Large-sized fossil hamsters from the late Middle Pleistocene Locality 2 of Shanyangzhai, China, and discussion on the validity of *Cricetinus* and *C. varians* (Rodentia: Cricetidae) (#80883)

Second revision

Guidance from your Editor

Please submit by 21 May 2023 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 9 Figure file(s)
- 7 Table file(s)
- 1 Raw data file(s)

i

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Large-sized fossil hamsters from the late Middle Pleistocene Locality 2 of Shanyangzhai, China, and discussion on the validity of *Cricetinus* and *C. varians* (Rodentia: Cricetidae)

Kun Xie 1, Yunxiang Zhang Corresp., 1, Yongxiang Li 1

1 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi Province, China

Corresponding Author: Yunxiang Zhang Email address: yxzhang@nwu.edu.cn

A detailed morphological description and comparative study were conducted on numerous large-sized hamster remains collected from the late Middle Pleistocene Locality 2 of Shanyangzhai (Syz 2), Hebei Province, China. The comparisons reveal that these fossils are highly similar to the extant *Tscherskia triton* in size and morphology, including the small degree of alternating between the main opposite cusps on M1-3, the presence of axioloph on M3, and mesolophids on m1-2 that are present but seldom reach the lingual margin of the teeth, among other features. However, minor differences between the two still exist. Consequently, all these fossils are designated as a chronosubspecies of the extant species, T. triton varians comb. nov. The skull and molar morphologies of Cricetinus varians and T. triton were meticulously compared to resolve the long-standing debate regarding the validity of *Cricetinus* Zdansky, 1928, and *C. varians* Zdansky, 1928. The findings indicate that the differences between the two are slight; as a result, C. varians can only be considered a chronosubspecies of *T. triton*, i.e., *T. triton varians* comb. nov., and *Cricetinus* should be recognized as a junior synonym of *Tscherskia*. We tentatively propose that, among the seven species once referred to Cricetinus in Eurasia, C. europaeus, C. gritzai, C. janossyi, and C. koufosi should be reassigned to Tscherskia, while C. beremendensis should be transferred to Allocricetus, and C. mesolophidos to Neocricetodon. Excluding Tscherskia sp. from the Late Pliocene Youhe fauna, there are no reliable Tscherskia fossils in China earlier than the Middle Pleistocene. Based on the current evidence, Tscherskia may have originated from *Neocricetodon* during the Early Pliocene in Europe and subsequently spread to Asia. T. triton is its sole surviving representative, which now exclusively inhabits East Asia.

1 Large-sized fossil hamsters from the late Middle 2 Pleistocene Locality 2 of Shanyangzhai, China, and 3 discussion on the validity of Cricetinus and C. varians 4 (Rodentia: Cricetidae) 5 6 7 8 Kun Xie, Yunxiang Zhang, Yongxiang Li 9 10 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, 11 229 North Taibai Road, Xi'an, 710069, China 12 13 Corresponding Author: Yunxiang Zhang 14 Email address: yxzhang@nwu.edu.cn 15 16 Abstract 17 18 A detailed morphological description and comparative study were conducted on numerous largesized hamster remains collected from the late Middle Pleistocene Locality 2 of Shanyangzhai 19 20 (Syz 2), Hebei Province, China. The comparisons reveal that these fossils are highly similar to the extant *Tscherskia triton* in size and morphology, including the small degree of alternating 21 22 between the main opposite cusps on M1-3, the presence of axioloph on M3, and mesolophids on 23 m1-2 that are present but seldom reach the lingual margin of the teeth, among other features. 24 However, minor differences between the two still exist. Consequently, all these fossils are 25 designated as a chronosubspecies of the extant species, T. triton varians comb. nov. The skull 26 and molar morphologies of Cricetinus varians and T. triton were meticulously compared to 27 resolve the long-standing debate regarding the validity of *Cricetinus Zdansky*, 1928, and *C.* 28 varians Zdansky, 1928. The findings indicate that the differences between the two are slight; as a 29 result, C. varians can only be considered a chronosubspecies of T. triton, i.e., T. triton varians 30 comb. nov., and *Cricetinus* should be recognized as a junior synonym of *Tscherskia*. We 31 tentatively propose that, among the seven species once referred to *Cricetinus* in Eurasia, C. 32 europaeus, C. gritzai, C. janossyi, and C. koufosi should be reassigned to Tscherskia, while C. 33 beremendensis should be transferred to Allocricetus, and C. mesolophidos to Neocricetodon. Excluding Tscherskia sp. from the Late Pliocene Youhe fauna, there are no reliable Tscherskia 34 fossils in China earlier than the Middle Pleistocene. Based on the current evidence, Tscherskia 35 36 may have originated from *Neocricetodon* during the Early Pliocene in Europe and subsequently spread to Asia. T. triton is its sole surviving representative, which now exclusively inhabits East 37 38 Asia.

41

46

48

49

50

51

52 53

54

55 56

57

58

59 60

61 62

63

64 65

66

67 68

69

70

71

72

73 74

75

76

77 78

Introduction

The late Middle Pleistocene Locality 2 of Shanyangzhai (village) has yielded abundant vertebrate fossils and one of the most common among them are the remains of hamsters——so far more than 50 skulls, 2500 jaws, and very numerous isolated teeth have been discovered. 42 These materials can be readily divided into two groups based on size. Xie and Li (2016) have 43 described the small-sized group, recognizing two hamster species, Cricetulus longicaudatus and 44 45 C. barabensis. The present paper focuses on the remains of the large-sized group, providing a detailed morphological description and comparative study of these specimens. 47

The genus Cricetinus and its type species C. varians were erected by Zdansky (1928) on the basis of fossils from the renowned Middle Pleistocene Locality 1 of Zhoukoudian (i.e., the Peking Man Site), Beijing. Since then, hamster remains from several other Pleistocene mammal fossil sites have been continuously referred to C. varians, making it one of the most common micromammal species of Pleistocene faunas in northern China (refer to the synonymy of Tscherskia triton varians below). Kretzoi (1959) founded the second species of Cricetinus, C. europaeus, based on material from the Pliocene fauna of Csarnóta 2 in the Villány Mountains, southern Hungary. Following Kretzoi, five other hamster species have been successively allocated to Cricetinus (e.g., Hír, 1994; Wu & Flynn, 2017), rendering Cricetinus a widely distributed genus, both spatially and temporally. However, the validity of *Cricetinus* and *C*. varians has long been questioned by many researchers since the 1930s (e.g., Pei, 1936; Teilhard de Chardin & Pei, 1941; Teilhard de Chardin & Leroy, 1942; Gu, 1978; McKenna & Bell, 1997). The crux of this debate revolves around whether *Cricetinus* and *C. varians* are junior synonyms of *Tscherskia* and *T. triton*, respectively. In the present study, we examine the long-disputed issue of the validity of *Cricetinus* and *C. varians* based on a detailed description of large-sized hamster material from Locality 2 of Shanyangzhai, in order to enhance our understanding of the origin and evolution of extant Cricetinae taxa.

It is worth pointing out that, since Argyropulo (1933)'s work, *Tscherskia* has long been considered a subgenus of *Cricetulus*, with a few researchers maintaining this view until recently (e.g., Chen & Gao, 2000; Wang, Wu & Qiu, 2020). However, several molecular phylogenetic studies in recent years have demonstrated that *Cricetulus* in the traditional sense (usually including C. barabensis, C. longicaudatus, C. migratorius, C. kamensis, C. triton) is polyphyletic. As a result, the subgenera *Tscherskia* and *Urocricetus* (the Tibetan hamster) should be treated as two independent genera (e.g., Neumann et al., 2006; Steppan & Schenk, 2017; Lebedev et al., 2018; Ding et al., 2020; Romanenko et al., 2021). Furthermore, C. migratorius (the grey hamster) should also be recognized as an independent genus, and Lebedev et al. (2018) have proposed a new genus name, Nothocricetulus, for it. According to these studies, Cricetulus is generally more closely related to Nothocricetulus, Cricetus, and Allocricetulus when compared to Tscherskia. In addition to molecular phylogenetic evidence, morphological differences between T. triton and members of Cricetulus (in the traditional sense) are also apparent (Musser & Carleton, 2005) (Figures S1 to S3). For instance, T. triton has a considerably larger body size than the latter: the average body length of the former is approximately 157 mm, while the same

- 79 measurement for the later ranges approximately from 90-100 mm (based on data provided by
- 80 Chen & Gao, 2000). Moreover, we find that the M3 of *T. triton* bears an axioloph (sensu
- 81 Freudenthal & Daams, 1988) (see "Discussion" for details), a feature that is, to the best of our
- 82 knowledge, unique among all living Cricetinae species. The presence of the axioloph
- 83 undoubtedly highlights the uniqueness of *Tscherskia* within Cricetinae, although its taxonomic
- 84 significance warrants further investigation. For above reasons, we follow the prevailing opinion
- 85 of researchers over the last two decades and no longer consider *Tscherskia* as a subgenus of
- 86 *Cricetulus*, but rather as a distinct genus.

Geologic setting

- Shanyangzhai Village (119°32′14.00″E, 40°5′17.82″N) is situated in the central part of
- 89 Haigang District, Hebei Province, China, approximately 20 kilometers from Bohai Bay. The
- 90 Ordovician limestone of the Majiagou Formation south of the village reveals numerous fossil-
- 91 bearing fissures or cave deposits due to quarrying activities. To date, four primary fossiliferous
- 92 localities have been discovered, numbered Localities 1, 2, 3, and 4 of Shanyangzhai (abbreviated
- 93 as Syz 1-4) in order from south to north (Fig. 1). Based on their mammalian components, these
- 94 localities may have different ages. The fossils from Syz 1 and Syz 3 primarily consist of
- 95 macromammals, whereas Syz 2 and Syz 4 have yielded an abundance of micromammal fossils
- 96 (Niu, Zhang & Fa, 2003; Kong, 2009; Wang et al., 2010; Zhang et al., 2010; Li & Zhang, 2011,
- 97 2013; Li, Zhang & Ao, 2013; Li, Zhang & Li, 2013; Li, Zhang & Zheng, 2013; Zhang & Li,
- 98 2015; Li, Li & Zhang, 2016; Xie & Li, 2016; Chen et al., 2021). Although the majority of the
- original strata of Syz 2 site have been disrupted by quarrying activities, the Syz 2, from which
- the hamster fossils studied in this paper were obtained, is generally considered to date back to the
- late Middle Pleistocene (Zhang et al., 2010). This estimation mainly results from the overall
- faunal resemblance between Syz 2 and the Middle Pleistocene fauna of Zhoukoudian Locality 1
- 103 (where the age of the primary fossiliferous deposits, i.e., layers 1-11, is generally considered to
- 104 be ca. 0.6-0.2 Ma, Hu, 1985; Zhang, 2004; Chen & Zhou, 2009; Liu et al., 2014) and Jinniushan
- 105 (ca. 0.31-0.2 Ma, Liu et al., 2014). We obtained a silty clay sample (field number 09SS1,
- laboratory number 11695) from about 2 meters below the fossil-bearing horizon at Syz 2 and
- determined its absolute age using the electron spin resonance (ESR) technique at the State Key
- 108 Laboratory of Earthquake Dynamics, Institute of Geology of China Earthquake Administration.
- The test result demonstrates an age of 300 ± 30 ka for the sample, implying that the fossil
- deposits located above the sampling site should be somewhat younger than this age. Kong (2009)
- dated the fauna between $(1.8 \pm 0.2) \times 10^5$ years and $(2.0\pm0.2) \times 10^5$ years ago using the thermo-
- luminescence (TL) technique, but the precise sampling layers in Kong (2009) require further
- verification. Based on the aforementioned absolute age dating results and faunal comparisons,
- we tentatively date Syz 2 to the late Middle Pleistocene, approximately 0.2 Ma.

Material, methods, and abbreviation

116 Material

115

- The hamster fossils from Syz 2 examined in this study are housed in the Department of
- 118 Geology, Northwest University (Xi'an, Shaanxi Province, China). For comparative purposes, we

- observed about 50 skull specimens (including mandibles) of extant *Tscherskia triton* (the greater
- long-tailed hamster) stored in the College of Life Sciences, Northwest University. All of these
- 121 specimens were collected from Shaanxi Province. Based on the collection sites indicated on the
- labels of these specimens, they might belong to the subspecies *T. triton incanus* and *T. triton*
- 123 collinus (and possibly T. triton triton and T. triton fuscipes), following the subspecies
- 124 classification and geographical distribution of *T. triton* summarized by Chen & Gao (2000).

125 Methods

- The skull morphological terminology primarily follows Wang & Qiu (2018) and Voss (1988).
- 127 For the description of molar occlusal morphology, we mainly follow Freudenthal & Daams
- 128 (1988), Freudenthal, Hugueney & Moissenet (1994), and Li et al. (2018). Anatomical
- abbreviations for upper molars are M1, M2, and M3, while lower molars are represented by m1,
- m2, and m3. Measurements of the skull and mandible mainly follow the methodology described
- by Yang et al. (2005) and Xia et al. (2006). For molar measurements, L and W denote the
- maximum length and width, respectively. All measurements were obtained using a ZEISS
- 133 Smartzoom5 automated digital microscope. Some images were reversed for ease of comparison
- and are indicated by an underlined label. Annotations of the synonymy list are in accordance
- with Matthews (1973). This work and the nomenclatural act it contains have been registered in
- ZooBank (https://zoobank.org/ urn:lsid:zoobank.org:act:833CA9EC-1051-4C8E-A032-
- 137 04DF2AC46994).

138 Abbreviation

- NWU, Northwest University, Xi'an; IVPP, Institute of Vertebrate Paleontology and
- 140 Paleoanthropology, Beijing; Syz 1-4, Locality 1, 2, 3, 4 of Shanyangzhai; ZKD, Zhoukoudian (=
- 141 Choukoutien); JNS, Jinniushan; RZD, Renzidong.

142 **Results**

- 143 Systematic palaeontology
- 144 Mammalia Linnaeus, 1758
- 145 Rodentia Bowdich, 1821
- 146 Cricetidae Rochebrune, 1883
- 147 Cricetinae Fisher, 1817
- 148 Tscherskia Ognev, 1914
- 149 1928 Cansumys, Allen
- 150 1928 Cricetinus, Zdansky
- 151 1929 Asiocricetus, Kishida
- 152 **Type species** *Tscherskia albipes* Ogney, 1914 (= *Cricetus (Cricetulus) triton* de Winton, 1899).
- 153 Referred species T. europaeus (Kretzoi, 1959); T. rusa (Storch, 1974)?; T. gritzai (Topachevski
- 154 et Skorik, 1992); *T. janossyi* (Hír, 1996); *T. koufosi* (Koliadimou, 1996).
- 155 Geographic distribution and geologic age Southeastern Europe, Early Pliocene (MN 15, ca. 5-
- 156 3.5 Ma) to early Middle Pleistocene (ca. 0.7 Ma); Southwestern Asia, Holocene?; northern
- 157 China, transitional region between northern and southern China, except T. sp. from Youhe fauna

158 with an age of Late Pliocene (ca. 3.15-2.59 Ma) (Yue & Xue, 1996; Xie, Zhang & Li, 2021), all other credible material of *Tscherskia* with an age not earlier than Middle Pleistocene. 159 **Diagnosis** Medium-sized cricetids typically between *Cricetulus* and *Cricetus*; molars 160 brachyodont; mesolophes of M1-3 usually present, either free or connected to the metacone, but 161 162 rarely reaching the buccal tooth edge; M3 with an anteroposteriorly directed axioloph rather than an anterolaterally extended protolophule II; anteroconids of m1 either divided or undivided; 163 mesolophids on m3 almost always present and well-developed; mesolophids also often present 164 on m1 and m2 but rarely reaching the lingual tooth edge (modified from Xie, Zhang & Li, 2021). 165 **Remarks** Hír (1996a, 1997) once proposed the diagnosis of *Cricetinus* (i.e., *Tscherskia*) as 166 167 follows: "the undivided anteroconid on the m1 molars with a smooth and convex oral surface: the mesolophids missing or short on the m1-m2 molars; M1-M2 crowns characterized by the 168 missing or weekly developed mesolophes; the posterior metalophule rare on M2." Our 169 observation demonstrates that the diagnosis proposed by Hír is not comprehensive and warrants 170 further revision. Therefore, the diagnosis of *Tscherskia* is redefined here as stated above. 171 172 173 *Tscherskia triton* (de Winton, 1899) *Tscherskia triton varians* comb. nov. (Zdansky, 1928) (Figs 2-6, Tables 1-7) 174 175 p1927 Cricetulus cfr. songarus Pallas — Young, p.24 *1928 Cricetinus varians gen. et sp. nov. — Zdansky, p.54 176 .1930 Cricetinus varians Zdansky — Schaub, p.37 177 1931 Cricetinus varians Zdansky — Pei, p.12 178 1932 Cricetinus varians Zdansky — Young, p.4 179 180 .1934 Cricetinus varians Zdansky — Schaub, p.30 1934 Cricetinus varians Zdansky — Young, p.58 181 p1936 cf. Cricetinus varians Zdansky — Teilhard de Chardin, p.16 182 1936 Cricetinus varians Zdansky — Pei, p.59 183 184 1939 Cricetinus varians Zdansky — Pei, p.153 p?1940 Cricetinus (Cricetulus) varians Zdansky — Pei, p.42 185 p1941 Cricetulus varians (Zdansky) — Teilhard de Chardin & Pei, p.49 186 p1942 Cricetulus (Cricetinus) varians (Zdansky) — Teilhard de Chardin & Leroy, p.35, p.93 187 188 1977 Cricetulus varians (Zdansky) — Gai & Wei, p.290 1978 Cricetulus triton (Zdansky) — Gu, p.164 189 1980 Cricetulus varians (Zdansky) — Zhang, Zou & Zhang, p.156 190 1983 Cricetulus varians (Zdansky) — Zheng, p.231 191 192 1984 Cricetinus varians Zdansky — Zheng, p.185 1985 Cricetulus varians (Zdansky) — Zhang et al., p.73 193 1985 Cricetinus varians Zdansky — Zheng et al., p.117 194 1986 Cricetulus varians (Zdansky) — Zhang, Wei & Xu, p.36 195 1990 Cricetulus triton (de Winton) — Sun & Jin, p.35 196 197 1993 Cricetinus varians Zdansky — Zheng & Han, p.65

PeerJ

p?1996 Cricetinus varians Zdansky — Cheng et al., p.38 198 2002 Cricetinus varians Zdansky — Jin, p.95 199 2004 Cricetinus varians Zdansky — Jin et al., p.284 200 2004 Cricetulus triton (de Winton) — Tong et al., p.855 201 202 ?2009 Cricetinus varians Zdansky — Jin et al., p.177 2010 Cricetinus varians Zdansky — Zhang et al., p.73 203 2015 Tscherskia triton (de Winton) — Liu et al., p.610 204 2017 Tscherskia triton (de Winton) — Chen et al., p.847 205 2018 Cricetulus varians (Zdansky) — Tong et al., p.287 206 207 2018 Cricetinus varians Zdansky — Wu et al., p.1396 2020 Cricetulus varians (Zdansky) — Wang, Wu & Oiu, p.104 208 2021 Cricetulus varians (Zdansky) — Huang et al., p.269 209 2021 Cricetulus triton (de Winton) — Huang et al., p.269 210 211 **Lectotype** As previously mentioned, Zdansky (1928) established *Cricetinus* and *Cricetinus* 212 varians based on large-sized hamster material from Locality 1 of Zhoukoudian, which included 8 maxillary fragments, 9 larger and some smaller mandibular fragments, 1 isolated M1, and 3 213 214 isolated m1s. However, Zdansky did not designate a holotype for the new genus and its type species, so all these specimens should be considered the syntypes. Wang, Wu & Qiu (2020, 215 pp.104-105) selected IVPP RV 340020 (original catalogue number C/C. 1049), an anterior 216 portion of the skull with right M1-3 and left M1-2 figured by Young (1934, Text-fig. 19, 1, 1a, 217 1b; Pl. 5, fig. 9) and Zheng (1984a, Fig. 1, C), as the lectotype of C. varians. However, this 218 designation should be considered invalid according to ICZN (1999, Art. 74.2), because IVPP RV 219 220 340020 does not belong to the syntypes, although it was also collected from Locality 1, possibly even from the same layer as the syntypes (Young, 1934, p.63). Therefore, the fragmentary right 221 upper jaw with M1-3 figured by Zdansky (1928, Taf. 5, Fig. 4) is here designated as the 222 lectotype for *Tscherskia triton varians* (Lagrelius Collection housed in the Museum of 223 224 Evolution, Uppsala University, Sweden), and other specimens in the type series should be considered the paralectotypes. The paralectotypes listed by Wang, Wu & Qiu (2020, p.104) are 225 also invalid for the same reason discussed for the lectotype and should only be viewed as 226 referred specimens. 227 228 Type locality and geologic age Locality 1 of Zhoukoudian, Beijing. The deposits of Locality 1, also known as Zhoukoudian Formation, are about 40 meters in thickness and traditionally 229 230 divided into 1 to 13 layers from top to bottom, representing a period from approximately 0.78 Ma to 0.2 Ma. This division scheme was published by Jia (1959), who adopted a similar scheme 231 first proposed by Teilhard de Chardin & Young (1929), and has been widely followed since. 232 Zdansky (1923, p.86) also published two profiles of deposits of Locality 1 (called Loc. 53 by 233 234 Zdansky) from which the type specimens of C. varians and other fossils studied by Zdansky (1928) were collected. Teilhard de Chardin & Young (1929, p.179, footnote) considered that the 235 236 sections given by Zdansky (1923, p.86) correspond probably to some part of their layers 5 and 6, 237 although they also stated that a precise correlation with Zdansky's 1923 profile was rather

- 238 difficult to establish. If Teilhard de Chardin and Young are correct, according to Xu et al. (1997,
- p.219, Table 1), their layers 5 and 6 should essentially correspond to layers 4 to 6 of Jia (1959)'s
- scheme, which cover a period of approximately 0.3 0.4 Ma in the Middle Pleistocene (Chen &
- 241 Zhou, 2009, Table 1).
- 242 Geographic distribution and geologic age Northern China, transitional region between
- 243 northern and southern China, late Early Pleistocene to Late Pleistocene.
- 244 Referred specimens from Syz 2 21 incomplete skulls (NWUV 1489.a1-21); 10 maxillae with
- 245 bilateral toothrows (NWUV 1489.b1-10); 73 left maxillae (NWUV 1489.c1-73); 74 right
- 246 maxillae (NWUV 1489.d1-74); 185 left mandibles (NWUV 1489.e1-185); 215 right mandibles
- 247 (NWUV 1489.f1-215); 3 mandibles with bilateral branches (NWUV 1489.g1-3); 55 left M1s
- 248 (NWUV 1489.h1-55); 54 right M1s (NWUV 1489.i1-54); 46 left M2s (NWUV 1489.j1-46); 35
- 249 right M2s (NWUV 1489.k1-35); 2 left M3s (NWUV 1489.11-2); 8 right M3s (NWUV
- 250 1489.m1-8); 16 left m1s (NWUV 1489.n1-16); 22 right m1s (NWUV 1489.o1-22);15 left m2s
- 251 (NWUV 1489.p1-15); 19 right m2s (NWUV 1489.q1-19); 7 left m3s (NWUV 1489.r1-7); 8 right
- 252 m3s (NWUV 1489.s1-8).
- 253 Measurements Refer to Tables 1-2 and Supplementary datasets 1, 3, 5, 7.
- 254 **Diagnosis** Tscherskia triton varians is highly similar to extant T. triton in size and most of the
- 255 molar characters (see "Discussion"). However, the former exhibits slightly higher frequencies of
- 256 mesolophids on m1 and m2 (refer to Table 7). In the majority of skull and mandible
- 257 measurements, the mean values for *T. t. varians* may be slightly larger than those of extant *T.*
- 258 triton.
- 259 **Remarks** The minor differences between *T. triton varians* and extant *T. triton* can only be
- observed when a statistically significant number of specimens are available. The reason for
- referring all items listed in the synonymy, most of which have limited material, to *T. triton*
- varians is solely based on their geologic age. Thus, this should be considered a temporary
- 263 expedient.
- 264 Description
- 265 (1) Skull
- The skull description primarily relies on the relatively well-preserved specimen NWUV 1489.a8, with reference to other specimens (Fig. 2).
- 268 **Dorsal view** The nasal exhibits a narrow posterior and a wide anterior aspect. At its junction
- 269 with the frontal, it is narrowest, then gradually widening anteriorly, and slightly narrowing again
- at the anterior border. The anterior-most point of the orbit is slightly anterior to the transverse
- level of the posterior end of the nasal. NWUV 1489.a7 has a larger skull width than normal due
- 272 to post-mortem deformation, but it retains the complete interparietal, which is approximately
- 273 pentagonal in shape, resembling that of extant *T. triton*. The frontal crest is more pronounced in
- adults, particularly in elderly individuals, extending posteriorly from the upper edge of the orbit.
- beyond the parietal bone, and reaching at least the anterior border of the interparietal bone.
- 276 Lateral view The upper contour of the skull presents a gentle arc, but this shape is often lost
- 277 due to post-mortem deformation. The alveolus of the upper incisor creates a well-defined

semicircular crest on the lateral surfaces of the premaxilla and maxilla. The upper portion of the infraorbital foramen is fan-shaped, while its lower portion is slit-like. The outer wall of the zygomatic plate is slightly concave. Both the anterior and posterior edges of the zygomatic plate exhibit a gentle arc shape; the former is slightly convex anterodorsally, and the latter is slightly concave anterodorsally, with the two edges nearly parallel. The anterior root of the zygomatic arch is weak, measuring about 2-3 times narrower the width of the zygomatic plate. The small supraorbital foramen is situated posterior to the interorbital constriction and just below the supraorbital margin.

Ventral view The incisive foramen is elongated and narrow, with an obvious distance separating its posterior edge from the anterior edge of M1. The premaxillary-maxillary suture traverses the incisive foramen at about the anterior 2/5 of the foramen. The anterior-most point of the zygomatic plate approximately aligns with the center of the incisive foramen in the mediolateral direction. The masseteric tubercle is positioned at the base of the zygomatic plate, exhibiting a rough surface. Two posterior palatine foramina are almost situated on the connecting line of the posterior roots of the two M2s. The posterior border of the hard palate extends slightly beyond the posterior edge of M3 or is flush with it. The two molar series are not completely parallel, but slightly divergent anteriorly.

(2) Mandible

The lower edge of the mandible (Fig. 3) extends anteriorly in an arc from the base of the angular process. The mental foramen is small and round, located anteroventral to the anterior root of m1. The masseteric ridge is thin yet clearly evident, ending beneath m1 and posterodorsal to the mental foramen. The coronoid process is slender and hook-shaped, extending posterodorsally. A noticeable bulge formed by the posterior end of the lower incisor is present at the base of the condylar process, situated anteroventral to the mandibular notch on the buccal side of the mandible. The angular process extends in a posteroventral direction. The mandibular notch extends slightly further anteriorly than the notch between the condylar process and the angular process, with the latter slightly wider than the former. The mandibular foramen is oval and located at the base of the condylar process. The groove between the alveolus of molars and the base of the coronoid process slopes gently in the posterior direction, not as steep as that of murines; a small foramen of unclear function is situated in the middle of the groove. On the inner side of the mandible, numerous small nutrient foramina are typically found in the area beneath the molar series.

Measurements of skulls and mandibles are provided in Table 1 and Supplementary datasets 1, 3.

312 (3) Teeth

I2 The anterior end of the upper incisor (I2) points ventrally, and its posterior end terminates in an anteroventral position relative to the infraorbital foramen. The enamel layer covers the entire labial surface of I2, which is smooth and devoid of ridges, and also extends to cover a small portion of the lateral surface.

M1 The occlusal morphologies of upper molars are illustrated in Fig. 4. The M1 is kidneyshaped, with an obtuse anterior edge, a comparatively straight buccal edge (but with a noticeable outward protrusion at the metacone), and an arc-shaped lingual edge. The degree of alternating of the opposite main cusps on M1 is small, as is the case for M2 and M3. The anterocone is broad and always splits posteriorly into two equal-sized cusps. In some specimens, the anterocone also exhibits a certain degree of separation from the mesial surface, and in a few cases, this separation is even pronounced. The lingual anterolophule is invariably present, while the buccal anterolophule is observed in 89.1% (41/46) of specimens. A small number of specimens (3.9%, 6/154) exhibit the spur of the anterolophule, which is thin and weak, with five instances extending to the buccal margin of the tooth (Fig. 4B). The presence of the protolophule I is detected in 57.4% (27/47) of specimens. The protolophule II is relatively weak, and even absent in a few specimens. The loph connecting the anterior arm of the hypocone and the metacone, in our opinion, should be viewed as the mesoloph, as in most specimens, there is an obvious contact trace between the loph and the metacone, implying that the loph does not originate from the metacone. In a few specimens, however, this loph can be completely fused with the metacone without any trace, making it difficult to determine whether the metalophule I contributes to the formation of the loph in these cases. No specimens exhibit a mesoloph with a free end. The metalophule II is present but weakly developed in most specimens. The posterosinus is small and shallow, with only a vestige observable in specimens exhibiting severe abrasion. The tooth has four roots.

M2 The M2 is approximately square in shape. The buccal anteroloph is more developed than its lingual counterpart, with the latter occasionally nearly absent. The position of the buccal anteroloph is also elevated compared to the lingual one. The protolophule is double. The mesoloph resembles that of M1 but is relatively thicker. It may either merge with the metacone or display an evident contact trace between them, yet it never has a free end. In some specimens, the mesoloph extends to the tooth edge by adhering to the anterior wall of the metacone (Fig. 4 B, F). The metalophule II is consistently present, albeit comparatively weak. The posterosinus is also small. The tooth is four-rooted.

M3 The posterior portion of M3 is notably reduced, with both the hypocone and metacone significantly smaller than those of M1 and M2. This results in the occlusal outline of M3 resembling a relatively obtuse equilateral triangle. The buccal anteroloph is more developed and positioned higher than the lingual counterpart, which is either absent or extremely weak. The protolophule I is consistently present. The most notable character of M3 is the presence of the axioloph, which originates from the junction of the protolophule I and the anterior arm of the protocone, and extends posteriorly. A small groove forms between the axioloph and paracone. Occasionally, the central part of the groove closes due to the proximity or fusion of the axioloph and paracone, leading to the formation of a small pit in the upper portion of the groove (Fig. 4 D, F). The morphology of the mesoloph is similar to that of M1 and M2. The metalophule II and posterosinus are absent. In some specimens, the mid-segment of the posteroloph (or the posterior

357

358

359 360

361

362

363

364

365

366

367

368 369

370

371

372

373374

375

376

377378

379

380

381 382

383

384

385 386

387

388

389

390 391

392

393 394

395

arm of the hypocone) inflates into a small cusp, situated between the hypocone and metacone (Fig. 4C, G). The tooth possesses three roots.

In a very small number of specimens, the upper molars exhibit morphological variation in certain structures. For example, the protolophule II on M2 occasionally assumes a form similar to that on M3, and vice versa.

i2 The anterior part of the lower incisor (i2) extends anterodorsally, and the posterior end of it terminates at the base of the condylar process, forming a prominent bulge on the buccal side of the mandible. The enamel layer covers the whole labial surface, which is smooth and devoid of ridges, as well as about half of the lateral surface.

m1 The occlusal morphologies of lower molars are shown in Fig. 5. The occlusal outline of m1 is comparatively elongated and gradually narrows from posterior to anterior. The anteroconid is bisected into two approximately equal-sized cusps in most specimens (93.0%, 80/86). In these specimens, the vast majority of anteroconids are slightly bifid posteriorly, although specimens with a more pronounced degree of posterior separation are occasionally observed. From an anterior perspective, the anteroconid is either weakly divided (in young individuals) or undivided (in middle-aged and elderly individuals). A small proportion of specimens (7.0%, 6/86) possess anteroconids split into three small cusps (Fig. 5E). Undivided anteroconids are observed only in heavily worn specimens. In the vast majority of specimens (97.6%, 82/84), the anterolophulid is single and connects either to the buccal anteroconulid (70.7%, 58/82), the midpoint between the two anteroconulids (26.8%, 22/82), or the lingual anteroconulid (2.4%, 2/82). In a very few specimens (2.4%, 2/84), the anterolophulid possesses two branches that connect to the two anteroconulids respectively. The bottom of the anterosinusid is significantly higher than that of the protosinusid. In 43% of the specimens (44/103) (Table 3), a mesolophid is present, which is consistently low, short, and weak. The mesolophid either connects to the metaconid (18.2%, 8/44) or has a free end (81.8%, 36/44). In the latter case, the longest free-ended mesolophid does not exceed half the distance from the base to the lingual tooth edge, and in most cases, it only presents as a spine-like projection. The transitional part from the hypoconid to posterolophid is generally slender, but subsequently the posterolophid rapidly swells into a well-defined small cusp. The posterolophid often does not continue anteriorly to connect with the entoconid. resulting in an open posterosinusid in most cases. The cingulum commonly presents at the entrances of the protosinusid and sinusid, occasionally forming a small but distinct ectostylid at the entrance of the latter. The tooth has two roots.

m2 The occlusal outline of m2 exhibits a rounded square shape, with a width greater than that of m1 and m3. The lingual anterolophid is weakly developed or absent, while the buccal anterolophid is always well developed. In 95.2% of specimens (158/166) the mesolophid is present, exhibiting various morphologies that can be essentially categorized into four types (Table 4): I. having a free end; II. connected to the metaconid; III. reaching the lingual tooth edge (10.2%, 16/157) (Fig. 5A); and IV. connected to the entoconid (2.5%, 4/157). Within these morphotypes, I and II are present in most specimens, but the boundaries between the two are sometimes difficult to distinguish. The length of the mesolophid also varies, but most do not

exceed 1/2 of the distance from the base to lingual tooth edge. The morphology of the posterolophid and the development of the cingulum are similar to those on m1, except that the lingual edge of the mesosinusid of m2 also occasionally bears the cingulum. The tooth has two roots.

m3 The posterior part of m3 is generally contracted, though a small number of specimens exhibit no obvious contraction (Fig. 5G). In most specimens, the entoconid is significantly reduced compared to that of m1 and m2, while the hypoconid often experiences only slight reduction. Similar to m2, the lingual anterolophid of m3 is also weakly developed and the buccal one is comparatively more pronounced; however, the lingual anterolophid is present in nearly all m3 specimens. The mesolophid is present in all but one specimen (99.2%, 129/130), and its morphology varies, falling into five types (Table 5): I. unbranched (59.4%, 76/128), connected to the lingual tooth edge (Fig. 5 A, C, E, G); II. bifurcated (35.2%, 45/128), with one branch connected to the lingual tooth edge and the other to the metaconid (Fig. 5 B, F); III. trifurcated (0.8%, 1/128), with branches connected to the lingual tooth edge, metaconid, and junction of the hypoconid and entoconid, respectively; IV. unbranched (3.9%, 5/128), connected to the metaconid (Fig. 5D); and V. having a free end (0.8%, 1/128). The posterolophid is somewhat different from that of m1 and m2, primarily in that it usually merges with the entoconid to close the posterosinusid. The posterolophid also exhibits some degree of swelling and appears as a cusp when subjected to slight wear, resulting in three side-by-side cusps on the posterior part of m3. The cingulum is usually absent at the entrance of the sinusid but is often more developed at the entrance of the mesosinusid, occasionally merging with the end of the mesolophid to form a small cusp. The tooth possesses two roots.

As observed in upper molars, lower molars also demonstrate variations in some structures among a limited number of specimens. For example, the m3 of NWUV 1489.e169 exhibits an ectomesolophid, the sole exception in all lower molars. Moreover, in this particular specimen, the mesolophids of both m1 and m2, along with m3, bifurcate into two branches, representing a unique morphology not observed in any other specimens. Furthermore, some morphotypes, such as the double-branched anterolophulid on m1, the mesolophid of m2 connected to the entoconid, and the III and V morphotypes of mesolophid of m3, can also be viewed as morphological variations due to their exceptional rarity.

Molar measurements are provided in Table 2 and Supplementary datasets 5, 7.

Discussion

Identification of the large-sized hamster material from Syz 2

The taxonomies of Cricetinae fossils from Quaternary deposits in China and extant Chinese Cricetinae species remain highly debated. Based on our observations and recent research advancements (e.g., Lebedev et al., 2018; Wang, Wu & Qiu, 2020), we preliminarily suggest that the inclusion of the following 12 genera in the Chinese Cricetinae, ranging from the beginning of the Quaternary to the present (listed in chronological order of naming; in parentheses are the common junior synonyms): *Cricetus* Leske, 1779; *Cricetulus* Milne-Edwards, 1867; *Urocricetus* Satunin, 1902; *Phodopus* Miller, 1910; *Tscherskia* Ogney, 1914 (= Cricetinus Zdansky, 1928.

PeerJ

- 436 Cansumys Allen, 1928); Allocricetus Schaub, 1930; Sinocricetus Schaub, 1930; Allocricetulus
- 437 Argyropulo, 1932; *Neocricetodon* Schaub, 1934 (=Kowalskia Fahlbusch, 1969); *Bahomys*
- 438 Chow et Li, 1965; *Amblycricetus* Zheng, 1993; *Nothocricetulus* Lebedev, Bannikova, Neumann,
- 439 Ushakova, Ivanova et Surov, 2018. Except that the relationship between *Tscherskia* and
- 440 *Cricetinus* will be discussed in detail below, providing detailed justifications for our conclusions
- 441 is beyond the scope of this paper. Among the mentioned genera, *Allocricetus*, *Sinocricetus*,
- *Neocricetodon, Bahomys* and *Amblycricetus* are extinct, while the remaining seven are extant.
- 443 Among the living genera, *Allocricetulus* and *Nothocricetulus* only have very scarce and doubtful
- 444 fossil records (Cai et al., 2004, 2013), whereas *Cricetus* and *Urocricetus* currently have no
- 445 known fossil records in China.
- Aside from *Tscherskia*, the large-sized hamster material from Syz 2 exhibits distinct
- differences when compared to other genera listed above. The Syz 2 material can be distinguished
- 448 from nearly all of these genera by characters such as on m1-2 mesolophids being present but
- rarely reaching the lingual margin of the teeth, M3 possessing an axioloph, the degree of
- alternating of the opposite main cusps on M1-3 very small, et al. Furthermore, unlike
- Neocricetodon and Amblycricetus, which generally have mesoloph(id)s extending to the tooth
- edge, the mesoloph(id)s of the larger hamster material from Syz 2 scarcely reach the tooth edge.
- 453 In contrast to *Bahomys* and *Sinocricetus* with comparatively higher crowns, the crowns of
- remains from Syz 2 are low. The sizes of molars, skulls, and mandibles of the large-sized
- hamsters from Syz 2 are significantly larger than those of *Cricetulus* (Figures 2 to 5, S1 to S3),
- 456 *Phodopus, Urocricetus, Allocricetulus*, and *Nothocricetulus*, but significantly smaller than
- 457 *Cricetus.* Some researchers (Zheng et al., 1985, p.117; Cheng et al., 1996, p.40; Jin et al., 2009,
- p.178) considered that the absence of the mesolophid on m1-2 of *Allocricetus* is the key
- 459 character distinguishing it from *Cricetinus* (i.e., *Tscherskia*). However, this feature actually
- 460 pertains to Cricetulus, not Allocricetus, as Allocricetus may not bear the mesolophid on m1 but
- 461 can develop it on m2 in some specimens (Table 7). On the other hand, some researchers argued
- 462 that the most crucial character of *Cricetinus* (i.e., *Tscherskia*) is the undivided anteroconid of m1
- 463 (Kretzoi, 1959; Hír, 1996a, 1997), while that of *Allocricetus* and *Cricetulus* is almost always
- well divided (Hír, 1994, 1996a). However, observations of the extant *T. triton* molars have
- shown that the degree of separation of the m1 anteroconid in numerous specimens is comparable
- 466 to that seen in *Allocricetus* according to Hír (1994, Fig. 4). In *Cricetulus*, the separation degree
- of the anteroconid of m1 in the type species C. barabensis is indeed small, while C.
- 468 *longicaudatus* exhibits a well-divided anteroconid of m1 (Figure S3).
- Meanwhile, the great similarity between the large-sized hamster material from Syz 2 and the
- 470 extant *Tscherskia* (i.e., *T. triton*) is readily apparent (Figures 2 to 5, S1 to S3). The molar
- dimensions of the former closely align with those of the extant *T. triton*, with some
- 472 measurements even being identical (Table 2). Morphologically, the characters of molars and
- skulls of the former, such as the degree of alternating of the opposite main cusps on M1-3 small,
- 474 the anterocone of M1 deeply bifid posteriorly with nearly equal-sized buccal and lingual cones,
- 475 the mesolophs of M1-3 connected to the metacone instead of being free, M3 with the axioloph,

PeerJ

513514

515

investigation.

476 the anteroconid of m1 undivided or weakly divided, the mesolophids of m1-2 present but rarely reaching the lingual margin of teeth, nearly all m3s with well-developed mesolophids, and the 477 interparietal pentagonal, also closely resemble those of the extant *T. triton*. Therefore, we can 478 confidently refer the large-sized hamster remains from Syz 2 to T. triton. 479 480 In most skull and mandible measurements, however, the mean values of the material from Syz 2 are lightly larger than those of the extant T. triton (Table 1, 2), although the measurements of 481 the single upper and lower molar from both the former and the later are nearly identical (Table 2, 482 Fig. 6). As will be demonstrated below, there are also minor differences in molar morphology 483 between the Syz 2 material and the extant species. Therefore, considering these disparities, it 484 may be more reasonable to further classify these materials from Syz 2 as a chronosubspecies of 485 T. triton, i.e., T. triton varians comb. nov. (=Cricetinus varians, see below for details). In 486 addition, the mean values of the lengths of upper and lower toothrows (M1-3 and m1-3) of the 487 Syz 2 material are also lightly greater than those of the extant *T. triton* (Table 2). However, the 488 489 measurements of the single molar imply that this phenomenon, and even certain skull and 490 mandible measurements, may likely result from the burial deformation (see discussion in Xie, Zhang & Li, 2021). 491 The structure "axioloph" warrants further elaboration here. Both the M3s of *T. triton varians* 492 493 from Syz 2 and the extant T. triton possess an anteroposteriorly directed axioloph, which departs from the junction of the protolophule I and the anterior arm of protocone, and forms a groove 494 between itself and the protocone (Figures 4, S3). In fact, this structure seems to have been 495 noticed by Zdansky (1928) and Schaub (1930) in the syntypes of T. triton varians from Locality 496 1 of Zhoukoudian. The term "axioloph," along with several other terms, was first introduced by 497 498 Freudenthal & Daams (1988, p.137) to facilitate descriptions of M3 of cricetids. They defined the axioloph as "an axial connection between paracone and hypocone, fundamentally composed 499 of the posterior protolophule and the posterior part of the (ancient) entoloph." Morphologically, 500 the axiolophs of M3s of Syz 2 specimens and the extant *T. triton* are obviously distinct from the 501 502 protolophule IIs of the small-sized hamster remains from Syz 2, and even from all other extant Cricetinae taxa, as their protolophule IIs depart from the posterior wall of the paracone and 503 extend in the anteromedial direction, not forming a groove between itself and the protocone 504 (Figure S3). By contrast, fossil Cricetinae taxa from Eurasia since the Late Miocene appear to 505 506 more frequently develop an axioloph on M3, especially in the genus *Neocricetodon* (= Kowalskia), such as N. moldavicus (see Sinitsa & Delinschi, 2016), N. hanae (see Qiu, 1995), N. 507 *yinanensis* (see Zheng, 1984b), and *N. lii* (see Zheng, 1993). This seems to imply a close affinity 508 between *Neocricetodon* and *Tscherskia*, although the axioloph is also present in some other 509 genera, such as *Nannocricetus primitivus* (Zhang, Zheng & Liu, 2008), and seems more often 510 present in cricetid genera of older geologic age (before the late Miocene), such as 511 Democricetodon and Megacricetodon. The phylogenetic significance of the axioloph will not be 512

better understood until a comprehensive phylogenetic analysis covering the taxa mentioned

above is conducted, and the homologous structure of the axioloph itself also requires further

PeerJ reviewing PDF | (2022:12:80883:2:0:NEW 2 May 2023)

540

541 542

543

544

545 546

547

548

549

550

551

552

553

554 555

Discussion on the validity of Cricetinus and Cricetinus varians

When Zdansky (1928) established Cricetinus and Cricetinus varians, he solely relied on the 517 skull specimens of extant Cricetus cricetus and Cricetulus phaeus (now considered a subspecies 518 of Nothocricetulus migratorius) for comparison. Consequently, he apparently did not have the 519 520 opportunity to notice the obvious similarity in molar morphology between the fossils from Locality 1 of Zhoukoudian and the extant T. triton. Zdansky (1928, p.57) seemed to 521 acknowledge the potential limitation of his study due to the limited number of extant specimens 522 available for direct comparison with the fossils. Thus, he stated in the monograph that "maybe 523 later a generic identity with one of these [extant] genera will result" (translated from German). 524 525 As expected, doubts about the validity of the genus and species soon emerged. Schaub (1930, 1934) noticed the close resemblance between C. varians and T. triton in molar morphology, but 526 still retained the independent status of C. varians. Teilhard de Chardin (1940, p.56) concluded 527 that he "failed to detect any difference between a 'Cricetinus' dentition and the dentition of f.i. 528 529 Tcherskia in North China". Teilhard de Chardin & Pei (1941) reiterated that aside from the somewhat larger size, the large-sized hamster fossils from Locality 13 of Zhoukoudian (early 530 Middle Pleistocene in age) showed no appreciable difference from *T. triton* in either skull or 531 tooth morphology, and they maintained the specific name "varians" for the Pleistocene form 532 primarily due to "geologic convenience." Zheng & Han (1993) argued that it was challenging to 533 distinguish C. varians from extant T. triton in North China and Northeast China based on size 534 and molar morphologies. Despite these doubts, a large number of such hamster remains 535 discovered in Pleistocene deposits of China were ultimately assigned to C. varians. Meanwhile, 536 as previously mentioned, new fossil hamster species from the Pliocene and Pleistocene deposits 537 538 of Eurasia have continuously been referred to Cricetinus since Kretzoi (1959). Therefore, it is necessary to clarify the issue of validity of *Cricetinus* and *C. varians*. 539

To address the validity of *Cricetinus*, the validity of its type species, *C. varians*, must be considered first. However, the material Zdansky (1928) utilized for establishing *C. varians* is not only scarce, but also accompanied by a relatively simple description and unclear plates, making direct comparison with *T. triton* difficult. All of these make it difficult to compare them with *T. triton* directly. Fortunately, Zheng (1984a) revised most of the hamster fossils collected from the Zhoukoudian area, including *C. varians* specimens from Locality 1 (type locality) and Localities 3, 9, 13, 15, enabling detailed comparisons with these materials. Except for the material from Zhoukoudian, the specimens from other fossil sites in China that have yielded abundant *C. varians* fossils were also compared. In the following discussion, we will conduct a detailed comparison of skull and tooth morphologies between *C. varians* and extant *T. triton*.

(1) Comparisons of the skull morphologies between C. varians and T. triton

When Zheng (1984a) revisited the hamster fossils from Zhoukoudian, he proposed several distinguishing skull characters to differentiate between *C. varians* and extant *T. triton*. However, Xie, Zhang & Li (2021) assessed these characters proposed by Zheng (1984a) and concluded that these differences between *C. varians* and *T. triton* skulls were questionable and required further verification. Therefore, it is not necessary to reiterate them here.

583

584

585 586

587

588

589

590

591

592

593 594

595

556 Topachevski and Skorik (1992, p.181) suggested three morphological differences in skull features between *Cricetinus* and *Tscherskia*. Based on the context, these opinions appear to be 557 founded only on the observation of the holotype (a maxillary fragment with M1-3) of *Cricetinus* 558 gritzai, rather than the specimens of the type species (C. varians) of the genus. Firstly, Cricetinus 559 560 is said to differ from *Tscherskia* by having a wider and more concave masseteric plate (i.e., "zygomatic plate" in the present paper). However, Topachevski and Skorik (1992) did not 561 562 provide any measurements of the zygomatic plates of *Cricetinus* and *Tscherskia* to substantiate this claim, even though the degree of depression of the surface of the zygomatic plate seems 563 challenging to quantify. Even if this assertion holds, a wider and more concave zygomatic plate 564 may only be a feature of the *Cricetinus gritzai* species, not the entire *Cricetinus* genus, because 565 our observations show no obvious difference in the characters of the zygomatic plate between 566 Tscherskia triton varians from Syz 2 and living T. triton (Figures 2, S1). Secondly, Cricetinus is 567 said to develop stronger ridges along the posterior side of the incisive foramina [the rim of the 568 569 area for the lateral masseter?] than *Tscherskia*. However, we likewise failed to discern any appreciable difference in the ridges between T. t. varians from Syz 2 and extant T. triton (Figures 570 2, S1). Thirdly, the position of the masseteric tuberosity in *Cricetinus* is considered more similar 571 to that in *Cricetus* than in *Tscherskia*. Our observations show that the position of the posterior 572 573 margin of the masseteric tuberosity in living Cricetus cricetus (closer to the posterior edge of the incisive foramen) seems to be slightly further back than that in living *Tscherskia triton* (closer to 574 the middle of the incisive foramen). The position of the masseteric tuberosity of T. t. varians 575 from Syz 2 more closely resembles that of extant *T. triton* rather than *C. cricetus* (Figures 2, S1). 576 In conclusion, since the three distinguishing characters between Cricetinus and Tscherskia 577 578 proposed by Topachevski and Skorik (1992) seem to be based on just one specimen of C. gritzai (the holotype), and we were unable to detect the aforementioned differences between extant T. 579 triton and T. t. varians from Syz 2, the validity of these differences, in our opinion, is 580 questionable. 581

(2) Comparisons of the teeth morphologies between *C. varians* and *T. triton Comparisons of the teeth size*

Table 2 and Fig. 6 show the measurements and scatter diagrams of *C. varians* from Zhoukoudian in Beijing (Zheng, 1984a), Jinniushan in Liaoning Province (Zheng & Han, 1993), and Renzidong in Anhui Province (Jin et al., 2009), as well as *T. triton* from Syz 2 and extant *T. triton*. It is evident that, with the exception of the material from Renzidong which is significantly smaller, the average molar sizes from other localities are quite similar, and the data ranges also substantially overlap. In other words, we cannot differentiate *C. varians* from *T. triton* based on their size. As to the material from Renzidong, its significantly smaller size and markedly older geological age—ca. 2 Ma (Jin, Qiu & Zheng, 2009) compared to the Middle Pleistocene age of other localities—cast doubt on its identification as *C. varians*. It is possible that the material from Renzidong represents a new form.

Additionally, with the reassignment of hamster material initially identified as *Cricetinus varians* (or *Cricetinus* cf. *varians*, *Cricetulus* (*Cricetinus*) varians) from several Early

- 596 Pleistocene sites in China, such as Localities 12, 18 of Zhoukoudian in Beijing, and
- 597 Gongwangling in Lantian, Shaanxi, being assigned to the genus *Allocricetus* (Zheng, 1984a),
- 598 East cave of Zhoukoudian has become the only Early Pleistocene site in China, besides
- Renzidong, yielding *Cricetinus varians* fossils. However, the length of M1-3 of *Cricetinus*
- of varians from East cave is merely 4.83 mm (Cheng et al., 1996, Table 3-11, p.40), smaller than
- 601 the lower limit of the variation range for that measurement in "typical" C. varians and extant
- *Tscherskia triton* (Table 2). More importantly, the m1s of *C. varians* from East cave completely
- lack the mesolophid (Cheng et al., 1996, p.40), which markedly differs from "typical" C. varians
- and extant *T. triton* (Table 3). Therefore, the material identified as *C. varians* from East cave
- 605 necessitates reevaluation of its classification. Given the above explanations, except *Tscherskia*
- sp. from the Late Pliocene Youhe fauna (Xie, Zhang & Li, 2021), there is now no reliable fossil
- of *Tscherskia* in China predating the Middle Pleistocene.

Comparisons of the teeth structures

In a hamster individual, the molars symmetrically distributed in the oral cavity (e.g., the left and right M3) may exhibit minor morphological differences; therefore, the morphological structures of both the left and right molars of large-sized hamsters from Syz 2 and living *T. triton* were statistically analyzed in the present study. The material of *C. varians* used for comparison here is mainly from Zhoukoudian (Zheng, 1984a) and Jinniushan (Zheng & Han, 1993).

m1 In extant *T. triton*, about 30% of specimens have a mesolophid (Table 3). The mesolophids are consistently weakly developed and of very short length, with the longest mesolophid not exceeding 1/5 of the distance from the base to the edge of the tooth. In most cases, the mesolophid only appears as a small bulge. It is either connected to the metaconid (9.5%, 2/21) or has a free end (90.5%, 19/21).

The localities in Table 3 are listed in descending order, approximately following their geological age from oldest to youngest (ZKD Loc.1, ca. 0.6-0.2 Ma; Jinniushan, ca. 0.31-0.2 Ma; ZKD Loc.3, late Middle Pleistocene; Syz 2, ca. 0.2 Ma). Although the frequencies of mesolophids in *C. varians* and *T. triton* differ across various geological ages, there is no evident discontinuity between them, and as the age advances, the frequency of the mesolophid decreases. Given the similarities in other aspects of tooth morphology and the practicality of classification, it is more appropriate to interpret the differences in mesolophid frequencies as a result of gradualistic evolution within a single species, specifically the progressive reduction of the mesolophid, rather than interspecific or intergeneric differences.

m2 Table 4 presents the frequencies of mesolophids on m2s of *T. triton* and *C. varians*. As shown in the table, throughout their geologic history, the frequencies of mesolophids on m2s in both *T. triton* and *C. varians* were consistently high and similar, although slightly lower in extant *T. triton*. A comparable pattern is also observed in the proportions of morphotype III in *C. varians* (excluding Jinniushan specimens) and extant *T. triton*. Therefore, the mesolophid morphology on m2s in *T. triton* and *C. varians* further substantiates the congruence of the "two" species, and it appears more plausible to interpret the minor differences between the two as a

gradualistic evolution within a single species, specifically the reduction of the mesolophid, similar to the situation observed in mesolophids on m1.

m3 Table 5 shows the frequencies of mesolophids on m3s of *T. triton* and *C. varians*. As seen from the table, mesolophids are present in nearly all specimens. The proportions of the mesolophids morphotype "connected to the lingual tooth edge" are consistently high, but no clear regularity emerges. Comparing the proportions of more detailed morphological structures is difficult due to insufficient data. But overall, the characters of m3s of *T. triton* and *C. varians* are still quite consistent.

M1 The lingual anterocones and protocones on M1s of *T. triton* and *C. varians* are consistently connected by an anterolophule, whereas the anterolophule behind the buccal anterocone is not always present. Table 6 illustrates that the occurrence frequency of the anterolophule behind the buccal anterocone is high in both *T. triton* and *C. varians*. However, as the statistical data for *C. varians* are based on a relatively small number of specimens, the reliability of the comparison is diminished. The frequencies of "protolophule I" are unstable and appear to lack any discernable regularity.

M2 and **M3** There is practically no morphological difference between M2s and M3s of *T. triton* and *C. varians*.

In summary, *C. varians* and *T. triton* exhibit substantial consistency in skull and tooth morphologies. Although minor differences in tooth morphology exist between them, these differences exhibit continuous variation and can only be discerned with statistically abundant material. Therefore, we propose that *C. varians* should be considered a chronosubspecies of *T. triton*, i.e., *T. triton varians* comb. nov., and *Cricetinus* should be regarded as a junior synonym of *Tscherskia*.

Referred species of Tscherskia

Apart from *Cricetinus varians*, there are six other species in Eurasia that have been referred to *Cricetinus*:

Cricetinus europaeus Kretzoi, 1959. The type locality of this species is Csarnóta 2 in Hungary. The majority of researchers believe that the geological age of this site is MN 15 (Venczel & Gardner, 2005). The type specimens of *C. europaeus* consist of only three molars, but one M2 among these three molars was later identified as *C. janossyi* by Hír (1996b). Hír (1994)

discovered additional materials for this species and described them in detail when examining the materials from the type locality, thus clarifying the nature of the species. Although *C. europaeus*

667 is among the earliest *Cricetinus* species in Europe (Hír, 1994), it appears to exhibit rather

advanced morphologies. For instance, the presence ratios of mesolophids on m1 and m2 are even lower than those of extant *T. triton* (Table 7); however, due to the scarcity of material, this

observation requires further validation with additional material in the future.

Cricetinus gritzai Topachevski & Skorik, 1992. The type locality of this species is Odessa,
 Ukraine. A notable character of this species is that all m1s and partial m2s possess a mesolophid
 (Koufos et al., 2001). On one hand, this feature indicates a more primitive nature (in other

Cricetinus or *Tscherskia* species, the mesolophid frequency of m1 reaches a maximum of 70%).

682

683 684

685

686

687 688

689

690

691

692

693

694

695

696 697

698

699

700 701

702 703

704

705

706

707

708

709 710

711

- On the other hand, the character itself is also unique, because in cricetids, the mesolophid 675 frequency of m1 is almost always lower than that of m2, whereas in this species the situation is 676 reversed. Moreover, other molars of C. gritzai are slightly smaller in size than those of T. triton. 677 but only M3 is considerably larger than that of *T. triton* (Topachevsky & Skorik, 1992). If this 678 679 discrepancy is not a statistical error (given that there is only one M3), it may also illustrate the primitive nature of *C. gritzai*. 680
 - Cricetinus beremendensis Hír, 1994. The type locality of this species is Beremend 15 in Hungary, with a geologic age of 2.7 Ma (Hír, 1994; Pazonyi, 2011). The molar morphology of this species, particularly the degree of mesolophid development, is markedly different from other species currently classified in *Cricetinus*, but closely resembles *Allocricetus ehiki* and *A. bursae* in size and morphology (Table 7). Thus, it seems more reasonable to assign this species to Allocricetus Schaub, 1930.
 - Cricetinus janossyi Hír, 1996. The type locality of this species is Osztramos 7 in Hungary, with a geologic age of approximately 2.3 Ma (Hír, 1996b; Pazonyi, 2011). The molar morphology of this species is very similar to that of *T. triton varians* from Syz 2 (Table 7), although the former is slightly larger in size, and their ages are significantly different. C. janossyi is also among the earliest *Cricetinus* species in Europe, first appearing in Csarnóta 2 of Hungary at the same time as *C. europaeus*.
 - Cricetinus koufosi Koliadimou 1996. The type locality of this species is Ravin Voulgarakis in Mygdonia basin of Greece (Koufos et al., 2001). The age of Ravin Voulgarakis has been dated to the Nagyharsanyhegy phase of the Biharian (ca. 1.2-0.7 Ma) (Koufos et al., 2001), making this species the latest among several Cricetinus species in Europe. Additionally, this species has been discovered in Marathoussa of Mygdonia basin, with the age of the locality dated to the Betfia phase of the Biharian (ca. 1.5-1.2 Ma) (Koufos et al., 2001). Many molar characters of this species remain unclear, but the absence of the mesolophid on m1 may indicate its relatively advanced nature.
 - Cricetinus mesolophidos Wu & Flynn, 2017. Xie, Zhang & Li (2021) concluded that it was more reasonable to place C. mesolophidos in Neocricetodon rather than in Cricetinus (i.e., Tscherskia).
 - In summary, we suggest that C. europaeus, C. gritzai, C. janossyi, and C. koufosi should be transferred to *Tscherskia*, while *C. beremendensis* should be transferred to *Allocricetus*, and *C.* mesolophidos to Neocricetodon. However, this treatment is provisional, because the characters of some of these species remain unclear. Except the type species *T. triton*, the type localities of the other four *Tscherskia* species are situated within a small area covered by several neighboring countries in southeastern Europe. This significant geographic distance between T. triton and other species introduces a degree of uncertainty to the above classification (Kretzoi, 1959; Hír, 1994). In addition, Storch (1974) described a species T. rusa from the Holocene (dated between 2200–700 B.C.) of northern Iran, whose geographic location and age are highly perplexing.
- 712
- 713 Although we have tentatively placed it in *Tscherskia*, the validity of this species and whether it
- should be referred to Tscherskia clearly warrant further investigation. Table 7 provides a 714

- summary of comparisons of frequencies of mesolophids on lower molars among the species of
- 716 Cricetinus, Tscherskia, and some related genera (Cricetulus, Nothocricetulus, and Allocricetus).
- 717 Origin and dispersal of Tscherskia
- 718 Zheng (1984a, b), Zheng et al. (1985), and Zheng & Han (1993) suggested that *Cricetinus* (a
- 719 junior synonym of *Tscherskia*) very likely originated from the genus *Kowalskia* (a junior
- 720 synonym of *Neocricetodon*), an idea tentatively proposed by Fahlbusch (1969). Qiu & Li (2016)
- 721 remarked that this viewpoint merits further investigation. We also concur with this viewpoint,
- and the reasons for this deduction have already been fully explained by Zheng (1984b) (as
- discussed above, the presence of the axioloph on M3 in both genera also appears to support this),
- 724 so it is not necessary to reiterate these points here.
- The question that arises now is: when and where (Asia or Europe) did *Tscherskia* originate?
- Based on current evidence, the earliest appearance of *Tscherskia* in Europe predates that in Asia.
- 727 The earliest species of *Tscherskia* in Europe, *T. europaeus* and *T. janossyi*, both emerged at
- 728 Csarnóta 2 (MN 15, ca. 5-3.5 Ma) in Hungary (Hír, 1994; Venczel & Gardner, 2005). In Asia,
- 729 the earliest known *Tscherskia* is *T.* sp., represented by a fragmentary mandible with m2-m3
- 730 from the Youhe fauna in Linwei District, Shaanxi Province, China (Xie, Zhang & Li, 2021), with
- an age of the Late Pliocene (ca. 3.15-2.59 Ma, Yue & Xue, 1996). However, as previously noted,
- all other credible materials of *Tscherskia* in China (or Asia) are from the Middle Pleistocene or
- 1733 later. This nearly empty fossil record of *Tscherskia* in East Asia before the Middle Pleistocene is
- a major challenge to the idea of an East Asian origin for *Tscherskia*, although species
- 735 morphologically similar to *Tscherskia triton* have been found in the Late Pliocene (?) in China
- 736 (e.g., *Neocricetodon yinanensis*). Furthermore, Europe exhibits a higher diversity of *Tscherskia*
- 737 species compared to Asia.
- Therefore, based on the available evidence, it seems more probable that *Tscherskia* originated
- 739 from *Neocricetodon* during the Early Pliocene in Europe and subsequently spread to Asia. It is
- 740 possible that another dispersal event in the same direction occurred during the late Early
- 741 Pleistocene, which could account for the absence of credible *Tscherskia* fossils in China
- 742 throughout the Early Pleistocene. Meanwhile, the *Tscherskia* that arrived in East Asia during the
- 743 first dispersal event likely became extinct shortly thereafter and did not survive into the
- 744 Pleistocene. Of course, this hypothesis still requires verification through the examination of
- 745 additional material in the future.

Conclusions

746

- 747 The detailed morphological description and comparative study of hundreds of large-sized
- hamster remains collected from the late Middle Pleistocene Locality 2 of Shanyangzhai (Syz 2)
- 749 indicate that they should be referred to a chronosubspecies of the extant *Tscherskia triton—T*.
- 750 triton varians comb. nov. This chronosubspecies is highly similar to extant T. triton in size and
- most molar characters, but exhibits slightly higher frequencies of mesolophids on m1 and m2. In
- 752 most skull and mandible measurements, the mean values of the former may be lightly greater
- 753 than those of the later. To resolve the longstanding debate over the validity of *Cricetinus*
- 754 Zdansky, 1928 and C. varians Zdansky, 1928, a detailed comparison of skull and molar

- morphology was conducted between C. varians and T. triton. The results demonstrated that the
- 756 differences between the two are very slight; thus, C. varians can only be treated as a
- 757 chronosubspecies of *T. triton*, i.e., *T. triton varians* comb. nov., and *Cricetinus* should be
- 758 considered a junior synonym of *Tscherskia*. We tentatively propose that among the seven species
- once referred to Cricetinus in Eurasia, C. europaeus, C. gritzai, C. janossyi, and C. koufosi
- should be transferred to *Tscherskia*, while *C. beremendensis* should be transferred to
- 761 Allocricetus, and C. mesolophidos to Neocricetodon. Apart from Tscherskia sp. from the Late
- 762 Pliocene Youhe fauna, there are no credible fossils of *Tscherskia* in China earlier than the
- 763 Middle Pleistocene. Based on the current evidence, *Tscherskia* may have originated from
- Neocricetodon during the Early Pliocene in Europe and subsequently spread to Asia, with T.
- 765 *triton* being its sole extant representative now only inhabiting East Asia.

Acknowledgements

- We would like to express our sincere appreciation to Prof. Qiu Zhuding for his assistance in
- 768 improving the manuscript, to Prof. Zheng Shaohua for valuable discussions, and to Prof. Wu
- Wenyu for her warm support (all affiliated with the Institute of Vertebrate Paleontology and
- 770 Paleoanthropology, Chinese Academy of Sciences, China). We are grateful to the editor, Dr.
- 771 Kenneth De Baets, and reviewers Drs. Maxim Sinitsa, János Hír, and Jordi Agustí for their
- insightful comments, which substantially enhanced the original manuscript. We also extend our
- 773 thanks to Li Zhixuan (College of Life Sciences, NWU), Wang Kaifeng and Wang Yan (Shannxi
- 774 Institute of Zoology, China), Zhang Lixun and Liao Jicheng (School of Life Sciences, Lanzhou
- 775 University, China), and Zhang Yanming (Northwest Institute of Plateau Biology, Chinese
- 776 Academy of Sciences, China) for their friendly assistance during the examination of extant
- hamster specimens. Additionally, we thank Prof. Robert F Diffendal, Jr. for his linguistic help.

778

779

766

References

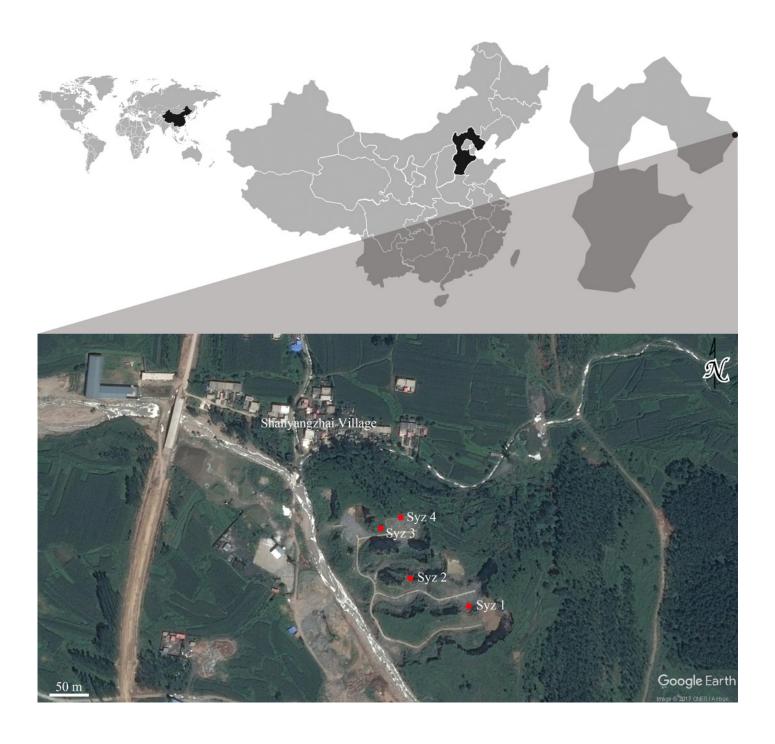
- Allen GM. 1928. A new cricetine genus from China. Journal of Mammalogy 9:244–246.
- 781 Argyropulo Al. 1933. Die Gattungen und Arten der Hamster (Cricetinae Murray, 1866) der
- 782 Paläarktik. Zeitschrift für Säugetierkunde 8:129–149.
- 783 Cai BQ, Zhang ZQ, Zheng SH, Qiu ZD, Li Q, Li Q. 2004. New advances in the stratigraphic
- 784 study on representative sections in the Nihewan Basin, Hebei. In: Professional Papers of
- 785 Stratigraphy and Palaeontology, Number 28. Beijing: Geology Press, 267–285.
- 786 Cai BQ, Zheng SH, Liddicoat JC, Li Q. 2013. Review of the Litho-, Bio-, and Chronostratigraphy
- 787 in the Nihewan Basin, Hebei, China. In: Fossil Mammals of Asia: Neogene Biostratigraphy and
- 788 *Chronology.* New York: Columbia University Press, 218–242.
- 789 Chen W, Gao W. 2000. Cricetinae. In: Luo Z X, Chen W, Gao W (Eds.), Fauna Sinica,
- 790 Mammalia, Vol. 6: Rodentia Part III: Cricetidae. Beijing: Science Press, 20–90.
- 791 Chen Y, Li YX, Shi JS, Zhang YX, Xie K. 2021. Pleistocene fossil snakes (Squamata, Reptilia)
- 792 from Shanyangzhai Cave, Hebei, China. *Historical Biology* 33:699–711.

- 793 Chen SK, Pei J, Yi J, Wei GB, Pang LB, Wu Y, Hu X. 2017. Preliminary report on the
- mammalian fauna from Yumidong cave, Wushan, Chongqing, and its chronological analysis.
- 795 Quaternary Sciences 37:845–852.
- 796 Chen TM, Zhou LP. 2009. Dating of the Peking Man site: A comparison between existing
- 797 chronology and the ²⁶Al/¹⁰Be burial ages. *Acta Anthropologica Sinica* 28:285–291.
- 798 Cheng J, Tian MZ, Cao BX, Li LY. 1996. The new mammalian fossils from Zhoukoudian
- 799 (Choukoutien) Beijing and their environmental explanation. Wuhan: China University of
- 800 Geosciences Press.
- 801 Chow MC, Li CK. 1965. Mammalian fossils in association with the mandible of Lantian Man at
- 802 Chen-chia-ou, in Lantian, Shensi. *Vertebrata PalAsiatica* 9:377–393.
- B03 Ding L, Zhou Q, Sun Y, Feoktistova NY, Liao J. 2020. Two novel cricetine mitogenomes: Insight
- 804 into the mitogenomic characteristics and phylogeny in Cricetinae (Rodentia: Cricetidae).
- 805 Genomics 112:1716-1725.
- 806 Fahlbusch V. 1969. Pliozäne und Pleistozäne Cricetinae (Rodentia, Mammalia) aus Polen. Acta
- 807 Zoologica Cracoviensia 14:99–138.
- 808 Freudenthal M, Daams R. 1988. Cricetidae (Rodentia) from the type-Aragonian; the genera
- 809 Democricetodon, Fahlbuschia, Pseudofahlbuschia nov. gen., and Renzimys. Scripta Geologica,
- 810 Special Issue 1:133-252.
- 811 Freudenthal M, Hugueney M, Moissenet E. 1994. The genus *Pseudocricetodon* (Cricetidae,
- 812 Mammalia) in the upper Oligocene of the province of Teruel (Spain). Scripta Geologica 104:57–
- 813 114
- 814 Gai P, Wei Q. 1977. The discovery of Upper Paleolithic Hutouliang Site. Vertebrata PalAsiatica
- 815 15:287–300.
- 816 Gu YM. 1978. New Cave Men and their living environment. In: *Institute of Vertebrate*
- 817 Paleontology and Paleoanthropology, Chinese Academy of Sciences (Ed.). Collected Papers of
- 818 Paleoanthropology. Beijing: Science Press, 158–174.
- 819 Hír J. 1993a. *Cricetulus migratorius* (Pallas, 1773) (Rodentia, Mammalia) population from the
- 820 Toros Mountains (Turkey) (With a special reference to the relation of *Cricetulus* and *Allocricetus*
- 821 genera). Folia Historico Naturalia Musei Matraensis 18:17–34.
- 822 Hír J. 1993b. Allocricetus ehiki Schaub, 1930 (Rodentia, Mammalia) finds from Villány 3 and
- 823 Esztamos 3 (Hungary). Fragmenta Mineralogica et Palaeontologica 16:61–80.
- 824 Hír J. 1994. Cricetinus beremendensis sp. n. (Rodentia, Mammalia) from the Pliocene fauna of
- 825 Beremend 15. (S Hungary). Fragmenta Mineralogica et Paleontologica 17:71–89.
- 826 Hír J. 1996a. New results in the study of Hungarian Plio-Pleistocene cricetids. Acta Zoologica
- 827 *Cracoviensia* 39:213–218.
- 828 Hír J. 1996b. Cricetinus janossyi sp. n. (Rodentia, Mammalia) from the Pliocene fauna of
- 829 Osztramos 7. (N Hungary). Fragmenta Mineralogica et Palaeontologica 18:79–90.
- 830 Hír J. 1997. A short scetch of the evolution and stratigraphy of the Plio-Pleistocene cricetids
- 831 (Rodentia, Mammalia) in Hungary. Folia Historico Naturalia Musei Matraensis 22:43–49.
- 832 Hu CK. 1985. History and progress of mammalian fossil research of Locality 1 of Zhoukoudian.
- 833 In: Multi-disciplinary study of the Peking Man Site at Zhoukoudian. Beijing: Science Press.
- 834 Huang YP, Fu RY, Li X, Hui ZY. 2021. The study of the animal fossils from Jinniushan. In:
- 835 School of Archaeology and Museology, Peking University; Liaoning Provincial Academy of

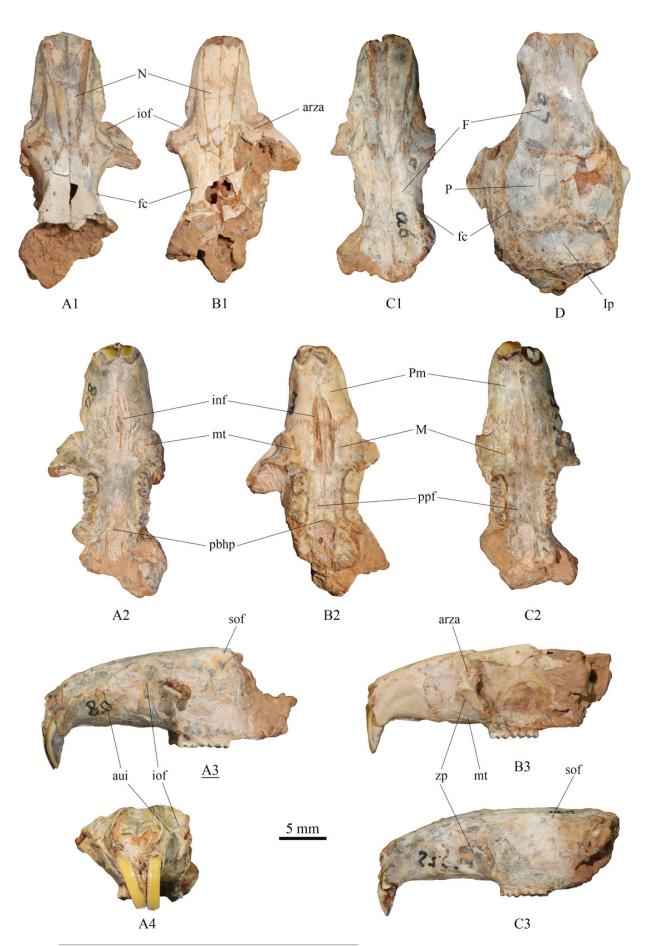
- 836 Cultural Relics and Archaeology (Eds.). The Jinniushan Hominin Site. Beijing: Cultural Relics
- 837 Press, 168–285.
- 838 ICZN. 1999. International Code of Zoological Nomenclature (4th Edition). London: International
- 839 Trust for Zoological Nomenclature.
- 340 Jia LP. 1959. Report on 1958's excavation at Peking Man Site. *Palaeovertebrata et*
- 841 Paleoanthropologia 1:21–26.
- 342 Jin CZ. 2002. Chiroptera and Rodentia. In: Wu R K, Li X X, Wu X Z, Mu X N (Eds.). Homo
- 843 *erectus from Nanjing*. Nanjing: Jiangsu Science and Technology Publishing House, 91–101.
- Jin CZ, Dong W, Gao X, Liu W, Liu JY, Zheng LT, Han LG, Xie XC, Cui N, Zhang YQ. 2004.
- Preliminary report on the 2002 excavation of Jinpendong site at Wuhu, Anhui Province. Acta
- 846 Anthropologica Sinica 23:281–291.
- Jin CZ, Qiu ZX, Zheng JJ. 2009. Chapter 5 The characters of the mammalian fauna from the
- 848 Renzidong Cave and its zoogeographical significance. In: Jin C Z, Liu J Y (Eds.). Paleolithic site
- the Renzidong cave, Fanchang, Anhui Province. Beijing: Science Press, 336–346.
- 850 Jin CZ, Zhang YQ, Wei GB, Cui N, Wang Y. 2009. Rodentia. In: Jin C Z, Liu J Y (Eds.).
- 851 Paleolithic site the Renzidong cave, Fanchang, Anhui Province. Beijing: Science Press, 166–
- 852 220
- 853 Kishida K. 1929. A synopsis of Corean hamsters. Lansania. Tokyo 1:1–160.
- Koliadimou KK. 1996. Palaeontological and Biostratigraphical study of the Neogene/Quaternary
- micromammals from Mygdonia basin. Doct thesis, Univ. Thessaloniki: 612.
- 856 Kong FD. 2009. Research on Shanyangzhai Fauna and Their Living Environment of
- 857 Qinhuangdao. Journal of EMCC 19:1–8.
- Koufos GD, Vassiliadou KV, Koliadimou KK, Syrides GE. 2001. Early Pleistocene small
- 859 mammals from Marathoussa, a new locality in the Mygdonia basin, Macedonia, Greece.
- 860 Deinsea 8:49–102.
- 861 Kretzoi M. 1959. Insectivoren, Nagetiere und Lagomorphen der jungstpliozanen Fauna von
- 862 Csarnota im Villanyer Gebirge (Sudungarn). Vertebrata Hungarica 1:237–246.
- 863 Lebedev V, Bannikova A, Neumann K, Ushakova M, Ivanova N, Surov A. 2018. Molecular
- 864 phylogenetics and taxonomy of dwarf hamsters *Cricetulus* Milne-Edwards, 1867 (Cricetidae,
- Rodentia): description of a new genus and reinstatement of another. *Zootaxa* 4387:331–349.
- 866 Li Q, Stidham TA, Ni X, Li L. 2018. Two new Pliocene hamsters (Cricetidae, Rodentia) from
- 867 southwestern Tibet (China), and their implications for rodent dispersal 'into Tibet.' Journal of
- 868 Vertebrate Paleontology 37: e1403443.
- 869 Li YX, Li J, Zhang YX. 2016. Fossil *Scapanulus oweni* (Eulipotyphla, Mammalia) from the
- 870 Shanyangzhai Cave, Middle Pleistocene, Qinhuangdao, China. Quaternary International
- 871 392:197–202.
- 872 Li YX, Zhang YX. 2011. The *Crocidura* fossils (Insectivora, Mammalia) from cave deposits in the
- 873 Middie Pleistocene of Shanyangzhai site, Hebei Province, China. Quaternary Sciences 31:667-
- 874 674.
- 875 Li YX, Zhang YX. 2013. New *Neomys* fossils (Soricidae, Insectivora) from the Middle
- 876 Pleistocene of China. Quaternary international 286:81–84.
- 877 Li YX, Zhang YX, Ao H. 2013. Sorex fossils (Soricidae, Insectivora) from the Middle Pleistocene
- 878 cave site of Shanyangzhai, Hebei Province, China. Quaternary International 298:187–195.

- 879 Li YX, Zhang YX, Li J. 2013. Distribution of several insectivora and the drying trend since the
- Pleistocene in North China. *Quaternary international* 313:240–247.
- Li YX, Zhang YX, Zheng YH. 2013. *Erinaceus europaeus* fossils (Erinaceidae, Insectivora) from
- the Middle Pleistocene cave site of Shanyangzhai, Hebei Province, China. *Quaternary*
- 883 International 286:75-80.
- Liu JY, Wagner J, Chen PF, Sheng GL, Chen J, Jiang Zuo QG, Liu SZ. 2015. Mass mortality of
- a large population of the spotted hyenas (*Crocuta ultima*) at the Lingxian-dong cave,
- 886 Qinhuangdao, Hebei Province: a hyena communal den with its palaeoecological and
- taphonomical interpretation. *Quaternary Sciences* 35:607–621.
- 888 Liu W, Wu XJ, Xing S, Zhang YY. 2014. Human Fossils in China. Beijing: Science Press.
- Matthews SC. 1973. Notes on open nomenclature and on synonymy lists. Palaeontology
- 890 16:713–719.
- 891 McKenna MC, Bell SK. 1997. Classification of mammals: above the species level. New York:
- 892 Columbia University Press.
- 893 Musser GG, Carleton MD. 2005. Superfamily Muroidea. In: Wilson D E, Reeder D M (Eds.).
- 894 Mammals Species of the World: A Taxonomic and Geographic Reference. Baltimore: The Johns
- 895 Hopkins University Press, 894–1531.
- 896 Neumann K, Michaux J, Lebedev V, Yigit N, Colak E, Ivanova N, Poltoraus A, Surov A, Markov
- 897 G, Maak S, others. 2006. Molecular phylogeny of the Cricetinae subfamily based on the
- 898 mitochondrial cytochrome b and 12S rRNA genes and the nuclear vWF gene. Molecular
- 899 phylogenetics and evolution 39:135–148.
- 900 Niu PS, Zhang YJ, Fa L. 2003. Formation period and environment of speleothem in the Liujiang
- 901 Basin inferred from the Shanyangzhai mammal fossils. *Marine Geology & Quaternary Geology*
- 902 23:117-122.
- 903 Ognev SI. 1914. Die Säugetiere aus dem Südlichen UssuriGebiete. Journal de la Section
- 904 Zoologique de la Société Impériale des Amis des Sciences Naturalles, d'Antropologie et
- 905 d'Ethnographie 2:101–134.
- 906 Pazonyi P. 2011. Palaeoecology of Late Pliocene and Quaternary mammalian communities in
- 907 the Carpathian Basin. Acta Zoologica Cracoviensia-Series A: Vertebrata 54: 1–32.
- 908 Pei WC. 1931. Mammalian remains from Locality 5 at Chouk'outien. Palaeontologia Sinica,
- 909 Series C 7:16.
- 910 Pei WC. 1936. On the mammalian remains from Locality 3 at Choukoutien. *Palaeontologia*
- 911 *Sinica, Series C* 7:120.
- 912 Pei WC. 1939. A Preliminary Study on a New Palæolithic Station known as locality 15 within the
- 913 Choukoutien Region. Bulletin of the Geological Society of China 19:147–187.
- 914 Pei WC. 1940. The Upper Cave fauna from Choukoutien. Palaeontologia Sinica, New Series C
- 915 Number 10:1–84.
- 916 Pradel A. 1981. Biometrical remarks on the hamster Cricetulus migratorius (Pallas 1773)
- 917 (Rodentia, Mammalia) from Krak des Chevaliers (Syria). Acta Zoologica Cracoviensia 25:271–
- 918 292
- 919 Qiu ZD. 1995. A new cricetid from the Lufeng hominoid locality, late Miocene of China.
- 920 Vertebrata PalAsiatica 33:61–73.
- 921 Qiu ZD, Li Q. 2016. Neogene Rodents from Central Nei Mongol, China. Beijing: Science Press.

- 922 Romanenko SA, Lebedev VS, Bannikova AA, Pavlova SV, Serdyukova NA, Feoktistova NY,
- Jiapeng Q, Yuehua S, Surov AV, Graphodatsky AS. 2021. Karyotypic and molecular evidence
- 924 supports the endemic Tibetan hamsters as a separate divergent lineage of Cricetinae. Scientific
- 925 reports 11:1-9.
- 926 Schaub S. 1930. Quartäre und jungtertiäre Hamster. Abhandlungen der Schweizerischen
- 927 Palaeontologischen Gesellschaft 49:1–49.
- 928 Schaub S. 1934. Über einige fossile Simplicidentaten aus China und der Mongolei.
- 929 Abhandlungen der Schweizerischen Palaeontologischen Gesellschaft 54:1–39.
- 930 Sinitsa MV, Delinschi A. 2016. The earliest member of *Neocricetodon* (Rodentia: Cricetidae): a
- 931 redescription of *N. moldavicus* from Eastern Europe, and its bearing on the evolution of the
- 932 genus. Journal of Paleontology 90:771–784.
- 933 Steppan SJ, Schenk JJ. 2017. Muroid rodent phylogenetics: 900-species tree reveals increasing
- 934 diversification rates. PloS one 12:e0183070.
- 935 Storch G. 1974. Neue Zwerghamster aus dem Holozan von Aserbeidschan, Iran (Rodentia:
- 936 Cricetinae). Senckenbergiana Biologica 55:21–28.
- 937 Sun YF, Jin CZ. 1990. Micromammal fossils. In: Gulongshan cave site: a Upper Paleolithic site
- 938 at Dalian City. Beijing: Beijing Science and Technology Press, 27–43.
- 939 Teilhard de Chardin P. 1936. Fossil mammals from Locality 9 of Choukoutien. *Palaeontologia*
- 940 Sinica, Series C 7:61.
- 941 Teilhard de Chardin P. 1940. The fossils from Locality 18 near Peking. *Palaeontologia Sinica*,
- 942 New Series C Number 9:1–94.
- 943 Teilhard de Chardin P, Leroy P. 1942. Chinese fossil mammals: a complete bibliography
- 944 analysed, tabulated, annotated and indexed. Géobiologia 8:1–142.
- Teilhard de Chardin P, Pei WC. 1941. The fossil mammals from Locality 13 of Choukoutien.
- 946 Palaeontologia Sinica, New Series C Number 11:1–106.
- 947 Teilhard de Chardin P, Young CC. 1929. Preliminary report on the Chou Kou Tien fossififerous
- 948 deposits. Bulletin of the Geological Society of China 8:173–202.
- 949 Tong HW, Shang H, Zhang SQ, Chen FY. 2004. A preliminary report on the newly found
- 950 Tianyuan Cave, a Late Pleistocene human fossil site near Zhoukoudian. *Chinese Science*
- 951 Bulletin 49:853-857.
- Tong HW, Wu XJ, Dong Z, Sheng JC, Jin ZT, Pei SW, Liu W. 2018. Preliminary report on the
- 953 mammalian fossils from the ancient human site of Hualong Cave in DongZhi, Anhui. Acta
- 954 Anthropologica Sinica 37:284–305.
- 955 Topachevsky VA, Skorik AF. 1992. *Neogenovye i pleystocenovye nizhie khomiakoobraznye*
- 956 *yuga Vostochnoy Evropy*. Kiev: Naukova Dumka.
- 957 Venczel M, Gardner JD. 2005. The geologically youngest albanerpetontid amphibian, from the
- 958 lower Pliocene of Hungary. *Palaeontology* 48: 1273–1300.
- 959 Voss RS. 1988. Systematics and ecology of ichthyomyline rodents (Muroidea): patterns of
- 960 morphological evolution in a small adaptive radiation. Bulletin of the American Museum of
- 961 Natural History. 188: 259–493.
- 962 WU BL, DENG CL, KONG YF, LIU SZ, SUN L, LI SH, GE JY, WANG Y, JIN CZ, ZHU RX. 2018.
- 963 Magnetostratigraphy of the fluvio-lacustrine sequence on the Guangongtan section in
- 964 Longzhong Basin, NW China. Chinese Journal of Geophysics 61:1390–1399.



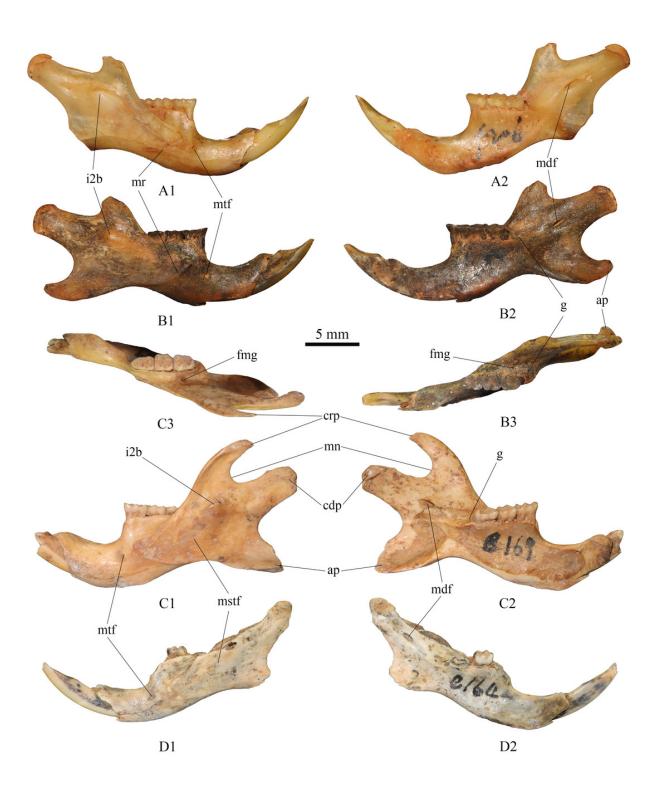
- 965 Wang BY, Qiu ZX. 2018. Late Miocene Pararhizomyines from Linxia Basin of Gansu, China.
- 966 Beijing: Science Press.
- 967 Wang BY, Wu WY, Qiu ZD. 2020. Cricetidae. In: Qiu Z D, Li C K, Zheng S H (Eds.),
- 968 Palaeovertebrata Sinica, Volume III, Basal Synapsida and Mammals, Fascicle 5(2) (Serial no.
- 969 18-2): Glires II: Rodentia II. Beijing: Science Press, 10–152.
- 970 Wang W, Zhang YX, Li YX, Gong HJ. 2010. A new species of *Lepus* (Lagomorpha, Mammalia)
- 971 from the Middle Pleistocene of the Liujiang Basin in Qinhuangdao of Hebei Province, China.
- 972 Vertebrata PalAsiatica 48:63–70.
- 973 Wu WY, Flynn LJ. 2017. The hamsters of Yushe basin. In: Flynn L J, Wu W Y (Eds.). Vertebrate
- 974 Paleobiology and Paleoanthropology Series. Late Cenozoic Yushe basin, Shanxi province,
- 975 China: Geology and fossil mammals, Volume II: Small Mammal Fossils of Yushe Basin.
- 976 Dordrecht: Springer, 123–137.
- 977 Xia L, Yang QS, Ma Y, Feng ZJ, Zhou LZ. 2006. A guide to the measurement of mammal skull
- 978 III: Rodentia and Lagomorpha. *Chinese Journal of Zoology* 41:68–71.
- 979 Xie K, Li YX. 2016. Middle Pleistocene dwarf hamster of Shanyangzhai fauna in Qinhuangdao
- 980 area, China. Quaternary Sciences 36:322–331.
- 981 Xie K, Zhang YX, Li YX. 2021. Revision to Kowalskia from the Houhecun Fauna and a New
- 982 Discovery of Tscherskia (Cricetidae, Rodentia) from the Youhe Fauna of Weinan, Shaanxi
- 983 Province, China. Acta Geologica Sinica English Edition 95:1073–1079. DOI: 10.1111/1755-
- 984 6724.14776.
- 985 Xu QQ, Jin CZ, Tong HW, Dong W, Liu JY, Cai BX. 1997. Three glacial cycles during Peking
- 986 Man's time. In: Tong Y S, Zhang Y Y, Wu W Y et al. (Eds.). Evidence for Evolution—Essays in
- 987 Honor of Prof. Chungchien Young on the Hundredth Anniversary of His Birth. Beijing: China
- 988 Ocean Press, 209-226.
- 989 Yang QS, Xia L, Ma Y, Feng ZJ, Quan GQ. 2005. A guide to the measurement of mammal skull
- 990 I: basic measurement. *Chinese Journal of Zoology* 40:50–56.
- 991 Young CC. 1927. Fossile Nagetiere aus Nord-China. Palaeontologia Sinica, Series C 5:82.
- 992 Young CC. 1932. On the fossil vertebrate remains from Localities 2, 7 and 8 at Choukoutien.
- 993 Palaeontologia Sinica, Series C 7:24.
- 994 Young CC. 1934. On the Insectivora, Chiroptera, Rodentia and Primates other than
- 995 Sinanthropus from Locality 1 at Choukoutien. *Palaeontologia Sinica, Series C* 8:160.
- 996 Yue LP, Xue XX. 1996. Palaeomagnetism of Chinese Loess. Beijing: Geology Press.
- 2997 Zdansky O. 1923. Über Ein Säugerknochenlager in Chou-K'ou-Tien, Provinz Chihli. *Bulletin of*
- 998 the Geological Survey of China 5:83–90.
- 999 Zdansky O. 1928. Die Säugetiere der Quartärfauna von Chou-K'ou-Tien. Palaeontologia Sinica,
- 1000 Series C 5:146.
- 1001 Zhang SS. 2004. Beijing Annals, World Cultural Heritage Volume, The Peking Man Ruins
- 1002 Annals. Beijing: Beijing Press.
- 1003 Zhang ZH, Fu RY, Chen BF, Liu JY, Zhu MY, Wu HK, Huang WW. 1985. A preliminary report
- 1004 on the excavation of Paleolithic site at Xiaogushan of Haicheng, Liaoning, Province. Acta
- 1005 Anthropologica Sinica 4:70–81.
- 1006 Zhang YX, Li YX. 2015. The environment change and the migrate of some insectivora since the
- 1007 Pleistocene in China. 45:905–912.


- 1008 Zhang YX, Li YX, Wang W, Gong HJ. 2010. Middle Pleistocene mammalian fauna of
- 1009 Shanyangzhai cave in Qinhuangdao area, China and its zoogeographical significance. *Chinese*
- 1010 Science Bulletin 55:72–76.
- 1011 Zhang ZH, Wei HB, Xu ZH. 1986. Fossils of animal. In: *Miaohoushan: a site of early Paleolithic*
- 1012 in Benxi County, Liaoning. Beijing: Wenwu Press, 35–66.
- 1013 Zhang ZQ, Zheng SH, Liu LP. 2008. Late Miocene cricetids from the Bahe Formation, Lantian,
- 1014 Shaanxi Province. Vertebrata PalAsiatica 46:307–316.
- 1015 Zhang ZH, Zou BK, Zhang LK. 1980. The discovery of fossil mammals at Anping, Liaoning.
- 1016 Vertebrata PalAsiatica 18:154–162.
- 1017 Zheng SH. 1983. Micromammals from the Hexian Man Locality. Vertebrata PalAsiatica 21:230-
- 1018 240
- 1019 Zheng SH. 1984a. Revised determination of the fossil Cricetine (Rodentia, Mammalia) of
- 1020 Choukoutien district. Vertebrata PalAsiatica 22:179–197.
- 1021 Zheng SH. 1984b. A new species of *Kowalskia* (Rodentia, Mammalia) of Yinan, Shandong.
- 1022 Vertebrata PalAsiatica 22:251–260.
- 1023 Zheng SH. 1993. Quaternary rodents of Sichuan-Guizhou area, China. Beijing: Science Press.
- 1024 Zheng SH, Han DF. 1993. Mammalian fossils. In: Memoirs of Institute of Vertebrate
- 1025 Palaeontology and Palaeoanthropology, Academia Sinica: Comprehensive study on the
- 1026 *Jinniushan paleolithic site*. Beijing: Science Press, 43–128.
- 1027 Zheng SH, Yuan BY, Gao FQ, Sun FQ. 1985. Fossil mammals and their evolution. In: Loess
- 1028 and the Environment. Beijing: Science Press, 113–141.

Geographic locations of Syz 1~4. Satellite photo credit: Google Earth. © CNES/Airbus.

Skulls of Tscherskia triton varians from Syz 2.

(A) NWUV 1489.a8, incomplete skull; (B) NWUV 1489.a21, incomplete skull; (C) NWUV 1489.a6, incomplete skull; (D) NWUV 1489.a7, incomplete skull. (A1), (B1), (C1), (D), dorsal view; (A2), (B2), (C2), lateral view; (A3), (B3), (C3), ventral view; (A4), anterior view. The underlined label indicates the image has been reversed. Abbreviations: arza, anterior root of the zygomatic arc; aui, alveolus of the upper incisor; F, frontal; fc, frontal crest; inf, incisive foramen; iof, infraorbital foramen; Ip, interparietal; M, maxilla; mt, masseteric tubercle; N, nasal; P, parietal; pbhp, posterior border of the hard palate; Pm, premaxilla; ppf, posterior palatine foramen; sof, supraorbital foramen; zp, zygomatic plate.



PeerJ reviewing PDF | (2022:12:80883:2:0:NEW 2 May 2023)

Mandibles of Tscherskia triton varians from Syz 2.

(A) NWUV 1489.f206, right mandible; (B) NWUV 1489.f207, right mandible; (C) NWUV 1489.e169, left mandible; (D) NWUV 1489.e164, left mandible. (A1), (B1), (C1), (D1), buccal view; (A2), (B2), (C2), (D2), lingual view; (B3), (C3), occlusal view. Abbreviations: ap, angular process; cdp, condyloid process; crp, coronoid process; fmg, foramen in the middle of the groove (g); g, groove between the alveolus of molars and the base of the coronoid process; i2b, bulge formed by i2; mdf, mandibular foramen; mn, mandibular notch; mr, masseteric ridge; mstf, masseteric fossa; mtf, mental foramen.

PeerJ

Left upper molars of *Tscherskia triton varians* from Syz 2.

(A) NWUV 1489.a5; (B) NWUV 1489.a14; (C) NWUV 1489.a21; (D) NWUV 1489.b1; (E) NWUV 1489.c3; (F) NWUV 1489.c5; (G) NWUV 1489.c16. The arrow indicates the axioloph.

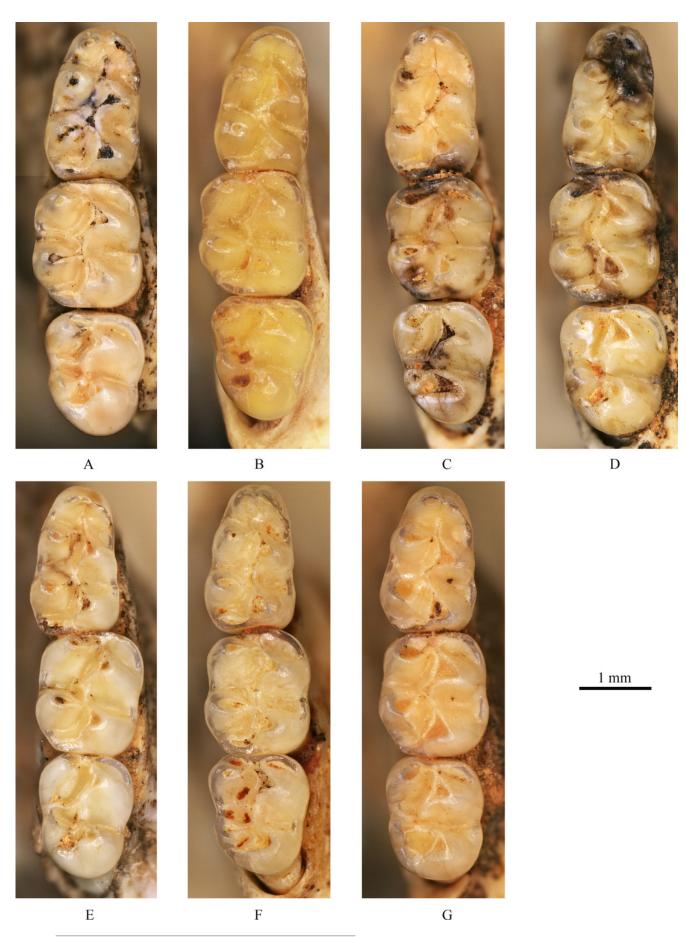
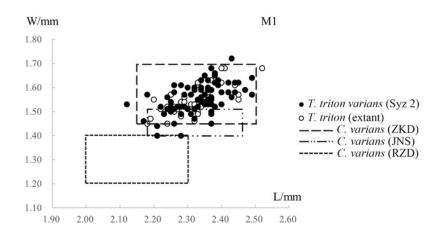


Figure 5

Right lower molars of *Tscherskia triton varians* from Syz 2.

(A) NWUV 1489.f8; (B) NWUV 1489.f13; (C) NWUV 1489.f22; (D) NWUV 1489.f28; (E) NWUV 1489.f31; (F) NWUV 1489.f49; (G) NWUV 1489.f56.



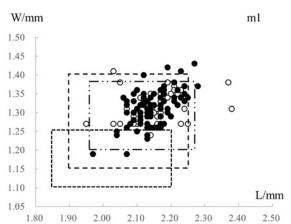


Figure 6

Scatter diagrams of lengths and widths of the first molars of "Cricetinus" varians and Tscherskia triton.

Data source refers to Table 2. The boxes in the figure represent the upper and lower bounds of the length and width values of specimens from specific sites, as the raw data of individual specimen measurements are not available in the original references.

Table 1(on next page)

Measurements and comparisons of skulls and mandibles of *Tscherskia triton varians* from Syz 2 and extant *T. triton* (mm) *

2
4
5
6
7
8
9

	T. triton varians of Syz 2						the extant <i>T. triton</i>					
	N	Min.	Mean	Max.	SD	CV	N	Min.	Mean	Max.	SD	CV
Palatal length	4	16.39	18.01	20.04	1.57	8.7%	40	13.72	17.21	20.13	1.70	9.9%
Upper diastema length	13	9.19	10.83	12.00	0.86	7.9%	46	7.64	9.98	12.31	1.15	11.5%
Length of the incisive foramen	11	6.26	7.11	7.93	0.51	7.2%	46	4.81	6.35	7.66	0.76	12.0%
Anterior palatal breadth	21	3.14	3.60	4.06	0.27	7.4%	44	2.39	3.18	3.78	0.31	9.8%
Posterior palatal breadth	11	3.34	3.78	4.02	0.18	4.7%	39	2.48	3.21	4.02	0.29	9.1%
Width of nasal *	6	1.88	2.18	2.34	0.16	7.4%	45	1.95	2.44	3.31	0.29	12.0%
Frontal suture length	1		9.66				43	8.83	10.68	12.62	0.95	8.9%
Parietal suture length	1		5.78				41	5.33	6.38	7.49	0.51	8.0%
Interparietal length	1		5.83				42	2.70	3.88	6.16	0.58	15.0%
Interparietal width	1		10.79				40	7.70	9.11	10.47	0.68	7.5%
Lower diastema length	21	4.89	5.76	6.70	0.56	9.7%	38	4.77	5.70	6.67	0.46	8.0%
Depth of mandible under anterior edge of alveolus	65	3.54	4.48	6.52	0.50	11.2%	40	3.55	4.56	5.91	0.52	11.4%
Depth of mandible between two roots of m1	78	4.31	5.27	6.63	0.48	9.2%	40	3.60	4.91	6.59	0.71	14.4%
Depth of mandible between two roots of m2	142	3.84	4.80	6.05	0.45	9.4%	40	3.04	4.36	6.05	0.68	15.7%
Depth of mandible between two roots of m3	162	2.83	3.87	4.98	0.44	11.3%	37	2.74	3.57	5.10	0.59	16.4%
Depth of mandible under posterior edge of alveolus	187	2.42	3.33	4.21	0.32	9.6%	40	2.40	3.17	4.44	0.42	13.2%
Length of mandible from the condyle	2	20.38	22.24	24.09	1.86	8.3%	38	16.05	20.30	24.99	2.07	10.2%
Distance from coronion to gonion ventrale	1		13.13				29	7.58	10.23	12.95	1.36	13.3%

gonion ventrale

Refer to Supplementary datasets 1-4 for raw data.

^{* &}quot;Width of nasal" here indicates the distance between the two junctions of the nasal, premaxilla and frontal.

Table 2(on next page)

Measurements and comparisons of molars of $Tscherskia\ triton\ and\ "Cricetinus"\ varians$ (mm) $^{\#}$

PeerJ

		M1-3	N	11	N	12	N	13	m1-3	n	nl	n	n2	m	13
		L	L	W	L	W	L	W	L	L	W	L	W	L	W
	N	34	83	84	83	84	47	46	56	89	105	106	107	74	73
T.	Min.	5.05	2.12	1.40	1.69	1.44	1.21	1.27	5.40	1.97	1.19	1.65	1.39	1.65	1.27
triton	Mean	5.44	2.33	1.56	1.85	1.56	1.43	1.40	5.67	2.14	1.31	1.81	1.54	1.78	1.43
varians from	Max.	5.69	2.49	1.72	2.00	1.78	1.55	1.48	5.98	2.28	1.43	1.96	1.70	1.93	1.56
Syz 2	SD	0.15	0.07	0.06	0.06	0.06	0.07	0.04	0.13	0.06	0.04	0.06	0.05	0.06	0.05
	CV	2.8%	3.2%	4.0%	3.4%	3.9%	5.2%	3.1%	2.4%	2.6%	3.4%	3.4%	3.2%	3.4%	3.6%
N	N	12	21	20	18	18	14	14	49	56	56	57	57	51	50
C.	Min.	5.25	2.15	1.45	1.65	1.45	1.35	1.25	4.70	1.90	1.15	1.60	1.30	1.60	1.20
varians	Mean	5.60	2.32	1.56	1.80	1.59	1.44	1.41	5.52	2.06	1.30	1.72	1.43	1.71	1.36
from ZKD *	Max.	5.85	2.50	1.70	1.90	1.65	1.50	1.50	5.85	2.25	1.40	1.90	1.55	1.90	1.55
	SD	0.19	0.10	0.07	0.06	0.07	0.05	0.06	0.20	0.08	0.06	0.09	0.05	0.09	0.06
	CV	0.4%	4.3%	4.6%	3.5%	4.2%	3.3%	4.1%	3.6%	3.9%	4.5%	5.1%	3.7%	5.0%	4.7%
C.	N	5	9	9	9	9	5	5	12	20	20	18	18	12	12
varians	Min.	5.28	2.18	1.40	1.77	1.44	1.42	1.30	5.33	1.96	1.20	1.70	1.36	1.67	1.30
from JNS	Mean	5.42	2.34	1.46	1.95	1.52	1.49	1.38	5.59	2.07	1.29	1.73	1.45	1.79	1.35
**	Max.	5.60	2.46	1.51	2.00	1.60	1.57	1.50	6.00	2.27	1.38	2.00	1.60	2.00	1.47
C.	N		35	35	25	25	1	1	2	52	52	50	50	18	2
varians	Min.		2.0	1.2	1.5	1.25			4.95	1.85	1.1	1.45	1.15	1.4	1.15
from RZD	Mean		2.15	1.31	1.64	1.32	1.7	1.5	4.98	2.01	1.14	1.59	1.3	1.59	1.26
***	Max.		2.3	1.4	1.8	1.4			5	2.2	1.25	1.65	1.4	1.7	1.3
	N	42	47	47	47	47	42	42	36	39	38	39	39	36	36
41	Min.	5.01	2.18	1.45	1.64	1.47	1.30	1.26	5.26	1.95	1.24	1.68	1.41	1.66	1.32
the extant	Mean	5.36	2.32	1.55	1.82	1.59	1.43	1.40	5.58	2.16	1.32	1.81	1.51	1.78	1.40
<i>T</i> .	Max.	5.79	2.52	1.68	2.00	1.75	1.67	1.62	5.86	2.38	1.41	1.94	1.63	1.99	1.58
triton	SD	0.15	0.07	0.06	0.08	0.05	0.08	0.06	0.15	0.09	0.04	0.06	0.05	0.07	0.06
	CV	2.7%	3.1%	3.7%	4.2%	3.4%	5.4%	4.1%	2.8%	4.0%	3.1%	3.4%	3.5%	4.0%	4.3%

^{2 3} # Refer to Supplementary datasets 5-8 for raw data.

4

5

6

7

8

9

10

11

^{*} quoted from Zheng (1984a); ** quoted from Zheng & Han (1993); *** quoted from Jin et al. (2009).

Table 3(on next page)

Comparisons of mesolophids of m1s between Tscherskia triton and "Cricetinus" varians

Species and localities	frequencies of mesolophids on m1
C. varians of ZKD Loc. 1	70% (40/57)
C. varians of JNS	67%
C. varians of ZKD Loc. 3	61% (54/89)
T. triton varians of Syz 2	43% (44/103)
the extant T. triton	30% (21/69)

Table 4(on next page)

Comparisons of mesolophids of m2s between *Tscherskia triton* and "Cricetinus" varians

1.7% (1/60)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

frequencies of proportions of each morphotype of mesolophids on m2 Species and localities mesolophids on I or II* III* m2 C. varians of ZKD Loc. 1 93% (53/57) 11.3% (6/53) C. varians of JNS 91% (20/22) 0 (0/20) C. varians of ZKD Loc. 3 97% (86/89) 14.0% (12/86) 87.3% 10.2% T. triton varians of Syz 2 95% (158/166) 2.5% (4/157) (16/157)(137/157)

96.6% (58/60)

1.7% (1/60)

87% (60/69)

the extant *T. triton*

^{*} I, having a free end; II, connected to the metaconid; III, reaching the lingual tooth edge; IV, connected to the entoconid.

Table 5(on next page)

Comparisons of mesolophids of m3s between *Tscherskia triton* and "Cricetinus" varians

		-	

~	frequencies of	proportions of each morphotype of mesolophids on m3							
Species and localities	mesolophids on m3	I*	II*	III*	IV*	V*			
C. varians of ZKD Loc. 1	100% (57/57)		71%**						
C. varians of JNS 100%			100%**						
C. varians of ZKD Loc. 3	100% (89/89)		91%**						
		95	.3% (122/128)	3.9%	0.8%				
T. triton varians of Syz 2	99.2% (129/130)	59.4% (76/128)	35.2% (45/128)	0.8% (1/128)	(5/128)	(1/128)			
		98	.4% (62/63)	1.6%					
the extant <i>T. triton</i>	100% (63/63)	44.4% (28/63)	49.2% (31/63)	4.8% (3/63)	(1/63)	0 (0/63)			

* I, unbranched, connected to the lingual tooth edge; II, bifurcated, with one branch connected to the lingual tooth edge and the other to the metaconid; III, trifurcated, with branches connected to the lingual tooth edge, metaconid, and junction of the hypoconid and entoconid, respectively; IV, unbranched, connected to the metaconid; V, having a free end. ** connected to the lingual tooth edge.

PeerJ

Table 6(on next page)

Comparisons of anterolophules and protolophules I of M1s between *Tscherskia triton* and "Cricetinus" varians

PeerJ

1

Species and localities	frequencies of anterolophules behind the buccal anterocone	frequencies of protolophule Is		
C. varians of ZKD Loc. 1, 3		76%		
C. varians of JNS	100% (9/9)	≥30%		
T. triton varians of Syz 2	89.1% (41/46)	57.4% (27/47)		
the extant T. triton	71.6% (53/74)	37.2% (32/86)		

Table 7(on next page)

Comparisons of frequencies of mesolophids on lower molars among the species of *Cricetinus, Tscherskia, Cricetulus, Nothocricetulus,* and *Allocricetus*

Spe	ecies			frequencies of	frequencies of	frequencies of	
present paper	original references	Localities	Geologic age	mesolophids on m1s	mesolophids on m2s	mesolophids on m3s	Sources
Tscherskia triton (type species)	/	Shaanxi Province, China	recent	30% (21/69)	87% (60/69)	100% (63/63)	present paper
	1	Syz 2, Hebei Province, China	late Middle Pleistocene	43% (44/103)	95% (162/170)	100% (134/134)	present paper
T. triton varians	ZKD Loc. 3, Beijing, China	late Middle Pleistocene or Late Pleistocene	61% (54/89)	97% (86/89)	100% (89/89)	Zheng, 1984a	
	Cricetinus varians	Jinniushan, Liaoning Province, China	late Middle Pleistocene	67%	91% (20/22)	100%	Zheng & Han, 1993
		ZKD Loc. 1 (type locality), Beijing, China	Middle Pleistocene	70% (40/57)	93% (53/57)	100% (57/57)	Zheng, 1984a
T. triton varians?	Cricetinus varians	Renzidong, Anhui Province, China	early Early Pleistocene	present	present	present	Jin et al., 2009
T. europaeus	Cricetinus europaeus	Csarnóta 2 (type locality), Hungary	Pliocene	33.3% (2/6)	71.4% (5/7)	100% (5/5)	Hír, 1994
T. gritzai	Cricetinus gritzai	Odessa (type locality), Ukraine	Pliocene	present	present	present	Topachevsky & Skorik, 1992
T. janossyi	Cricetinus janossyi	Osztramos 7 (type locality) and Csarnóta 2, Hungary	Pliocene	38.9% (7/18)	95% (19/20)	100% (15/15)	Hír, 1996b
T. koufosi	Cricetinus koufosi	Mygdonia basin (type locality), Greece	Early Pleistocene	0	-	-	Koufos et al., 2001
Neocricetodon mesolophidos	Cricetinus mesolophidos	Yushe basin (type locality), Shanxi Province, China	Pliocene	100%	100%	perhaps 100%	Wu & Flynn, 2017
Cricetulus barabensis (type species)	/	Shaanxi Province, China	recent	0 (0/8)	0 (0/8)	0 (0/8)	present paper
C. longicaudatus	/	Shaanxi Province, China	recent	0 (0/23)	0 (0/23)	26.1% (6/23)	present paper
Nothocricetulus	Cricetulus	Krak des Chevaliers, Syria	recent	0?	0?	very often	Pradel, 1981
migratorius (type species)	migratorius	Meydan, Toros Mountains, Turkey	Holocene	0?	10%	81%	Hír, 1993a
		Tarko Rockshelter 1, Hungary		0?	10%	85%	
Allocricetus bursae		Tarko Rockshelter 2-10, Hungary	early Middle	0?	2%	60%	
(type species)	/	Tarko Rockshelter 11-12, Hungary	Pleistocene	0?	16%	84%	Hír, 1993a
(type species)		Tarko Rockshelter 13-15, Hungary	1 leistocene	0?	28%	100%	
		Tarko Rockshelter 16-18, Hungary		0?	33%	93%	
A. ehiki		Villány 3 and Esztramos 3, Hungary	Early Pleistocene	0?	52%	91%	Hír, 1993a, b
71. Citiki		ZKD Loc. 12, 18, Beijing, China	Early Pleistocene	5% or 0?	4%	100% (47/47)	Zheng, 1984a
A. beremendensis	Cricetinus beremendensis	Beremend 15 (type locality) and Csarnóta 4, Hungary	Pliocene	0% (0/72)	14.8% (9/61)	100% (53/53)	Hír, 1994