalophule II is consistently present, albeit comparatively weak. The posterosinus is
also small. The tooth is four-rooted.

M3 The posterior portion of M3 is notably reduced, with both the hypocone and metacone
significantly smaller than those of M1 and M2. This results in the occlusal outline of M3
resembling a relatively obtuse equilateral triangle. The buccal anteroloph is more developed and
positioned higher than the lingual counterpart, which is either absent or extremely weak. The
protolophule I is consistently present. The most notable character of M3 is the presence of the
axioloph, which originates from the junction of the protolophule I and the anterior arm of the
protocone, and extends posteriorly. A small groove forms between the axioloph and paracone.
Occasionally, the central part of the groove closes due to the proximity or fusion of the axioloph
and paracone, leading to the formation of a small pit in the upper portion of the groove (Fig. 4 D,
F). The morphology of the mesoloph is similar to that of M1 and M2. The metalophule II and
posterosinus are absent. In some specimens, the mid-segment of the posteroloph (or the posterior
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arm of the hypocone) inflates into a small cusp, situated between the hypocone and metacone
(Fig. 4C, G). The tooth possesses three roots.

In a very small number of specimens, the upper molars exhibit morphological variation in
certain structures. For example, the protolophule IT on M2 occasionally assumes a form similar
to that on M3, and vice versa.

i2 The anterior part of the lower incisor (i2) extends anterodorsally, and the posterior end of it
terminates at the base of the condylar process, forming a prominent bulge on the buccal side of
the mandible. The enamel layer covers the whole labial surface, which is smooth and devoid of
ridges, as well as about half of the lateral surface.

m1 The occlusal morphologies of lower molars are shown in Fig. 5. The occlusal outline of
m1l is comparatively elongated and gradually narrows from posterior to anterior. The anteroconid
is bisected into two approximately equal-sized cusps in most specimens (93.0%, 80/86). In these
specimens, the vast majority of anteroconids are slightly bifid posteriorly, although specimens
with a more pronounced degree of posterior separation are occasionally observed. From an
anterior perspective, the anteroconid is either weakly divided (in young individuals) or undivided
(in middle-aged and elderly individuals). A small proportion of specimens (7.0%, 6/86) possess
anteroconids split into three small cusps (Fig. SE). Undivided anteroconids are observed only in
heavily worn specimens. In the vast majority of specimens (97.6%, 82/84), the anterolophulid is
single and connects either to the buccal anteroconulid (70.7%, 58/82), the midpoint between the
two anteroconulids (26.8%, 22/82), or the lingual anteroconulid (2.4%, 2/82). In a very few
specimens (2.4%, 2/84), the anterolophulid possesses two branches that connect to the two
anteroconulids respectively. The bottom of the anterosinusid is significantly higher than that of
the protosinusid. In 43% of the specimens (44/103) (Table 3), a mesolophid is present, which is
consistently low, short, and weak. The mesolophid either connects to the metaconid (18.2%,
8/44) or has a free end (81.8%, 36/44). In the latter case, the longest free-ended mesolophid does
not exceed half the distance from the base to the lingual tooth edge, and in most cases, it only
presents as a spine-like projection. The transitional part from the hypoconid to posterolophid is
generally slender, but subsequently the posterolophid rapidly swells into a well-defined small
cusp. The posterolophid often does not continue anteriorly to connect with the entoconid,
resulting in an open posterosinusid in most cases. The cingulum commonly presents at the
entrances of the protosinusid and sinusid, occasionally forming a small but distinct ectostylid at
the entrance of the latter. The tooth has two roots.

m2 The occlusal outline of m2 exhibits a rounded square shape, with a width greater than that
of m1 and m3. The lingual anterolophid is weakly developed or absent, while the buccal
anterolophid is always well developed. In 95.2% of specimens (158/166) the mesolophid is
present, exhibiting various morphologies that can be essentially categorized into four types
(Table 4): 1. having a free end; II. connected to the metaconid; III. reaching the lingual tooth
edge (10.2%, 16/157) (Fig. 5SA); and I'V. connected to the entoconid (2.5%, 4/157). Within these
morphotypes, I and II are present in most specimens, but the boundaries between the two are
sometimes difficult to distinguish. The length of the mesolophid also varies, but most do not
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exceed 1/2 of the distance from the base to lingual tooth edge. The morphology of the
posterolophid and the development of the cingulum are similar to those on m1, except that the
lingual edge of the mesosinusid of m2 also occasionally bears the cingulum. The tooth has two
roots.

m3 The posterior part of m3 is generally contracted, though a small number of specimens
exhibit no obvious contraction (Fig. 5G). In most specimens, the entoconid is significantly
reduced compared to that of m1 and m2, while the hypoconid often experiences only slight
reduction. Similar to m2, the lingual anterolophid of m3 is also weakly developed and the buccal
one is comparatively more pronounced; however, the lingual anterolophid is present in nearly all
m3 specimens. The mesolophid is present in all but one specimen (99.2%, 129/130), and its
morphology varies, falling into five types (Table 5): I. unbranched (59.4%, 76/128), connected to
the lingual tooth edge (Fig. 5 A, C, E, G); IL. bifurcated (35.2%, 45/128), with one branch
connected to the lingual tooth edge and the other to the metaconid (Fig. 5 B, F); IIL. trifurcated
(0.8%, 1/128), with branches connected to the lingual tooth edge, metaconid, and junction of the
hypoconid and entoconid, respectively; IV. unbranched (3.9%, 5/128), connected to the
metaconid (Fig. 5D); and V. having a free end (0.8%, 1/128). The posterolophid is somewhat
different from that of m1 and m2, primarily in that it usually merges with the entoconid to close
the posterosinusid. The posterolophid also exhibits some degree of swelling and appears as a
cusp when subjected to slight wear, resulting in three side-by-side cusps on the posterior part of
m3. The cingulum is usually absent at the entrance of the sinusid but is often more developed at
the entrance of the mesosinusid, occasionally merging with the end of the mesolophid to form a
small cusp. The tooth possesses two roots.

As observed in upper molars, lower molars also demonstrate variations in some structures
among a limited number of specimens. For example, the m3 of NWUV 1489.e169 exhibits an
ectomesolophid, the sole exception in all lower molars. Moreover, in this particular specimen,
the mesolophids of both m1 and m2, along with m3, bifurcate into two branches, representing a
unique morphology not observed in any other specimens. Furthermore, some morphotypes, such
as the double-branched anterolophulid on m1, the mesolophid of m2 connected to the entoconid,
and the III and V morphotypes of mesolophid of m3, can also be viewed as morphological
variations due to their exceptional rarity.

Molar measurements are provided in Table 2 and Supplementary datasets 5, 7.

Discussion
Identification of the large-sized hamster material from Syz 2

The taxonomies of Cricetinae fossils from Quaternary deposits in China and extant Chinese
Cricetinae species remain highly debated. Based on our observations and recent research
advancements (e.g., Lebedev et al., 2018; Wang, Wu & Qiu, 2020), we preliminarily suggest that
the inclusion of the following 12 genera in the Chinese Cricetinae, ranging from the beginning of
the Quaternary to the present (listed in chronological order of naming; in parentheses are the
common junior synonyms): Cricetus Leske, 1779; Cricetulus Milne-Edwards, 1867; Urocricetus
Satunin, 1902; Phodopus Miller, 1910; Tscherskia Ognev, 1914 (=Cricetinus Zdansky, 1928,
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Cansumys Allen, 1928); Allocricetus Schaub, 1930; Sinocricetus Schaub, 1930; Allocricetulus
Argyropulo, 1932; Neocricetodon Schaub, 1934 (= Kowalskia Fahlbusch, 1969); Bahomys
Chow et Li, 1965; Amblycricetus Zheng, 1993; Nothocricetulus Lebedev, Bannikova, Neumann,
Ushakova, Ivanova et Surov, 2018. Except that the relationship between Tscherskia and
Cricetinus will be discussed in detail below, providing detailed justifications for our conclusions
is beyond the scope of this paper. Among the mentioned genera, A/locricetus, Sinocricetus,
Neocricetodon, Bahomys and Amblycricetus are extinct, while the remaining seven are extant.
Among the living genera, Allocricetulus and Nothocricetulus only have very scarce and doubtful
fossil records (Cai et al., 2004, 2013), whereas Cricetus and Urocricetus currently have no
known fossil records in China.

Aside from Tscherskia, the large-sized hamster material from Syz 2 exhibits distinct
differences when compared to other genera listed above. The Syz 2 material can be distinguished
from nearly all of these genera by characters such as on m1-2 mesolophids being present but
rarely reaching the lingual margin of the teeth, M3 possessing an axioloph, the degree of
alternating of the opposite main cusps on M1-3 very small, et al. Furthermore, unlike
Neocricetodon and Amblycricetus, which generally have mesoloph(id)s extending to the tooth
edge, the mesoloph(id)s of the larger hamster material from Syz 2 scarcely reach the tooth edge.
In contrast to Bahomys and Sinocricetus with comparatively higher crowns, the crowns of
remains from Syz 2 are low. The sizes of molars, skulls, and mandibles of the large-sized
hamsters from Syz 2 are significantly larger than those of Cricetulus (Figures 2 to 5, S1 to S3),
Phodopus, Urocricetus, Allocricetulus, and Nothocricetulus, but significantly smaller than
Cricetus. Some researchers (Zheng et al., 1985, p.117; Cheng et al., 1996, p.40; Jin et al., 2009,
p.178) considered that the absence of the mesolophid on m1-2 of Allocricetus is the key
character distinguishing it from Cricetinus (i.e., Tscherskia). However, this feature actually
pertains to Cricetulus, not Allocricetus, as Allocricetus may not bear the mesolophid on m1 but
can develop it on m2 in some specimens (Table 7). On the other hand, some researchers argued
that the most crucial character of Cricetinus (i.e., Tscherskia) is the undivided anteroconid of m1
(Kretzoi, 1959; Hir, 1996a, 1997), while that of Allocricetus and Cricetulus is almost always
well divided (Hir, 1994, 1996a). However, observations of the extant 7. ¢riton molars have
shown that the degree of separation of the m1 anteroconid in numerous specimens is comparable
to that seen in Allocricetus according to Hir (1994, Fig. 4). In Cricetulus, the separation degree
of the anteroconid of m1 in the type species C. barabensis is indeed small, while C.
longicaudatus exhibits a well-divided anteroconid of m1 (Figure S3).

Meanwhile, the great similarity between the large-sized hamster material from Syz 2 and the
extant Tscherskia (i.e., T. triton) is readily apparent (Figures 2 to 5, S1 to S3). The molar
dimensions of the former closely align with those of the extant 7. triton, with some
measurements even being identical (Table 2). Morphologically, the characters of molars and
skulls of the former, such as the degree of alternating of the opposite main cusps on M1-3 small,
the anterocone of M1 deeply bifid posteriorly with nearly equal-sized buccal and lingual cones,
the mesolophs of M1-3 connected to the metacone instead of being free, M3 with the axioloph,
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the anteroconid of m1 undivided or weakly divided, the mesolophids of m1-2 present but rarely
reaching the lingual margin of teeth, nearly all m3s with well-developed mesolophids, and the
interparietal pentagonal, also closely resemble those of the extant 7. ¢riton. Therefore, we can
confidently refer the large-sized hamster remains from Syz 2 to 7. triton.

In most skull and mandible measurements, however, the mean values of the material from Syz
2 are lightly larger than those of the extant 7. friton (Table 1, 2), although the measurements of
the single upper and lower molar from both the former and the later are nearly identical (Table 2,
Fig. 6). As will be demonstrated below, there are also minor differences in molar morphology
between the Syz 2 material and the extant species. Therefore, considering these disparities, it
may be more reasonable to further classify these materials from Syz 2 as a chronosubspecies of
T. triton, i.e., T. triton varians comb. nov. (=Cricetinus varians, see below for details). In
addition, the mean values of the lengths of upper and lower toothrows (M1-3 and m1-3) of the
Syz 2 material are also lightly greater than those of the extant 7. triton (Table 2). However, the
measurements of the single molar imply that this phenomenon, and even certain skull and
mandible measurements, may likely result from the burial deformation (see discussion in Xie,
Zhang & Li, 2021).

The structure "axioloph" warrants further elaboration here. Both the M3s of 7. triton varians
from Syz 2 and the extant 7. triton possess an anteroposteriorly directed axioloph, which departs
from the junction of the protolophule I and the anterior arm of protocone, and forms a groove
between itself and the protocone (Figures 4, S3). In fact, this structure seems to have been
noticed by Zdansky (1928) and Schaub (1930) in the syntypes of T. triton varians from Locality
1 of Zhoukoudian. The term “axioloph,” along with several other terms, was first introduced by
Freudenthal & Daams (1988, p.137) to facilitate descriptions of M3 of cricetids. They defined
the axioloph as “an axial connection between paracone and hypocone, fundamentally composed
of the posterior protolophule and the posterior part of the (ancient) entoloph.” Morphologically,
the axiolophs of M3s of Syz 2 specimens and the extant 7. ¢riton are obviously distinct from the
protolophule IIs of the small-sized hamster remains from Syz 2, and even from all other extant
Cricetinae taxa, as their protolophule IIs depart from the posterior wall of the paracone and
extend in the anteromedial direction, not forming a groove between itself and the protocone
(Figure S3). By contrast, fossil Cricetinae taxa from Eurasia since the Late Miocene appear to
more frequently develop an axioloph on M3, especially in the genus Neocricetodon (=
Kowalskia), such as N. moldavicus (see Sinitsa & Delinschi, 2016), N. hanae (see Qiu, 1995), N.
yinanensis (see Zheng, 1984b), and N. lii (see Zheng, 1993). This seems to imply a close affinity
between Neocricetodon and Tscherskia, although the axioloph is also present in some other
genera, such as Nannocricetus primitivus (Zhang, Zheng & Liu, 2008), and seems more often
present in cricetid genera of older geologic age (before the late Miocene), such as
Democricetodon and Megacricetodon. The phylogenetic significance of the axioloph will not be
better understood until a comprehensive phylogenetic analysis covering the taxa mentioned
above is conducted, and the homologous structure of the axioloph itself also requires further
investigation.
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Discussion on the validity of Cricetinus and Cricetinus varians

When Zdansky (1928) established Cricetinus and Cricetinus varians, he solely relied on the
skull specimens of extant Cricetus cricetus and Cricetulus phaeus (now considered a subspecies
of Nothocricetulus migratorius) for comparison. Consequently, he apparently did not have the
opportunity to notice the obvious similarity in molar morphology between the fossils from
Locality 1 of Zhoukoudian and the extant 7. triton. Zdansky (1928, p.57) seemed to
acknowledge the potential limitation of his study due to the limited number of extant specimens
available for direct comparison with the fossils. Thus, he stated in the monograph that “maybe
later a generic identity with one of these [extant] genera will result” (translated from German).
As expected, doubts about the validity of the genus and species soon emerged. Schaub (1930,
1934) noticed the close resemblance between C. varians and T. triton in molar morphology, but
still retained the independent status of C. varians. Teilhard de Chardin (1940, p.56) concluded
that he “failed to detect any difference between a ‘Cricetinus’ dentition and the dentition of f.i.
Tcherskia in North China”. Teilhard de Chardin & Pei (1941) reiterated that aside from the
somewhat larger size, the large-sized hamster fossils from Locality 13 of Zhoukoudian (early
Middle Pleistocene in age) showed no appreciable difference from 7. triton in either skull or
tooth morphology, and they maintained the specific name "varians" for the Pleistocene form
primarily due to "geologic convenience." Zheng & Han (1993) argued that it was challenging to
distinguish C. varians from extant 7. triton in North China and Northeast China based on size
and molar morphologies. Despite these doubts, a large number of such hamster remains
discovered in Pleistocene deposits of China were ultimately assigned to C. varians. Meanwhile,
as previously mentioned, new fossil hamster species from the Pliocene and Pleistocene deposits
of Eurasia have continuously been referred to Cricetinus since Kretzoi (1959). Therefore, it is
necessary to clarify the issue of validity of Cricetinus and C. varians.

To address the validity of Cricetinus, the validity of its type species, C. varians, must be
considered first. However, the material Zdansky (1928) utilized for establishing C. varians is not
only scarce, but also accompanied by a relatively simple description and unclear plates, making
direct comparison with 7. triton difficult. All of these make it difficult to compare them with 7.
triton directly. Fortunately, Zheng (1984a) revised most of the hamster fossils collected from the
Zhoukoudian area, including C. varians specimens from Locality 1 (type locality) and Localities
3,9, 13, 15, enabling detailed comparisons with these materials. Except for the material from
Zhoukoudian, the specimens from other fossil sites in China that have yielded abundant C.
varians fossils were also compared. In the following discussion, we will conduct a detailed
comparison of skull and tooth morphologies between C. varians and extant T. triton.

(1) Comparisons of the skull morphologies between C. varians and T. triton

When Zheng (1984a) revisited the hamster fossils from Zhoukoudian, he proposed several
distinguishing skull characters to differentiate between C. varians and extant 7. triton. However,
Xie, Zhang & Li (2021) assessed these characters proposed by Zheng (1984a) and concluded that
these differences between C. varians and T. triton skulls were questionable and required further
verification. Therefore, it is not necessary to reiterate them here.
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Topachevski and Skorik (1992, p.181) suggested three morphological differences in skull
features between Cricetinus and Tscherskia. Based on the context, these opinions appear to be
founded only on the observation of the holotype (a maxillary fragment with M 1-3) of Cricetinus
gritzai, rather than the specimens of the type species (C. varians) of the genus. Firstly, Cricetinus
is said to differ from Tscherskia by having a wider and more concave masseteric plate (i.e.,
"zygomatic plate" in the present paper). However, Topachevski and Skorik (1992) did not
provide any measurements of the zygomatic plates of Cricetinus and Tscherskia to substantiate
this claim, even though the degree of depression of the surface of the zygomatic plate seems
challenging to quantify. Even if this assertion holds, a wider and more concave zygomatic plate
may only be a feature of the Cricetinus gritzai species, not the entire Cricetinus genus, because
our observations show no obvious difference in the characters of the zygomatic plate between
Tscherskia triton varians from Syz 2 and living 7. triton (Figures 2, S1). Secondly, Cricetinus is
said to develop stronger ridges along the posterior side of the incisive foramina [the rim of the
area for the lateral masseter?] than Tscherskia. However, we likewise failed to discern any
appreciable difference in the ridges between 7. . varians from Syz 2 and extant 7. triton (Figures
2, S1). Thirdly, the position of the masseteric tuberosity in Cricetinus is considered more similar
to that in Cricetus than in Tscherskia. Our observations show that the position of the posterior
margin of the masseteric tuberosity in living Cricetus cricetus (closer to the posterior edge of the
incisive foramen) seems to be slightly further back than that in living T’scherskia triton (closer to
the middle of the incisive foramen). The position of the masseteric tuberosity of 7. ¢. varians
from Syz 2 more closely resembles that of extant 7. friton rather than C. cricetus (Figures 2, S1).
In conclusion, since the three distinguishing characters between Cricetinus and Tscherskia
proposed by Topachevski and Skorik (1992) seem to be based on just one specimen of C. gritzai
(the holotype), and we were unable to detect the aforementioned differences between extant 7.
triton and T. t. varians from Syz 2, the validity of these differences, in our opinion, is
questionable.

(2) Comparisons of the teeth morphologies between C. varians and T. triton
Comparisons of the teeth size

Table 2 and Fig. 6 show the measurements and scatter diagrams of C. varians from
Zhoukoudian in Beijing (Zheng, 1984a), Jinniushan in Liaoning Province (Zheng & Han, 1993),
and Renzidong in Anhui Province (Jin et al., 2009), as well as 7. triton from Syz 2 and extant 7.
triton. It is evident that, with the exception of the material from Renzidong which is significantly
smaller, the average molar sizes from other localities are quite similar, and the data ranges also
substantially overlap. In other words, we cannot differentiate C. varians from T. triton based on
their size. As to the material from Renzidong, its significantly smaller size and markedly older
geological age—ca. 2 Ma (Jin, Qiu & Zheng, 2009) compared to the Middle Pleistocene age of
other localities—cast doubt on its identification as C. varians. It is possible that the material
from Renzidong represents a new form.

Additionally, with the reassignment of hamster material initially identified as Cricetinus
varians (or Cricetinus cf. varians, Cricetulus (Cricetinus) varians) from several Early
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Pleistocene sites in China, such as Localities 12, 18 of Zhoukoudian in Beijing, and
Gongwangling in Lantian, Shaanxi, being assigned to the genus Allocricetus (Zheng, 1984a),
East cave of Zhoukoudian has become the only Early Pleistocene site in China, besides
Renzidong, yielding Cricetinus varians fossils. However, the length of M1-3 of Cricetinus
varians from East cave is merely 4.83 mm (Cheng et al., 1996, Table 3-11, p.40), smaller than
the lower limit of the variation range for that measurement in “typical” C. varians and extant
Tscherskia triton (Table 2). More importantly, the m1s of C. varians from East cave completely
lack the mesolophid (Cheng et al., 1996, p.40), which markedly differs from “typical” C. varians
and extant 7. triton (Table 3). Therefore, the material identified as C. varians from East cave
necessitates reevaluation of its classification. Given the above explanations, except Tscherskia
sp. from the Late Pliocene Youhe fauna (Xie, Zhang & Li, 2021), there is now no reliable fossil
of Tscherskia in China predating the Middle Pleistocene.

Comparisons of the teeth structures

In a hamster individual, the molars symmetrically distributed in the oral cavity (e.g., the left
and right M3) may exhibit minor morphological differences; therefore, the morphological
structures of both the left and right molars of large-sized hamsters from Syz 2 and living T. triton
were statistically analyzed in the present study. The material of C. varians used for comparison
here is mainly from Zhoukoudian (Zheng, 1984a) and Jinniushan (Zheng & Han, 1993).

ml In extant 7. triton, about 30% of specimens have a mesolophid (Table 3). The
mesolophids are consistently weakly developed and of very short length, with the longest
mesolophid not exceeding 1/5 of the distance from the base to the edge of the tooth. In most
cases, the mesolophid only appears as a small bulge. It is either connected to the metaconid
(9.5%, 2/21) or has a free end (90.5%, 19/21).

The localities in Table 3 are listed in descending order, approximately following their
geological age from oldest to youngest (ZKD Loc.1, ca. 0.6-0.2 Ma; Jinniushan, ca. 0.31-0.2 Ma;
ZKD Loc.3, late Middle Pleistocene; Syz 2, ca. 0.2 Ma). Although the frequencies of
mesolophids in C. varians and T. triton differ across various geological ages, there is no evident
discontinuity between them, and as the age advances, the frequency of the mesolophid decreases.
Given the similarities in other aspects of tooth morphology and the practicality of classification,
it is more appropriate to interpret the differences in mesolophid frequencies as a result of
gradualistic evolution within a single species, specifically the progressive reduction of the
mesolophid, rather than interspecific or intergeneric differences.

m2 Table 4 presents the frequencies of mesolophids on m2s of 7. triton and C. varians. As
shown in the table, throughout their geologic history, the frequencies of mesolophids on m2s in
both T. triton and C. varians were consistently high and similar, although slightly lower in extant
T. triton. A comparable pattern is also observed in the proportions of morphotype III in C.
varians (excluding Jinniushan specimens) and extant 7. ¢riton. Therefore, the mesolophid
morphology on m2s in 7. triton and C. varians further substantiates the congruence of the “two”
species, and it appears more plausible to interpret the minor differences between the two as a
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gradualistic evolution within a single species, specifically the reduction of the mesolophid,
similar to the situation observed in mesolophids on m1.

m3 Table 5 shows the frequencies of mesolophids on m3s of 7. triton and C. varians. As seen
from the table, mesolophids are present in nearly all specimens. The proportions of the
mesolophids morphotype "connected to the lingual tooth edge " are consistently high, but no
clear regularity emerges. Comparing the proportions of more detailed morphological structures is
difficult due to insufficient data. But overall, the characters of m3s of 7. triton and C. varians are
still quite consistent.

M1 The lingual anterocones and protocones on M1s of 7. triton and C. varians are
consistently connected by an anterolophule, whereas the anterolophule behind the buccal
anterocone is not always present. Table 6 illustrates that the occurrence frequency of the
anterolophule behind the buccal anterocone is high in both 7. #riton and C. varians. However, as
the statistical data for C. varians are based on a relatively small number of specimens, the
reliability of the comparison is diminished. The frequencies of "protolophule I" are unstable and
appear to lack any discernable regularity.

M2 and M3 There is practically no morphological difference between M2s and M3s of 7.
triton and C. varians.

In summary, C. varians and T. triton exhibit substantial consistency in skull and tooth
morphologies. Although minor differences in tooth morphology exist between them, these
differences exhibit continuous variation and can only be discerned with statistically abundant
material. Therefore, we propose that C. varians should be considered a chronosubspecies of 7.
triton, i.e., T. triton varians comb. nov., and Cricetinus should be regarded as a junior synonym
of Tscherskia.

Referred species of Tscherskia

Apart from Cricetinus varians, there are six other species in Eurasia that have been referred to
Cricetinus:

Cricetinus europaeus Kretzoi, 1959. The type locality of this species is Csarnéta 2 in Hungary.
The majority of researchers believe that the geological age of this site is MN 15 (Venczel &
Gardner, 2005). The type specimens of C. europaeus consist of only three molars, but one M2
among these three molars was later identified as C. janossyi by Hir (1996b). Hir (1994)
discovered additional materials for this species and described them in detail when examining the
materials from the type locality, thus clarifying the nature of the species. Although C. europaeus
1s among the earliest Cricetinus species in Europe (Hir, 1994), it appears to exhibit rather
advanced morphologies. For instance, the presence ratios of mesolophids on m1 and m2 are even
lower than those of extant 7. triton (Table 7); however, due to the scarcity of material, this
observation requires further validation with additional material in the future.

Cricetinus gritzai Topachevski & Skorik, 1992. The type locality of this species is Odessa,
Ukraine. A notable character of this species is that all m1s and partial m2s possess a mesolophid
(Koufos et al., 2001). On one hand, this feature indicates a more primitive nature (in other
Cricetinus or Tscherskia species, the mesolophid frequency of m1 reaches a maximum of 70%).
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On the other hand, the character itself is also unique, because in cricetids, the mesolophid
frequency of m1 is almost always lower than that of m2, whereas in this species the situation is
reversed. Moreover, other molars of C. gritzai are slightly smaller in size than those of T triton,
but only M3 is considerably larger than that of 7. triton (Topachevsky & Skorik, 1992). If this
discrepancy is not a statistical error (given that there is only one M3), it may also illustrate the
primitive nature of C. gritzai.

Cricetinus beremendensis Hir, 1994. The type locality of this species is Beremend 15 in
Hungary, with a geologic age of 2.7 Ma ( Hir, 1994; Pazonyi, 2011). The molar morphology of
this species, particularly the degree of mesolophid development, is markedly different from other
species currently classified in Cricetinus, but closely resembles Allocricetus ehiki and A. bursae
in size and morphology (Table 7). Thus, it seems more reasonable to assign this species to
Allocricetus Schaub, 1930.

Cricetinus janossyi Hir, 1996. The type locality of this species is Osztramos 7 in Hungary,
with a geologic age of approximately 2.3 Ma (Hir, 1996b; Pazonyi, 2011). The molar
morphology of this species is very similar to that of 7 triton varians from Syz 2 (Table 7),
although the former is slightly larger in size, and their ages are significantly different. C. janossyi
is also among the earliest Cricetinus species in Europe, first appearing in Csarnota 2 of Hungary
at the same time as C. europaeus.

Cricetinus koufosi Koliadimou 1996. The type locality of this species is Ravin Voulgarakis in
Mygdonia basin of Greece (Koufos et al., 2001). The age of Ravin Voulgarakis has been dated to
the Nagyharsanyhegy phase of the Biharian (ca. 1.2-0.7 Ma) (Koufos et al., 2001), making this
species the latest among several Cricetinus species in Europe. Additionally, this species has been
discovered in Marathoussa of Mygdonia basin, with the age of the locality dated to the Betfia
phase of the Biharian (ca. 1.5-1.2 Ma) (Koufos et al., 2001). Many molar characters of this
species remain unclear, but the absence of the mesolophid on m1 may indicate its relatively
advanced nature.

Cricetinus mesolophidos Wu & Flynn, 2017. Xie, Zhang & Li (2021) concluded that it was
more reasonable to place C. mesolophidos in Neocricetodon rather than in Cricetinus (i.e.,
Tscherskia).

In summary, we suggest that C. europaeus, C. gritzai, C. janossyi, and C. koufosi should be
transferred to Tscherskia, while C. beremendensis should be transferred to Allocricetus, and C.
mesolophidos to Neocricetodon. However, this treatment is provisional, because the characters of
some of these species remain unclear. Except the type species 7. triton, the type localities of the
other four Tscherskia species are situated within a small area covered by several neighboring
countries in southeastern Europe. This significant geographic distance between 7. triton and
other species introduces a degree of uncertainty to the above classification (Kretzoi, 1959; Hir,
1994). In addition, Storch (1974) described a species 7. rusa from the Holocene (dated between
2200-700 B.C.) of northern Iran, whose geographic location and age are highly perplexing.
Although we have tentatively placed it in Tscherskia, the validity of this species and whether it
should be referred to Tscherskia clearly warrant further investigation. Table 7 provides a
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summary of comparisons of frequencies of mesolophids on lower molars among the species of
Cricetinus, Tscherskia, and some related genera (Cricetulus, Nothocricetulus, and Allocricetus).
Origin and dispersal of Tscherskia

Zheng (1984a, b), Zheng et al. (1985), and Zheng & Han (1993) suggested that Cricetinus (a
junior synonym of Tscherskia) very likely originated from the genus Kowalskia (a junior
synonym of Neocricetodon), an idea tentatively proposed by Fahlbusch (1969). Qiu & Li (2016)
remarked that this viewpoint merits further investigation. We also concur with this viewpoint,
and the reasons for this deduction have already been fully explained by Zheng (1984b) (as
discussed above, the presence of the axioloph on M3 in both genera also appears to support this),
S0 it is not necessary to reiterate these points here.

The question that arises now is: when and where (Asia or Europe) did Tscherskia originate?
Based on current evidence, the earliest appearance of Tscherskia in Europe predates that in Asia.
The earliest species of Tscherskia in Europe, T. europaeus and T. janossyi, both emerged at
Csarnéta 2 (MN 15, ca. 5-3.5 Ma) in Hungary (Hir, 1994; Venczel & Gardner, 2005). In Asia,
the earliest known Tscherskia is T. sp., represented by a fragmentary mandible with m2-m3
from the Youhe fauna in Linwei District, Shaanxi Province, China (Xie, Zhang & Li, 2021), with
an age of the Late Pliocene (ca. 3.15-2.59 Ma, Yue & Xue, 1996). However, as previously noted,
all other credible materials of Tscherskia in China (or Asia) are from the Middle Pleistocene or
later. This nearly empty fossil record of Tscherskia in East Asia before the Middle Pleistocene is
a major challenge to the idea of an East Asian origin for Tscherskia, although species
morphologically similar to Tscherskia triton have been found in the Late Pliocene (?) in China
(e.g., Neocricetodon yinanensis). Furthermore, Europe exhibits a higher diversity of Tscherskia
species compared to Asia.

Therefore, based on the available evidence, it seems more probable that Tscherskia originated
from Neocricetodon during the Early Pliocene in Europe and subsequently spread to Asia. It is
possible that another dispersal event in the same direction occurred during the late Early
Pleistocene, which could account for the absence of credible Tscherskia fossils in China
throughout the Early Pleistocene. Meanwhile, the Tscherskia that arrived in East Asia during the
first dispersal event likely became extinct shortly thereafter and did not survive into the
Pleistocene. Of course, this hypothesis still requires verification through the examination of
additional material in the future.

Conclusions

The detailed morphological description and comparative study of hundreds of large-sized
hamster remains collected from the late Middle Pleistocene Locality 2 of Shanyangzhai (Syz 2)
indicate that they should be referred to a chronosubspecies of the extant Tscherskia triton—T.
triton varians comb. nov. This chronosubspecies is highly similar to extant 7. triton in size and
most molar characters, but exhibits slightly higher frequencies of mesolophids on m1 and m2. In
most skull and mandible measurements, the mean values of the former may be lightly greater
than those of the later. To resolve the longstanding debate over the validity of Cricetinus
Zdansky, 1928 and C. varians Zdansky, 1928, a detailed comparison of skull and molar
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morphology was conducted between C. varians and T. triton. The results demonstrated that the
differences between the two are very slight; thus, C. varians can only be treated as a
chronosubspecies of 7. triton, i.e., T. triton varians comb. nov., and Cricetinus should be
considered a junior synonym of Tscherskia. We tentatively propose that among the seven species
once referred to Cricetinus in Eurasia, C. europaeus, C. gritzai, C. janossyi, and C. koufosi
should be transferred to Tscherskia, while C. beremendensis should be transferred to
Allocricetus, and C. mesolophidos to Neocricetodon. Apart from Tscherskia sp. from the Late
Pliocene Youhe fauna, there are no credible fossils of Tscherskia in China earlier than the
Middle Pleistocene. Based on the current evidence, Tscherskia may have originated from
Neocricetodon during the Early Pliocene in Europe and subsequently spread to Asia, with T.
triton being its sole extant representative now only inhabiting East Asia.
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Figure 1

Geographic locations of Syz 1~4. Satellite photo credit: Google Earth. © CNES/Airbus.

Google Earth
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Figure 2

Skulls of Tscherskia triton varians from Syz 2.

(A) NWUV 1489.a8, incomplete skull; (B) NWUV 1489.a21, incomplete skull; (C) NWUV
1489.a6, incomplete skull; (D) NWUV 1489.a7, incomplete skull. (A1), (B1), (C1), (D), dorsal
view; (A2), (B2), (C2), lateral view; (A3), (B3), (C3), ventral view ; (A4), anterior view. The
underlined label indicates the image has been reversed. Abbreviations: arza, anterior root of
the zygomatic arc; aui, alveolus of the upper incisor; F, frontal; fc, frontal crest; inf, incisive
foramen; iof, infraorbital foramen; Ip, interparietal; M, maxilla; mt, masseteric tubercle; N,
nasal; P, parietal; pbhp, posterior border of the hard palate; Pm, premaxilla; ppf, posterior

palatine foramen; sof, supraorbital foramen; zp, zygomatic plate .
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Figure 3

Mandibles of Tscherskia triton varians from Syz 2.

(A) NWUV 1489.f206, right mandible; (B) NWUV 1489.f207, right mandible; (C) NWUV
1489.e169, left mandible; (D) NWUV 1489.e164, left mandible. (A1), (B1), (C1), (D1), buccal
view; (A2), (B2), (C2), (D2), lingual view; (B3), (C3), occlusal view. Abbreviations: ap, angular
process; cdp, condyloid process; crp, coronoid process; fmg, foramen in the middle of the
groove (g9); g, groove between the alveolus of molars and the base of the coronoid process;
i2b, bulge formed by i2; mdf, mandibular foramen; mn, mandibular notch; mr, masseteric

ridge; mstf, masseteric fossa; mtf, mental foramen.
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Figure 4

Left upper molars of Tscherskia triton varians from Syz 2.

(A) NWUV 1489.a5; (B) NWUV 1489.al14; (C) NWUV 1489.a21; (D) NWUV 1489.b1; (E) NWUV
1489.c3; (F) NWUV 1489.¢5; (G) NWUV 1489.c16. The arrow indicates the axioloph.
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Figure 5

Right lower molars of Tscherskia triton varians from Syz 2.

(A) NWUV 1489.f8; (B) NWUV 1489.f13; (C) NWUV 1489.f22; (D) NWUV 1489.f28; (E) NWUV
1489.f31; (F) NWUV 1489.f49; (G) NWUV 1489.f56.
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Figure 6

Scatter diagrams of lengths and widths of the first molars of “Cricetinus” varians and
Tscherskia triton.

Data source refers to Table 2. The boxes in the figure represent the upper and lower bounds
of the length and width values of specimens from specific sites, as the raw data of individual

specimen measurements are not available in the original references.
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Table 1l(on next page)

Measurements and comparisons of skulls and mandibles of Tscherskia triton varians

from Syz 2 and extant T. triton (mm) *
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1
T. triton varians of Syz 2 the extant T. triton
N Min. Mean Max. SD (6\Y4 N Min. Mean Max. SD (6\Y4

Palatal length 4 1639 1801 20.04 157 87% 40 13.72 1721  20.13 0 00%
Upper diastema length 13 9.19 1083 1200 0.86  7.9% 46 764 998 1231 115  115%
Length “of the incisive 626 7.1 793 051  72% 46 481 635 766 076  12.0%
foramen
Anterior palatal breadth 21 3.14 360 406 027  74% 44 239 318 378 031 0.8%%
Posterior palatal breadth 11 334 378 402 018  4.7% 39 248 321 4.02 020 o1
Width of nasal * 6 188 218 234 016 74% 45 195 244 331 029  12.0%
Frontal suture length 1 9.66 43 8.83 1068 1262 095  8.9%
Parietal suture length 1 5.78 41 533 638 749 051 8.0%
Interparietal length 1 5.83 42 270 388 616 058  15.0%
Interparietal width 1 10.79 40 770 911 1047  0.68  7.5%
Lower diastema length 21 489 576 670 056  9.7% 38 477 570 667 046  8.0%
Depth of mandible under s 354 449 655 050 112% 40 355 456 591 052 114%
anterior edge of alveolus
Depth — of ~ mandible 431 527 663 048  92% 40 360 491 659 071 144%
between two roots of m1
Depth — of ~mandible ;304 480 605 045 94% 40 304 436 605 068  157%
between two roots of m2
Depth — of  mandible ) 5e3 387 498 044 113% 37 274 357 510 059  164%
between two roots of m3
Depth of mandible under o, 4 333 401 030 ogu 40 240 317 444 042  132%
posterior edge of alveolus
Length of mandible from 2 2038 2224 2409 186  83% 38 1605 2030 2499 207  102%
the condyle
Distance from coronionto 13.13 20 758 1023 1295 136 133%
gonion ventrale

2 # Refer to Supplementary datasets 1-4 for raw data.

3 * “Width of nasal” here indicates the distance between the two junctions of the nasal, premaxilla and frontal.

4

5

6

7

8

9

10

11

12
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Table 2(on next page)

Measurements and comparisons of molars of Tscherskia triton and “Cricetinus” varians

(mm)*
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1
M1-3 Ml M2 M3 ml-3 ml m2 m3
L L w L w L w L L w L w L w
N 34 83 84 83 84 47 46 56 89 105 106 107 74 73
T. Min. 5.05 2.12 1.40 1.69 1.44 121 127 5.40 1.97 1.19 1.65 1.39 1.65 1.27
triton Mean 5.44 233 1.56 1.85 1.56 1.43 1.40 5.67 2.14 131 1.81 1.54 1.78 1.43
varians
from Max. 5.69 2.49 1.72 2.00 1.78 1.55 1.48 5.98 228 1.43 1.96 1.70 1.93 1.56
Syz2  SD 0.15 0.07 0.06 0.06 0.06 0.07 0.04 0.13 0.06 0.04 0.06 0.05 0.06 0.05
cv 2.8% 3.2% 4.0% 3.4% 3.9% 5.2% 3.1% 2.4% 2.6% 3.4% 3.4% 3.2% 34%  3.6%
N 12 21 20 18 18 14 14 49 56 56 57 57 51 50
C Min. 525 2.15 1.45 1.65 1.45 1.35 1.25 4.70 1.90 1.15 1.60 1.30 1.60 1.20
V‘g(’)‘;’l” Mean 5.60 2.32 1.56 1.80 1.59 1.44 1.41 5.52 2.06 1.30 1.72 1.43 1.71 1.36
ZKD Max. 5.85 2.50 1.70 1.90 1.65 1.50 1.50 5.85 225 1.40 1.90 1.55 1.90 1.55
* SD 0.19 0.10 0.07 0.06 0.07 0.05 0.06 0.20 0.08 0.06 0.09 0.05 0.09 0.06
cv 0.4% 4.3% 4.6% 3.5% 4.2% 3.3% 4.1% 3.6% 3.9% 4.5% 5.1% 3.7% 50%  4.7%
C N 5 9 9 9 9 5 5 12 20 20 18 18 12 12
f::;l’”"f Min. 5.28 2.18 1.40 1.77 1.44 1.42 1.30 533 1.96 1.20 1.70 1.36 1.67 1.30
NS Mean 5.42 2.34 1.46 1.95 1.52 1.49 1.38 5.59 2.07 1.29 1.73 1.45 1.79 1.35
ok Max. 5.60 2.46 1.51 2.00 1.60 1.57 1.50 6.00 227 1.38 2.00 1.60 2.00 1.47
C. N 35 35 25 25 1 1 2 52 52 50 50 18 2
V‘t’,r’g‘f;” Min. 2.0 1.2 1.5 1.25 4.95 1.85 1.1 1.45 1.15 1.4 1.15
RZD Mean 2.15 131 1.64 1.32 1.7 1.5 4.98 2.01 1.14 1.59 13 1.59 1.26
REE Max. 23 1.4 1.8 1.4 5 22 1.25 1.65 1.4 1.7 13
N 42 47 47 47 47 42 42 36 39 38 39 39 36 36
the Min. 5.01 2.18 1.45 1.64 1.47 1.30 1.26 5.26 1.95 1.24 1.68 1.41 1.66 1.32
extant ~ Mean 5.36 232 1.55 1.82 1.59 1.43 1.40 5.58 2.16 1.32 1.81 1.51 1.78 1.40
. f Max. 5.79 2.52 1.68 2.00 1.75 1.67 1.62 5.86 238 1.41 1.94 1.63 1.99 1.58
riton
SD 0.15 0.07 0.06 0.08 0.05 0.08 0.06 0.15 0.09 0.04 0.06 0.05 0.07 0.06
cv 2.7% 3.1% 3.7% 4.2% 3.4% 5.4% 4.1% 2.8% 4.0% 3.1% 3.4% 3.5% 40%  43%
2 # Refer to Supplementary datasets 5-8 for raw data.
3 * quoted from Zheng (1984a); ** quoted from Zheng & Han (1993); *** quoted from Jin et al. (2009).
4
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Comparisons of mesolophids of m1ls between Tscherskia triton and “Cricetinus” varians
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Species and localities frequencies of mesolophids on m1
C. varians of ZKD Loc. 1 70% (40/57)
C. varians of INS 67%
C. varians of ZKD Loc. 3 61% (54/89)
T. triton varians of Syz 2 43% (44/103)
the extant 7. triton 30% (21/69)
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Comparisons of mesolophids of m2s between Tscherskia triton and “Cricetinus” varians
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Species and localities

frequencies of
mesolophids on

proportions of each morphotype of mesolophids on m2

m2 I or IT* 1r* Iv*

C. varians of ZKD Loc. 1 93% (53/57) — 11.3% (6/53) —

C. varians of INS 91% (20/22) — 0 (0720 —

C. varians of ZKD Loc. 3 97% (86/89) — 14.0% (12/86) —
T. triton varians of Syz 2 95% (158/166) ( 1277'/31(?” ( 112/?;/% 2.5% (4/157)

the extant T. triton

87% (60/69)

96.6% (58/60)

1.7% (1/60)

1.7% (1/60)

2 *1, having a free end; 11, connected to the metaconid; I11, reaching the lingual tooth edge; [V, connected to the entoconid.
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Comparisons of mesolophids of m3s between Tscherskia triton and “Cricetinus” varians
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1
frequencies of proportions of each morphotype of mesolophids on m3
Species and localities mesol(I)Ipl)gids on I+ I+ 1+ v v*
C. varians of ZKD Loc. 1 100% (57/57) T1%** — E—
C. varians of INS 100% 100%** — -
C. varians of ZKD Loc. 3 100% (89/89) 91%** — —
0 *%
T. triton varians of Syz 2 99.2% (129/130) 59.4% s 215%22(;1)28) 0.8% (53/?;/;) (?/]8;/;)
(76/128) (45/128) (1/128)
. 98.4% (62/63) ** 1.6%
the extant 7. triton 100% (63/63) 44.4% 492% 4.8% (1/63) 0(0/63)
(28/63) (31/63) (3/63)
2 * 1, unbranched, connected to the lingual tooth edge; 11, bifurcated, with one branch connected to the lingual tooth edge and the
3 other to the metaconid; 111, trifurcated, with branches connected to the lingual tooth edge, metaconid, and junction of the hypoconid
4 and entoconid, respectively; IV, unbranched, connected to the metaconid; V, having a free end. ** connected to the lingual tooth
5  edge.
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Comparisons of anterolophules and protolophules | of M1s between Tscherskia triton
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1
Species and localities g:&l:gﬁzsb?izﬁ e:sg:g;‘)fes frequencies of protolophule Is
C. varians of ZKD Loc. 1, 3 e 76%
C. varians of JNS 100% (9/9) >30%
T. triton varians of Syz 2 89.1% (41/46) 57.4% (27/47)
the extant 7. triton 71.6% (53/74) 37.2% (32/86)
2
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Species

frequencies of

frequencies of

frequencies of

. Localities Geologic age mesolophids on mesolophids on mesolophids on Sources
present paper original references
mls m2s m3s
Tscherskia triton / Shaanxi Province, China recent 30% (21/69) 87% (60/69) 100% (63/63) present paper
(type species)
/ Syz 2, Hebei Province, China late Middle Pleistocene 43% (44/103) 95% (162/170) 100% (134/134) present paper
, , ZKD Loc. 3, Beijing, China late Middle Pleistocene 61% (54/89) 97% (86/39) 100% (89/89) Zheng, 1984a
T. triton varians Criceti X or Late Pleistocene
ricetinus varians Jinniushan, Liaoning Province, China late Middle Pleistocene 67% 91% (20/22) 100% Zheng & Han, 1993
ZKD Loc. 1 (type locality), Beijing, China Middle Pleistocene 70% (40/57) 93% (53/57) 100% (57/57) Zheng, 1984a
T. triton varians ? Cricetinus varians Renzidong, Anhui Province, China early Early Pleistocene present present present Jin et al., 2009
T. europaeus ZZZ;ZZZ? Csarnéta 2 (type locality), Hungary Pliocene 33.3% (2/6) 71.4% (5/7) 100% (5/5) Hir, 1994
T. gritzai Cricetinus gritzai Odessa (type locality), Ukraine Pliocene present present present Topachevsky & Skorik, 1992
T janossyi Cricetinus janossyi | OS7ramos7 (typ%k’u;;‘;“ryy) and Csarnta 2, Pliocene 38.9% (7/18) 95% (19/20) 100% (15/15) Hir, 1996b
T. koufosi Cricetinus koufosi Mygdonia basin (type locality), Greece Early Pleistocene 0 - - Koufos et al., 2001
Neocrzcetqdon Crzcetmys Yushe basin (type loca}lty), Shanxi Province, Pliocenc 100% 100% perhaps 100% Wu & Flynn, 2017
mesolophidos mesolophidos China
Cricetulus
barabensis (type / Shaanxi Province, China recent 0 (0/8) 0 (0/8) 0 (0/8) present paper
species)
C. longicaudatus / Shaanxi Province, China recent 0(0/23) 0(0/23) 26.1% (6/23) present paper
Nothocricetulus . Krak des Chevaliers, Syria recent 0? 0? very often Pradel, 1981
migratorius (type Cricetulus
& specics) yp migratorius Meydan, Toros Mountains, Turkey Holocene 0? 10% 81% Hir, 1993a
Tarko Rockshelter 1, Hungary 0? 10% 85%
. Tarko Rockshelter 2-10, Hungary . 0? 2% 60%
Al’z’f”ges’”gcli’:g”e / Tarko Rockshelter 11-12, Hungary e}flréiysgé‘:gf 0? 16% 84% Hir, 1993a
ype sp Tarko Rockshelter 13-15, Hungary 0? 28% 100%
Tarko Rockshelter 16-18, Hungary 0? 33% 93%
A ehiki / Villany 3 and Esztramos 3, Hungary Early Pleistocene 0? 52% 91% Hir, 1993a, b
) ZKD Loc. 12, 18, Beijing, China Early Pleistocene 5% or 0? 4% 100% (47/47) Zheng, 1984a
A. beremendensis Cricetinus Beremend 15 (type locality) and Csarnéta 4, Pliocene 0% (0/72) 14.8% (9/61) 100% (53/53) Hir, 1994
beremendensis Hungary
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