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ABSTRACT
The global potential distribution of biomes (natural vegetation) was modelled using
8,959 training points from the BIOME 6000 dataset and a stack of 72 environmental
covariates representing terrain and the current climatic conditions based on historical
long term averages (1979–2013). An ensemble machine learning model based on
stacked regularization was used, with multinomial logistic regression as the meta-
learner and spatial blocking (100 km) to deal with spatial autocorrelation of the training
points. Results of spatial cross-validation for the BIOME 6000 classes show an overall
accuracy of 0.67 andR2

logloss of 0.61,with ‘‘tropical evergreen broadleaf forest’’ being the
classwith highest gain in predictive performances (R2

logloss= 0.74) and ‘‘prostrate dwarf
shrub tundra’’ the class with the lowest (R2

logloss = −0.09) compared to the baseline.
Temperature-related covariates were the most important predictors, with the mean
diurnal range (BIO2) being shared by all the base-learners (i.e.,random forest, gradient
boosted trees and generalized linear models). The model was next used to predict the
distribution of future biomes for the periods 2040–2060 and 2061–2080 under three
climate change scenarios (RCP 2.6, 4.5 and 8.5). Comparisons of predictions for the
three epochs (present, 2040–2060 and 2061–2080) show that increasing aridity and
higher temperatures will likely result in significant shifts in natural vegetation in the
tropical area (shifts from tropical forests to savannas up to 1.7 ×105 km2 by 2080)
and around the Arctic Circle (shifts from tundra to boreal forests up to 2.4 ×105 km2

by 2080). Projected global maps at 1 km spatial resolution are provided as probability
and hard classes maps for BIOME 6000 classes and as hard classes maps for the IUCN
classes (six aggregated classes). Uncertainty maps (prediction error) are also provided
and should be used for careful interpretation of the future projections.

Subjects Biogeography, Computational Biology, Ecology, Data Mining and Machine Learning,
Spatial and Geographic Information Science
Keywords Climate change, Biomes, RCP scenarios, Machine learning, Ensemble modeling

INTRODUCTION
Climate change is one of the biggest threats to human civilization, with slowly accumulating
effects and unknown instabilities in front of us and future generations. To assess the
potential impacts of climate change on the environment and to help us mitigate and
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prepare for negative effects, scientists offer predictions of possible futures including
global maps of the Earth’s environment in the future (Dow & Downing, 2016). Global
datasets projecting the state of the Earth’s environment include future climate predictions
e.g. Representative Concentration Pathways (RCPs) (Hayhoe et al., 2017), future land
use predictions (e.g., Chen et al. (2020) and Hurtt et al. (2020)), human population
scenarios (Jones & ONeill, 2016), future terrestrial ecosystems maps (Nolan et al., 2018),
future ecosystem productivity (Yin et al., 2023), and future gridded emissions (Fujimori et
al., 2018). Even though the accuracy of these projections in the far future cannot currently
be validated, such exercises are deemed useful as they help reveal patterns and assess the
impact of scenarios. In essence, there are two main approaches to envision the future state
of Earth’s environment (Hayhoe et al., 2017; Reichstein et al., 2019):
1. Process-based mechanistic modeling: simulating evolution of the environment using

biophysical process-based Earth System Models (ESM);
2. Data-based modeling: training predictive models using observations from the past and

then extrapolating these models into the future;
Process-based modeling is often preferred by physicists as the relationships between

model entities are explicitly defined. Examples of projected changes of land use based
on the global Earth System Models are the LUH2 project (Hurtt et al., 2020) and the
Lund–Potsdam–Jena managed Land (LPJmL) model (Rolinski et al., 2018). In the case of
data-based modeling, predictions and results of analyses are based on finding relationships
between the target property and covariates and then fitting statistical models that are
next used to predict values based on unseen combinations of states in feature space.
Two common approaches here are: (1) use actual ground observations i.e. monitoring
stations to fit spatiotemporal models (Hengl et al., 2018), and (2) use complete Earth
observation data cubes and then basically all pixel combinations to visualize and model
relationships (Mahecha et al., 2020). An advantage of the data-based modeling is that
it is often computationally less demanding than process-based modeling and it can be
extended by adding more covariates (Beigaite et al., 2022). In addition, process-based
modeling requires several assumptions and, in the case of chaotic behaviour or non-linear
spatial scaling of features, it is often difficult to produce credible predictions. On the
other hand, data-based modeling comes with the risks of producing poor predictions in
the extrapolation space and the models are often difficult to interpret (Meyer & Pebesma,
2021). Yet, strict data-based modeling requires neither subjective parametrization nor
model assumptions, and hence it can be considered less complex to start with. It is not
to say that the approaches are mutually exclusive and cannot be combined: there is a full
spectrumofmodels fromprocess-based to data-based, which includes hybrid physics-based
data-driven models. Different approaches exist in this sense: using data-driven models but
constrain the results with boundary conditions derived from physics-based climate models
(as suggested by Lindgren et al. (2021)), including the representation of natural processes
in the data-driven model (Higgins et al., 2012) or using process-based models whose results
have been parametrized and calibrated on real data (Higgins, Conradi & Muhoko, 2023).

Predictions of future states of climate, land cover, terrestrial ecosystems, human
population and similar have proven to be useful, with many of the datasets being frequently
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cited and used to communicate our possible futures (https://probablefutures.org/). Su,
Gabrielle & Makowski (2021) modeled yield gains under Conservation Agriculture
(CA) and various practices for the future climate scenarios and found out that overall
performance of CA will most likely decrease in the future in most temperate regions in
South America, including Uruguay, southern Brazil and northern Argentina for barley,
cotton, rice, sorghum and sunflower.Krause et al. (2022) has recently modelled the impacts
of anthropogenic land cover changes on global gross primary productivity (GPP) using
maps of historical agricultural expansion and future land-use changes based on the 25 km
resolution LUH2 dataset (Hurtt et al., 2020). Their results indicate that global GPP might
get further reduced owing to agricultural expansion and to extents that depend on the
prevailing scenario. Beigaite et al. (2022) provides predictions of future distribution of
MODIS vegetation types using machine learning and focusing on climate extremes (e.g.
extreme cold days). Their results indicate that prediction accuracy can be improved by
extending the averaged climatic conditions with maps of climate extremes e.g. bioclimatic
variables and similar.

When it comes to mapping future vegetation, only a few datasets are available and
typically at coarse resolutions. Nolan et al. (2018) provides predictions of terrestrial
ecosystems in the future as a function of annual temperature and simple logistic spline
regression with ordered categories. Their results suggest that terrestrial ecosystems are at
risk of major transformation. Despite these recent efforts, there is still no analysis of the
main future trends in air temperature and precipitation and the magnitude of such change
on potential vegetation on a global scale. Furthermore, most of these datasets are provided
without per pixel uncertainty estimates. The existence of various biome classification
schemes makes things even more confusing, since they can be overly subjective (Higgins,
Buitenwerf & Moncrieff, 2016) and in some cases they implicitly invoke climate (Moncrieff,
Hickler & Higgins, 2015) in their definition: many of the early biome classification schemes
included climate in their definition as a proxy for functional characteristics, traits and
adaptations that were difficult to map properly at a global scale (Moncrieff, Bond & Higgins,
2016) and only later on schemes based on plant functional traits (PFTs) or ecosystem
productivity have been developed; a paradygm shift has also taken place in the last decades,
from considering biomes a deterministic entity to a more dynamic concept, a result of
an ensemble of different processes and feedback loops (Mucina, 2019). However, the
lack of datasets at high resolution that could be used to predict biome envelopes that
follow the functional-based classification scheme is a limitation for its application to a
global scale. Scientific studies that use data-driven approaches to forecast the state of
vegetation into the future are usually limited on the spatial scale, spanning one or more
countries or one continent at most (Zevallos & Lavado-Casimiro, 2022;Maksic et al., 2022),
while another limitation consists in the usage of mostly one algorithm only (Random
Forest) to conduct the analysis. The purpose of this study is to use a data-driven approach
to provide consistent projections of future potential natural vegetation under different
climate scenarios, including uncertainty estimates: we provide projections of 20 biomes
for three (3) climatic scenarios (RCP 2.6, 4.5 and 8.5) for the future 60 years. To do that,
we extend the work of Hengl et al. (2018), which used a biome classification scheme based
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on PFTs and tried to spatialize it to the whole globe by using an ensemble of climatic,
topographic and remotely-sensed predictor variables. Compared to Hengl et al. (2018), we
apply the following three substantial improvements:
1. Instead of only using Random Forest, we use an ensemble of three learners of different

types, which allowed quantifying the prediction uncertainty;
2. For each pixel we provide class probabilities and prediction errors computed by

bootstrapping;
3. Modeling is done using a consistent set of covariates so that the effects of climate

change are controlled purely by the climatic projections.
The paper is divided in four parts: (1)we first describe our predictivemapping framework

based on using biome training points (Harrison, 2017); (2) we evaluate the accuracy of the
fitted ensemble model using spatial cross-validation and generate predictions for the three
future scenarios; (3) we next aggregate predictions according to the IUCNGlobal Ecosystem
Typology classification system (Keith et al., 2020) to make our product comparable with
an international standard and (4) we finally highlight the most pronounced changes per
continent and biome type.

MATERIALS AND METHODS
General workflow
We modeled the potential distribution of biomes on a global scale for current and future
time periods using an ensemble machine learning approach. The model was trained on
reference biome data compiled from pollen and fossil reconstructions (Harrison, 2017)
along with regional environmental variables describing topography and long-term climatic
averages. We used CHELSA climatological data (Karger et al., 2017) from the time period
1979–2013 to simulate the baseline potential natural distribution of biomes for the current
(2022–2023) time period: since our goal was to model the potential natural vegetation,
we tried to predict which PFT-based class of biome would be the dominant one in a
specific location based on environmental variables only. Future climatic conditions instead
cover the epochs 2041–2060 and 2061–2080. For the future epochs we considered three
different climate change scenarios using the concept of ‘‘Representative Concentration
Pathways’’ (Van Vuuren et al., 2011), or, in short, RCPs. The ones used in this study are
RCP 2.6, RCP 4.5 and RCP 8.5.

The output of the projections is provided as probability maps (0–100%) at 1 km spatial
resolution, with the probabilities in each pixel summing to 100%. For each class we also
provide model uncertainty maps. We excluded the continent of Antarctica, because of the
presence of permanent ice areas and lack of training points. Also, other areas covered by
water bodies, barren land and permanent ice according to ESA’s global land cover maps for
the period 2000–2015 (ESA, 2017) were excluded from the analysis. We generalized the 20
biome classes analyzed in this study to six classes following the Global Ecosystem Typology
classification system employed by the International Union for Conservation of Nature
(IUCN) (Keith et al., 2020). We then compared the two epochs for each of the climatic
scenarios with the current time period: using the latter as a baseline for the distribution
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of potential natural vegetation, the goal was to identify those areas where the change in
climatological conditions could lead to a shift in the potential distribution.

Training points
Weused the BIOME6000 data set, compiled byHarrison (2017), with additional 350 pseudo
observations to cover under-represented areas in South America (Fig. 1) as described in
Hengl et al. (2018), for a total of 8,959 points. The BIOME 6000 project aims to reconstruct
past vegetation distributions from pollen and fossil records from different time periods,
from the recent past (the last 50 years) to approximately 21 ka ago; in this study, following
Hengl et al. (2018), we only used the points belonging to the most recent time period. The
method, described by Prentice & Webb III (1998), was used to assign the recovered taxa to
PFTs, which were next ascribed to a specific biome following PFT-based biomes definitions.
From the first version of the data set to its final publication by Harrison (2017), almost
20 years have passed: over this period, multiple surveys have been conducted on the same
locations, resulting in more than one biome reconstruction per location. Furthermore,
initially absent regions have been added to the original data set. To avoid issues with
harmonization of nomenclature between biomes, Harrison (2017) provide a standardized
classification legend that can be globally applied (32 biomes in total) and a megabiome
classification legend (8 megabiomes in total). While the megabiome system implies a
necessary loss of information due to generalization, the original standardized classification
system devised byHarrison (2017) has been considered too detailed and location-specific to
be used for global modeling (Hengl et al., 2018). We adopted the 20 classes (Fig. 2) system
devised by Hengl et al. (2018) for the sake of data-model comparison.

Predictor variables
A total of 72 spatially explicit and harmonized variables representing climatic, bioclimatic
and topographic factors were used for modeling purposes. All the layers were resampled
to a standard grid covering latitudes between 87.37◦N and 62.0◦S and reprojected to the
coordinate reference system EPSG:4326 before the analysis. The original spatial resolution
of the layers was used during the spatial overlay with the point dataset, while for the rest
of the calculations all the layers were resampled to a spatial resolution of 30 arcseconds
(approximately 1 km at the equator).

We used long-term climate data and projections as provided by the CHELSA project
(Karger et al., 2017). For future scenarios, we followed the work of the Intergovernmental
Panel on Climate Change (IPCC) Assessment Reports (AR) based on narratives and
outcomes of the CoupledModel Intercomparison Project (CMIP). IPCCAR5 (IPCC, 2014)
featured CMIP5 model results using the concept of representative concentration pathway
(RCP), where each projected climatic scenario is labelled according to a possible increase
in radiative forcing (from 2.6 to 8.5 W /m2) values by 2100 due to increase in greenhouse
gasses (GHG) emissions. The new IPCC AR6 (IPCC, 2021) featured instead CMIP6
model results while using a different concept, the ‘‘Shared Socioeconomic Pathways’’
(SSP): while RCPs did not include any socioeconomic factors in their modelization, SSPs
included several assumptions on how population growth, technological development,
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Figure 1 Global spatial distribution of the BIOME 6000 dataset enriched byHengl et al. (2018). De-
spite the added pseudo points, there are still large areas (Patagonia, Sahara region, Central Africa and most
parts of Australia) not covered by any observation.

Full-size DOI: 10.7717/peerj.15593/fig-1

climate policies and other similar factors would evolve by 2100. A subset of the new 50
CMIP6 models has been considered overly sensitive (i.e., ‘‘too hot’’) and with climate
warming in response to carbon dioxide emissions that might be larger than supported by
other evidence (Hausfather et al., 2022; Zelinka et al., 2020). For this reason, we decided
to exclude CMIP6 models from our analysis and rely instead on CHELSA v.1.2 data
with CMIP5 calculations, using an ensemble of 5 Global Circulation Models (GCMs):
the Max-Planck-Institute Earth System Model (MPI-ESM-mr) (Giorgetta et al., 2013), the
version 5 of the Model for Interdisciplinary Research on Climate (MIROC5) (Watanabe
et al., 2010), the Community Earth System Model version 1 that includes the Community
Atmospheric Model version 5 (CESM1-CAM5) (Neale et al., 2010), version 5 of the Institut
Pierre Simon Laplace Coupled Model (IPSL-CM5A-MR) (Dufresne et al., 2013) and the
First Institute of Oceanography-Earth System Model (FIO-ESM) (Qiao et al., 2013). Since
most of the GCMs are interdependent between each other, and not all of them include the
three RCP scenarios we analyzed in this study, we followed the suggestions of Sanderson,
Knutti & Caldwell (2015) for the selection process.

To train the model, we used average values for the period 1979–2013 for 17 bioclimatic
variables, i.e., annual mean temperature, mean diurnal range, isothermality, temperature
seasonality, maximum temperature of the warmest month, minimum temperature of
the coldest month, temperature annual range, mean temperature of the wettest quarter,
mean temperature of the driest quarter, mean temperature of the warmest quarter,
mean temperature of the coldest quarter, annual precipitation, precipitation of the
wettest month, precipitation of the driest month, precipitation of the wettest quarter,
precipitation of the driest quarter, precipitation of the warmest quarter and precipitation
of the coldest quarter. The precipitation seasonality (BIO15) was not included because of
its excessive number of missing values in the layers of the future time periods. We also
used monthly minimum, average and maximum temperature and monthly precipitation,
for a total of 66 climatic and bioclimatic predictor variables. They can be downloaded
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Figure 2 Number of observations per biome class.Note the strong imbalance between the different
classes, with the most abundant class (‘‘cool mixed forest ’’) counting>∼1500 observations while the least
abundant (‘‘prostrate dwarf shrub tundra’’) counts< 20 observations.

Full-size DOI: 10.7717/peerj.15593/fig-2

from https://chelsa-climate.org/downloads/. We used six additional predictor variables
representing topographic conditions, i.e., sine and cosine of aspect, slope, upslope curvature
and downslope curvature. These covariates have a three arcsecond resolution (∼ 90m at the
equator) and they were derived from MERIT DEM (Yamazaki et al., 2017). MERIT DEM
layers can be downloaded from http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/.

Model building and evaluation
Weused an ensemblemachine learning approach based on stacked generalization (Wolpert,
1992). Ensemblemodeling techniques involve training several independentmodels with the
same input data and then aggregating each of the model outputs into the final predictions.
Stacked generalization uses the outputs of the individual models to train an additional
model (meta-learner from here on) which then produces the final predictions. We used
Random Forests (RF) (Breiman, 2001), generalized linear models (Nelder & Wedderburn,
1972) with Lasso regularization (Tibshirani, 1996) and gradient-boosted trees (GBT)
(Friedman, 2002) as component models for the ensemble model. To reduce overfitting
in the training phase, we used a fivefold spatial cross validation (Roberts et al., 2017): the
out-of-fold predictions were used to train the meta-learner. Spatial cross validation was
implemented by a 100×100 km grid and using the tile ID as the blocking variable during
the training of the models. We used multinomial logistic regression (Wright, 1995) as the
meta-learner.

Predictions are delivered as probability maps (0–100%) together with uncertainty maps:
the standard deviation of the predicted values by the base learners serves as an indication
of model uncertainty. The principle is that the higher the standard deviation, the more
uncertain the model is regarding the probability to be assigned to the pixel (Brown,
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Bhuiyan & Talbert, 2020). In contrast, for the hard class map we used the probability maps
to calculate a per-pixel confidence metric. Contrary to Hengl et al. (2018), we chose not
to use the per-pixel entropy (Shannon, 1948) but the margin of victory (Calderón-Loor,
Hadjikakou & Bryan, 2021) The margin of victory is defined as the difference between the
first and the second highest class probability value in a given pixel. Potential values in this
case would go from 0 (i.e. no difference between the first two classes, highest confusion
possible) to 100 (themodel is certain in the class probability value attribution, no confusion
with other classes); in short, high values would be measures of low uncertainty, while low
values would indicate a high uncertainty. All the analysis were performed using R (version
4.1.1) (R Core Team, 2021) and, specifically, themlr package (Bischl et al., 2016). For more
details on the hyperparameter space used for the other component models and the overall
architecture of the ensemble model, see Bonannella et al. (2022).

We calculated the variable importance for each of the component models using Gini
importance for RF, the gain metric for GBT (Shi et al., 2019) and the coefficients for the
minimum value of λ for GLM (Hastie, Qian & Tay, 2016): we took the 20 most important
variables across the component models and retained the variables that these learners had
in common. We then report these as the most important variables for the ensemble model.
The predictive performance of the ensemble model was assessed through fivefold spatial
cross validation repeated five times with overall accuracy and the R2

logloss (Bonannella et al.,
2022) as performance metrics. We then computed the R2

logloss in addition to more classic
metrics used for classification problems, like the True Positive Rate (TPR) and the F1 score
(Van Rijsbergen, 1979) to assess model performances per class.

Shifts in potential biomes
While for data-model comparison we used the original 20 classes classification system
from Hengl et al. (2018), to compare the model outputs we translated the classes in the
IUCN Global Ecosystem Typology (Keith et al., 2020). This system classifies biomes based
on functional characteristics and their structural role in the ecosystems rather than on
climate, species distribution or vegetation patterns. Its principle is very similar to that
of the BIOME 6000 classification system Prentice & Webb III (1998). The IUCN system
comprises six hierarchical levels, with the three upper ones being realms, biomes and
functional groups: the definitions of the functional groups are quite different from those of
BIOME 6000, so we aggregated the 20 classes used in this study at the biome level according
to the IUCN. We focused on the biomes present in the terrestrial realm, which include the
following:

• T1 - Tropical-subtropical forests biome;
• T2 - Tempereate-boreal forests and woodlands biome;
• T3 - Shrublands and shrubby woodlands biome;
• T4 - Savannas and grasslands biome;
• T5 - Deserts and semi-deserts biome;
• T6 - Polar/alpine (cryogenic) biome;
• T7 - Intensive land-use biome.
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Table 1 Overview of the translation scheme used to pass from BIOME 6000 to IUCN classes.

BIOME 6000 class (fromHengl et al. (2018)) IUCN class

Tropical deciduous broadleaf forest and woodland T1 - Tropical-subtropical forest biome
Tropical evergreen broadleaf forest
Tropical semi evergreen broadleaf forest
Cold deciduous forest T2 - Temperate-boreal forests and woodlands biome
Cold evergreen needleleaf forest
Cool evergreen needleleaf forest
Cool mixed forest
Cool temperate rainforest
Temperate deciduous broadleaf forest
Temperate sclerophyll woodland and shrubland
Temperate evergreen needleleaf open woodland T3 - Shrublands and shrubby woodland biome
Warm temperate evergreen and mixed forest
Xerophytic woods scrub
Tropical savanna T4 - Savannas and grassland biome
Desert T5 - Desert and semi-desert biomes
Steppe
Erect dwarf shrub tundra T6 - Polar/alpine (cryogenic) biome
Graminoid and forb tundra
Low and high shrub tundra
Prostrate dwarf shurb tundra

Since the focus of this paper is on potential biomes, the ‘‘T7 - Intensive land-use biome’’
class was not considered. The complete translation scheme is available in Table 1: we
calculated the IUCN class by aggregating the per-class probability values of the BIOME
6000 classes according to the translation scheme. We computed the margin of victory for
the IUCN classes as well and we used those maps to highlight areas with high confidence
(i.e., low confusion) predictions. To assess change in potential biome class in fact, we
calculated the difference in hard class between the potential biomes map of the current
period and each of the future periods and RCP scenarios. We first reprojected all the
IUCN classes and relative margin of victory maps to the Interrupted Goode Homolosine
projection, which is an equal-area composite projection. We chose it specifically to provide
an unbiased (i.e., without geographical distortions) estimate of the areas subjected to
change. In the results we discuss change dynamics only for the aggregated IUCN classes
and only for pixels having a margin of victory ≥ 50%; pixels with a margin of victory <
50% are not considered.

RESULTS
Model performances and variable importance
The hyperparameter tuning resulted in the following architecture for the ensemble model:

• Random Forest: 452 trees, minimum node size 9, mtry 10, while the other
hyperparameters were set to default;
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Table 2 Results of the repeated fivefold spatial cross validation per class.

Class N.obs TPR F1 R2
logloss

Cold deciduous forest 199 0.51 0.57 0.53
Cold evergreen needleleaf forest 890 0.78 0.76 0.62
Cool evergreen needleleaf forest 198 0.23 0.31 0.30
Cool mixed forest 1548 0.81 0.79 0.62
Cool temperate rainforest 93 0.66 0.70 0.59
Desert 328 0.51 0.55 0.50
Erect dwarf shrub tundra 138 0.36 0.42 0.50
Graminoid and forb tundra 123 0.41 0.49 0.36
Low and high shrub tundra 391 0.68 0.66 0.63
Prostrate dwarf shrub tundra 11 0.00 0.00 −0.09
Steppe 884 0.67 0.66 0.46
Temperate deciduous broadleaf forest 958 0.62 0.62 0.47
Temperate evergreen needleleaf open woodland 302 0.58 0.59 0.52
Temperate sclerophyll woodland and shrubland 153 0.76 0.74 0.71
Tropical deciduous broadleaf forest and woodland 215 0.42 0.47 0.49
Tropical evergreen broadleaf forest 333 0.79 0.77 0.74
Tropical savanna 291 0.77 0.71 0.67
Tropical semi evergreen broadleaf forest 160 0.40 0.43 0.54
Warm temperate evergreen and mixed forest 976 0.73 0.67 0.52
Xerophytic woods scrub 387 0.45 0.48 0.42

• Gradient boosted trees: 20 boosting rounds, maximum depth per tree 5, learning rate
0.5, minimum loss reduction to split a leaf node 10, subsample ratio of the training
instances 1, subsample ratio of columns when constructing each tree 0.5. The other
hyperparameters were set to their defaults;
• Generalized Linear Models with Lasso: λ value 1.1×10−5;
• Multinomial logistic regression: multinomial function to minimize the loss.

The ensemble model had a moderate accuracy; according to the fivefold spatial cross
validation the overall accuracy is 0.67 and the R2

logloss 0.61. Model performances per class
are shown in Table 2. The ‘‘tropical evergreen broadleaf forest ’’ is the class with the greatest
gain in predictive performances (R2

logloss= 0.74) compared to the baseline logloss, while
the ‘‘prostrate dwarf shrub tundra’’ is the worst predicted class, with a negative gain in
predictive performances compared to the baseline logloss (see Fig. 3).

The latter may be attributed to the very small (n.obs = 11) number of points in
the training data for this specific class. It is also the only class with negative gain in
predictive performances: all the other classes go from weak (‘‘cool evergreen needleleaf
forest ’’, R2

logloss = 0.30) to consistent (‘‘temperate sclerophyll woodland and shrubland’’,
R2
logloss= 0.71) increase in predictive performances. The three models captured different

parts of the feature space despite the relatively few (72) number of predictor variables.
From the top-20 predictor variables, only one is shared across all component models,
BIO2, the mean diurnal range. RF was the only component model which selected a
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Figure 3 Distribution of (A) the biome classes according to the BIOME 6000 classification scheme and
(B) the margin of victory for the current time period. The margin of victory is here used as an indication
of uncertainty. High values (blue in figure) indicate high confidence in the attribution of dominant class
by the model, while low values indicate high uncertainty.

Full-size DOI: 10.7717/peerj.15593/fig-3
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topographic predictor (elevation) as one of the most important variables, while the other
two models focused mostly on the climatic variables. RF and GBT shared nine out of 20
predictor variables, with seven out of nine being temperature-related (mean or maximum
temperature and temperature-derived bioclimatic variables). GLM with Lasso differed
mostly from the other two component models in the selected most important predictor
variables. GLM was the only component model selecting variables from the group of the
minimum temperatures.

Future predictions
Examining the biome state transitions from the current conditions to the future epochs,
we found that most locations remained stable. Filtering the transitional areas with the
margin of victory across all scenarios and epochs using 50% as a safety threshold value
considerably reduced the predicted transitional area: less than 1% of the Earth’s surface
showed signs of change, with the least changes found in the scenario RCP 2.6 (5.6×105

km2) and the most in the scenario RCP 8.5 for the epoch 2061–2080 (5.0×106 km2).
For epoch 2040–2060, the main changes shown by all three scenarios are as follows: areas
belonging to the polar/alpine biome will transition to the temperate-boreal forest biome
and areas from the tropical forest biome will transition to more drier biomes, like the
savannas and grasslands biome the shrublands biome and, in some cases, the deserts and
steppes biome.

The same tendency can be observed for the temperate-boreal forest biome, with the
difference that transitional areas are almost equally split between the shrublands biome
and the deserts and steppes biome. It is interesting to notice that almost all the transitioned
pixels from the tropical forest biome would change to savannas and grasslands biome in
the RCP 4.5 and RCP 8.5 scenarios, while for scenario RCP 2.6 one third would change
to the shrublands biome (see Fig. 4). According to scenario RCP 2.6, most of the changes
would happen in the polar/alpine biome, so at higher latitudes, while for the other two
scenarios the tropical areas seem to be the ones most affected. For scenario RCP 2.6, the
transitional areas are also more equally split across the different classes, while for scenarios
RCP 4.5 and RCP 8.5 almost 50% and 60% of the transitional areas would shift to the
savannas and grasslands biome.

Figure 5 shows the geographic locations of the biome shifts according to the three
climatic scenarios. It is possible to discern different clusters where the changes are located:
the most noticeable is in the tropical area, between the Equator and 15◦S; in South America,
the region affected corresponds with the southern edges of the Amazon rainforest, which
would shift from a tropical forest biome to savanna. In Central Africa, in the contiguous
borders of Angola, Congo and Zambia, the shift goes instead from shrubland or steppic
biomes to savanna. In the transitioning areas where all the scenarios agree in predicting
change, there is one area that includes most of the shifts: between 60◦ and 75◦N, just around
the Arctic Circle. At this latitude, most of the areas currently in the polar/alpine class would
shift to the boreal/temperate forest class. Big clusters can be observed in the northern parts
of Canada and Alaska, while smaller clusters occur in Scandinavia, European Russia and
some areas in Siberia. In most cases, scenario RCP 2.6 involves the smallest amount of
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Figure 4 Biome transitions predicted for epoch 2040–2060 for the three climatic scenarios.Only the
pixels that transitioned are represented in this diagram, so the percentages represent different amounts of
surface area across the scenarios. For each plot, on the left axis the proportion of transitioned pixels in the
current conditions and on the right axis the final state according to each climatic scenario: (A) the transi-
tional areas for scenario RCP 2.6, (B) for scenario RCP 4.5 and (C) for scenario RCP 8.5.

Full-size DOI: 10.7717/peerj.15593/fig-4

transitions, while RCP 8.5 involves the greatest. However, there are also some areas where
this does not hold, as can be seen in Figs. 5C and 5F. In the first case, scenario RCP 2.6
involves the greatest amount, while in the latter it is greater than scenario RCP 4.5 but
smaller than scenario 8.5. In general, all three scenarios agree in predicting a change in
some 3% of the cases, while if we consider the two most radical scenarios the percentage
rises to 11%.

For epoch 2061–2080, we found similar trends to the ones observed in the previous
epoch: all of the pixels from the polar/alpine biome tend to shift to the temperate-boreal
forest biome and the pixels from the tropical forest biome would shift towards the savannas
and grassland biome (see Fig. 6). The tendency shown in Fig. 4A, with the transitioning
pixels from the tropical forest biome split between the shrublands biome and the savannas
and grassland biome, is in this epoch even more pronounced: the ratio is reversed, with one
third of the pixels transitioning to the savannas and grassland biome and the rest towards
the shrublands biome. In the other two scenarios, once again, almost all transitioning pixels
from the tropical forest biome would shift to the savannas and grassland biome. Another
recurring pattern is how most of the transitioning pixels from the temperate-boreal forest
biome are equally split between the shrublands biome and the deserts and steppes biome, so
either the canopy of those forests would becomemore open and the ratio between trees and
shrub would increase in favor of the latter, or they become so dry that the trees are replaced
by steppic vegetation. For scenario RCP 2.6, 80% of the transitioning pixels are part of the
tropical forest biome, the temperate-boreal forest biome or the polar/alpine biome, with
nearly 39% coming from the polar/alpine biome, while the classes which would gain most
of this surface area are the temperate-boreal forest biome and the shrublands biome. In
the other two scenarios, the polar/alpine biome covers a more marginal importance across
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Figure 5 Spatial location of biome transitions as predicted by our ensemble model according to the
three climatic scenarios for epoch 2040–2060. Colors on the main map show the degree of agreement be-
tween the three climatic scenarios: a value of 1 means that only one of the scenarios considers the pixel
as transitioning, while a value of 3 shows complete agreement across the three scenarios. Inserts show to-
wards which biome the current pixels are transitioning to according to the different scenarios. Inserts (A,
D and E) show the main trends, with transitions from T6 (polar) to T2 (boreal forest) in (A) and from T1
(tropical forest) to T4 (savannas) in (D and E).

Full-size DOI: 10.7717/peerj.15593/fig-5

the transitioning pixels: it is the third most important. Some differences can be observed
in the transitioned classes as well: in scenario RCP 2.6, about 40% of the pixels go to the
temperate-boreal forest biome, while in the other two scenarios the savannas and grassland
biome takes from 55% to 60% of the transitioned classes.

Figure 7 shows the geographic locations of the shifts for the epoch 2061–2080. The two
big clusters observed in the previous epoch remain, as well as the area around the Arctic
Circle; the transitioning pixels where all three scenarios agree in predicting change are also
located mostly in these two areas. Compared to the previous epoch, more small clusters of
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Figure 6 Biome transitions predicted for epoch 2061–2080 for the three climatic scenarios.Only the
pixels that transitioned are represented in this diagram, so the percentages represent different amounts of
surface area across the scenarios. For each plot, on the left axis the proportion of transitioned pixels in the
current conditions and on the right axis the final state according to each climatic scenario: (A) the transi-
tional areas for scenario RCP 2.6, (B) for scenario RCP 4.5 and (C) for scenario RCP 8.5.

Full-size DOI: 10.7717/peerj.15593/fig-6

pixels, with no specific spatial pattern, are visible in the African continent from the Equator
to 15◦N (mostly around the Gulf of Guinea), Western India and Mediterranean Europe
(mostly around the Pyrenees, see Fig. 7B); by checking the probability layers, it is possible
to see the gradual shift (see Fig. 8) in vegetation conditions over time.

Contrary to the previous epoch, the mapped changes in the scenarios seem to be more
consistent: all the inserts in Fig. 7 show that scenario RCP 2.6 is the one which projects the
smallest number of transitioning pixels, while RCP 8.5 projects the most. The scenarios in
this epoch also have a higher degree of agreement: all three scenarios agree in considering
as changing 7% of all the transitioning pixels, while the value for agreement between two
scenarios is just 8%. In general, if in the previous epoch most of the transitioning pixels
were located either in the tropics or around the Arctic Circle, in this epoch we see them
appearing in the temperate areas as well.

DISCUSSION
Model evaluation and comparison with previous works
In this study we trained an ensemble machine learning model to classify the current and
future potential distribution of biomes under different climate change scenarios. Our
results show that it is possible to produce relatively accurate maps of natural vegetation
using ensemble machine learning approaches and to reach consistent accuracy values even
with a limited selection of predictor variables. Comparing our results with the previous
work of Hengl et al. (2018), we achieved an increase in the overall accuracy by using an
ensemble model and only 72 instead of 158 predictor variables: in the previous task the
most accurate model (Random Forest) shows a spatial cross–validation overall accuracy of
0.33, less than half of what we estimate with the improved model (0.67). The performance

Bonannella et al. (2023), PeerJ, DOI 10.7717/peerj.15593 15/31

https://peerj.com
https://doi.org/10.7717/peerj.15593/fig-6
http://dx.doi.org/10.7717/peerj.15593


Figure 7 Spatial location of biome transitions as projected by our ensemble model according to the
three climatic scenarios for epoch 2061–2080. Colors on the main map show the degree of agreement be-
tween the three climatic scenarios: a value of 1 means that only one of the scenarios considers the pixel
as transitioning, while a value of 3 shows complete agreement across the three scenarios. Inserts show to-
wards which biome the current pixels are transitioning according to the different scenarios. Inserts (A,
D and E) show the main trends, with transitions from T6 (polar) to T2 (boreal forest) in (A) and from
T1 (tropical forest) to T4 (savannas) in (D and E) Inserts (B and C) show instead the tendency to drier
ecosystems in temperate areas.

Full-size DOI: 10.7717/peerj.15593/fig-7

values per class show some degree of agreement: when comparing TPR values both studies
consider the ‘‘prostrate dwarf shrub tundra’’ class as the worst predicted, while they disagree
in the best predicted class (‘‘temperate sclerophyll woodland and shrubland’’ for Hengl et
al. (2018), ‘‘cool mixed forest’’ in this study); while our TPR values are consistently lower
across all classes, TPR values reported by Hengl et al. (2018) are for the model with no
spatial partitioning. Model outputs are provided in probability values and not as hard
classes in both studies; furthermore, the dataset is heavily imbalanced, as shown in Fig. 2.
This makes logloss, and the R2

logloss, a better metric to report model performances since it
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Figure 8 Predicted probability of occurrence of ‘‘warm temperate evergreen and mixed forest’’ class,
zoom in on the area around the Pyrenees. The probability values over time show that the class is slowly
shifting towards northern latitudes. Only the RCP 4.5 scenario is shown since it is considered as the ‘‘mid-
dle of the road’’ scenario. Points indicate training points from the BIOME 6000 dataset.

Full-size DOI: 10.7717/peerj.15593/fig-8

indicates how close the predicted value for an observation and its respective label is; logloss
is also one of the most robust performance metrics when it comes to imbalanced data
(Ferri, Hernández-Orallo & Modroiu, 2009). The fact that Hengl et al. (2018) used other
performance metrics that do not fit the task at hand to report per class results, may have
caused an overestimation of those values.

In machine learning, increasing the size of the feature space is expected to provide
more discriminating power (Hall & Holmes, 2003), at the cost of higher computation time.
However, it can also increase the complexity of the task at hand to the point that the added
information is redundant or introduces noise in the model (Bellman & Kalaba, 1957).
While feature selection procedures help considerably in tackling this problem, in this case
we used expert knowledge to select only climatic and topographic predictor variables. By
doing that, wemanaged to achieve a twofold goal: reduce task complexity (i.e., less features)
while maintaining consistent values of accuracy, and keeping the model simple enough to
be able to transfer it to future epochs without introducing too many assumptions in the
modeling framework; a similar approach to calculate future projections was used byAnjos et
al. (2021),Maksic et al. (2022) and Zevallos & Lavado-Casimiro (2022), respectively, for the
whole South America, Brazil and Peru. In the case of Zevallos & Lavado-Casimiro (2022),
they used a Random Forest model and achieved higher levels of accuracy; however, they
trained it on a smaller (six bioclimatic) set of predictor variables, used a 80:20 train test split
and did not use any spatial partitioning. Considering the huge differences in accuracy in
the results obtained by Hengl et al. (2018) in their Random Forest model with and without
spatial partitioning, there is the risk that predictions from Zevallos & Lavado-Casimiro
(2022) may have been optimistic; on the other hand, their analysis is focused on just one
country and not on a global scale, so it is still possible to reach high levels of accuracy on a
limited study area.
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Data-driven approaches in this topic mostly deploy Random Forest models, with
predictions with high levels of agreement with process-based models: Lindgren et al. (2021)
used Random Forest to reconstruct past global vegetation and compared their results
with the LPJ-GUESS global dynamic vegetation model; the model was able to produce
comparable results to the LPJ-GUESS when enough training data was available, with
bad performances when predicting in the Last Glacial Maximum, the epoch with the
least training data. Extrapolation and transferability are two common issues of machine
learning models and data-driven approaches in general, which have limited the reliability
of suchmethods in environmental modeling(i.e., invasive species modeling, past vegetation
reconstruction, future vegetation forecasting etc.) (Qiao et al., 2019). However, ensemble
modeling is known to provide more advantages than using individual machine learning
models, since ensemble models reduce model uncertainty (Bonannella et al., 2022; Mehra
et al., 2019). For future projections, ‘‘ensemble datasets’’ are more common than ensemble
models: climate is assumed to be the major driving force for large-scale vegetation patterns
(Whittaker & Marks, 1975); starting from this assumption, multiple studies create the
training dataset by averaging together temperature and precipitation values as calculated
by different GCM simulations (Beigaite et al., 2022; Anjos et al., 2021), hence why we chose
an ensemble of five independent GCMs. The model used in this study could benefit from
using such datasets: while studies on performance comparisons between the different GCM
simulations are available for the CMIP5 project (Sanderson, Knutti & Caldwell, 2015), the
same cannot be said for the newCMIP6 simulations; future applications of the experimental
design presented in this study that would use CMIP6 simulations, could benefit from using
an ensemble dataset of all 50 of the GCM simulations instead of relying on the data of only
five models.

Biome shifts: key emerging trends
We evaluated changes in potential biomes in two future epochs and across three different
climatic scenarios: our results show that the distribution of the biomes on land in the
future will mostly (≥99% land surface) remain the same. The limited geographic extent of
the biome shifts under all three scenarios has probably to do with the chosen conservative
threshold in margin of victory; despite that, the projections show specific emerging trends
in biome shifts in precise locations of the globe that, while differing in size, are common
across all the climatic scenarios.

One of these emerging trends is the transition from a polar to a boreal forest biome in
the global north, around the Arctic Circle: in both of the epochs analyzed in the study, it
is one of the most evident and consistent transitions in all three climatic scenarios, with its
extension increasing in epoch 2061–2080. According to the future climatic projections, all
three scenarios forecast either a modest or consistent rise in temperatures by 2100, from
well below 2◦C for scenario 2.6 and around 5◦C for scenario RCP 8.5. Areas where this
change was predicted currently present vegetation not belonging to the ‘‘boreal forests and
woodland biomes’’ class mostly due to the fact that the low temperatures are a limiting
factor for the presence of trees. The hypothesis that the thawing of permafrost would
lead to the tree line advancing towards the North Pole finds more and more evidence,
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the last one provided by Berner & Goetz (2022) using Landsat time-series: their results
on vegetation greenness for the period 1985–2019 showed a prevalence of greening in
the pan-boreal vegetation. It is important to point out how this phenomenon is not
uniform across the circumpolar arctic vegetation: while greening was more prevalent than
browning phenomena, browning was still predicted in those areas where summers have
become warmer and drier in the last 40 years. Our results, regardless of the scenario, show
that while the change will happen, it will not be uniform across North America, Asia and
Europe: North America seems to be the one that will be most affected, while only in few
areas of Siberia all scenarios agree in a biome shift. Our maps can be used to locate hot spots
of change, from which the shift can then expand: the model used in this study does not
take into account many factors, such as the feedback effects on the carbon cycle caused by
the permafrost thaw (Smith et al., 2022) or soil temperature, moisture and content, which,
in turn, affect vegetation productivity and functional types (Berner et al., 2020). For this
reason it is important to be cautious when assessing biome change implications. On top of
that, we focus on the potential conditions that define a biome and not on what is currently
on the ground: species that live in a biome may not be able to keep pace with the climate
change advance (Rees et al., 2020), and while our maps may show that the conditions for a
shift are present in a specific location, its reality may be different.

The second trend relates to the transition from tropical forest to savannas and grasslands,
in particular in the southern edges of the Amazon and the Congo rainforests. Both the entity
and the extension of this shift across the climatic scenarios follow the same pattern that we
found for the transition from polar to boreal, with the highest value of pixels shifting found
in the epoch 2061–2080 for scenario RCP 8.5. The consequences of climate change on the
Amazon rainforest are a critical area of research given its importance for global climate
regulation and biodiversity (Foley et al., 2007; Lawton, 1998) and have been the subject of
extensive research in the scientific community. While the full extent of these changes has
not yet been completely understood, higher temperatures and variations in rainfall regime
have been causing longer and more severe dry seasons (Xu et al., 2022; Agudelo et al., 2019;
Arias et al., 2015), with an increase in frequency of droughts, floods and fires (Barlow et
al., 2020; Lovejoy & Nobre, 2018; Marengo & Espinoza, 2016); a recent study by Gatti et al.
(2021) has demonstrated how the southeastern edge of the Amazon rainforest has already
reached the tipping point, acting as a net carbon source instead of a carbon sink. These
findings agree with the projections showed in our results, which now are part of a long
series of studies showing alarming signs of an incoming process of savannization in the
area; the feedback loop created by a disruption in the carbon cycle such as the one showed
byGatti et al. (2021) could further exacerbate the savannization process. On the same note,
Sampaio et al. (2007) were the first to show how when deforestation exceeds 40%, the
savanna would become the new stable state of the ecosystem in south, east and partially
central Amazonia due to altered precipitation patterns; climatological projections from
Higgins, Buitenwerf & Moncrieff (2016) show how a rise by only 2◦C in average temperature
could lead to a loss of 50% of suitable areas for forest specialist species and an increase
by 11%–30% for savanna species. While less studies on the Congo rainforest are available
in literature, the projected savannization process can be attributed to the same causes:
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Giresse, Maley & Chepstow-Lusty (2023) have shown that the Congo rainforest has been
resistant to change in the last 1,000 years and it was not possible to identify any serious
human impact over this period. However, the current increasing mix of climate change
and human pressures (deforestation, agriculture expansion and other factors) may lead to
unforeseen consequences: the current rainfall regime of much of the African rainforests
is close to a threshold that favours savannas over rainforests (Malhi et al., 2013), so even
a small alteration of this regime can cause large scale changes in the rainforest-savanna
transition zone.

Overall, the shifts in biomes identified in this study portray a picture of minor or
consistent changes across all the different biomes on the planet due to either an increase
in temperature or decrease in precipitation/moisture conditions: this agrees with a similar
existing dominating browning trend for global vegetation recently identified by Higgins,
Conradi & Muhoko (2023) for the last four decades (1982–2015). Their approach is
particularly relevant for the context of the present study, since they combined a process-
based approach by using a dynamic plant growth model adjusted for climate with a
data-driven approach by using Advanced Very High Resolution Radiometer (AVHRR)
NDVI and EVI time series to describe vegetation activity. These shifts may have significant
ecological implications for the distribution and diversity of plant and animal species, as
well as societal implications for human communities that depend on these ecosystems. It
is likely that these shifts will also have economic impacts, as the distribution of resources
such as timber, livestock grazing and agriculture or the potential displacement of human
population; the alterations of the services that these ecosystems provide, such as climate
regulation and flood control, have also to be considered. These shifts may contribute to
the loss of biodiversity, as some species may not be able to adapt to the new conditions in
their range: the loss of tropical and subtropical biomes can have a negative impact on the
species that depend on these biomes for their survival, as many species have narrow habitat
requirements and are not able to adapt to changes in their environment. The expansion of
boreal biomes, on the other hand, can have a positive impact on the species that depend
on these biomes, as they will have access to new areas with suitable habitat.

Technical limitations
There are some limitations to this study that should be considered. First, the dataset used
to train the model was heavily imbalanced, with some classes having a very small number
of observations: this has significantly affected the model performances for certain classes;
on top of that, some locations are underrepresented, with limited or no observations. This
is a serious limitation of the study, as the model may not be able to accurately predict
the vegetation in those locations due to a lack of data. This highlights the importance of
gathering more comprehensive ground truth data in the future to improve the model’s
accuracy and prediction abilities in those locations.

Secondly, while the use of expert knowledge to select the predictor variables let us to
reduce the complexity of the task, it may also have introduced biases or limitations to
the model’s ability to accurately represent the full range of conditions present in different
biomes; feedback loops (vegetation–climate interactions) or anthropogenic factors (human
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disturbances, deforestation)were also not considered in the study.One of these effectswhich
are difficult to incorporate in data-driven models is the fertilization effect of increasing
concentration of CO2 in the atmosphere, or CO2 fertilization effect (CFE): process-based
models are known to be able to include and parametrize this factor, event though the
mechanisms and limits of it are still not completely understood. Ballantyne et al. (2012)
observed that since the 1960s the carbon uptake by both terrestrial and oceanic ecosystems
has increased instead of declining, while a study by Chen et al. (2022) calculated how
approximately 44% of the increase in global Gross Primary Productivity (GPP) since the
2000s can be attributed to the CFE. This proved to be especially important for the tropical
region, with different satellite-based or in-situ studies showing patterns of greening in
these areas (Anchang et al., 2019; Stevens et al., 2017). Thus, not including this effect in our
model may lead to overestimate the amount and the type of shifts in the tropical region:
for example, the chapter on the African continent of the last IPCC report (Trisos et al.,
2022) mentions an overall continental trend in woody plant expansion, especially in the
non-arid areas, with high confidence that the trend is attributable to the CFE. This is in
contrast with the desertification and contraction trend that was instead highlighted by the
previous AR: since the AR6 had at its disposal longer time-series of observations, the trend
captured by the previous AR, and hence the CMIP5 GCM projections, may have been
overly pessimistic in some regions. Not including the CFE in our study and the usage of
CMIP5 projections may have biased the results in favor of a desertification trend for some
areas. All the simulations from the study from Friend et al. (2014) predicted a consistent
increasing trend in CO2 for every RCPs: so while our model may accurately capture a shift
in the boreal region, due to the fact that the limiting factor for those biomes is temperature,
it may capture a different type or extent of shifts in the tropical region, where neither
temperature or precipitation are the limiting factors. On the other hand, however,Higgins,
Conradi & Muhoko (2023) found the contribution to regreening from the CFE to be limited
and Wang et al. (2020) observed a significant decline in the CFE on a global scale for the
period 1982–2015. Overall, even if in this study we identified several hot spots of change in
the tropical region, there is still high uncertainty for the future of biomes and their shifts
there.

We also excluded from the study area those locations that are currently covered by
permanent ice: glacial retreats due to climate change is a well known issue and the exclusion
of these areas may also underestimate the potential changes in biomes in surrounding areas
that may be influenced by the loss of glaciers. It is important to consider the inclusion
of these areas in future studies to obtain a more comprehensive understanding of the
potential impacts of climate change on the distribution of biomes. Another limitation is
that the model cannot be considered spatiotemporal: while spatial relationships are taken
into account during the modeling through the use of spatial partitioning, the temporal
relationship is not considered since the model is trained on only one point in time.
The model does not know that the three epochs analyzed in the study have an order in
the temporal dimension: the phenomenon we want to predict at location x for epoch
2061–2080 is not only a function of the predictor variables in the features space, but also of
the realization of the phenomenon in previous states. The result, in the worst case scenario,
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Figure 9 Spatial location of biome transitions for scenario RCP 8. Five epoch 2061–2080. In red: all the
areas that will change according to our model with amargin of victory value ≥50%. In yellow: all the tran-
sitioning areas withmargin of victory values<50%.

Full-size DOI: 10.7717/peerj.15593/fig-9

is that the predicted values for one location may not be reliable over time: an example in
our case would be a pixel labeled as ‘‘desert’’ for the current epoch, ‘‘forest’’ in the epoch
2040–2060 and ‘‘desert’’ once again in epoch 2061–2080, something that can be perfectly
explained from a mathematical standpoint, but highly questionable from an ecological
perspective.

Together with the heavily imbalanced dataset, this is another important reason to use the
margin of victory to analyze the results. The inclusion of the margin of victory allows users
to more accurately interpret the predicted maps and make more informed decisions based
on the data. Without the margin of victory, the probability outputs could potentially be
overinterpreted, leading to incorrect conclusions. The classification task examined in this
study presented a total of 20 classes, with the model output per class constrained, for each
pixel, to sum to 100%; the conservative threshold allowed us to focus our analysis only on
those areas where the model found considerable differences in probability output between
the dominant class and the remaining classes (see Fig. 9). Even though the class probabilities
in this study are model-based predictions and model fit is far from perfect, the margin of
victory gives an impression of the uncertainty in our projections. We acknowledge our
inability to predict the future and to make claims about biome shifts that would certainly
happen. It is however possible to indicate the confidence of our projections through the
uncertainty layers provided. That’s why we recommend to use the uncertainty layers to
filter the predicted areas using conservative (≥50%) thresholds in case of future use of
these maps in other works: false positives may thus be avoided while still identifying the
main patterns.

CONCLUSION
In this articlewe applied amethodological framework to predict current and future potential
distribution of biomes under different climatic change scenarios using an ensemble
machine learning approach. We focused our efforts on improving the caveats of previous
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work fromHengl et al. (2018), achieving greater accuracy in predicting current biomes and
providing future distribution of biomes along with measures of prediction uncertainty
to correctly interpret and use the maps. In general, our ensemble model achieved fairly
accurate (overall accuracy = 0.67, R2

logloss= 0.61) results. Using expert knowledge to select
only a limited number of predictor variables, we were able to achieve reasonable accuracy
values while keeping the model simple enough to be able to transfer it to future epochs
without introducing too many assumptions. Temperature-related predictor variables were
considered as the most important to produce accurate predictions. Overall, this study
demonstrates that an ensemble machine learning approach can be effective in modeling
the potential distribution of biomes on a global scale and in identifying areas where
climatological changes could lead to shifts in the distribution of these biomes.

Even though relatively small shifts in the distribution of biomes were projected under
the RCP 2.6 and RCP 4.5 when compared to RCP 8.5, one of the significant findings of this
study was the identification of areas where the change in climatological conditions could
lead to a shift in the potential distribution of biomes regardless from which of the emission
pathways analyzed will happen in the future. The biomes expected to shift the most are
the tropical and subtropical biomes, particularly the tropical rainforests: these biomes are
expected to experience a decrease in their potential distribution in the future time periods
towards savanna and grassland biomes, a process called ‘‘savannization’’. In contrast,
biomes located at higher latitudes, such as boreal forests, are expected to experience an
expansion in their potential distribution in the future time periods at the expense of the
polar biomes.

Further research is needed to better understand the factors that drive these shifts and the
potential consequences for the distribution and diversity of plant and animal species, as well
as for human communities. We hope that this study will contribute to the broader field of
study by providing a framework that can be used to better understand the potential impacts
of climate change on the distribution of biomes and their associated ecosystems, and by
identifying areas where these impacts could be particularly significant. We recommend that
this information is used by policy makers and land managers to make informed decisions
about the management and conservation of these ecosystems, and to take action to mitigate
the negative consequences of climate change.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work has been developed for the Open-Earth-Monitor Cyberinfrastructure project.
The Open-Earth-Monitor Cyberinfrastructure project has received funding from the
European Union’s Horizon Europe research and innovation programme under grant
agreement No. 101059548. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Bonannella et al. (2023), PeerJ, DOI 10.7717/peerj.15593 23/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.15593


The Open-Earth-Monitor Cyberinfrastructure project.
The European Union’s Horizon Europe research and innovation programme: 101059548.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Carmelo Bonannella conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
• Tomislav Hengl conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final
draft.
• Leandro Parente performed the experiments, prepared figures and/or tables, authored
or reviewed drafts of the article, and approved the final draft.
• Sytze de Bruin conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The training dataset used for the study is publicly available at the University of Reading:
https://researchdata.reading.ac.uk/99/

The environmental covariates used as predictive variables for the model is available at
CHELSA and The University of Tokyo:

https://chelsa-climate.org/downloads/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
The code for the model implementation is similar to a previous publication from the

same authors and is available at GitLab: https://gitlab.com/geoharmonizer_inea/spatial-
layers/-/blob/master/veg_tree.species_anv.pnv.eml/vegetation_mapping_functions.R

The outputs are available on Zenodo:
Bonannella, Carmelo, Hengl, Tomislav, Leal Parente, Leandro, & de Bruin, Sytze. (2023).

Current and future global distribution of potential biomes under climate change scenarios
(Version 2) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7822868.

REFERENCES
Agudelo J, Arias PA, Vieira SC, Martínez JA. 2019. Influence of longer dry sea-

sons in the Southern Amazon on patterns of water vapor transport over north-
ern South America and the Caribbean. Climate Dynamics 52(5):2647–2665
DOI 10.1007/s00382-018-4285-1.

Anchang JY, Prihodko L, Kaptué AT, Ross CW, Ji W, Kumar SS, Lind B, Sarr MA,
Diouf AA, Hanan NP. 2019. Trends in woody and herbaceous vegetation in the
Savannas of West Africa. Remote Sensing 11(5):576 DOI 10.3390/rs11050576.

Bonannella et al. (2023), PeerJ, DOI 10.7717/peerj.15593 24/31

https://peerj.com
https://researchdata.reading.ac.uk/99/
https://chelsa-climate.org/downloads/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
https://gitlab.com/geoharmonizer_inea/spatial-layers/-/blob/master/veg_tree.species_anv.pnv.eml/vegetation_mapping_functions.R
https://gitlab.com/geoharmonizer_inea/spatial-layers/-/blob/master/veg_tree.species_anv.pnv.eml/vegetation_mapping_functions.R
https://doi.org/10.5281/zenodo.7822868
http://dx.doi.org/10.1007/s00382-018-4285-1
http://dx.doi.org/10.3390/rs11050576
http://dx.doi.org/10.7717/peerj.15593


Anjos LJ, De Souza EB, Amaral CT, Igawa TK, De Toledo PM. 2021. Future projections
for terrestrial biomes indicate widespread warming and moisture reduction in
forests up to 2100 in South America. Global Ecology and Conservation 25:e01441
DOI 10.1016/j.gecco.2020.e01441.

Arias PA, Fu R, Vera C, Rojas M. 2015. A correlated shortening of the North and
South American monsoon seasons in the past few decades. Climate Dynamics
45(11):3183–3203 DOI 10.1007/s00382-015-2533-1.

Ballantyne Aá, Alden Cá, Miller Já, Tans Pá, White J. 2012. Increase in observed
net carbon dioxide uptake by land and oceans during the past 50 years. Nature
488(7409):70–72 DOI 10.1038/nature11299.

Barlow J, Berenguer E, Carmenta R, França F. 2020. Clarifying Amazonia’s burning
crisis. Global Change Biology 26(2):319–321 DOI 10.1111/gcb.14872.
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