- 1 Green synthesis of silver nanoparticles using *Ocimum sanctum* and its antibacterial activity
- 2 against multidrug-resistant Acinetobacter baumannii
- 3 Deepan Gautam^{1,2}, Karma G Dolma^{2*}, Bidita Khandelwal³, Madhu Gupta⁴, Meghna A. Singh⁴,
- 4 Tooba Mahboob¹, Anil K. Teotia⁵, Prasad Thota⁵, Jaydeep Bhattacharya⁶, Ramesh K. Goyal⁷,
- 5 Sonia M.R. Oliveira^{8,9}, Maria de Lourdes Gomes Pereira^{9,10}, Christophe Wiart¹¹, Polrat
- 6 Wilairatana¹², Komgrit Eawsakul¹³, Mohammed Rahmatullah¹⁴, Veeranoot Nissapatorn^{1*}.
- ¹School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD),
- 8 Walailak University, Nakhon Si Thammarat 80160, Thailand.
- ²Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal
- 10 University, Gangtok 737102, Sikkim, India.
- ³Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal
- 12 University, Gangtok 737102, Sikkim, India.
- ⁴Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical
- 14 Sciences and Research University, New Delhi 110017, India.
- ⁵Microbiology Department, Indian Pharmacopoeia Commission, Ministry of Health and Family
- Welfare, Ghaziabad, 201017, India.
- 17 ⁶School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
- ⁷Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New
- 19 Delhi 110017, India.
- ⁸Hunter Medical Research Institute, New Lambton, 2305 NSW, Australia.
- ⁹CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal.
- ¹⁰Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal.

23 24	¹¹ The Institute for Tropical Biology and Conservation, University Malaysia Sabah, Sabah 88400, Malaysia
25	¹² Faculty of Clinical Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
26	¹³ School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand.
27	¹⁴ Department of Biotechnology & Genetic Engineering, University of Development Alternative,
28	Lalmatia, Dhaka-1207, Bangladesh.
29	
30	Corresponding Author
31	1. Karma G Dolma. Department of Microbiology, Sikkim Manipal Institute of Medical
32	Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India.
33	Email: kgdolma@outlook.com
34	2. Veeranoot Nissapatorn. School of Allied Health Sciences and World Union for Herbal
35	Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand.
36	Email: nissapat@gmail.com
37	
38	
39	
40	
41	
42	
12	

Abstract

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

The biosynthesis of nanoparticles employing the green route is an effective strategy in nanotechnology that provides a cost- effective and environmentally friendly relation to physical and chemical methods. This study aims to prepare an aqueous extract of *Ocimum sanctum* based silver nanoparticles (AgNPs) through the green route and test its antibacterial activity. The biosynthesized silver nanoparticles were characterized by color change, UV spectrometric analysis, FTIR, and particle shape and size morphology by SEM and TEM images. The nanoparticles are almost spherical to oval and rod shape with smooth surfaces and with a mean particle size in the range of 55 nm with a zeta potential of -2.7 mV. The antibacterial activities of AgNPs evaluated against clinically isolated multidrug -resistant Acinetobacter baumannii showed that the AgNPs from O. sanctum areis effective in inhibiting A. baumannii with MIC and MBC of 32 and 64µg/mL and SEM images of A. baumannii treated with AgNPs revealed damage and rupture in bacterial cells. The time-killing assay by spectrophotometry revealed the time and dose -dependent killing action of AgNPs against A. baumannii and the assay at various concentrations and time intervals indicate a statistically significant result in comparison with the positive control colistin at 2µg/mL (P<0.05). The cytotoxicity test using the MTT assay protocol showed the prepared nanoparticles of O. sanctum is are less toxic against human cell A549. This study opens up a ray of hope to explore the further research in this area and to improve the antimicrobial activities against multidrug- resistant bacteria.

Subjects: Bacteriology, Pharmacology, Nanotechnology

Keywords: Antibacterial activity, biosynthesis, green nanotechnology, *Ocimum sanctum*, silver nanoparticles.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

64

65

INTRODUCTION

The synthesis of nanoparticles through green route is a growing subject in nanotechnology that offers cost-effective and environmental friendly alternatives to traditional physical and chemical processes (Yeo, Lee & Jeong, 2003). Although, metal-based nanoparticles are the most promising emerging formulation designs, silver nanoparticles are outstanding owing to their all-around pharmacokinetic profiles, no human toxicities and specific antimicrobial properties (Allen, Hunter & Agrawal, 1997; AshaRani, Hande & Valiyaveettil, 2009). It is of paramount interest to the pharmaceutical manufacturers that the overall process of producing nanoparticle systems is ecologically balanced while being cost-optimized (Gadeet al., 2008; Ouda, 2014). Both physical and chemical methods have their own disadvantages in terms of energy consumptions and toxicities related to chemical processing (Singh& Raja, 2011; Wei Xet al., 2012). Contrary to the traditional synthetic methods, biological methods of generating nanoparticles are quite adaptive to the environment vis-à-vis cost effective (Govindaraju et al., 2010). The most important merit of biologically synthesized nanoparticles is their non-toxic nature and easy biological metabolism. These advantages have made biologically-derived nanoparticles one of the most emerging formulation designs widely accepted in the pharmaceutical eco-system (Das & Smita, 2018).

ailments. Novel phytoconstituents derived from plant sources are spanning again around the pharmaceutical markets and one the mostly employed medicinal plant is the Holy Basil i.e., *Ocimum* sanctum L. with proven medicinal significance for anticancer, antimicrobial, cardio-protective, antidiabetic, analgesic, antispasmodic, antiemetic, hepatoprotective, antifertility, adaptogen and diaphoretic actions. Leaves of the Ocimum sanctum L. contain eugenol as a major active chemical constituent and has been proved for its therapeutic efficacy in various ailments in modern clinical practice (Hemaiswarya, Kruthiventi & Doble, 2008; Raseetha, Cheng & Chuah, 2009). There are various studies done on synthesis of nanoparticles through green route using parts of plant extracts such as tea leaf, stem bark of Callicarpa maingayi, Terminalia chebula, Papaver somniferum and Aloe vera. Silver nanoparticles have been reported for anti-angiogenesis, anti-inflammatory, antiplatelet activity, anti-bacterial and anti-viral activity (Bindhani & Panigrahi, 2015). Misuse of antimicrobials during last two decades increases the existence of antibiotic resistance in almost all the bacterial strains. This has not only made several anti-microbial drugs worthless but it has also compelled the researchers to explore alternative solutions for fighting against deadly microbial infections (Nikaido, 2009). Hence, some recent studies focused upon using silver nanoparticles (AgNPs) as one of the alternatives and proven the antimicrobial property of silver nanoparticles against both Gram-negative and positive bacteria without any cytotoxic signs (Donlan & Costerton, 2002; Biel et al., 2011; Lazar, 2011). Acinetobacter baumannii is a Gramnegative, opportunistic bacterium which causes nearly 2-10% of all hospital associated infections,

In recent years, plants have been widely explored for finding active principles to treat complex

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

particularly among immunocompromised patients (Karlowskyet al., 2003). The major challenges

with *A. baumannii* is its extraordinary ability to quickly develop resistance against new drugs, to form biofilm on abiotic surfaces which helps them to survive on hospital equipment for long period and also to tolerate the harsh environment for survival (*Djeribi*, 2012). *A. baumannii* is considered a "Red Alert "human pathogen and is ranked the number one critical pathogen with high antibiotic resistant by World Health Organization for research and new drug discovery (*WHO*, 2017).

This study describes the easy, fast and simple method for biosynthesis of AgNPs from *Ocimum*

sanctum (O. sanctum) leaf extract. We attempted to characterize the biosynthesized nanoparticles and also evaluated the antibacterial activity against multidrug resistant A. baumannii (MDR-A.

112 baumannii).

MATERIAL AND METHODS

O. sanctum leaves were collected from Delhi Pharmaceutical Sciences and Research University, New Delhi (Verified CSIR-National Institute of Science Communication and Policy Research, New Delhi, authentication no. NIScPR/RHMD/consult/2022/4040-41). Silver nitrate was purchased from LobaChemie Private Limited, Mumbai, India. Antimicrobial susceptibility test against multidrug resistant A. baumannii was performed at Sikkim Manipal Institute of Medical Sciences, Sikkim, India (EhticalClearenceNo. SMIMS/IEC/2019-29).

Plant collection and identification

O. sanctum is a relatively small, erect sub- shrub that reaches up to 60 cm in height and has reverse green or purple leaves and a hairy stem. The leaves are ovate, measuring up to 5 cm long, toothed and have a petiole (Pattanayak et al., 2010). For the present study, fresh leaves were collected in September, 2021 and brought to the laboratory at Delhi Pharmaceutical Science and Research University, New Delhi, in air tight paper bags for further processing.

Preparation of *O. sanctum* leaves aqueous Extract

To prepare the aqueous extract of leaves, fresh leaves were collected and placed in a beaker and washed with distilled water many times to make it free from dust and finally washed with Millipore water (MILLI-Q® HX 7000 SD, Merck, Australia). A total of 25g washed leaves were chopped into fine pieces and crushed in 100 mL Millipore water using a mortar and pestle. The aqueous extract was ground and then boiled for 10 minutes at 80°C in a 250 mL beaker. The aqueous leave extract was then allowed to cool at room temperature (37°C) and then filtered with Whatman filter paper (GE Healthcare Life Science, Karnataka, India). The prepared leave extract was collected and stored at 4°C for further use (*Rao et al., 2013*).

Preparation of 1 mM silver nitrate solution

The stock solution was prepared by weighing 170 mg of silver nitrate (LobaChemie Pvt. Ltd. Mumbai, India) and dissolved it into 1000 mL of millipore water (MILLI-Q® HX 7000 SD, Merck, Australia). 1ml solution was taken and further dissolved into 100 mL millipore water. This

solution was stored in amber coloured bottle to prevent the self-oxidation of silver nitrate solution (Saifuddin, Wong & Yasumira, 2009).

Green synthesis of silver nanoparticles (AgNPs)

Silver nanoparticles (AgNPs) were prepared by a single step synthesis reported previously (*Ramteke et al., 2013*). In the process 90 mL solution of silver nitrate at 1 mM concentration was placed on a magnetic stirrer (Remi, Mumbai, India) at 400 rpm and 10 mL of aqueous extract of *O. sanctum* leaves was added drop-wise for half an hour in a beaker containing silver nitrate solution. The colour of the solution was turned from brown to hazy brown (Figure 1 A-D) indicating the formation of AgNPs. The preparation was kept at rest at room temperature (37°C) for 1 hour. All procedures were performed in a dark room due to presence of silver nitrate. The nanoparticles were separated by the process of centrifugation (Remi, Mumbai, India) and prepared sample was stored at refrigerated temperature.

Characterization of the synthesized AgNPs of O. sanctum

The biosynthesized AgNPs were characterized by various parameters (Figure 2). Absorption spectrum of the synthesized AgNPs was observed spectrophotometrically at room temperature using UV–Vis spectrophotometer (Shimadzu UV, 1800, Japan) at a resolution of 1 nm. In addition, the average particle size and zeta potential were determined by dynamic light scattering, using the Litesizer 500 (Anton Paar, Buchs, Switzerland). Furthermore, morphology of AgNPs of *O. Sanctum* were visualized using by Scanning Electron Microscopy (SEM, Leo 435 VP 501B,

Philips, Austin, Texas), its accelerated voltage is up to 30 kV and magnification efficacy ranges from 10x to 300,000x. Following this, prepared nanoparticles were also characterized by Transmission Electron Microscopy (TEM; JEOL, Tokyo, Japan) using a copper grid coated with carbon film and with phosphotungstic acid (1%; w/v) as a negative stain and then air dried, and allowed to rest at room temperature (37°C) to obtain the TEM images.

The samples were then dried, ground with KBr pellets, and examined by Fourier transform infrared spectroscopy (FTIR; PerkinElmer, United States) to recognize the functional groups and potential of bio-molecule probably causing the reduction of silver (Ag) ions and capping of AgNPs biosynthesized by *O. sanctum*.

Antibacterial studies of the biosynthesized AgNPs of O. sanctum

Bacterial broth preparation

Pure culture of MDR *Acinetobacter baumannii*, confirmed by RT-PCR was sub-cultured in a Muller Hinton broth medium (Hi-Media, Mumbai, India) at 37°C for 18-24 hours. The bacterial broth was diluted next day using Muller Hinton broth and adjusted to 0.5 MacFarland turbidity (10⁸ CFU/mL) using Densicheck (Biomerieux, North Carolina, USA). This bacterial broth was further tested for susceptibility to AgNPs of *O. sanctum* by different methods (Figure 3).

Agar well diffusion method

The antimicrobial susceptibility was tested on a Muller Hinton Agar (MHA) plate (Hi Media, Mumbai, India). The 0.5 MacFarland turbid broth of *A. baumannii* was inoculated by the lawn

culture method using sterile cotton swab on a MHA plate and the plate was air dried. Three holes of 6 mm diameter were made in the plate with the help of a sterile borer. A volume of 100 μL of AgNPs of *O. sanctum*, aqueous extract of *O. sanctum* and sterile double distilled water were added to the respective holes. The plate was then incubated at 37°C for 18-24 hours. The zone of inhibition was measured with the help of scale, the next day against the respective holes (*Alzahrani et al.*, 2020).

MIC and MBC determination

MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) were determined by the microdilution method (*Dash et al., 2012*). The *A. baumannii* having a concentration of 10⁸ CFU/mL was prepared in Nutrient broth medium (Hi-media, Mumbai, India) and 100 μL of this broth was added to the wells of microtitre plate. The AgNPs of *O. sanctum* were diluted in deionized water by serial dilution ranging from 2-200 μg/mL and 100 μL of these different concentrations of AgNPs of *O. sanctum* were added to wells loaded with the bacterial broth. The microtitre plate was then incubated at 37°C for 24 hours. The MIC value was noted by observing the turbidity on microtitre wells due to the bacterial growth. The MIC value corresponded to the minimum concentration of AgNPs of *O. sanctum* that inhibited the 99% of bacterial growth.

The MBC was obtained by sub-culturing the bacteria on a sterile MHA plate from the microtitre wells without turbidity and incubated at 37°C for 24 hours. The minimum concentration of AgNPs which completely killed and reflected no growth of bacteria on the MHA plate was considered as

a MBC value. The MBC value corresponded to the minimum concentration of AgNPs of *O. sanctum* that restricted 100% bacterial growth.

The killing kinetic assay

The killing kinetic assay of *A. baumannii* against AgNPs was performed spectrophotometrically (Shimadzu UV, 1800, Japan) at OD 600nm. A volume of 100 μL of 10⁸ CFU/mL of bacterial broth after treatment with the 100 μL of 32 μg/mL of MIC, 64μg/mL of MBC, 128μg/mL, 256μg/mL and512μg/mL of AgNPs of *O. sanctum* were measured by quantifying the bacterial viability at 0, 2, 4, 8, 12, 18 and 24 hours of incubation. The negative control (bacterial cell without AgNPs and antibiotic colistin) and positive control (bacterial cell treated with antibiotic colistin at MIC of 2 μg/mL) were included in the test. The percentage of inhibition of growth was calculated in comparison with the negative control (*Das et al., 2017*) and statistical correlation was made with positive control.

Action of Silver nanoparticles on the structures of bacterial cells

The 10 mL volume of *A. baumannii* in nutrient broth medium with a concentration of 10⁸ CFU/mL were treated with MIC value of AgNPs and incubated at 37°C with shaking at 198 rpm for 12 hours. A control experiment was performed in absence of AgNPs. After incubating for 12 hours the bacterial culture tube was centrifuged and the supernantant was discarded.. The pellets formed were fixed with 50 µL of 2.5% glutaraldehyde for 5 minutes at 37°C and washed three times with

1X PBS. The pellets were finally suspended in a 50 μL PBS and used to take images by scanning electron microscopy (SEM, Leo 435 VP 501B, Philips, Austin, Texas) (*Das et al.*, 2017).

Cytotoxicity test using MTT assay

Human lung adenocarcinoma cell line A549 was obtained from the NCCS cell repository (Pune, India). A549 cells were seeded in 96-well tissue culture plate at a density of 5000 cells per well. After 24 hours of growth, cells were treated for 24 and 72 hours with different concentrations of AgNPs. After treatment, the media with nanoparticles was discarded and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] at a final concentration of 0.5 mg/mL was added to each well. The plates were then incubated for two hours at 37°C in a CO2incubator. After incubation, media with MTT was discarded and the formazan crystals formed were dissolved in DMSO at 37°C for 15-20 minutes. Absorbance of dissolved formazan was measured at 570 nm with a reference wavelength of 690 nm. Similarly, the test was also performed with *O. sanctum* extract. The control experiment was performed without AgNPs or *O. sanctum* extract. The resultant absorbance which is directly proportional to cell viability was converted into percent viability and viability of control cells was considered as 100%.

Statistical analysis

All data were recorded, edited, and entered using the statistical package software SPSS version 25 (SPSS, Chicago, IL, USA). The differences between mean values were tested for significance by one-way ANOVA analysis. P value < 0.05 was considered to be statistically significant.

RESULT

Color Change

The change in color of the prepared solution during the procedure is shown in Figure. 1, indicating the reduction of silver ions. However, the color of fresh *O. sanctum* extract changed from brown to hazy brown, when it was mixed with silver nitrate solution, after an hour the solution appears dense brown, it represents the reduction of silver ions (*Banerjee et al., 2014*).

UV-Visible (UV-Vis) Spectroscopy

To examine the optical properties of the synthesized AgNPs of *O. sanctum*, the UV-Vis spectroscopy (Shimadzu UV, 18000) measured the sample in every 20 minutes' time interval. It was observed that biosynthesized AgNPs occurs at 452 nm (Fig.4).

SEM images of prepared nanoparticles indicated that particles were, almost spherical and rod

Particle shape, size and morphology

shaped with smooth surfaces having a size range of 73.24-87.89 nm. The SEM image shows agglomeration of individual silver nanoparticles (Fig. 5 a and b).

Morphological examination by TEM confirmed spherical shape of most of the nanoparticles with a size range from 29-54.9 nm (Fig. 6 a and b), while some oval and/or elliptical shaped nanoparticles were also formed which is the common feature of most of the biologically synthesized nanoparticles. Lighter edges with heavier center were also visible confirming the capping of protein biomolecules with AgNPs. The mean particle size of nanoparticles was found to be 55 nm, that was fully concordant with the results from TEM and SEM analysis (Fig. 7 a).

The particles showed the zeta potential around -2.7 mV respectively and increase in negative values confirmed the repulsion between the particles, which also verified the stability of the formulation (Fig. 7 b).

Fourier Transform Infrared Spectroscopy (FTIR)

To determine the potential interaction between *O. sanctum* and biosynthesized silver nanoparticles, FTIR measurements were performed on biosynthesized silver nanoparticles. Figure 8a and 8b, illustrate the FTIR spectra of aqueous extract of *O. sanctum* and the biosynthesized AgNPs, respectively. Strong peaks for aqueous leaf extract at 3338.52cm⁻¹, 1634.59cm⁻¹ and 666.49cm⁻¹ were clearly visible and biosynthesized nanoparticles showed the peak at 3339.30cm⁻¹ 1634.70cm⁻¹ and 666.89cm⁻¹.

Strong bands at 3338.52cm⁻¹ and 3339.30cm⁻¹ indicated the presence of phenols and alcohols with free OH group. The vibrational peaks at 1634.59cm⁻¹ and 1634.70cm⁻¹ represent the presence of amide I group. The absorption bands at 666.49cm⁻¹ and 666.89cm⁻¹ assigned to the aromatic C-H bending.

Antibacterial Activity

Agar well diffusion method, MIC and MBC determination

The zone of inhibition determined by the agar well diffusion method after 24 hours of incubation formed by AgNPs of *O. sanctum* against the MDR *A. baumannii* was 15 mm and no zones were observed against distilled water and *O. sanctum* extract (Figure: 9). The MIC and MBC of AgNPs

of *O. sanctum* determined by microdilution method against the MDR *A. baumannii* were 32 μ g/mL and 64 μ g/mL respectively.

Killing Kinetic assay

The bactericidal activity was observed gradually up to 12 hours of incubation with the 64 μ g/ml (MBC) and higher concentrations of AgNPs and the complete killing was observed within 24 hours. The result showed a time-dependent and gradual, inhibitory and bactericidal activity against the MDR *A. baumannii*. In comparison to the killing action of positive control (Colistin at 2μ g/mL of MIC) the AgNPs at its different concentration and at different time interval shows statistically significant results (P<0.05). A 32 μ g/mL of AgNPs at 4, 12 and 24 hours, 64 μ g/mL at 4, 12 and 24 hours, 128 μ g/mL at 4 hours, 256 μ g/ml at 24 hours and 512 μ g/mL at 4 and 12 hours indicate a statistically significant result at P value <0.05 in comparison with positive control colistin to kill the MDR *A. baumannii* (Table 1).

Effects of silver nanoparticles on bacterial cells

The electron micrographs by SEM of *A. baumannii* cells in case of untreated and treated with AgNPs were shown in figure 10. The presence of AgNPs in the bacterial cell membrane and its content were observed by electron microscopy. The SEM images of untreated *A. baumannii* showed a typical clear surface structure having smooth and intact cell morphology whereas in case of *A. baumannii* treated with AgNPs showed severely damaged cell structure with rupture, gaps,

irregular surface and presence of fragments. The result showed the penetration of AgNPs inside the bacterial cells and kills it by various mechanisms.

Cytotoxicity test using MTT assay

Cytotoxicity against human lung adenocarcinoma cell line A549 at concentrations of 500 μ g/mL and 250 μ g/mL of both AgNPs and *O. sanctum* extract showed that the cells did not remain viable after 24 hours and 72 hours of treatment. However, at all the other concentrations ranging from 0.97 μ g/mL-125 μ g/mL the A549 cells showed viability almost equivalent to untreated cells at both the time points (Figure 11).

DISCUSSION

Present study developed a strategy for single step synthesis of AgNPs using aqueous *O. sanctum* extract. The color change was mainly due to addition of extract in silver nitrate solution during the reaction (*Pirtarighat*, *Ghannadnia & Baghshahi*, 2019). The color intensity increased with respect to time of incubation (*Kumar*, *Selvi & Govindaraju*, 2013; *Fayaz et al.*, 2010).

It is interesting that the ultraviolet and visible (UV–Vis) absorption spectrum of the prepared mixture confirmed the silver nanoparticles formation from silver ions, with a peak at 452 nm. This finding supported by the broad band of UV–Vis absorption is mainly due to the presence of organic metabolites in *O. sanctum* based aqueous extract (*Rao et al.*, 2013). Furthermore, SEM and TEM analysis of biosynthesized nanoparticles (Fig. 3 and 4) represented that nanoparticles are almost spherical to oval and rod like shaped with smooth surfaces and having mean particle size of 55 nm

with -2.7 mV zeta potential showing stable particles. The morphological study revealed the agglomeration of individual silver nanoparticles. A previous study showed that the average size of silver nanoparticles biosynthesized using the leaf extract of O. sanctum was 42 nm (Rao et al., 2013). The FTIR spectra depicted some extent of shifting of AgNPs spectra then aqueous extract, which might be due to the presence of functional groups present in the biosynthesis of plant extract and capping of nanoparticles. It also exhibited that biosynthesized AgNPs and aqueous extract (Fig. 6) that differed very slightly in their absorption bands. This may be illustrated on the base that available biomolecules in plants play a crucial role for the reduction of metal ions and formation of small size nanoparticles (Kandasamy et al., 2013). In addition, peaks at 3339.30 cm⁻¹ and 1634.70 cm⁻¹ indicated the binding of proteins, carbohydrates, and nitrogenous compounds on the surface of nanoparticles (Das & Smita, 2018). Our finding further supported by a previous study demonstrated that proteins bind to the surface of metal nanoparticles through a free carboxylate group therefore stabilized the AgNPs (Ajitha, Reddy & Reddy, 2014). It is imperative that the O. sanctum extract played a dual role for a reducing agent as well as a stabilizing agent for AgNPs. This is therefore highly recommended for more comprehensive studies to justify this association to come up with the final conclusion. The antimicrobial studies determined that there was no zone of inhibition found in tulsi extract and sterile distilled water but AgNPs from O. sanctum have a promising effective antibacterial activity on the MDR A. baumannii showing a zone of inhibition of 15mm. The MIC and MBC results also proved that the bio-reducing AgNPs were able to inhibit the growth of MDR A. baumannii. In addition, the SEM images of A. baumannii treated with AgNPs reveled the penetration of AgNPs

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

into the bacterial cells, causing damage and rupture. The antibacterial activity can be explained based on nanoparticles interaction with microorganisms (Franci et al., 2015) by the released silver ions can be attached to the cell wall of bacteria, modulating the cell membrane permeability, respiration blockage (Dhaset al., 2014; Manjumeena et al., 2014; Muhsin & Hachim, 2014), and destabilization of bacterial outer membrane and plasma membrane degradation followed by reduction of intracellular ATP (Ajitha, Reddy & Reddy, 2014; Pirtarighat, Ghannadnia & Baghshahi, 2019). Silver ions also have great affinity to interact with sulphur or phosphorus of cell biomolecules and ultimately ceasing the bacterial replication (*Umashankari et al.*, 2012). The AgNPs might also have affected some of the cellular components and induced the damage of cell membrane, which finally results in cell decomposition and death. (Li, Xie & Shi, 2010). The bactericidal activities of biosynthesized AgNPs from the extract of other *Ocimum* species are also reported. Tailor G et al. (2020) observed antibacterial activity of AgNPs prepared from Ocimum canum against Escherichia coli, with minimum zone of inhibition of 17mm at 10 ppm concentration of AgNPs while the maximum zone of inhibition of 24.5 mm was observed at 30 ppm concentration (Tailor G et al., 2020). The susceptibility of 15 mm, 13 mm and 12 mm was observed against Bacillus vallisomortis, Bacillus subtilis and Escherichia coli respectively, using AgNPs synthesized from Ocimum bacilicum (Pirtarighat, Ghannadnia & Baghshahi, 2019). Using the biosynthesized AgNPs from the extract of O. gratissimum, Das B et al. noted no zone of inhibition in silver nitrate solution alone but the bio-reduced AgNPs showed considerable growth inhibition against pathogenic Escherichia coli and Staphylococcus aureus. They observed the zone size of 8 mm and 12 mm against Escherichia coli using 4 µg/mL (MIC) and 8 µg/mL

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

(MBC) of AgNPs respectively. Similarly, the zone size of 10 mm and 16 mm were observed against Staphylococcus aureus using 8 µg/mL (MIC) and 32 µg/mL (MBC). The combined activity of phytochemical of Ocimum gratissimum and AgNPs had demonstrated beneficial role to reduce the dose required for total microbial growth inhibition (Das B et al., 2017). The killing kinetic assay showed time and dose dependent action against MDR A. baumannii. The bactericidal activity was gradual and complete killing was observed within 24 hours using MBC and higher concentrations of AgNPs. Statistically significant result was observed in comparison to the killing action of antibiotic colistin. The time kill curve analysis by Das B et al. using AgNPs against Escherichia coli and Staphylococcus aureus showed bacterial killing activity which increases with time of exposure of the bacteria in AgNPs at their respective MBC concentration and complete bactericidal result were obtained. The bacterial exposure with AgNPs demonstrated a rapid dose and time dependent killing leading to early stationary phase (Das B et al., 2017). This rapid bactericidal activity of AgNPs could come up to significantly decrease the bacterial mechanism to induce resistance development. Therefore, the AgNPs might be a promising alternative to significantly reduce the development of drug resistance in bacteria and an effective antimicrobial agent for human use after the strong clinical trials (*Thammawithan et al.*, 2021). Various studies reported the bactericidal activity of AgNPs depends on its size and shape. The smaller the size higher would be the antibacterial property compare to the big size particles (Panacek et al., 2006). This result could be due to the higher penetration ability of smaller size nanoparticles (Morones et al., 2005). This result of small size nanoparticles showed good results against bacterial inhibition but studies also reported the adverse effect and health issues of

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

nanoparticles because of its nano size. (Basavaraja et al., 2008; El-Ansary & Al-Daihan, 2009). This small size of nanoparticles makes them mobile both in the human body and the external environment as well (Braydich-Stolle et al., 2005). Pal et al. demonstrated that truncated triangular AgNPs reveled the highest bactericidal activity against Escherichia coli, when compared with rod and spherical shaped nanoparticles (Pal, Tak & Song, 2007). The similar result was also shown by Sharma et. Al (Sharma, Yngard & Lin, 2009).

Apart from the antibacterial efficacy against MDR *A. baumannii*, cytotoxicity testing to the mammalian cell is also a crucial to develop novel antimicrobials. The optimum features which supports the efficacy of new antimicrobial agent requires properties like it should have potent antimicrobial activity and also the low cytotoxicity level, which was clearly observed in our findings (*Thammawithan et al., 2021*). Our finding with the bio-synthesized AgNPs of *O. sanctum* showing the antibacterial activity against MDR *A. baumannii* at a MBC of 64 µg/mL and cytotoxicity against the human A549 cell only above the concentration of 250 µg/mL clearly indicates that the AgNPs are less to moderately toxic against human cells compare to its effect on bacterial cells. This study shows a good ray of hope to develop novel antibiotics using nanoparticles with more intense research and clinical trials.

CONCLUSION

This study focused on the novel single step innovative green approach for the biosynthesis of silver nanoparticles from aqueous leaf extract of *O. sanctum*. One of the most important benefits of this method is that it is eco-friendly and reduces traces of organic solvents that are hazardous to human

health. Silver nanoparticles were successfully synthesized and confirmed by the colour change. The various evaluation parameters supported the nano-sized range with stable silver nanoparticles owing to the presence of biomolecules present in leaf extract that may be acted as the surface active stabilizing agents supporting the formulation of silver nanoparticles. The antibacterial studies revealed its efficacy against clinically isolated MDR *A. baumannii* and the cytotoxic activity of AgNPs and *O. sanctum* extract against mammalian cells showed moderate action. The method was a very innovative, cost effective approach and further studies would be performed to prove its efficacy more effectively.

This study is a part of PhD thesis entitled "Molecular characterization, detection of carbapenem resistance genes and effect of natural products using nanotechnology against multidrug resistant *Acinetobacter baumannii* isolated from various clinical specimens from Central Referral Hospital, Sikkim, India", Walailak University, Thailand.

ACKNOWLEDGEMENT

- 430 The authors would like to thank:
- Walailak University, Nakhon Si Thammarat, Thailand for providing Ph.D. Scholarship for
- Outstanding International Students, Scholarship no. MOE571900/110/2562 and Graduate Studies
- 433 Research Fund CGS-RF-2021/02.
- 434 Sikkim Manipal University, Sikkim, India for providing TMA Pai University Research Seed
- 435 Grant-Major (2018-19), Reference no. 176/SMU/Reg/TMAPURF/30/2019.

- 436 Project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 &
- 437 LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).

- 439 **Reference:**
- 440 Ajitha B, Reddy YAK, Reddy PS. 2014. Biogenic nano-scale silver particles by Tephrosis
- 441 purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta Part A:
- 442 *Molecular and Biomolecular Spectroscopy*, 121: 164-172.DOI: 10.1016/j.saa.2013.10.077.
- 443 Allen RT, Hunter WJ, Agrawal DK. 1997. Morphological and biochemical characterization and
- analysis of apoptosis. Journal of Pharmacological and Toxicological Methods, 37: 215-
- 445 228.DOI: 10.1016/s1056-8719(97)00033-6.
- 446 Alzahrani RR, Alkhulaifi MM, Alenazi NM, Almusayeib NM, Amina M, Awad MA,
- 447 Elmubarak AH, Aldosari NS. 2020. Characterization and biological investigation of silver
- 448 nanoparticles biosynthesized from *Galaxaura rugosa* against multidrug-resistant bacteria. *Journal*
- *of Taibah University for Science*. 14: 1651-1659. DOI: 10.1080/16583655.2020.1854495.
- 450 AshaRani PV, Hande MP, Valiyaveettil S. 2009. Anti-proliferative activity of silver
- 451 nanoparticles. *BMC Molecular and Cell Biology*, 10: 65.DOI: 10.1186/1471-2121-10-65.
- Banerjee P, Satapathy M, Mukhopahayay A, Das P. 2014. Leaf extract mediated green
- 453 synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization,
- antimicrobial property and toxicity analysis. *Bioresources and Bioprocessing*, 1: 3-10. DOI:
- 455 10.1186/s40643-014-0003-y.

- 456 Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. 2008. Extracellular
- 457 biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research
- 458 Bulletin. 43: 1164.
- Biel MA, Sievert C, Usacheva M, Teichert M, Balcom J. 2011. Antimicrobial photo-dynamic
- 460 therapy treatment of chronic recurrent sinusitis biofilms. *International Forum of Allergy and*
- 461 Rhinology, 1, 329-334. DOI: 10.1002/alr.20089.
- 462 **Bindhani BK, Panigrahi AK. 2015.** Biosynthesis and characterization of silver nanoparticles
- 463 (SNPs) by using leaf extracts of *Ocimum sanctum* L (Tulsi) and study of its antibacterial activities.
- 464 *Journal of Nanomedicine and Nanotechnology*, S6, 1-5.DOI: 10.4172/2157-7439.S6-008.
- 465 Braydich-Stolle L, Hussain S, Schlager J, Hofmann MC. 2005. In vitro cytotoxicity of
- nanoparticles in mammalian germline stem cells. *Toxicological Sciences*, 88: 412.
- Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dev SK, Das D,
- 468 Roy S. 2017. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via
- reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry, 10: 862-
- 470 876.DOI: 10.1016/j.arabjc.2015.08.008.
- 471 Das M, Smita SS. 2018. Biosynthesis of silver nanoparticles using bark extracts of Butea
- 472 monosperma (Lam.) Taub. and study of their antimicrobial activity. Applied Nanoscience, 8: 1059-
- 473 1067. DOI: 10.1007/s13204-018-0721-0.

- Dhas SP, John SP, Mukherjee A, Chandrasekaran N. 2014. Autocatalytic growth of
- biofunctionalized antibacterial silver nanoparticles. *Biotechnology and Applied Biochemistry*, 61:
- 476 322-332.DOI: 10.1002/bab.1161.
- Dash SK, Chakraborty SP, Mandal D, Roy S. 2012. Isolation and characterization of multi drug
- 478 resistant uropathogenic Escherichia coli from urine sample of urinary tract infected patients.
- 479 *International Journal of Life Sciences and Pharma Research*, 2: 26-39.
- 480 **Djeribi R, Bouchloukh W, Jouenne T, Menaa B. 2012.** Characterization of bacterial biofilms
- 481 formed on urinary catheters. American Journal of Infection Control, 40: 854-959. DOI:
- 482 10.1016/j.ajic.2011.10.009.
- 483 **Donlan RM, Costerton JW. 2002.** Biofilms: Survival mechanisms of clinically relevant
- 484 microorganisms. Clinical Microbiology Review, 15: 167-193. DOI: 10.1128/CMR.15.2.167-
- 485 193.2002.
- 486 El-Ansary A, Al-Daihan S. 2009. On the toxicity of therapeutically used nanoparticles: an
- 487 overview. Journal of Toxicology, 75: 4810.
- 488 Fayaz M, Tiwary C, Kalaichelvan P, Venkatesan R. 2010. Blue orange light emission from
- 489 biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids and Surfaces B,
- 490 *Biointerfaces*, 75: 175-178. DOI: 10.1016/j.colsurfb.2009.08.028.
- 491 Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. 2015. Silver
- 492 nanoparticles as potential antibacterial agents. *Molecules*, 20: 8856-8874. DOI:
- 493 10.3390/molecules20058856.

- 494 Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M. 2008. Exploitation of Aspergillus niger
- for synthesis of silver nanoparticles. *Journal of Biobased Material and Bioenergy*, 2:243-247.
- 496 DOI: 10.1166/jbmb.2008.401.
- 497 Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G. 2010. Biogenic silver
- 498 nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of
- 499 *Biopesticides*, 3: 394-399.
- 500 Hemaiswarya S, Kruthiventi AK, Doble M. 2008. Synergism between natural products and
- 501 antibiotics against infectious diseases. Phytomedicine, 15: 639-
- 502 652.DOI: 10.1016/j.phymed.2008.06.008.
- Kandasamy K, Alikunhi NM, Manickaswami G, Nabikhan A, Ayyavu G. 2013. Synthesis of
- silver nanoparticles by coastal plant Prosopis chilensis (L.) and their efficacy in controlling
- vibriosis in shrimp *Penaeus monodon*. *Applied Nanoscience*, 3: 65-73. DOI: 10.1007/s13204-012-
- 506 0064-1.
- 507 Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm D. 2003.
- 508 Surveillance for antimicrobial susceptibility among clinical isolates of *Pseudomonas aeruginosa*
- and Acinetobacter baumannii from hospitalized patients in the United States, 1998-2001.
- 510 Antimicrobial Agents and Chemotherapy, 47:1681-1688. DOI: 10.1128/AAC.47.5.1681-
- 511 1688.2003.
- 512 Kumar P, Selvi SS, GovindarajuM. 2013. Seaweed-mediated biosynthesis of silver
- 513 nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp, Applied
- 514 Nanoscience, 3: 495-500. DOI: 10.1007/s13204-012-0151-3.

- 515 Lazar V. 2011. Quorum sensing in biofilms--how to destroy the bacterial citadels or their
- 516 cohesion/power? *Anaerobe* 2011, 17: 280-285. DOI: 10.1016/j.anaerobe.2011.03.023.
- Li WR, Xie XB, Shi QS. 2010. Antibacterial activity and mechanism of silver nanoparticles
- 518 on Escherichia coli. Applied Microbiology and Biotechnology, 85: 1115–1122. DOI:
- 519 10.1007/s00253-009-2159-5.
- 520 Manjumeena R, Duraibabu D, Sudha J, Kalaichelvan P. 2014. Biogenic nanosilver
- 521 incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected
- 522 pathogenic strains: an enhanced eco-friendly water disinfection approach. Journal of
- 523 Environmental Science and Health Part A Toxic/Hazardous Substance and Environmental
- 524 Engineering, 49: 11251133. DOI: 10.1080/10934529.2014.897149.
- Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ.
- **2005.** The bactericidal effect of silver nanoparticles. *Nanotechnology*, 16: 2346.
- 527 **Muhsin TM, Hachim AK. 2014.** Mycosynthesis and characterization of silver nanoparticles and
- 528 their activity against some human pathogenic bacteria. World Journal of Microbiology and
- 529 *Biotechnology*, 30: 2081-2090. DOI: 10.1007/s11274-014-1634-z.
- Nikaido H. 2009. Multi drug resistance in bacteria. *Annual Review of Biochemistry*, 78: 119-146.
- 531 DOI: 10.1146/annurev.biochem.78.082907.145923.
- 532 **Ouda SM. 2014.** Antifungal activity of silver and copper nanoparticles on two plant pathogens,
- 533 Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology, 9: 34-42.
- 534 DOI: 10.3923/jm.2014.34.42.

- Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on 535 536 the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73:1712. 537 Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, 538 **Zboril R. 2006.** Silver colloid nanoparticles: synthesis, characterization, and their antibacterial 539 540 activity. Journal of Physical Chemistry B, 110: 16248. Pattanayak P, Behera P, Das D, Panda SK. 2010. Ocimum sanctum Linn. A reservoir plant for 541 therapeutic applications: An overview. Pharmacognosy reviews, 4: 95-105. DOI: 10.4103/0973-542 7847.65323. 543 544 Pirtarighat S, Ghannadnia M, Baghshahi S. 2019. Biosynthesis of silver nanoparticles using
- Rao YS, Kotakadi VS, Prasad TN, Reddy AV, Gopal DS. 2013. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi Tulsi (*Ocimum sanctum*) leaf extract.

 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103:156-159. DOI: 10.1016/j.saa.2012.11.028.

Science & Engineering C,98: 250-255. DOI: 10.1016/j.msec.2018.12.090.

of chemistry, 2013: 1-7. DOI: 10.1155/2013/278925.

Ocimum basilicum cultured under controlled conditions for bactericidal application. Materials

545

546

551

552

553

Ramteke C, Chakrabarti T, Sarangi BK, Pandey RA. 2013. Synthesis of silver nanoparticles

from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. Journal

- Raseetha VS, Cheng SF, Chuah CH. 2009. Comparative study of volatile compounds from genus
- *Ocimum. American Journal of Applied Sciences*, 6: 523-528. DOI: 10.3844/ajas.2009.523.528.
- Saifuddin N, Wong CW, Yasumira AA. 2009. Rapid biosynthesis of silver nanoparticles using
- culture supernatant of bacteria with microwave irradiation. *Journal of Chemistry*, 6:61-70. DOI:
- 558 10.1155/2009/734264.
- Singh P, Raja RB. 2011. Biological synthesis and characterization of silver nanoparticles using
- 560 the fungus Trichoderma harzianum. Asian Journal of Experimental Biology and Science, 2: 600-
- 561 605.
- 562 Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their
- antimicrobial activities. Adv. Journal of Colloid and Interface Sciences, 145: 83.
- Tailor G, Yadav BL, Choudhary J, Joshi M and Suvalka C. 2020. Green synthesis of silver
- 565 nanoparticles using Ocimum sanctum and their anti-bacterial activity. Biochemistry and
- 566 *Biophysics Reports*, 24: 100848.
- 567 Thammawithan S, Siritongsuk P, Nasompag S, Daduang S, Klaynongsruang S,
- Prapasarakul N, Patramanon R. 2021. A biological study of anistropic silver nanoparticles and
- their antimicrobial application for topical use. Veterinary Science, 8: 177.
- 570 Umashankari J, Inbakandan D, Ajithkumar TT, Balasubramanian T. 2012. Mangrove plant,
- 571 Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and
- its antibacterial activity against aquatic pathogens. *Aquatic Biosystems*, 8: 11.DOI: 10.1186/2046-
- 573 9063-8-11.

- Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H. 2012. Synthesis of silver
- 575 nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO₃.
- 576 Bioresource Technology, 103: 273-278.DOI: 10.1016/j.biortech.2011.09.118.
- World Health Organization. 2017. Global priority list of antibiotic resistant bacteria to guide
- 578 research, discovery and development of new antibiotics. available at
- 579 https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-
- 580 *ET_NM_WHO.pdf*.
- Yeo SY, Lee HJ, Jeong SH. 2003. Preparation of nanocomposite fibers for permanent
- 582 antibacterial effect. Journal of Material Sciences, 38: 2143-2147. DOI:
- 583 10.1023/A:1023767828656.