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ABSTRACT
Current research and development approaches to drug discovery have become less

fruitful and more costly. One alternative paradigm is that of drug repositioning.

Many marketed examples of repositioned drugs have been identified through

serendipitous or rational observations, highlighting the need for more systematic

methodologies to tackle the problem. Systems level approaches have the potential to

enable the development of novel methods to understand the action of therapeutic

compounds, but requires an integrative approach to biological data. Integrated

networks can facilitate systems level analyses by combining multiple sources of

evidence to provide a rich description of drugs, their targets and their interactions.

Classically, such networks can be mined manually where a skilled person is able to

identify portions of the graph (semantic subgraphs) that are indicative of

relationships between drugs and highlight possible repositioning opportunities.

However, this approach is not scalable. Automated approaches are required to

systematically mine integrated networks for these subgraphs and bring them to the

attention of the user. We introduce a formal framework for the definition of

integrated networks and their associated semantic subgraphs for drug interaction

analysis and describe DReSMin, an algorithm for mining semantically-rich networks

for occurrences of a given semantic subgraph. This algorithm allows instances of

complex semantic subgraphs that contain data about putative drug repositioning

opportunities to be identified in a computationally tractable fashion, scaling close to

linearly with network data. We demonstrate the utility of our approach by mining an

integrated drug interaction network built from 11 sources. This work identified and

ranked 9,643,061 putative drug-target interactions, showing a strong correlation

between highly scored associations and those supported by literature. We discuss the

20 top ranked associations in more detail, of which 14 are novel and 6 are supported

by the literature. We also show that our approach better prioritizes known drug-

target interactions, than other state-of-the art approaches for predicting such

interactions.
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INTRODUCTION
Drug repositioning is the process of finding new uses for existing drugs. This process is a

rapidly-evolving issue in the area of drug development, having the potential to reduce

both drug development costs and the time taken for a drug to reach the market. Many

repositioned drugs currently on the market have been discovered through either

serendipitous or rational observations. However, these manual approaches are not

efficient given the potentially huge search space of drug-target (D-T) interactions.

Systematic approaches to searching for repositioning opportunities are required to

provide an efficient and scalable alternative to manual investigations.

A large number of studies have detailed computational approaches to aid in the

systematic identification of drug repositioning opportunities, including methodologies

based on: chemical structure (Keiser et al., 2009), protein structure and molecular docking

(Moriaud et al., 2011), phenotype similarity (such as side-effect similarity (Yang &

Agarwal, 2011) and gene expression similarity (Lamb et al., 2006)) or genetic variation

(Sanseau et al., 2012). Approaches aim to infer links in the drug-target-phenotype-disease

schema (Hurle et al., 2013). For example, side-effect methods link a known drug-

phenotype to a new disease (drug-phenotype-disease). Genetics-based methods,

however, can link targets with a phenotype that is associated with the disease

(drug-target-phenotype-disease) (Hurle et al., 2013). One may also focus on the

prediction of drug-target associations, with the hope that hypothesised links generated

from domain knowledge will allow us to complete a drug-target-disease pathway and infer

a novel use for an existing drug. As well as highlighting potential drug repositioning

opportunities, D-T interaction identification also allows potential adverse side effects to

be analysed (Fakhraei et al., 2014; Dudley et al., 2011).

In vitro approaches to identifying D-T interactions are no different to other aspects of

drug development and remain costly and time consuming (Ding et al., 2014). Using

systematic in silico prediction methods allows for the D-T interaction search space to be

reduced, highlighting areas for focus (Fakhraei et al., 2014). Molecular docking

methodologies are heavily applied to the task, but require a large amounts of computational

resources and are time consuming (Ding et al., 2014). Other approaches involve machine

learning-based methods which may utilise a feature vector approach or, more commonly,

similarity-based approaches which exploit the similarity between drugs and proteins

(Ding et al., 2014). Such approaches allow for the production of prediction models and can

be ligand-based or structure-based. For example, ligand information may be used to create

models that learn which sub-structural features of a ligand correlate with activity against a

particular target (Alvarsson et al., 2014). Other similarity-based approaches make use of a

network, or more specifically a bipartite graph, data representation (Ding et al., 2014;

Fakhraei et al., 2014; Palma et al., 2014; Yamanishi et al., 2008; Yamanishi et al., 2010). Within

a bipartite graph, vertices are divided into two disjoint sets, proteins and drugs. Data from

multiple publicly accessible datasets is integrated during the building of these networks

(Lee et al., 2009), yet in most approaches to D-T interaction prediction data is limited to the

inclusion of the two data ‘types’, protein and drugs.
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More recent approaches to drug repositioning focus on the creation of integrated

networks which combine data from multiple analyses, to give a systems level view

of cellular and molecular processes (Barratt & Frail, 2012; Chen et al., 2012;

Cockell et al., 2010; He et al., 2011; Iskar et al., 2012). This approach provides a

complementary path to reductionist science in understanding complex phenomena.

Semantically-rich integrated networks, which utilise a graph-based representation, are a

convenient method of representing the types of integrated data necessary for finding drug

repositioning opportunities (Betzler et al., 2011). In graph-based data, entities, such as

proteins or drugs, are represented as vertices. Interactions between these entities, such as

protein-protein interactions or a drugs binding to a protein are captured in edges.

In semantic graphs each vertex and edge in the graph is assigned a type from a predefined

set. Vertices and edges are also are annotated with attributes. Graph representations of

complex systems are widely used in computer science, social and technological network

analysis science due to their ability to represent structured and semi-structured data

(Riaz & Ali, 2011). Within bioinformatics graph-based representations are also widely

adopted, particularly as a means of representing data produced during an exercise in data

integration and in protein-protein interactions networks.

In the context of these integrated networks, subgraphs are connected components of

the parent network (Gallagher, 2006). These subgraphs formally capture local

relationships between the elements represented in the graph. Often, the relationships in a

given subgraph are indicative of a particular biological phenomenon. In the case of drug

repositioning networks, the types of relationships include amongst others: interactions

between drugs and their targets, interactions between targets, and the diseases associated

with particular targets. Therefore, within the integrative graph are subgraphs that describe

repositioning opportunities as a result of their semantic and topological properties. Once

appropriate subgraphs have been observed and defined they can be used as templates to

find instances of these subgraphs, and related subgraphs, within a given graph to highlight

similar drug repositioning opportunities.

For example, chlorpromazine is an anti-psychotic drug that is also approved as an

antihistamine (Mitchell, 1993). The interactions of chlorpromazine can be captured in

an integrated network (Fig. 1). Data from DrugBank version 2.5 (DBv2.5) (Wishart,

2006) provides three interactions between chlorpromazine and single protein targets;

none of these interactions explain the antihistaminic affects of the drug. Structurally,

chlorpromazine is very similar to the antiemetic trimeprazine. DBv2.5 captures an

interaction between trimeprazine and the Histamine H1 receptor, a known target for

antihistamines. Through guilt-by-association, we can therefore predict the Histamine

H1 receptor as a target for chlorpromazine, an interaction captured in the latest editions

of the DrugBank database. The topological and semantic properties of the subgraph

depicted in Fig. 1B describe a repositioning relationship that could be generically

applicable to any two drugs and their target. Fig. 1B describes a situation whereby a

compound, structurally similar to a compound with a known target, may also bind to

the same target (the inference is represented as the dashed line). This real example can

therefore be used to derive a template semantic subgraph that can be used for searching
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for similar, but novel, drug-target associations relationships involving different drugs

and targets. This template semantic subgraph therefore describes a pattern indicative of

a drugs interaction with a target, highlighting potential new indications for the drug.

Although Fig. 1 shows a simple triad, semantic subgraphs capturing data relevant to

repositioning opportunities are likely to be more complex. In the context of drug

repositioning, manual identification of potential repositioning opportunities from large

target networks is possible, though not efficient for the systematic analysis of such large

networks. The definition of semantic subgraphs for known repositioning opportunities,

in combination with an algorithm for the mining of integrated complex networks for

these subgraphs, allows us to highlight potential repositioning in a more systematic and

exhaustive fashion.

In this paper we introduce a formal framework for the definition of a semantic

subgraph for integrated networks. We also present DReSMin (Drug Repositioning

Semantic Mining), an algorithm for searching integrated networks for occurrences of a

given semantic subgraph using semantic distance thresholds. DReSMin optimises the

search time for larger subgraphs by including a semantic graph pruning step and applying

a method for splitting large subgraphs prior to searching. We demonstrate the utility of

our approach by searching an integrated drug dataset for semantic subgraphs that are

indicative of drug repositioning opportunities, particularly focusing on inferring D-T

interactions. As part of this work we updated an existing integrated dataset used for

in silico drug discovery (Cockell et al., 2010). Finally we demonstrate that our approach

can be successfully used to predict putative D-T interactions that were not explicitly

represented in the integrated network.

Graphs

Definition of our graph model
A graph G is defined as a ordered pair (V,E), where V is a set of vertices (or nodes), and

E ∈ V � V is a set of edges (or relations). Each e ∈ E is a pair (vi, vj) where vi, vj ∈ V.

sim

binds_to

sim

binds_to

Compound

Target

CompoundTrimeprazine

binds_to

sim

binds_to

Histamine H1 Receptor

Chlorpromazine

sim

A B

Figure 1 An example of a simple semantic subgraph (B) is derived from the repositioning of

Chlorpromazine (A). Chlorpromazine is marketed as a non-sedating tranquilliser, but is also known

to be effective as an antihistamine (Rukhadze et al., 2001) and so in A a relation is inferred between

Chlorpromazine and the Histamine H1 receptor (dashed line).
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Edges represent relations between vertices. Edges may be directed or undirected. Both

vertices and edges may be labelled, typed and attributed.

DReSMin, requires a directed (edges have a direction associated with them) graph

where vertices and edges are labelled with types Tv and Te respectively, where Tv and

Te are drawn from a finite hierarchy of types H, and are annotated with attributes. The

algorithm allows for multigraphs (vertices vi and vj are permitted to have multiple edges

between them) and for vertices to contain self-loops (vi may have an edge directed toward

itself). For the remainder of this paper jV(G)j will be used to represent the number of

vertices contained in graph G.

Classical subgraph definition
Subgraph isomorphism is a task in which two graphs, G & Q are given as input and one

must determine whether G contains a subgraph that is isomorphic to Q: is there a

subgraph G ′(V ′,E ′): V ′4 V,E ′4 E ? During the search of a query graph, a mapping (M)

is expressed as the set of ordered pairs (v,m) (with v ∈ G and m ∈ Q) and soM = {(v,m) ∈
VG � VQjv is mapped onto m}; that is M: G ′ 1 Q.

Semantic subgraph definition
A semantic subgraph is defined as Q = (V,E,Tv,fv,Te,fe), where V is a set of vertices,

E is a set of edges, Tv is a set of node types and Te is a set of edge types. fv : V 9 Tv and

fe : E 9 Te are surjective functions; each node is assigned a node type and each edge

an edge type from Tv or Te respectively. A semantic subgraph may be designed in

such a manner that mappings, or occurrences, in G aid in the inference of a relation

between vertices of a particular te, where a relation does not exist. For example, one may

use the semantic subgraph depicted in Fig. 1B to infer an interaction between a compound

and a target.

Graph matching
Several approaches have been described for combining semantic information with

network motif topology including the list coloured motif problem (Betzler et al., 2011;

Lacroix et al., 2006). In this case a motif (M) is defined as a multiset of colours, or types.

An occurrence ofM is a subset of vertices that forms a connected subgraph whose multiset

of colours, or types, matches that of M exactly (Lacroix et al., 2006). Although this

approach demonstrates how network motifs may be extended to incorporate semantic

information, it does not allow for topological exacts to be identified. The ability to

identify sub-components of a target network that match a defined topology is a necessity

in situations where the topology of a subgraph is believed to aid in describing the

functionality of the sub-component. The task of identifying mappings of a predefined

subgraph with similar topology from a larger graph is known as the graph matching

problem (Gallagher, 2006).

There are different variations of the graph-matching problem. For example, exact

matching occurs when the mapping between the vertices of the two graphs is

edge-preserving; a mapping contains all edges defined by the query. One of the most

stringent forms of exact matching is subgraph isomorphism (Conte et al., 2004) which aims
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to find all occurrences of a query graph and is an NP-complete problem (Washio &

Motoda, 2003). Currently, algorithms addressing this problem are exponential in

performance relative to the size of the input graphs (Gallagher, 2006). Many algorithms

which have been developed to address the subgraph isomorphism problem are based on

the exhaustive algorithm developed by Ullmann (1976). Applying an exhaustive method

to the identification of drug repositioning opportunities is important to ensure all

possible novel applications for a drug are investigated. Using a backtracking approach,

Ulmann’s algorithm finds solutions by incrementing partial solutions or abandoning

them when determining they cannot be completed (Ullmann, 1976). An extension of the

Ullman approach, incorporating the semantics of a graph, has been implemented using

inexact (Djoko et al., 1997), as well as exact approaches (Cordella et al., 2004; Giugno &

Shasha, 2002). However, as yet, none of these approaches have been applied to the

automated identification of drug repositioning opportunities.

Whilst searching for semantic subgraphs it is important to consider the similarity

between the query subgraph and the target, both in terms of graph topology and the

meaning of the annotations on vertices and edges. A measurement of semantic similarity

between elements of a mapping and the equivalent element in a query must be introduced

to the search and the degree of similarity can be expressed as a semantic distance.

Numerous measures have been developed to score the semantic similarity between two

ontological concepts (Ge &Qiu, 2008;Noy, 2004). Previous work in the area of intelligence

link analysis has used ontology-based semantic similarity scoring methods for pattern

matching (Seid & Mehrotra, 2007). In Seid and Mehrotra’s algorithm, an inexact

topological search is carried out with matches semantically scored based on their Least

Common Ancestor (LCA) within an ontology. Topological and semantic scores are then

combined and k ranked matches returned.

Whilst approaches described are adequate for their particular setting, here we present a

new exhaustive graph matching approach to aid in the identification of potential drug

repositioning opportunities from a target network. We therefore describe an algorithm for

this task which is an improvement on those introduced for the purpose of drug

repositioning.

MATERIALS AND METHODS
Algorithm
We have developed DReSMin, an algorithm for the detection of semantic subgraphs. This

algorithm returns all mappings of a semantic subgraph that match at a level equal to, or

above a given threshold, ST. In this case our application for the algorithm is the

identification of a semantic subgraph (Q) which may be indicative of drug repositioning

opportunities within a target graph (G). Examples of semantic subgraphs may be initially

drawn from a set of templates, that is the graph representation of known repositioned

drugs, such as chlorpromazine, shown in Fig. 1A. The algorithm is made up of four main

components which are described in Fig. 2. These components comprise: (i) Semantic

graph pruning (ii) Topological search (iii) Semantic subgraph distance exclusion

(iv) Semantic subgraph splitting.
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Semantic graph pruning
We are concerned only with identifying semantic subgraphs that match, semantically, at a

level equal to, or above our threshold. (Note: In this work, the semantic distance between

two graph entities is calculated using the semantic distance calculator described in the

‘Semantic subgraph distance exclusion’ section.) In this graph pruning component of the

algorithm, any vertices (and their associated edges) in G which are above a certain

semantic distance from those in Q are removed from G. This step allows any vertices

that are semantically distant from our query to be removed prior to a search, cutting

down the search space. Taking G, Q and a semantic threshold (ST) each tv ∈ Tv(Q)

are sent to the semantic subgraph distance calculator (termed SDC and described

later in the manuscript), and scored against every tv ∈ Tv(G). If SDC(tv(Q),

tv(G)) < ST then all v ∈ V(G) of type tv are removed from G as well as any e ∈ E

where v = vi or v = vj. Finally after all semantically insignificant elements are removed

from G, all isolated v ∈ V(G) that may have resulted from the edge pruning step

are also removed.

Topological matching
Many algorithms addressing the problem of subgraph isomorphism build on Ullman’s

work. These applications include: GraphQL (He & Singh, 2008), GADDI (Zhang, Li &

Yang, 2009) and, one of the most efficient, the VF algorithm (Cordella et al., 1999).

Performance is increased in these algorithms by exploiting different join orders, pruning

rules and auxiliary information to prune out negative candidate subgraphs as early as

possible. We carry out topological matching using a variation of the VF algorithm

(Cordella et al., 1999). The VF algorithm is exhaustive and suitable for working with ‘large’

graphs (up to 3 � 104 vertices) and employs a depth-first strategy implemented in a

recursive fashion (Cordella et al., 1999). During a search using the VF algorithm, the

search space is minimised via the introduction of topological pruning rules

(Cordella et al., 1999). Integrated networks typically surpass the aforementioned ‘large’

graphs in size, particularly true within the biological and pharmaceutical settings.

As data volumes continue to grow (e.g. omics technologies continue to mature)

it is important to develop exhaustive algorithms capable of scaling

with the data.

JGraphT Instance of G

Semantic Sub (Q)

Semantic Sub Splitting (Q)Semantic Graph Prune (G)

Topological Matching (G,Q)
Semantic Subgraph Exclusion (ST, Q, M’)

Ranked M

Target Graph (G) Semantic Threshold (ST)

Figure 2 Overview of the DReSMin algorithm developed for the detection of semantic subgraphs

indicative of repositioning opportunities.
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Our initial implementation of the VF algorithm showed poor scalability and so, as an

enhancement to the VF algorithm, we introduce three steps to improve the efficiency of

searching for topological subgraphs. These three steps include: a set of rules used to

determine the appropriate vertices at which an instance of the search is started (initial

candidate set), as described in (1) below; a topological pruning rule, based on a closed

world assumption, as described in (2) below; and a semantic thresholding step (described

in the next section of the manuscript). As the focus of this work is the inference of

associations involving compounds, it is vital that all mappings resulting from a search

contain a node of this particular semantic type.

1. When considering an initial candidate set of nodes from the target graph G at which to

initiate the search, it is desirable to try to ensure that the set is made up of nodes of a

type, X, such as Compound to ensure the relevance of the portion of graph being

searched. Therefore, an initial candidate set for the search is chosen based on:

all v ∈ V(Q) whose tv ∈ Tv(Q) = X are considered with v > degQ(v) (where deg represents

the degree of a node) selected as v. m is made up of all v ∈ V(G) whose degG(v) �
degQ(v) and tv ∈ Tv(G) = X.

2. When mining with a given semantic subgraph that describes a potential

repositioning situation we must assume that the lack of a relationship between nodes

indicates the absence of a relationship between the two nodes (a closed world

assumption). As a result, when searching for a given semantic subgraph, Q, we only

consider a match if there exists no additional edges between the vertices in a mapping

M from the target graph G, and their equivalent vertices in Q. Therefore, a mapping

M is expressed as a set of ordered pairs and the closed world assumption

requires (M = match) ∨ (deg(v) ∈ (G) h deg(m) ∈ V(Q)).

Semantic subgraph distance exclusion
Semantic thresholding is used to exclude matches found in G that are below a given

semantic distance from Q. This process is achieved through a semantic subgraph distance

calculator (SDC). An SDC comprises of two distance matrices, one for tv ∈ Tv(G) and

one for te ∈ Te(G). We have n = 19(tv) and n = 42(te) = _ each matrix is represented as

matrix P ′ = (pij), the n � n matrix defined by;

pij ¼
1 ifpi is semantically identical to pj;
0 ifpi is semantically unrelated to pj ;
�1 ifpi is semantically opposite to pj:

8<
: (1)

During the matching process each element of M = (Vm,Em) is scored against its

equivalent in Q = (Vs,Es). The resulting semantic score (SS) of M is;

X SDCðm1; q1Þ; SDCðm2; q2Þ::::SDCðmn; qnÞ
n

(2)

Mullen et al. (2016), PeerJ, DOI 10.7717/peerj.1558 8/30

http://dx.doi.org/10.7717/peerj.1558
https://peerj.com/


A semantic threshold (ST) is defined by the user prior to a search; a value ranging from

0 to 1. During the search, vertices and edges pass or fail the semantic threshold. Thus we

identify topological exacts and semantic closeness.

Semantic subgraph splitting
This component takes a semantic subgraph,Q, and returns a set of semantic subgraphs,D,

whose jVj < 4. In Fig. 2, we see how this step interacts with the other components of

DReSMin. ∀d ∈ D produced during this step of DReSMin the target network,

G, is pruned using the semantic graph prune component and d, before d is searched for in

G. The graph splitting component allows smaller subgraphs to be searched and mappings

joined based on sharing a common overlapping node (ON). In order for this approach to

be successful a semantic subgraph is first converted to an undirected graph. The most

connected node, vmax(Q), is then identified and used as ON. Of all the remaining

v ∈ V(Q), the two most distant vertices (v1, v2) from Q are selected. Two new graphs

(D1 & D2) are then created and populated with nodes as such: V(D1) ∪ v ∈ d(v1, ON),

V(D2) ∪ v ∈ d(v2,ON), that is every node in the shortest path from v1 toON is included in

D1 and every node in the shortest path from v2 to ON is included in D2. Remaining

vertices are then allocated depending on which graph they share a connecting edge

with Fig. 3. Edges are then allocated as such: ∀e ∈ E(Q) if either V(D1) or V(D2)

contains both (vi, vj) of e; e is allocated to that graph. Any edges whose nodes are are not

found in the same graph are not allocated to the split subgraphs. As a result of this process

during a search we have D1 and D2 as well as our original semantic subgraph, Q. A search

is then started with D1 or D2, depending on which has the smallest jVj. The search is

started usingON, maintaining the edge set it possessed inQ, reducing the initial candidate

set. All starting vertices that lead to an embedding being identified are then passed to the

v6v5v5 v6
v6v5

v3

v4

v2

D1

D2

v1

v3 v3

D2.1

D2.2

v4v3

Q

v2

v1

v3 v4

Figure 3 Subgraph split procedure takes an initial semantic subgraph (Q) and produces two smaller

semantic subgraphs (D1 and D2) using all vertices (v) from (Q). The overlapping node (ON) is

identified in Q(v3) and used as the overlapping node in both D1 and D2. The two most distant vertices in

Q are then identified (v1 and v6) and vertices in the path between these and ON added to the corre-

sponding graphs (D1 and D2). We also see that jV(D2)j > 3 and so a second call is made to graph split

giving us D21 and D22.
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second search; reducing the initial candidate set once more. All matches from the two

searches who share a common ON are then mapped and a final check for any e ∈ E(Q)

that were not allocated to eitherD1 or D2 is made. This splitting may be called iteratively if

either D1 or D2 still possess a jVj > 3 after the first round of splitting, as demonstrated in

Fig. 3. Subsequent searching will result in the same set of mappings that would be

identified by a non-split search (for algorithm pseudo-code and discussion please

see Article S1).

Ranking inferred interactions
Scoring of a semantic subgraph, Q, is achieved by determining the number of known D-T

interactions in the predicted total set of D-T interactions inferred by Q. We refer to the

complete set of inferred interactions asQ(I). A score Rq is calculated based on the ability of

Q to identify D-T interactions captured in DBv3, but not present in our Dat integrated

data set (see next section). The set of interactions that are captured in DBv3, but not

captured in Dat is known as DBv3Rel (Eq. 5).

RqðQÞ ¼ QðIÞ \ DBv3Relj j
QðIÞj j (3)

Once Rq is calculated for each semantic subgraph we then score individual D-T

interactions, i, based on the cumulative score of all semantic subgraphs that

predicted i.

RiðiÞ ¼
X

i2Q0ðIÞ
RqðQ0Þ (4)

DReSMin is an exhaustive algorithm, as such, scoring inferred interactions allows for

ranking, with those ranked higher inferred with greater confidence than others.

Characterisation and application

An integrated dataset for in silico drug discovery has been described previously by Cockell

and co-workers (Cockell et al., 2010). This dataset satisfies the requirements described for

our algorithm (see ‘Definition of our graph model’ section) and so was used to test the

algorithm performance and mined for D-T interactions using a Java based

implementation of DReSMin.

The dataset was developed in Ondex (Köhler et al., 2006) and includes compounds

and targets from DrugBank1 (Wishart, 2006), Proteins from UniProt2 (UniProt

Consortium, 2013) as well as information from eleven other databases and analysis

methods (Cockell et al., 2010). An updated version of this dataset was used as a test bed for

this work, however the approach we describe is valid for most integrated networks that

adopt a semantically rigorous approach to edge and vertex type definition.

Utilising a graph-based data representation and providing a framework for

visualisation, both vertices and edges within an Ondex graph are annotated with

semantically enriched metadata. Each vertex (or concept) is assigned a c ∈ C, where C is a

finite set of conceptClasses, while each edge or relation is assigned a r ∈ R where R is

a finite set of relationTypes (Köhler et al., 2006). As part of this work we developed

1http://www.drugbank.ca.

2http://www.uniprot.org.
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plug-ins (parsers and mappers) for the Ondex platform to extend the original dataset.

These plug-ins allowed us to add disease conceptClass, taken from the National Drug

File Reference Terminology (NDF-RT)3. Four relationTypes showing interactions

between Disease-Disease (has_parent and has_child) and Compound-Disease

(may_treat and may_prevent) originally defined in NDF-RT were also integrated.

A final relationType between Target-Disease (involved_in) was integrated from

DisGeNET4 (Bauer-Mehren et al., 2010). The updated dataset, which we refer to as

Dat from here on in, has an additional 4,463 vertices (155,316) made up of 19

conceptClasses (see Table S1) in comparison to the original, together with an

additional 28,736 edges (816,096), representing 42 relationTypes (see Table S2). The

metagraph of the dataset described is shown in Fig. S1, with a subsection shown in Fig. 4.

This graph shows a high degree of connectivity with a dS(G) (average node degree) of

10.42, whereby degrees of vertices range from d(G) (minimum degree) of 1 and �(G)

(highest degree) of 15,004. Average connectivity differs between conceptClasses, with

Proteins displaying the highest dS(G) of any conceptClass at ∼45. Other notable
connectivity averages include Target ∼13, Compound ∼7 and Disease ∼4. All searches
presented here were carried out using a semantic threshold (ST) of 0.8 (see Article S2). We

only include vertices of type Compound in our initial candidate set.

Drug-Target interaction prediction evaluation
We compared our ranked set of predicted D-T interactions to those produced by another

state-of-the-art method for drug target interaction prediction–a ligand-based method.

One implementation of such an approach is provided by ChEMBL5. ChEMBL provide

two models for target prediction, using bioactivity data with a cut-off of 1 µM and 10 µM
respectively. These models allow for n predicted interactions to be made for a given drug.

Inferred interactions are also scored and can be ranked, meaning a direct comparison to

our approach can be achieved. Predictions using the ChEMBL models can be found in

compound report cards, accessed via their website.
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may_prevent

sim
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has_similar_sequence
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ent
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ent

h
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h

may_treat

_pare_pare_pare

has_child

is_a

Target

has_similar_sequence

Enzyme

Protein

is_a

ilar__ilar_

interacts_with

Figure 4 A subsection of the Ondex in silico drug discovery dataset metagraph. Shows how different

conceptClasses (E.g. Compound & Target) interact via relationTypes (binds_to).

3VA National Drug File Reference Termi-

nology. <http://www.nlm.nih.gov/

research/umls/sourcereleasedocs/current/

NDFRT>

Accessed September 2013.

4Gene-disease association data were

retrieved from the DisGeNET Database,

GRIB/IMIM/UPF Integrative Biomedical

Informatics Group, Barcelona. <http://

www.disgenet.org/>.

Accessed September 2013.

5https://www.ebi.ac.uk/chembl/.
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Mappings between DrugBank and ChEMBL compounds were retrieved from UniChem

(Chambers et al., 2013) via whole source mapping6. This mapping provides a set of

3,765 drugs that are contained in both datasets, of which 57 of the ChEMBL ids mapped

to >1 DrugBank ID (one to four, five to three, and 51 to two). DReSMin inferred D-T

associations for 2,223 of drugs common to both databases. In the comparison presented

below we only consider D-T interaction inferences involving this set of 2,223 drugs. The

set of inferences from DReSMin contained a total of 2,456 protein targets (of which

1,133 are from Homo sapiens and 1,323 from other organisms). The set of ChEMBL

inferences involve 870 human protein targets, of which 362 are also captured in DReSMin

inferred D-T associations.

For each of the 2,223 drugs, we identified associations with single proteins. The top 100

of these associations were identified using the ChEMBLWeb resource client7. Any

interactions which were already captured in Dat, involved targets from organisms other

than humans or were not captured in the overlapping 362 protein targets, were excluded

from the analysis. This process was repeated for both the 1 µM and the 10 µM ChEMBL

models, giving us two sets of predicted D-Tassociations. In order for a fair comparison to

be made for each of the 2,223 drugs the top x8 inferred single protein targets were

collated and ranked. This process resulted in three sets of 215,075 ranked drug-target

interactions; DReS, Chem1 and Chem10.

Target class comparison
We identify five human protein target classes based on their sizes and importance, as

described by Bull & Doig (2015). Proteins are classified as one of the following: G prote–

incoupled receptors (GPCR); ion channels; kinases; proteases; and other. In order to do this

we use the same approach described by Bull & Doig (2015). Protein family membership is

determined using multiple protein sources. The first is the id attribute of a keyword (k)

element within a UniProt9 entry E. All keywords assigned to E are captured in the set K.

If “KW-0297” in E(K) then E is classed as a GPCR; if “KW-1071”, “KW-0851”,

“KW-0107”, “KW-0869”, “KW-0407”, “KW-0631” or “KW-0894” is in E(K) then E is

classed as an ion channel; if “KW-0418”, “KW-0723” or “KW-0829” is in then E(K) then

E is classed as a kinase; if “KW-0031”, “KW-0064”, “KW-0121”, “KW-0224”, “KW-0482”,

“KW-0645”, “KW-0720”, “KW-0788” or “KW-0888” is in E(K) then E is classed as a

protease; and finally all other proteins are classed as ‘other’. A protein is also classified as a

GPCR, kinase or protease if it appears in the GPCR10, kinase11 or protease12 files

respectively.

RESULTS
Characterisation and performance of DReSMin
We evaluated the effectiveness of each step of our algorithm by adding each step (initial

candidate set selection, topological pruning and semantic distance thresholding)

sequentially to the basic topological search algorithm and then comparing the efficiency of

each modified version to the VF2 topological search. The algorithm was implemented on

a 20 node Ivy-Bridge bioinformatics cluster. Performance was measured as the time taken

6www.ebi.ac.uk/unichem/ Accessed 22nd

June 2015.

7https://github.com/chembl/chembl_

webresource_client.

8x = 100 or, if DReSMin inferred <100

targets for this drug, x = number of

DReSMin inferred targets.

9http://www.uniprot.org Accessed July

30th 2015.

10http://www.uniprot.org/docs/7tmrlist.

txt Accessed Nov 11th 2015.

11http://www.uniprot.org/docs/pkinfam.

txt Accessed Nov 11th 2015.

12http://www.uniprot.org/docs/peptidas.

txt Accessed Nov 11th 2015.
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for a complete search for a semantic subgraph (Q) within a given target graph (G).

Random semantic target graphs (Ran) as well as random semantic subgraphs were

produced in order to evaluate the performance of the semantic subgraph search strategy.

These random graphs were formulated using an approach that attempted to replicate the

semantic and topological properties of Dat. In these random target graphs ∀v ∈ V(Ran) of

type tv, the average deg
−(tv) and the average deg+(tv) were maintained ∀tv ∈ Tv(Dat).

Experiments were repeated 10 times.

The SDC and graph-pruning step display linear running times ofO(n); with the former

capable of scoring 8 � 104 concept pairs per second and the latter taking <1 second to

prune a graph G, with jV(G)j of 1 � 106. During the performance measures we focused

on semantic subgraphs with between 3–6 vertices. The effect on search time when altering

semantic subgraph edgeset size was also examined (Fig. S2) showing an improvement in

performance as the edgeset size increases. This performance increase is due to the fact that

fewer nodes satisfy the more stringent topological rules. With more stringent pruning

during a run of the algorithm the search space at each state is reduced; ultimately meaning

that when searching for semantic subgraphs who share the same jVj but have differing jEj,
the semantic subgraph with the > jEj will be more efficient to search for.

Once semantic subgraphs reach a jV(G)j of 4 then restricting the initial candidate set to

include only Compounds improves performance. It is at this point the benefits of reducing

the initial candidate set successfully reduce the search space, concomitantly increasing

performance (Fig. 5). A similar phenomenon is observed with the introduction of the

closed world check, whereby the real performance benefits are apparent when semantic

subgraphs reach a jV(G)j of 4 (Fig. 5). By restricting the initial candidate set as well as

using the closed world assumption a two fold increase in performance in comparison to a

purely topological approach was observed. Performance is further enhanced when

utilising the semantic distance calculator demonstrating an almost 10 fold performance

boost when comparing to the purely topological approach.

The semantic graph prune step introduces a small but noticeable increase in

performance to DReSMin. Despite an overall increase in performance the graph prune

step also brings a subtle cost; any potential matches containing an element that scores <ST

when passed to the SDC will not be returned. It is for this reason that the graph pruning

step is an optional add-on to the DReSMin algorithm. The graph pruning step is most

useful when one wishes to return matches that are semantically exact to the semantic

subgraph being used as a query (Q). The graph split step can potentially reduce the search

time for Q from that of a jV(Q)j of 6 to one closer to the sum of a search for a subgraph

with a jV(Q)j of 3 and a subgraph with a jV(Q)j of 4. It is this step that produces the

greatest improvement to performance. For example, when using the SDC to search for

Q, where jV(Q)j = 6 in G when jV(G)j = 1 � 105, takes 60 seconds, using the graph split

method reduces this search time to just over 8 seconds, a 7 fold increase in performance.

Overall, when using all three of the algorithmic steps in DReSMin, the performance

of DReSMin showed performance characteristics approximating a linear scale closer to

O(n). This is in contrast to the exponential scaling characteristics observed for the

purely topological search algorithm, VF2. These DReSMin performance
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characteristics were observed for semantic subgraphs of size jV(Q)j ≤ 6 (Fig. 5). Using

DReSMin with the hardware described above it is possible to complete an exhaustive,

exact search for a 6 node semantic subgraph in a target graph containing >1.5 � 105

vertices in under 10 seconds. The accuracy of the algorithm does not decrease as

the target graph connectivity, or jEj, increases (Fig. S3) or as the target
graph jVj increases (Fig. S4).

Application to search for drug-target interactions
Semantic subgraphs were identified in Dat and used to infer novel potential D-T

interactions in Dat using the DReSMin algorithm. To aid in this process we utilised more

recent D-T versions of the DrugBank datasets that were not used to build Dat. This

approach allows us to determine if D-T interactions inferred fromDat using DReSMIn are

likely to be supported asmore knowledge is obtained.We can thus understand if inferences

made have any potential value to drug repositioning now, as opposed to in the future.

To carry out this process the D-T interactions from DBv2.5 that were integrated into

Datwere retrieved and captured in the setDatRel. We used DBv2.5 to constructDat in this

exercise even though later releases of DrugBank are available; v3.0 (DBv3) and v4.2

(DBv4.2) (Knox et al., 2011). DBv3 contains additional drugs, targets and their
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Figure 5 Overview of algorithm performance with semantic subgraph (Q) queries nodeset jV(Q)j
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Performance (bottom right) shows the best approach for each semantic subgraph size.
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interactions to those already contained in Dat (Table 1) and 8,768 additional D-T

interactions to those found in Dat. Of these interactions, 2,919 involve drugs and targets

that are present in Dat, but the interaction relationship had not yet been defined (i.e. the

D-T interaction had not been annotated in DBv2.5). In this work, we refer to these 2,919

interactions from DBv3 as being ‘relevant’. These relevant interactions are represented in

the set DBv3Rel (see Eq. 5) and were used to derive a query set of semantic subgraphs that

were in turn used to mine Dat. DBv4.2 was then used as a reference to validate the new

repositioning opportunities identified through the mining of Dat.

DBv3Rel ¼ DatRel [ UniqueðDBv3Þ j d 2 DatRelðdÞ ^ t 2 DatRelðtÞf g (5)

Semantic subgraphs inferring drug target interactions
Semantic subgraphs can be derived through manual exploration of the graph and by

reference to known repositioning examples. However, in this work, in order to

exhaustively test the DReSMin algorithm, we derived an automated method for

producing a set of semantic subgraphs that would be appropriate for systematically

mining for new D-T interactions. In order to produce such a set, we extracted the portions

of the network in Dat that contained drugs and targets from the 2,919 D-T interactions

whose interaction was annotated later in DBv3Rel. To extract the subnetworks, each drug

and target pair was identified in Dat and the subnetwork represented by the shortest path

between them was extracted as a semantic subgraph (Fig. 6). To identify the shortest

semantic subpaths, Dat was converted to an undirected graph and a Java implementation

of Dijkstra’s shortest path algorithm (Dijkstra, 1959), from the JGraphT13 library used. On

carrying out this semantic subgraph identification exercise 194 different subgraphs with a

jVj < 10 were found to cumulatively identify more than 95% of the D-T interactions

in DBv3Rel and were used as a reference set for D-T inference using DReSMin as

described below.

Inference of novel drug-target interactions
The 194 semantic subgraphs were used as queries to search Dat using DReSMin to test the

ability of the algorithm to identify D-T interactions in Dat that had not yet been

annotated in DBv2.5 (but are present in DBv3). DReSMin was used to identify subgraphs

in Dat that were similar to the query set of semantic subgraphs and therefore with the

potential to be indicative of novel D-T interactions and ultimately aid in the identification

Table 1 Drug, Target and Drug-Target (D-T) Interactions present in the Dataset and DBv3.

Drug Target D-T Interaction Unique Relevant

Dat (DBv2.5) 4,772 3,037 9,227 – –

DBv3 6,180 4,080 14,570 8,768 2,919

DBv4.2 6,377 3,601 14,157 8,673 2,940�

Notes:
Unique: refers to interactions not found in Dat, Relevant: subset of Unique interactions, whereby both the drug and
target can be found in Dat.
�Of these 333 are unique to DBv4.2 (i.e they are not captured in DBv3).

13http://jgrapht.org.
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of drug repositioning opportunities. After an exhaustive search of Dat with the

194 semantic subgraphs a set of mappings (or instances) of each subgraph was identified.

Semantic subgraphs were scored on their ability to identify D-T interactions captured in

DBv3Rel (using Eq. 3), with these scores ranging from 0.0 to 0.06589 (Table S4). A single

D-T interaction can be inferred by mappings of more than one query semantic subgraph,

thus adding confidence to the prediction that a D-T interaction exists. Therefore, in order

to rank the D-T interactions in terms of confidence, the scores assigned by all query

semantic subgraphs that produced a mapping containing a potential D-T interaction were

summed (using Eq. 4). The Rq of the scores of all 194 query semantic subgraphs was

0.9499 (Fig. S5) and so inferred D-T interaction scores contained within mappings could

potentially, range from 0.0 to 0.9459. The top ten performing subgraphs, and a larger

illustrative subgraph, are shown in Fig. 7.

A search of Dat with the set of 194 semantic subgraphs described above resulted in

906,152,721 mappings. These mappings now captured the potential drug target

interactions in the structure of the mapping subgraph. The 906,152,721 mappings

predicted 9,643,061 D-T interactions that were ranked as described above. Unsurprisingly,

we identify the interactions from DBv3Rel that were used to create the semantic

subgraphs. Importantly, however, these interactions score highly, which indicates that a

single interaction was identified by multiple semantic subgraphs. The D-T interactions

fromDBv3Rel consistently scored better and ranked higher than the unsupported inferred

associations (Figs. 8A and 8B). We also observe that the D-T interactions subsequently

annotated and captured in DBv3Rel are identified by two fold the number of semantic

subgraphs that infer D-T associations not annotated and present in DBv3Rel (Fig. 8C).
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Figure 6 Semantic subgraphs were derived from the semantic shortest paths between a drug and a

target pair captured in DrugBank v3. (A) shows a drug-target interaction captured in DBv3 made up of

a drug (D1) and a target (T2) captured in our network, Dat. In order to create semantic subgraphs D1

and T2 are identified in Dat (highlighted in green in B) and the semantic shortest paths between the two

nodes calculated (highlighted in red in B). Finally all semantic node types and edge types that fall on the

semantic shortest path are used to create a query graph (C).Note:Dashed red line represents the inferred

binds_to relations, squares represent compounds, circles targets, diamonds proteins and octagon dis-

eases. For relation types: bi_to = binds_to, sim = similar_to, h_s_s = has_similar_sequence.
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However, in order to quantify the predictive power of DReSMin we examined how

many of the high scoring D-T predictions were subsequently annotated in DBv4.2. DBv4.2

contains 333 interactions not captured in DBv3 or Dat. In this work, these interactions are

represented in the set DBv4Rel (see Eq. 6). These 333 new interactions had not been used

to construct the semantic subgraphs used for searching Dat. Of the 333 D-T interactions

captured in DBv4Rel, 309 were successfully identified (94%). We also observed high

ranking and scoring of 309 D-T interactions from DBv4Rel that were successfully

identified by DReSMin (Figs. 8D and 8E). The average number of semantic

subgraphs that have mappings inferring the 309 annotated D-T associations

captured in DBv4Rel is increased >4 fold in comparison to the number of

semantic subgraphs that produce mappings that infer interactions not captured in

DBv4Rel (Fig. 8F).

DBv4Rel ¼ �ðDatRel [ UniqueðDBv4:2ÞÞ \ DBv3Rel j
d 2 DatRelðdÞ ^ t 2 DatRelðtÞ� (6)

Looking in more detail at the top 20 inferred D-T interactions (Table 2) we see

12 different drugs and eight targets. Drugs include: three antiarrythmic calcium channel

blockers (Verapamil, Mibefradil and Bepridil); three phenothiazine antipsychotic agents

Q4

Q8Q6

Q2Q1

Q9

Q5

Q10

Q3

Q7

Q108

bi_to

h_s_s

h_s_s
bi_to

inv_in

inv_in sim
sim

bi_to

bi_to

bi_to
bi_to

ma_tr inv_in bi_to

h_s_s

h_s_s

h_s_sh_s_s

bi_to

h_s_s

h_s_s

h_s_s h_s_s
bi_to

h_s_s

h_s_s

is_a

is_a

ma_tr

ma_tr

bi_to
sim

sim

bi_to

h_s_s

h_s_s

bi_to

h_s_s

h_s_s

inv_in inv_in

bi_to

sim

sim

bi_to

Figure 7 Examples of semantic subgraphs drawn from the semantic shortest paths. Q1–Q10 are

drawn from the semantic shortest paths that represented the shortest path between the greatest number

of D-T interactions in DBv3Rel and Q108 is an example of a more complex semantic subgraph. Note:

Dashed red lines represent the inferred binds_to relations, squares represent compounds, circles targets,

diamonds proteins and octagon diseases. For relation types: bi_to = binds_to, sim = similar_to, h_s_s =

has_similar_sequence, ma_tr = may_treat, inv_in = involved_in and is_a = is_a.
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(Promazine, Perphenazine and Thioridazine); three atypical antipyschotic agents

(Propiomazine, Clozapine and Quetiapine); two anticonvulsants (Zonisamide and

Levetiracetam) and one antiarrythmic adrenergic beta-antagonist (Propranolol). Of the

12 drugs captured in the top ranked inferred D-T interactions, the average number of D-T

interactions captured in Dat is ∼13, with the average number for all compounds being

closer to three. The compounds present in the top 20 inferred D-T interactions are well

studied and annotated and are thus highly connected in Dat. Targets include four voltage-

dependant calcium channels (VDCC) and four G-Protein coupled receptors (GPCR).

VDCCs display selective permeability to calcium ions which enter a cell, and alter a

channel’s properties, through the pore which is formed by the a 1 subunit. We can see that

three sub-types of VDCC are represented in Table 2, being: L-type (CAC1C and CAC1D);

P/Q Type (CAC1A) and N-type (CAC1B). Members of the GPCR superfamily in Table 2

include receptors activated by the neurotransmitters: serotonin (5HT7R and 5HT2B);

epinephrine (ADA1A) and dopamine (DRD1).
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Figure 8 Validation of inferred D-T associations with known D-T associations from DBv3 and DBv4.2. (A, B and C) show how DReSMin

identifies and ranks the 2,919 known interactions from DBv3 when searching Dat. (D, E and F) show how DReSMin identifies and ranks the 333

known interactions from DBv4.2. For (A and D) hypergeometric distribution of inferred knowns were calculated using the scores of the validated

associations. For (B and E) hypergeometric distribution of inferred knowns were calculated using the ranked position of the validated interactions.

(C and F) show the number of semantic subgraphs that inferred knowns in comparison to the number of semantic subgraphs that inferred novel

interactions. Note: Blue line shows the highest scoring semantic subgraph; all scores above this line are definitely inferred by > one semantic

subgraph.
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The ability of DReSMin to predict novel D-T interactions was compared to the state-of-

the-art ligand-based method from ChEMBL. We first examined how many D-T

interactions were predicted by both methods (co-prediction) using interactions captured

in the sets DReS, Chem1 and Chem10. 35% of the top x D-T interactions inferred by

DReSMin are found in the top x D-T interactions predicted by ChEMBL models (Figs. 9A

and 9D). More interestingly is the fact that DReSMin successfully infers 10% more of the

knowns from DBv4Rel than ChEMBL, for both models (Figs. 9C and 9F). We found that

DReSMin is able to rank the known D-T interactions more effectively than ChEMBL, with

a mean ranking position of known D-T interactions from DBv4rel of 16,977, as opposed

to the 47,618 achieved by ChEMBL (47,746 for 1 uMmodel and 47,490 for 10 uMmodel).

We must recognise the fact that the semantic subgraphs used during this work were

derived using DrugBank data and the ChEMBL models trained on ChEMBL data.

Target class comparison
After classifying all human proteins in Dat we identify: 826 GPCRs; 343 ion channels;

638 kinases; and 560 proteases. Of the 9,643,061 D-T interactions inferred by DReSMin,

4,780,935 (49.6%) involve human protein targets with 103 GPCRs; 85 ion channels;

Table 2 DReSMin was executed using the 194 semantic subgraphs that represented the shortest path between the drugs and targets captured

in the relevant associations.

Drug (DrugBank ID) Type, Category Inferred Target (Uniprot ID) Evidence # Subs Score

Verapamil (DB00661) SM, AP CAC1C (Q13936) Y 85 0.49211

Mibefradil (DB01388) SM, WI CAC1A (O00555) 74 0.44378

Mibefradil (DB01388) SM, WI CAC1B (Q00975) 59 0.43097

Promazine (DB00420) SM, AP ADA1A (P35348) Y 117 0.39090

Quetiapine (DB01224) SM, AP 5HT7R (P34969) 61 0.38779

Propiomazine (DB00777) SM, AP 5HT7R (P34969) 69 0.38774

Verapamil (DB00661) SM, AP CAC1A (O00555) Y 78 0.38436

Verapamil (DB00661) SM, AP CAC1B (Q00975) Y 64 0.38180

Mibefradil (DB01388) SM, WI CAC1D (Q5SQC4) 52 0.37525

Perphenazine (DB00850) SM, AP 5HT7R (P34969) 86 0.37383

Thioridazine (DB00679) SM, AP 5HT7R (P34969) 75 0.36830

Promazine (DB00420) SM, AP 5HT7R (P34969) 75 0.36824

Propranolol (DB00571) SM, AP, IN DRD1 (P21728) 96 0.36084

Zonisamide (DB00909) SM, AP, IN CAC1B (Q00975) 50 0.35478

Levetiracetam (DB01202) SM, AP, IN CAC1B (Q00975) Y 50 0.35478

Thioridazine (DB00679) SM, AP 5HT2B (P41595) 107 0.35036

Clozapine (DB00363) SM, AP 5HT7R (P34969) Y 64 0.34799

Propranolol (DB00571) SM, AP, IN ADA1A (P35348) 84 0.34663

Bepridil (DB01244) SM, AP, WI CAC1C (Q13936) 77 0.34610

Levetiracetam (DB01202) SM, AP, IN CAC1A (O00555) 63 0.34605

Notes:
See Table S4 for a detailed scoring of the 194 semantic subgraphs. Scores are used as a ranking method for inferred interactions. Of the 20 interactions ranked highest by
DReSMin, six were found in DBv3; having literature supporting their existence. For drug Type and category: SM, small molecule; AP, approved; IN, investigational and;
WI, withdrawn. Scores are to 5 decimal places. # Subs refers to the number of semantic subgraphs that inferred the D-T interaction, with the maximum being 194.
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89 kinases; 60 proteases; and 782 others are captured. In Fig. 10A we see how the target

classes defined are represented in the inferences made by DReSMin. 89% of proteins are

classed as ‘other’, and make up the targets in 69% of all inferences. GPCR’s make up only

4% of all proteins and yet are involved in nearly 10% of all inferences. Only 3.2% of all

proteins are classed as kinases, yet these are captured in 7.9% of all inferences. Proteases

make up 2.8% of proteins and are shown to be part of 5.4% of all inferences. Finally, ion

channels make up 1.7% of proteins and are contained in 7.4% of all predicted D-T

associations.

Ion channels make up the second smallest set of comparative inferences, behind only

proteases, however Fig. 10A shows us that this class is inferred by, on average: the highest

scoring predictions (using Eq. 4); the highest ranked inferences; and the most semantic

subgraphs per inference. Second is the GPCRs, followed by proteases, others and finally

kinases.

Figure 10B shows how highly ranked the D-T interactions captured in DBv3Rel are

ranked in each of the classes. D-Tassociations captured in DBv3Rel are ranked highest for
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Figure 9 DReSMin inferred D-Tassociations in comparison to those inferred using the ligand-based similarity models provided by ChEMBL.

Top graphs (A, B and C) show comparison to those using the 1mM model from ChEMBL and bottom graphs (D, E and F) show comparison with

the 10mM model. (A and D) show the % crossover between the top ranked x associations from each method for each drug. (B and E) show the

comparative ranking of the 2,919 known D-T interactions from DBv3Rel. (C and F) show the comparative ranking of the 333 known D-T

interactions from DBv4Rel. In (B, C, E and F) red diamonds show the mean ranking and numbers in red show the number of knowns captured by

each method. Only associations inferred by the 2,223 drugs with a mapping between DrugBank and ChEMBL and those that contain the over-

lapping set of target proteins are included in comparison.
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GPCRs, followed by: ion channels; proteases; other; and kinases. Known associations from

all classes are, on average, ranked in the top 6% of all inferred associations.

Completing the drug-target-disease pathway
The highest ranked D-T interaction identified by DReSMin, receiving a score of 0.49211,

is supported by the literature and therefore known to the scientific community. This D-T

interaction is between one of the antiarrythmic calcium blockers, Verapamil, and CAC1C.

Within Dat eight indications are associated to Veparamil and 12 diseases associated to

CAC1C. One indication, hypertension, shares a has_Indication association with Verapamil

and a involved_in association with CAC1C. Although Verapamil is already used to treat

hypertension, and the inferred D-T interaction already known, we see how DReSMin may

be used to help understand the molecular mechanism of a drug and thus complete the

‘drug-target-disease’ pathway. Understanding the molecular mechanisms of drugs can

only aid the identification of repositioning opportunities. In Fig. 11 we see examples of

unsupported, and therefore novel, DReSMin inferred D-T interactions that also increase

understanding of the molecular mechanisms involved in a drug’s ability to treat a disease.

Like Verapamil, Bepridil is also a calcium channel blocker with known antiarrhythmia

activities. Used as a treatment of hypertension, we can see in Table 2 an inferred D-T

association involving Bepridil and CAC1C. Bepridil is one of the two drugs from Table 2

that have been withdrawn from the market due to safety concerns. For this reason it is not
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Figure 10 Target classes.Human proteins in Dat were assigned to one of five target classes: kinases, ion

channels; G protein coupled receptors (GPCR); proteases; or other. (A) shows % of the total set of

human proteins assigned to each class (Percent_HUMAN), what % of all DReSMin inferred associations

contained a protein target from that class (Percent_INF), the % of the unique targets inferred by

DReSMin that were from that class (Percent_nrINFTARGS) and the % of the target class for which an

inference was made (Percent_CLASS). (B) shows how the known associations captured in DBv3Rel were

ranked in the DReSMin inferred D-T interactions, with 1 being the highest ranked association.Note: Sets

of numbers above each class in A represent how the target class ranked in performance in comparison to

the other classes in the following measures: the average score of inferred interactions; the average ranking

of inferences for that class; and the average number of semantic subgraphs that made an individual

inference for that class. 1 represents the best performing target class and 5 the worst.
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a strong candidate to be repositioned, however, via the inferred association we are able to

better understand the molecular mechanism of the drugs ability to treat hypertension

(Fig. 11A).

In Dat we see three indications for Quetiapine (Psychotic Disorders, Bipolar Disorders

and Autistic Disorders) and three involved_in associations involving 5HT7R

(Schizophrenia, Pain and Muscular Diseases). Although a has_Indication association is

not captured in Dat, Quetiapine is approved for the treatment of Schizophrenia. By

integrating this knowledge with Dat and our inferred associations we can complete

another drug-target-disease pathway (Fig. 11C). Schizophrenia, like many disorders, is a

child of psychotic disorders. Although our dataset provides evidence showing Quetiapine

is used to treat the parent term of Schizophrenia, psychotic disorders, the inference made

allows for a better understanding of the drug-target-disease pathway in a more specific

disease area to be achieved.

Propranolol
One inferred D-T interaction in Table 2 involves the antiarrythmic adrenergic

beta-antagonist, Propranolol, and the G protein-coupled receptor DRD1. In Dat we

capture 12 indications for Propranolol and 17 disease associations for DRD1, with one

indication, Hypertension, involved in both an indication association for Propranolol and

a disease association for DRD1 (Fig. 12). Of the remaining 16 involved_in associations

involving DRD1 three of the diseases represent known off-label indications for

Propranolol being: Bipolar disorders; Schizophrenia, Alcoholism and as a non-stimulant

treatment for ADHD (Gobbo & Louzã, 2014). The remaining 12 diseases present and

support some interesting repositioning opportunities/studies of potential repositioning

opportunities for Propranolol.

Looking at potential indications of Propranolol that are currently being investigated by

the scientific community we see three that are supported by our work. Dat contains an

association between DRD1 and cocaine related disorders, with multiple clinical trials

being undertaken to analyse the use of Propranolol as a treatment for cocaine addiction

(NIDA, 2010) as well as cocaine cravings (Medical University of South Carolina, 2015).

A trial looking at the use of Propranolol as a treatment for Autism is also, at the time of

writing, recruiting (University of Missouri-Columbia, 2015). Finally, a clinical trial has also

A
Hypertension

Bepridil

B

CAC1C Perphenazine

Schizophrenia

5HTR7

C

Quetiapine

Schizophrenia

5HTR7

Figure 11 Drug-target-disease pathways completed via inferred D-T associations. Data presented is

extracted from Dat with one association extracted from literature. Note: Dashed lines represent the

inferred binds_to relations, zig-zag lines represent has_Indication relation not captured in Dat and

extracted from literature, squares represent compound, circles target and octagon diseases.
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been undertaken to analyse the effects of using Propranolol as a treatment for

drug-induced movement disorders (Merck Sharp & Dohme Corp., 2014). We can see

that our inferred D-T interactions allow us to predict repositioning opportunities that

agree with the community.

DISCUSSION
In this paper, we explore the concept of using semantic subgraphs as a way of inferring

novel D-T interactions with the aim of using them to identify drug repositioning leads.

We present and formalise semantic subgraphs, showing how they may present patterns

indicative of drug repositioning opportunities. By employing a novel approach to

reducing the target graph size prior to a search, and by breaking larger semantic subgraphs

to a set of smaller subgraphs, DReSMin significantly improves on the performance of a

purely topological approach to pattern matching. We also show how the approach can be

used to automate the identification of novel D-T interactions in an integrated semantic

network, with the aid of historical data. This real-world problem often requires searching

for semantic subgraphs where jV(Q)j > 4. The optimisations we have presented here

makes searching for instances of these complicated subgraphs computationally tractable

and scalable. We have shown an example of the application of DReSMin which highlights

the potential of the approach.

Pheochromocytoma 

Tachycardia Ventricular

Essential Tremor

Hypertension Portal

Heart Failure

Myocardial Infarction 

Anxiety Disorders

Bipolar Disorder

Hallucinations

Alcoholism

Autistic Disorder

Hypotension

Catelepsy

Movement Disorders

Alzheimer Disease

Attention Deficit Disorder with 
Hyperactivity 

Dyskenisia Drug Induced

Cocaine Related Disorders

DRD1

Huntington Disease

Schizophrenia

Substance Related Disorders
Pyschotic Disorders

Amphetamine Related Disorders

Hypertension

Tachycardia supraventricular

Panic Disorder

Propranolol

Angina Pectoris

Esophageal and Gastric Varices

Figure 12 Diseases associated with Propranolol and DRD1. Drug-disease has_Indication associations

involving Propranolol and gene-disease involved_in associations were extracted from Dat. Note: Dashed

lines represent the inferred binds_to relations, squares represent compound, circles target and octagon

diseases.
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When comparing DReSMin to other state-of-the-art drug-target prediction methods

we observe an average co-prediction of 35%. Although this still leaves a large proportion

of unique inferences we show that DReSMin inferences identify >16% of the knowns

when using DBv3, and >10% of the knowns when using DBv4, in comparison to

ChEMBL. The ability of DReSMin to identify more of the knowns than ChEMBL supports

the approach and provides evidence that the approach provides an improved prediction

set. We then directly compared and contrasted the results and found DReSMin to

outperform the ChEMBL models at inferring annotated DrugBank D-T interactions.

Considering DReSMin is a general algorithm, not specifically developed for the inference

of D-T interactions, this highlights its potential ability to compete with specialised

approaches. Although the semantic subgraphs used to search Dat were derived from the

shortest paths between a drug and target from D-T interactions in DBv3, these

interactions were inferred, on average, by around 40 different semantic subgraphs. This is

in contrast to the 15 semantic subgraphs that inferred D-T interactions not captured in

DBv3. Again this validates the approach we employed during this work. Annotated D-T

interactions were not only captured by the semantic subgraph derived from the semantic

shortest path between their drug and target but also by many more.

We show that DReSMin is able to identify known D-T interactions regardless of the

class to which the target belongs. Having said this, the approach works better for target

classes where there exists a relatively high amount of information, such as GPCRs and ion

channels, whose knowns fall, on average, in the top 2% of inferred D-T interactions.

Knowns involving other classes, such as kinases, for which there is less information, are

still, on average, captured in the top 6% of all DReSMin inferred D-T associations. Our

approach makes use of the holistic view of an entity and so if less is known about a target it

will be captured in fewer semantic subgraphs and thus D-T interactions that it is predicted

to be involved in will obtain a lower score. The data bias will become less of a problem

as more and more data is produced for target classes such as proteases and kinases.

Although DReSMin at present scores semantics based purely on the most abstract form

of types, it could be beneficial to include scoring metrics based on node and edge

attributes, and the data-sources from which they are retrieved. For example, during the

process of data integration it would be useful to consider dataset quality during the

construction of the integrated graph and apply annotations that indicate a measure of

confidence in a given interaction. To this end we are currently developing a new integrated

dataset that will allow provenance and data to reliability to be scored during a search. This

modification will allow the scoring of semantic subgraphs to be not only topological and

semantic but also based on the reliability of the source of each element.

DReSMin is very capable of prioritising known D-T interactions, however, in order for

inferences made to be useful to drug repositioning there are still some limitations that

must be discussed. We illustrate these limitations with some examples. First of all,

DReSMin infers an interaction between Dexrazoxane (DB00380) and Dactinomycin

(DB00970) and the Sodium channel protein type 1 subunit alpha (P35498). This target is

located predominantly in the brain and is heavily associated with epilepsy (Mantegazza

et al., 2010; Escayg & Goldin, 2010). To reach the brain a drug must cross the blood-brain
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barrier (BBB). Restricted by their pharmacokinetics, multiple drugs, such as Dexrazoxane

(DB00380) and Dactinomycin (DB00970) (Holm et al., 1998), are unable to cross the BBB

and so this inference is unlikely to highlight any realistic repositioning opportunity.

Secondly, DReSMin infers D-T interactions involving drugs from a range of marketed

states. Examples include drugs that have been withdrawn due to the fact that they are not

as effective as first thought, such as Drotrecogin alfa (DB00055) in the treatment of sepsis,

or due to poor sales, such as Halazepam (DB00801); interesting candidates for

repositioning. Drugs that have been withdrawn from the market for reasons involving

safety concerns prove a more problematic repositioning opportunity. Some examples are

included in DReSMin inferences, such as drugs that have been withdrawn from market

due to potentially fatal side effects, such as: Metamizole (DB04817); Grepafloxacin

(DB00365); and Temafloxacin (DB01405). Finally, DReSMin inferred an association

between Domperidone (DB01184) and the Beta-1 adrenergic receptor (P08588). Heart

palpitations are a known side-effect of Domperidone and Beta-1 adrenergic antagonists,

such as Propranolol have been administered to those suffering heart palpitations. One can

thus deduce that Domperidone may have some agonistic action upon the Beta-1

adrenergic receptor. With these examples in mind other properties must be considered in

further extensions to the approach. Drug properties, such as pharmacokinetics, in relation

to the target location must be considered as well as a pre-filtering step to remove all drugs

from the search that are likely unsafe. Post-filtering of results based on the likelihood of an

D-T interaction prediction leading to a potential side-effect would also be a useful

addition.

In the approach described here semantic subgraphs are derived from only the node

types and edge types that fall directly on the semantic shortest path between a drug and a

target. In order for a semantic subgraph capture even more functional detail it may be

beneficial to expand the view that the subgraph takes of its immediate neighbourhood. To

this regard we are currently considering extending semantic subgraphs to include nodes

that interact with those in the semantic shortest path at a particular depth.

Although we present an exhaustive automated approach it is also worth noting that

semantic subgraphs can be drawn from real life repositioning examples via manual

curation. The manual development of semantic subgraphs, such as the one described in

Fig. 1, is time consuming. However, manually curated semantic subgraphs may allow for

more accurate representations of a functional module capturing a potential drug

repositioning opportunity, as opposed to those created via automated approaches. We

hope to create a library of semantic subgraphs curated from real world examples of

repositioned drugs and compare the accuracy and efficiency to the semantic subgraphs

developed during this work.

With regard to the mining algorithm, as new graph mining frameworks emerge with

efficient graph searching algorithms (e.g. Neo4J), it may be possible to exploit

these built in algorithms to implement sections of the approach we describe here.

However, necessarily, the nature of these implementations will depend on the

specific graph database.
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We have demonstrated that our algorithm may be used to infer D-T interactions,

however, like all in silico approaches to analysing in vivo and in vitro systems the accuracy

is limited; overly simplified settings innately struggle to reflect real-life problems. Our

approach, unlike many other computational approaches to drug repositioning, is not

limited to the inference of D-T interactions. Semantic subgraphs may be designed to infer

relations between any conceptClasses in a dataset and can be used to infer a drugs

indication, mode of action, side effect and more. We believe that the systems biology

approach that we describe here will allow for a more accurate, holistic, systematic

approach to drug repositioning.
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