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Abstract
Odontocetes first appeared in the fossil record by the early Oligocene, and their early 
evolutionary history can provide clues as to how some of their unique adaptations, such as 
echolocation, evolved. Here, three new specimens from the early to late Oligocene Pysht 
Formation are described further increasing our understanding of the richness and diversity of 
early odontocetes, particularly for the North Pacific. Phylogenetic analysis shows that the new 
specimens are part of a more inclusive, redefined Simocetidae, which now includes Simocetus 
rayi, Olympicetus sp. 1, Olympicetus avitus, O. thalassodon sp. nov., and a large unnamed taxon 
(Simocetidae gen. et sp. A), all part of a North Pacific clade that represents one of the earliest 
diverging groups of odontocetes. Amongst these, Olympicetus thalassodon sp. nov. represents 
one of the best known simocetids, offering new information on the cranial and dental 
morphology of early odontocetes. Furthermore, the inclusion of CCNHM 1000, here considered 
to represent a neonate of Olympicetus sp., as part of the Simocetidae, suggests that members of 
this group may not have had the capability of ultrasonic hearing, at least during their early 
ontogenetic stages. Based on the new specimens, the dentition of simocetids is interpreted as 
being plesiomorphic, with a tooth count more akin to that of basilosaurids and early toothed 
mysticetes, while other features of the skull and hyoid suggest various forms of prey acquisition, 
including raptorial or combined feeding in Olympicetus spp., and suction feeding in Simocetus. 
Finally, body size estimates show that small to moderately large taxa are present in Simocetidae, 
with the largest taxon represented by Simocetidae gen. et sp. A with an estimated body length of 
3 meters, which places it as the largest known simocetid, and amongst the largest Oligocene 
odontocetes. The new specimens described here add to a growing list of Oligocene marine 
tetrapods from the North Pacific, further promoting faunistic comparisons across other 
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contemporaneous and younger assemblages, that will allow for an improved understanding of the
evolution of marine faunas in the region.

Introduction
The Eastern North Pacific Region is recognized as one of the most prolific sources for 

early marine mammals belonging to various groups, particularly desmostylians, pinnipeds, and 
early mysticetes (Emlong, 1966; Russell, 1968; Domning et al., 1986; Berta, 1991; Ray et al., 
1994; Barnes et al., 1995; Beatty, 2006; Beatty and Cockburn, 2015; Marx et al., 2015, 2016b; 
Peredo and Uhen, 2016; Peredo and Pyenson, 2018; Peredo et al., 2018; Poust and Boessenecker,
2018; Shipps et al., 2019; Solis-Añorve et al., 2019; Hernández-Cisneros, 2018, 2022; 
Hernández-Cisneros and Nava-Sánchez, 2022; Everett et al., 2023). However, while odontocetes 
have also been found in these Oligocene-age units, and have been remarked in the literature in 
non-taxonomic context (e.g., Whitmore and Sanders, 1977; Goedert et al., 1995; Barnes, 1998; 
Barnes et al., 2001; Kiel et al., 2013; Hernández Cisneros et al., 2017), only a handful are 
described (Fordyce, 2002; Boersma and Pyenson, 2016; Vélez-Juarbe, 2017). These include 
Simocetus rayi Fordyce, 2002, from the early Oligocene Alsea Formation, in Oregon, U.S.A., the
platanistoid Arktocara yakataga Boersma and Pyenson, 2016, from the late Oligocene Poul 
Creek Fm., in Alaska, U.S.A., and the more recently described, Olympicetus avitus Vélez-Juarbe,
2017, from the early to late Oligocene Oligocene Pysht Fm., in Washington State, U.S.A. The 
presence of stem (i.e. Simocetus, Olympicetus) and crown (Arktocara) odontocetes in similar-
aged rocks point to a complex early history for odontocetes in this region, hence the description 
of new material will advance our current understanding of odontocete evolution.

In this work three additional specimens of stem odontocetes collected from the early to 
late Oligocene Pysht Formation of Washington State are described. The morphology of these 
new specimens shows similarities with Simocetus and Olympicetus and provides further insight 
into the diversity of early odontocetes in the North Pacific. In addition, cranial and dental 
features of simocetids hint at different modes of prey acquisition within members of the clade, 
with some taxa using suction feeding, while others being raptorial or combined feeders. The 
Pysht Fm. has a rich fossil record of marine tetrapods, including plotopterids (Olson, 1980; Dyke
et al., 2011; Mayr and Goedert, 2016), desmostylians (Domning et al., 1986), aetiocetids (Barnes
et al., 1995; Shipps et al., 2019), stem mysticetes (Peredo and Uhen, 2016), pinnipeds (Everett et 
al., 2023) and many others still remaining to be described (Whitmore and Sanders, 1977; Hunt 
and Barnes, 1994; Barnes et al., 2001; Marx et al., 2016b). The fossils described in this work 
demonstrate that stem odontocetes were more diverse in the North Pacific Region during the 
Oligocene and hint at the presence of clade of stem odontocetes that were geographically 
confined to this region in a pattern that parallels aetiocetid mysticetes (Hernández Cisneros and 
Vélez-Juarbe, 2021). 
Abbreviations—c., character state as described and numbered by Sanders and Geisler (2015) 
and subsequent works, e.g., (c.15[0]) refers to state 0 of character 15; LACM, Vertebrate 
Paleontology Collection, Natural History Museum of Los Angeles County, Los Angeles, CA, 
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U.S.A.; KMNH VP, Kitakyushu Museum of Natural History, Kitakyushu City, Japan; USNM, 
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 
Washington, D.C., U.S.A.

Materials & Methods
Phylogenetic analysis
The phylogenetic analysis was performed using the morphological matrix of Albright et al. 
(2018) as modified recently by Boessenecker et al. (2020), with modification of two characters 
and addition of four new ones (see Supplemental Files 1-2). Characters 328 and 329 are modified
to be specific to the upper molars, while new characters 330 and 331 are related to the number of
denticles on the mesial and distal edges, respectively, on the main lower molars. The third new 
character (c.337) refers to the presence of a transverse cleft on the apex of the zygomatic process 
of the squamosal (first noted by Racicot et al., 2019, for CCNHM 1000). The fourth new 
character (c.338) relates to the morphology of the thyrohyoid/thyrohyal, adding up to a total of 
338 characters (see Supplemental Files 1-2). Besides LACM 124104, LACM 124105 and LACM
158720, one additional odontocete from the Pysht Fm. was added, CCNHM 1000 (collected 
from the same locality as the specimens described here), based on the description from Racicot et
al. (2019:S1). All otherwise undescribed specimens in earlier versions of this matrix were 
removed from this analysis asbecause their character states cannot be independently 
corroborated, resulting in a total of three outgroup and 107 ingroup taxa. The matrix was 
analyzed using PAUP* (v. 4.0a169; Swofford, 2003);, all characters were treated as unordered 
and with equal weights. A heuristic search of 10000 replicates was performed using the tree 
bisection-reconnection (TBR) algorithm and using a backbone constraint based on the 
phylogenetic tree of extant cetaceans from McGowen et al. (2020); bootstrap values were 
obtained by performing 10000 replicates. The terminology used for the descriptions follows 
Mead and Fordyce (2009).

Taxonomy
The electronic version of this article in portable document format will represent a published work
according to the International Commission on Zoological Nomenclature (ICZN), and hence the 
new names contained in the electronic version are effectively published under that Code from the
electronic edition alone. This published work and the nomenclatural acts it contains have been 
registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life 
Science Identifiers) can be resolved and the associated information viewed through any standard 
web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this 
publication is LSIDurn:lsid:zoobank.org:pub:D190F6B6-FB67-4F2B-AC24-145DF06D3FD3. 
The online version of this work is archived and available from the following digital repositories: 
PeerJ, PubMed Central, and CLOCKSS.

Systematic Paleontology
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CETACEA Brisson, 1762
ODONTOCETI Flower, 1867
SIMOCETIDAE Fordyce, 2002
Type Genus—Simocetus Fordyce, 2002.
Included Genera—Simocetus; Olympicetus Velez-Juarbe, 2017; Simocetidae gen. et sp. A.
Temporal and Geographic Range—early-late Oligocene (Rupelian–early Chattian) of the 
eastern North Pacific.
Emended Diagnosis—Stem odontocetes displaying a mosaic of plesiomorphic and derived 
characters that sets them apart from other basal odontocetes, particularly the Xenorophidae, 
Patriocetidae and Agorophiidae. Characterized by the following unambiguous synapomorphies: 
seven to eight teeth completely enclosed by the maxilla (c.25[1]); lack of a rostral basin 
(c.66[0]), differing from most xenorophids which have a well-defined basin; posteriormost edge 
of nasals in line with the anterior half of the supraorbital processes (c.123[1]); supraoccipital at 
about the same level as the nasals (c.129[1]), differing from xenorophids where the 
supraoccipital is higher; floor of squamosal fossa thickens posteriorly (c.149[1]); distal end of 
postglenoid process is anteroposteriorly wide (c.152[2]); long and subconical hamular process of
the pterygoid (c.173[1]); hamular processes unkeeled (c.174[0]); hamular processes extending to 
a point in line with the middle of the zygomatic processes (c.175[3]); cranial hiatus constricted 
by medial projection of the parietal (c.184[2]); absent to poorly defined rectus capitus anticus 
muscle fossa (c.193[0]), differing from the well-defined fossa of xenorophids; posteroventral end
of basioccipital crest forming a posteriorly oriented flange (c.194[2]); anterior process of periotic
with well-defined fossa for contact with tympanic (c.210[3]); lateral tuberosity of periotic 
forming a bulbous prominence lateral to mallear fossa (c.212[1]); tegmen tympani at the base of 
the anterior process unexcavated (c.232[0]), differing from the excavated surface in xenorophids;
articular surface of the posterior process of periotic is smooth (c.242[0]) and concave (c.243[0]); 
and, posterolateral sulcus of premaxilla deeply entrenched (c.310[1]).
Additional characters present in simocetids include: rostrum fairly wide (c.7[1]; shared with 
Ashleycetus planicapitis Sanders and Geisler, 2015, Agorophius pygmaeus [Müller, 1849], and 
Ankylorhiza tiedemani [Allen, 1887]); palatine/maxilla suture anteriorly bowed (21[0]; shared 
with Patriocetus kazakhstanicus Dubrovo and Sanders, 2000); lacrimal restricted to below the 
supraorbital process of frontal (c.52[0]; shared with A. planicapitis, P. kazakhstanicus and An. 
tiedemani); relatively small ventral (orbital) exposure of the lacrimal (c.56[0]; shared with A. 
planicapitis, Archaeodelphis patrius Allen, 1921, and P. kazakhstanicus); postorbital process of 
frontal relatively long and oriented posterolaterally and ventrally (c.62[0]; shared with A. 
planicapitis, Mirocetus riabinini and P. kazakhstanicus); presence of a long posterolateral sulcus 
extending from the premaxillary foramen (c.73[2]; shared with A. planicapitis); maxillae only 
partially covering supraorbital processes (c.77[1]; shared with A. planicapitis and Ar. patrius); 
frontals slightly lower than nasals (c.125[0]; shared with Cotylocara macei Geisler et al., 2014); 
intertemporal region with an ovoid cross section (c.137[1]; shared with A. planicapitis, 
Echovenator sandersi Churchill et al., 2016, and C. macei); anterior end of supraoccipital is 
semicircular (c.153[1]; shared with P. kazakhstanicus); occipital shield with distinct sagittal crest
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(= external occipital crest, sensu Mead and Fordyce, 2009) (c.156[1]; shared with Albertocetus 
meffordorum Uhen, 2008, P. kazakhstanicus, Ag. pygmaeus, and An. tiedemani); a nearly 
transverse pterygoid-palatine suture (c.163[1]; shared with Ar. patrius); anterior process of 
periotic short (c.204[2]; shared with C. macei).

SIMOCETIDAE GEN. ET SP. A
(Figs. 1-5; Tables 1-2)
Material—LACM 124104, posterior part of skull, missing most parts anterior to the 
frontal/parietal suture and the left squamosal; including one molariform tooth and partial atlas, 
axis and third cervical vertebrae. Collected by J. L. Goedert and G. H. Goedert March 21, 1984.
Locality and Horizon—LACM Loc. 5123, Murdock Creek, Clallam Co., Washington, U.S.A. 
(48º 09’ 25”N, 123º 52’ 10”W; = locality JLG-76). At this locality specimens are found as 
concretions along a beach terrace about 40 m north of the mouth of Murdock Creek. Besides 
LACM 124104, additional specimens known from this locality include the desmostylian 
Behemotops proteus (LACM 124106; Ray et al., 1994), additional material of the simocetid 
Olympicetus sp. 1 (LACM 124105) and O. thalassodon sp. nov. (LACM 158720; described 
below), aff. Olympicetus sp. (Racicot et al., 2019), and the aetiocetid Borealodon osedax (Shipps
et al., 2019). 
Formation and Age—Pysht Formation, between 30.5–26.5 Ma (Oligocene: late Rupelian-early 
Chattian; Prothero et al., 2001a; Vélez-Juarbe, 2017).
Temporal and Geographic Range—Oligocene of Washington, U.S.A.

Description
As preserved, the partial skull (LACM 124104; Figs. 1-4) has a pachyostotic appearance, in 
comparison with the other described simocetids. Based on the fused/closed sutures and heavily 
worn tooth, the specimen is considered to belong to an adult individual. The estimated 
bizygomatic width, 322 mm (c.335[2]), suggests a body length of around 3 m (based on equation
“i” for stem Odontoceti from Pyenson and Sponberg, 2011), which is larger than any of the other
described simocetids.
Vomer—Most of the palatal surface of the vomer is missing, as is much of the rostrum. 
Posteriorly, it seems to have been exposed ventrally along an elongated, diamond-shaped, 
window between the palatines and pterygoids as in other simocetids (Fig. 2C-D; Fordyce, 2002; 
Vélez-Juarbe, 2017; see below). From this point, the vomerine keel extends posterodorsally, 
separating the choanae along the midline and extending to about 20 mm from the posterior edge 
of the bone (Fig. 2C-D). The horizontal plate extends posteriorly to a point in line with the 
anterior end of the basioccipital crests, thus covering the suture between the basisphenoid and 
basioccipital (c.191[0]; Fig. 2C-D). The choanal surface of the horizontal plate forms a ventrally 
concave choanal roof, with its lateral edges slightly flared and forming a nearly continuous 
surface with the internal lamina of the pterygoid.
Palatine—Only the posteriormost parts of the palatines are preserved,; these are separated along 
the midline by the vomer, resembling the condition of other simocetids (Fig. 2C-D; Fordyce, 
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2002; see below). In anterior view, the palatines formed the ventral and lateral surfaces of the 
internal nares, while the vomer formed the medial and dorsal surfaces. Ventrolaterally, the 
palatines form a vertical to semilunar contact with the pterygoids, best observed in ventral, 
ventrolateral and lateral views (c.163[1]; Figs. 2C-D, 3-4), resembling the contact in Simocetus 
rayi and Olympicetus spp. (Fordyce, 2002; Vélez-Juarbe, 2017). An elongated groove along the 
ventrolateral end of the left palatine seems to have been part of the palatine foramen/canal.
Frontal—Only the posteriormost portions of the frontals are preserved, but they are eroded (Fig.
1). Dorsally, the interfrontal suture seems to have been completely fused, and it posteriorly 
formed a broad V-shaped contact with the parietals, which continues as a vertical contact along 
the temporal surface (Fig. 3).
Parietal—As in other simocetids, the parietals are broadly exposed dorsally, and the interparietal
is either absent or fused early in ontogeny (c.135[0], 136[1]; Fig. 1). The parietals do not extend 
anterolaterally, resembling Simocetus rayi, and differing from Olympicetus where the parietals 
extend into the base of the supraorbital processes. The parietal exposure in the intertemporal 
region is anteroposteriorly short and broad in dorsal view, with an ovoid cross section (c.137[1]).
Posterodorsally, the parietal-supraoccipital contact is transversely broad and anteriorly convex, 
while along the temporal surface, the parietal forms a vertical contact with the frontal 
(c.134[0];Fig. 1), and seems to have formed part of the posterior edge of the optic infundibulum; 
abaft to this point the parietal become laterally convex towards the contact with the squamosal 
(Figs. 3-4). Anteroventrally, on the temporal surface, the parietal descends to contact the 
orbitosphenoid, a portion of the dorsal lamina of the pterygoid, the alisphenoid, and the 
squamosal, with which it forms part of the subtemporal crest (Fig. 4). Its contact with the 
squamosal on the temporal surface becomes an interdigitated, dorsally arched suture posterior to 
this point. In ventral view the parietal contacts the squamosal medially, partially constricting the 
cranial hiatus (c.184[2]; Figs. 2C-D, 4).
Supraoccipital—The anterior half of the supraoccipital is not preserved, but based on the 
corresponding sutural marks in the parietal, it anterior edge formed a gentle semicircular arch 
that reached anteriorly to a level in line with the anterior half of the squamosal fossa (c.140[0], 
153[1]; Fig. 1), resembling the condition observed in Olympicetus spp. The preserved portion of 
the supraoccipital forms a gently concave surface that seems to have lacked an external occipital 
crest (c.156[?0], 311[0]; Figs. 1, 2A-B) observed in other simocetids. The nuchal crest is 
oriented dorsolaterally (c.154[1], c.155[0]), and seems to have been gently sinuous, descending 
posterolaterally to meet the supramastoid crest (Figs. 1,2A-B, 3). 
Exoccipital—The occipital condyles are semilunar in outline, with well-defined edges, and 
bounded dorsally by shallow, transversely oval supracondylar fossae (c.157[1]; Fig. 2A-B) as in 
Simocetus rayi and Olympicetus avitus. The foramen magnum has an oval outline, being slightly 
wider than high. The paroccipital processes are transversely broad and directed posteroventrally, 
reaching posteriorly to a level approximating the posterior edge of the condyles (c.198[1]; Fig. 
2). The ventral edge of the paroccipital processes is anteroposteriorly broad, becoming thinner 
medially towards the broad jugular notch (c.197[0]). The hypoglossal foramen is rounded (~4 
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mm in diameter), located ventrolateral to the corresponding occipital condyle and well separated 
from the jugular notch (c.196[0]; Fig. 2).
Basioccipital—The basioccipital crests are short, transversely thin, oriented ventrolaterally, and 
diverging posteroventrally at an angle between 58-60º (c.192[0], 195[2]; Fig. 2). Each crest 
contacts the corresponding posterior lamina of the pterygoid along a posteroventrally oriented 
suture. The ventral surface between the crests is flat, with no distinct rectus capitus anticus fossa 
(c.193[0]). Anteriorly the contact with the basisphenoid is obscured by the vomer (Fig. 2C-D). 
Squamosal—The squamosal plate is flat to gently convex, contacting the parietal along a 
dorsally arched suture that descends anteroventrally along a sinuous path to form the 
posteromedial edge of the subtemporal crest (Figs. 1, 3). Only the right zygomatic process is 
preserved, although incompletely, missing its anterolateral corner. The process is long, oriented 
anteriorly, robust and somewhat inflated when viewed dorsally, constricting the squamosal fossa 
(c.143[0], 189[3]; Figs. 1, 2C-D, 3-4). The squamosal fossa is relatively deep, with a moderately 
sigmoidal outline of its ventral surface and gently sloping anteriorly (c.147[2], 148[1], 149[1]; 
Fig. 1). When viewed laterally, the dorsal edge of the zygomatic process is flat to gently convex 
(c.144[0]), while its ventral edge is concave (c.151[0]; Fig. 3-4). The supramastoid crest is more 
prominent proximally, continuing posteromedially to join the nuchal crest (c.150[0]). The 
sternomastoid muscle fossa on the posterior edge of the zyogomatic process is a large, shallow 
oval depression, broadly visible in posterior or lateral view (c.145[1]; Figs. 2A-B, 3). The 
squamosal exposure lateral to the paroccipital processes is moderate in posterior view (c.146[1]; 
Fig. 2A-B). Ventrally, the postglenoid process is incompletely preserved, but seems to have been
anteroposteriorly broad as in other simocetids. Posterior to the base of the postglenoid process, 
the external auditory meatus seems to have been broad (c.190[?0]; the posttympanic process is 
not preserved). The glenoid fossa is shallowly concave with nearly indistinct borders. Medial to 
the glenoid fossa is a shallow, oval tympanosquamosal recess (c.179[2]; Fig. 2C-D). The 
falciform process is anteroposteriorly long (c.177[0]; Figs. 2C-D, 3-4). The periotic fossa is 
partially obscured by a fragment of periotic; the anterior part of the fossa contains a small 
foramen spinosum close to the medial suture with the parietal (c.187[1]; Fig. 2C-D), resembling 
the condition observed in Olympicetus avitus. Anteromedially, the squamosal contacts the 
alisphenoid along an anterolaterally oriented suture that follows the anterodorsal edge of the 
groove for the mandibular branch of the trigeminal nerve (c.181[1]); the groove wraps around 
the posterior end of the pterygoid sinus fossa, opening anteriorly (c.182[1]; Figs. 2C-D, 4).
Pterygoid—The pterygoids are incompletely preserved, missing the hamular processes (Fig. 2C-
D). As in other simocetids, the pterygoids are ventromedially separated by a diamond-shaped 
palatal exposure of the vomer (Fig. 2C-D). The pterygoid sinus fossa is anteroposteriorly long 
(99 mm) and dorsoventrally deep (at least 63 mm on the left side), transversely narrower 
anteriorly (25 mm) and becoming broader posteriorly (46 mm) (Fig. 2C-D, 4). The anterior edge 
of the pterygoid sinus fossa is at the level of the pterygo-palatine suture, extending posteriorly to 
the anterior edge of the foramen ovale (c.164[2]; Fig. 2C-D). The dorsal lamina contacts the 
orbitosphenoid anterodorsally, the frontal and the alisphenoid posterodorsally, along an 
irregularly sinuous contact, and forms the roof of the pterygoid sinus (c.166[0]; Fig. 4). The 

7

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281



lateral lamina is transversely thin, and is slightly deflected ventromedially, where, if complete, it 
would have met the medial lamina to enclose the pterygoid sinus fossa (c.165[?0]; Figs. 2C-D, 3-
4). The medial lamina is incompletely preserved, but medially contacts the lateral flange of the 
horizontal plate of the vomer to form the lateral wall of the choana, while laterally it forms the 
medial wall of the pterygoid sinus fossa (Figs. 2C-D, 3-4).
Alisphenoid—Only a small portion of the alisphenoid can be observed on the temporal wall, 
where its exposure is small, wedged in between the squamosal, frontal and lateral lamina of the 
pterygoid (c.142[1]; Figs. 3-4). Its more anteromedial portions are covered by sediment.
Orbitosphenoid/Optic Infundibulum—The orbitosphenoid is exposed within the optic 
infundibulum where it is in contact with the parietal dorsally and palatine ventrally, and forms 
the dorsal, medial and ventral walls of the optic canal. A sulcus along the ventrolateral portion of
the orbitosphenoid, close to its suture with the palatine, is likely the groove for the maxillary 
nerve (V2). Anteromedially, the bones are eroded, while more posteriorly they are obscured by 
sediment;, therefore additional features of the optic infundibulum cannot be properly interpreted. 
Mandible—The mandible is missing for the most part, with the exception of the left coronoid 
process (Fig. 1). The process has a subtriangular outline, as preserved being about as long as 
high, with the dorsal edge slightly recurved medially. The general outline resembles the coronoid
process of Olympicetus avitus (Velez-Juarbe, 2017).
Dentition—Only a double-rooted upper right molariform tooth is preserved in association with 
the specimen (Fig. 5A-C). The mesial root is mostly missing, but seems to have been 
buccolingually broader than the distal root, which is more cylindrical and slightly recurved 
buccally. The crown (mesiodistal length = 10 mm; height = 7 mm; maximum buccolingual width
=8 mm) is worn, and is longer than tall, and is buccolingually broader on its anterior half due to 
the presence of a lingual bulge, somewhat resembling tooth ‘mo3’ of Olympicetus avitus (Fig. 
S1E; Vélez-Juarbe, 2017), however, but differing by lacking a well-defined secondary carina 
with denticles. The crown has three denticles, with the apical one being slightly larger than the 
two on the distal carina, whilebut there are no denticles on the blunter, mesial carina (Fig. 5A-C).
There is no buccal cingulum, and only a nearly inconspicuous cingulum is presentoccurs on the 
distolingual corner of the base of the crown. The outline of the crown, as well as the presence of 
a buccolingually broad mesial root, or alternatively a third, lingual root, is similar to the 
condition observed in the P4 of Simocetus rayi, and is tentatively assigned to that position 
(Fordyce, 2002).
Cervical Vertebrae—Only the first three cervical vertebrae are preserved, and they are unfused 
(c.279[0], 280[?0]; Fig. 5D-I). The dorsal arch of the atlas is missing, as is the distal end of the 
transverse processes. The anterior articular facets have a semilunar outline, and are shallowly 
concave, with relatively poorly defined ventrolateral and medial edges. The posterior facets for 
articulation with the axis have a suboval outline, with gently convex articular surfaces and sharp,
well-defined edges. The posterior facets gently merge ventromedially with the articular facet for 
the odontoid (Fig. 5E). The ventral arch has a more prominent hypapophysis than that observed 
in Olympicetus spp. (Fig. 5E). The base of the transverse processes flares posterolaterally.
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The axis is missing most of the apex and left half of the dorsal arch, andas well as the left 
transverse process (Fig. 5F-G). The pedicle is anteroposteriorly broad, and flattened transversely.
The postzygapophysis is oriented posterolateroventrally, forming a flat, smooth surface (Fig. 
5G). The anterior articular surface is broad, with a suboval outline, and raised edges; the surface 
is shallowly concave, merging ventromedially with the ventral surface of the odontoid process 
(Fig. 5F). The odontoid process is short, broad and blunt, with a mid-dorsal ridge that extends 
along the dorsal surface of the centrum, reaching the distal end (Fig. 5F). Posteriorly, the 
centrum has a cardiform outline. The epiphysis is fused, and its surface is concave, with a mid-
ventral cleft that slightly bifurcates towards its posteroventral end. The ventral surface of the 
centrum has a mid-ventral keel that becomes broader and more prominent towards the posterior 
end of the centrum. The transverse process is anteroposteriorly flat, and oriented mainly laterally.
There are no transverse foramina (Fig. 5F-G).
The third cervical preserves only a portion of the right side of the neural arch; the pedicle is 
anteroposteriorly flattened and transversely broad. Both anterior and posterior epiphyses are 
fused (Fig.5H-I). The prezygapophysis consists of a rounded, flat surface that is oriented 
anterodorsomedially, complementing its counterpart in the axis. The transverse foramen is large, 
being slightly broader than tall (16 mm x 11 mm). The transverse process is mainly oriented 
laterally; its posterior surface forms a low keel that extends from the base to the apex, and its 
anteroventral edge is flared (Fig. 5I). The centrum is rounded, anteroposteriorly short, with 
shallowly concave proximal and distal articular surfaces. Low midline keels are present along the
ventral and dorsal surfaces of the centrum. A pair of small (~4 mm) nutrient foramina are 
presentoccur on each side of the mid-dorsal keel. 
Remarks—LACM 124104 represents the largest known simocetid, with an estimated 
bizygomatic width of 322 mm, in comparison with that of Simocetus rayi (238 mm), which 
(using  equation “i” from from Pyenson and Sponberg, 2011) results in estimated body lengths of
about 3 m and 2.3 m, respectively, both of which are larger than those estimated for Olympicetus
spp. (see below). This large simocetid shows a unique combination of characters, some of which 
are shared with Olympicetus spp. such as the more retracted position of the supraoccipital 
(c.140[0]), the dorsolateral orientation of the nuchal crest (c.154[1]), a shallow 
tympanosquamosal recess (c.179[1,2]), and an alisphenoid/squamosal suture that courses along 
the groove for the mandibular branch of the trigeminal nerve (c.181[1]). At the same time, some 
of the preserved characters seem to be unique to this taxon amongst simocetids, such as a deep 
squamosal fossa (c.147[2]) and the path of the groove for the mandibular branch of the 
trigeminal nerve which wraps around the posterior end of the pterygoid sinus fossa (c.182[1]). 
This specimen does preserve a remarkable amount of details of the size and morphology of the 
pterygoid sinus fossa, which together with other simocetids, suggest that they had well 
developed, large fossae, particularly when compared to those of other early diverging 
odontocetes, such as Archaeodelphis patrius, which seems to have much shorter fossae (pers. 
obs. LACM 149261, cast of type). LACM 124104 resembles, and may be congeneric, with, an 
odontocete skull from the early Oligocene Lincoln Creek Formation of Washington State, briefly
described by Barnes et al. (2001), sharing many characters of its morphology, including its large 
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size (bizygomatic width = 265 mm) and the pachyostotic appearance of some of the cranial 
bones; this will be addressed in more detail in a follow-up study.

OLYMPICETUS Velez-Juarbe, 2017
Type Species—Olympicetus avitus Velez-Juarbe, 2017.
Included Species—Olympicetus avitus; Olympicetus thalassodon sp. nov., Olympicetus sp. 1.
Temporal and Geographic Range—Oligocene (late Rupelian–early Chattian; 33.7–26.5 Ma) of
Washington State, U.S.A.
Emended Diagnosis—Small odontocetes, with bizygomatic width ranging from 145–220 mm 
(c.335[0,1]), with symmetric skulls and heterodont dentition, resembling Simocetus rayi 
Fordyce, 2002. Differs from Simocetus, other simocetids, and other stem odontocetes by the 
following combination of characters: having a concave posterior end of the palatal surface of the 
rostrum (c.19[0]; shared with Xenorophidae); posterior buccal teeth closely spaced (c.26[0]; 
shared with Ashleycetus planicapitis, Patriocetus kazakhstanicus, Agorophius pygmaeus and 
Ankylorhiza tiedemani), differing from the widely-spaced teeth of S. rayi; buccal teeth with ecto-
and entocingula (c.32[1], 33[0]; shared with Xenorophus sloani Kellogg, 1923, Echovenator 
sandersi, Cotylocara macei and P. kazakhstanicus), and unlike S. rayi where these features are 
absent; lacrimal and jugal separated (c.54[0]; shared with CCNHM 1000, Xenorophidae, P. 
kazakhstanicus, Ag. pygmaeus and An. tiedemani); presence of a short maxillary infraorbital 
plate (c.60[1]; shared with CCNHM 1000 and Archaeodelphis patrius; = infraorbital process 
sensu Mead and Fordyce, 2009); infratemporal crest of the frontal forming a well-defined ridge 
along the posterior edge of the sulcus for the optic nerve (c.63[0]; shared with Xenorophidae); 
posteriormost end of the nasal process of the premaxilla in line with the anterior half of the 
supraorbital process of the frontal (c.75[2]), differing from the longer process of S. rayi; 
posteriormost end of the ascending process of the maxilla in line with the posterior half of the 
supraorbital process of the frontal (c.78[2]; shared with Ashleycetus planicapitis and 
Archaeodelphis patrius); lack of a premaxillary cleft (c.110[0]; present in S. rayi); anteriormost 
point of the supraoccipital in line with the floor of the squamosal fossa (c.140[0]), differing from 
the more anterior position in S. rayi; having a relatively shallow squamosal fossa (c.147[1]; 
shared with Ar. patrius and P. kazakhstanicus), thus differing from the deeper fossae of 
Simocetus rayi and Simocetidae gen. et sp. A; involucrum of the tympanic bulla lacking a 
transverse groove (c.272[1]; shared with C. macei); dorsal process of atlas larger than ventral 
process (c.278[2]); presence of three mesial and three to four distal denticles on main upper 
molars (c.328[3], 329[3,4]); and, presence of four distal denticles on main lower molars 
(c.331[4]). Potential autapomorphies of this clade include: absence of a posterior dorsal 
infraorbital foramen (= maxillary foramen; c.76[0]), differing from S. rayi which has two 
foramina on each side located medial to the orbit; presence of a transverse cleft on the apex of 
the zygomatic process of the squamosal (c.337[1]); arched palate, and, saddle-like profile of the 
skull roof (when viewed laterally).

OLYMPICETUS THALASSODON, sp. nov.
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(Figs. 6-13; Tables 1-5)
Holotype—LACM 158720, partial skull with articulated mandibles, including 18 teeth, periotics
and tympanic bullae, cervical vertebrae 1–6, and hyoids; missing distal end of rostrum/mandible.
Collected by J. L. Goedert and G. H. Goedert, July 30, 1983.
Type Locality and Horizon—LACM Loc. 8093, Murdock Creek, Clallam Co., Washington 
State, U.S.A. (48º 09’ 27”N, 123º 52’ 17”W = locality JLG-75). The specimen was found as a 
large concretion about 130 meters northwest of LACM Loc. 5123.
Formation and Age—Pysht Formation, between 30.5–26.5 Ma (Oligocene: late Rupelian-early 
Chattian; Prothero et al., 2001a; Velez-Juarbe, 2017).
Temporal and Geographic Range—Oligocene of Washington State, U.S.A.
Differential Diagnosis—Species of relatively small bodied odontocete with bizygomatic width 
of about 220 mm (c.335[1]), differing from Olympicetus avitus and Olympicetus sp. 1 by the 
following combination of characters: dorsolateral edge of ventral infraorbital foramen formed by 
lacrimal (c.58[2]), differing from Olympicetus sp. 1 where it is formed by the maxilla, and O. 
avitus where it is formed by the maxilla and lacrimal; intertemporal region with ovoid cross 
section with the presence of a low sagittal crest (c.137[0]); lack of a well-defined sternomastoid 
fossa on the posterior edge of the zygomatic process of the squamosal (c.145[0]); tympanic bulla 
proportionately narrow and long (c.252[0). Further differing from O. avitus by: posterior wall of 
the antorbital notch formed by the lacrimal (c.16[1]); interprominential notch of the tympanic 
bulla divided by a transverse ridge (c.268[0]); upper molars with four denticles on the distal 
carinae (c.329[4]); lower molars with a single mesial denticle (c.330[1]), and parietals not 
forming part of the supraorbital processes, differing from O. avitus where they extend into the 
posteromedial part of the process; and from Olympicetus sp. 1 by: dorsal edge of orbit higher, 
relative to the lateral edge of rostrum (c.48[2]); and, temporal crest along the posterior edge of 
the supraorbital process of the frontal (c.132[0]). Olympicetus thalassodon sp. nov. can be 
further differentiated from other simocetids by the following characters: mandible with a 
relatively straight profile in lateral view (c.39[0]), differing from the more strongly arched 
mandible of S. rayi; mandibular condyle positioned at about the same level as the alveolar row 
(c.46[1]); lack of a well-defined dorsal condyloid fossa (c.157[0]; otherwise present on other 
simocetids); posterior process of the periotic exposed on the outside of the skull (c.250[0]); 
moderately large bizygomatic width (c.335[2]; shared with S. rayi), differing from the smaller 
size of O. avitus and Olympicetus sp. 1, or the relatively larger Simocetidae gen. et sp. A; nasals 
contacting the maxillae along their posterolateral corners; longer paroccipital and postglenoid 
processes; and, thyrohyals tubular and not fused to basihyal (c.338[0]). 
Etymology—Combination of thalasso- from the Greek word ‘thalassa’ meaning ‘sea’ and -odon 
from the Greek word ‘odon’ meaning ‘tooth’, in reference to the marine habitat of the species 
and its particular dental morphology.        
 
Description
Description is based on the holotype (LACM 158720; Figs. 6-13). Some of the preserved 
mandibular and maxillary teeth are in situ, allowing for determination of associated, loose teeth. 
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The estimated body length is ~2.15 m, based on equation “i” for stem Odontoceti in Pyenson and
Sponberg (2011). The terminology used herein follows Mead and Fordyce (2009). Based on the 
closed or tightly sutured contacts between the cranial bones, LACM 158720 is considered to 
represent an adult individual.
Premaxilla—The part of the premaxillae anterior to the premaxillary foramen is not preserved. 
Each premaxilla preserves a single, small (diam. = 3 mm) foramen located far anterior to the 
antorbital notch (c.70[1], 71[0], 72[0]; Fig. 6). The ascending process adjacent to the external 
nares is divided by a long posterolateral sulcus (c.73[2]) and a short, incipient, posteromedial 
sulcus (c.319[1]), both of which extend from the premaxillary foramen, forming the lateral and 
anteromedial limits of the premaxillary sac fossa (Fig. 6). The premaxillary sac fossae are 
anteroposteriorly flat to shallowly concave, transversely narrow, and anteroposteriorly long 
(c.69[0]; 320[0], 324[1]), resembling the condition observed in O. avitus. The premaxillae form 
the lateral edges of the external nares and mesorostral canal (c.74[0]). Posterior to the 
premaxillary sac fossa, the ascending process of the premaxilla extends posteriorly as a 
transversely thin flange, reaching a level just beyond the preorbital process of the frontal 
(c.75[2]), leaving a narrow gap where the maxilla contacts the nasal. In contrast, in O. avitus the 
ascending process extends farther posteriorly, to a point closer to the middle of the supraorbital 
processes, separating the nasals from the maxillae (Velez-Juarbe, 2017).
Maxilla—As preserved, the palatal surface is anteroposteriorly concave and transversely convex 
to flat (c.17[0]). Anteriorly the vomer is exposed ventrally through an elongated window 
between the maxillae as in Simocetus rayi. Similarly, a pair of major palatine foramina are 
located on each side at the proximal end of this opening (c.18[0]; Fig. 7C-D). Posteriorly, the 
maxillae contacts the palatines along an anteriorly-bowed contact (c.20[0], 21[0]). The alveolar 
row diverges posteriorly (c.23[0]); it is incompletely preserved anteriorly, but based on the 
preserved dentition and visible alveoli, there were at least seven closely-spaced maxillary teeth, 
with the most posterior six representing double-rooted P1-4, M1-2, with the most anterior of the 
preserved alveoli representing an anteroventrally-oriented single rooted ?canine (c.24[4], 26[0]; 
Fig. 8). Posteriorly, the maxillary tooth row extends beyond the antorbital notch, forming a short 
infraorbital plate that underlies the jugal (c.60[1]; Fig. 9). The ventral infraorbital foramen has an
oval outline (15mm wide by 9mm high) and is bounded laterally and dorsally by the lacrimal and
ventrally and medially by the maxilla (c.58[2], 59[0]; Fig. 9).
Proximally, the rostrum is wide, relative to the width of the skull across the orbits (c.7[1]), and 
the lateral edges of the maxillae are bowed out, giving the antorbital notch a ‘V’-shaped outline 
(c.12[1]; Fig. 6). The surface of the maxillae anterior and anteromedial to the orbits is flat to 
shallowly convex (c.66[0]), lacking the rostral basin observed in some xenorophids (e.g., 
Cotylocara macei; Geisler et al., 2014). As in O. avitus, this surface has a cluster of three to four 
anterior dorsal infraorbital foramina with diameters ranging between 4-6 mm, with the 
posteriormost foramen located dorsomedial to the antorbital notch (c.65[3]). However, in 
contrast to O. avitus the maxilla does not extend anterolaterally to form the posterior wall of the 
antorbital notch (c.16[1]; Figs. 6, 8), thus more closely resembling the condition observed in 
Simocetus rayi. Posteromedial to the antorbital notch, the maxilla extends over the supraorbital 
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process, covering a little more than the anterior half of the process and laterally to within 12 mm 
of the edge of the orbit, while medially it contacts the ascending process of the premaxilla and 
the nasal, forming a gently sloping dorsolaterally-facing surface (c.49[0], 77[1], 78[], 79[0], 
80[0], 130[0], 308[1]; Figs. 6, 8). 
Vomer—Dorsally the vomer forms the ventral and lateral surfaces of the mesorostral canal, 
which seems to have been dorsally open, at least for the length of the rostrum that is preserved,. 
andThe vomer has a V- to U-shaped cross section, havingwith a more acute ventral edge 
anteriorly (c.5[0]; Fig. 6). Anteriorly, along the palatal surface of the rostrum, the vomer is 
exposed through a narrow elongate window mostly between the maxillae and the premaxillae 
distally, resembling the condition in S. rayi and, possibly, Olympicetus avitus (Fig. 7C-D; 
Fordyce, 2002; Velez-Juarbe, 2017). The vomer is exposed again towards the posterior end of 
the palate along a diamond-shaped window between the palatines and the pterygoids, resembling
S. rayi (Fig. 7C-D; Fordyce, 2002) Similarly, the vomer seems to have been exposed posteriorly 
in O. avitus, although the window may have been comparably smaller. The choanae are filled 
with sediment, thus making it impossible to determine the posterodorsal extension of the vomer 
(c.191[?]).
Palatine—As in Simocetus and Olympicetus avitus, the anterior edge of the horizontal plate of 
the palatine extends to about 10 mm anterior to the level of the antorbital notches, forming the 
shallowly concave proximal surface of the palate (Fig. 7C-D). The posterior edges of the right 
and left palatines are separated in the midline by the vomer, even more than in Simocetus (Fig. 
7C-D; Fordyce, 2002). Posterolaterally there is an elevated palatal crest that originates at the 
contact with the pterygoid hamulus and extends anterodorsally along the lateral surface of the 
palatine, approximating, but not reaching, the infundibulum for the sphenopalatine and 
infraorbital foramina, i. It instead become a shallow groove that reaches the sphenopalatine 
foramen as in O. avitus (Figs. 7C-D, 8). The lateral surface of the palatine contacts the frontal 
dorsally to form the posteroventral edge of the sphenopalatine foramen, and the maxilla 
anteriorly, and forms the ventral edge of the infundibulum for the sphenopalatine and infraorbital
foramina (Figs. 8-9). In posterolateral view, the infundibulum has an oval outline, measuring 28 
x 15 mm, while the rounded sphenopalatine foramen has a diameter of about 8 mm. Ventrally 
and laterally, each palatine has a nearly transverse contact with the corresponding pterygoid 
(c.163[1]; Figs. 7C-D, 8), resembling the condition observed in O. avitus, Simocetus rayi and 
Archaeodelphis patrius.
Nasal—The nasals are poorly preserved and seem to have formed the highest point of the vertex 
(c.114[?0], 124[0], 125[0], 312[0]; Figs. 6, 8) as in Olympicetus avitus and Simocetus. 
Anteriorly, the nasals reach to about 24 mm beyond the antorbital notches, while posteriorly they
are in line with the preorbital process of the frontals (c.81[3], 123[1]; Fig. 6). The nasals are 
anteroposteriorly elongated, face dorsally, form a low transversely convex arch, are 
dorsoventrally thin (<3 mm) and are separated posteriorly along the midline by the narial 
processes of the frontal (c.116[0], 118[0], 120[1], 121[2], 122[1], 312[0], 321[0]). Each nasal 
seems to contact the ascending process of the premaxilla for most of its length with only its 
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posterolateral corner contacting the maxilla, differing from Olympicetus avitus where the 
premaxilla extends beyond the posterior edge of the nasal (Velez-Juarbe, 2017). 
Frontal—Dorsally along the midline, the frontals are wedged between the maxillae and 
posterior edge of the nasals, forming a large semi-rectangular surface (c.126[1]; Fig. 6). Posterior
to this surface, the frontals are shallowly depressed towards their contact with the parietals, 
forming a saddle-like outline of the skull roof in lateral view, resembling the condition observed 
in O. avitus (Fig. 8). The interfrontal suture is completely fused; dorsally the frontals form a 
broad, V-shaped contact with the parietals, whilewhereas their contact along the temporal surface
is nearly vertical. The supraorbital processes gently slope ventrolaterally from the midline 
(c.47[0]), and only their anterior half is covered by the ascending process of the maxillae (Fig. 6, 
8). The preorbital processes are rounded and only partially covered by the maxillae and are thus 
exposed dorsally; anteriorly they contact the maxillae and anteroventrally the lacrimals. The 
postorbital process is blunt, long, and oriented posterolaterally and ventrally to a level nearly in 
line with the lacrimal when viewed laterally (c.62[0]; Fig. 8). The orientation of the postorbital 
process gives the orbit a slight anterolateral orientation in dorsal view, whileand in lateral view, 
the orbit is highly arched and positioned high relative to the rostral maxillary edge as in O. avitus
(c.48[2]; Figs. 6, 8). The posterior edge of the supraorbital process is defined by a relatively 
sharp orbitotemporal crest that becomes blunter towards its contact with the orbital process of the
parietal.
Ventrally, in the orbital region, the frontal contacts the lacrimal anterolaterally to form the 
anterior edge of the orbit (Figs. 8-9). More medially the frontal contacts the maxilla and palatine,
forming the posterodorsal border of the infundibulum for the sphenopalatine and infraorbital 
foramina (Figs. 8-9). Medially, the optic foramen has an oval outline (~10 x 5 mm) and is 
oriented anterolaterally; the posterior edge of the optic foramen and infundibulum is defined by a
low infratemporal crest (c.63[0]; Fig. 9). As in Simocetus rayi and O. avitus, a small (~3 mm 
diameter) ethmoid foramen (sensu Fordyce, 2002) is located anterolateral to the optic foramen, 
while a series of additional, smaller foramina (1-2 mm) for frontal diploic veins are located more
laterally.
Lacrimal + Jugal—Only a small, cylindrical portion of the proximal end of the jugal is 
preserved,; it is set in a close-fitting socket formed by the lacrimal anterodorsally, and the 
maxilla anteriorly and ventrally (c.54[0], 55[0]; Figs. 8-9). As preserved, the jugal is visible only 
in lateral or ventral views, asbecause dorsally it is covered by the lacrimal, and thus resembles 
the condition observed in CCNHM 1000 by Racicot et al. (2019). The lacrimal is enlarged and 
shaped like a thick rod that covers the anterior surface of the preorbital process of the frontal; a 
lacrimal foramen or canal is absent (c.51[1], 52[0], 53[1]; Figs. 6, 8-9). The lacrimals are broadly
visible in dorsal view as they are not covered by the maxillae as in Olympicetus avitus, thus 
resembling the condition observed in Simocetus rayi; ventrally their exposure is 
anteroposteriorly short relative to the length of the supraorbital process of the frontal (c.56[0]), 
but are elongated mediolaterally, forming the dorsolateral and dorsal edges of the ventral 
infraorbital foramen (c.58[2]), differing from O. avitus where they are formed by the maxilla and
lacrimal.
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Parietal—The parietals are broadly exposed in dorsal view, with no clear indication of the 
presence of an interparietal (c.135[0], 136[1]; Fig. 6), although it is visible in some 
ontogenetically young specimens that can be referred to Olympicetus sp. (i.e. CCNHM 1000, 
Racicot et al., 2019; see discussion). Anteriorly in In dorsal view, the anterior ends of the 
parietals meet the frontals along a broad V-shaped suture, with their anterolateral corners 
extending for a short distance along the base of the postorbital processes of the frontals, although
not as far as in Olympicetus avitus. Posterior to the frontal-parietal suture, there is a low incipient
sagittal crest that gives the intertemporal region an ovoid cross section (c.137[0]), similar to the 
condition in O. avitus and Simocetus rayi. As in O. avitus, the parietals contact the supraoccipital
along an anteriorly convex suture when viewed dorsally. The temporal surface of the parietal is 
flat to shallowly concave anteriorly, with a near vertical suture with the frontal (c.134[0]; Fig. 9) 
as it descends to form the posterior wall of the optic infundibulum; the temporal surface of the 
parietal becomes more inflated posteriorly and posteroventrally, where it contacts the squamosal 
and alisphenoid (Figs. 6, 8). The anteroventral edge of the parietal forms a semilunar notch that 
likely contacted part of the alisphenoid and the dorsal lamina of the pterygoid, then continuing 
posteriorly to form part of the subtemporal crest.
Supraoccipital—The anterior edge of the supraoccipital forms a semicircular arch when viewed 
posteriorly and dorsally, extending nearly as far anteriorly as the anterior edge of the squamosal 
fossa (c.140[0], 153[1]) as in Olympicetus avitus and Simocetus rayi (Figs. 6-7A-B). The 
posterior surface is incompletely preserved, but seems to have had a low external occipital crest 
(c.156[?1], 311[?0]). The nuchal crest is oriented dorsolaterally (c.154[1]), curving posteriorly 
and ventrally to meet the supramastoid crest of the squamosals (Figs. 6, 7A-B, 8).
Exoccipital—The occipital condyles have a semilunar outline and are transversely and 
dorsoventrally convex, with sharp dorsal and lateral edges. Although the bone is poorly 
preserved, there is no indication for the presence of well-defined dorsal condyloid fossae 
(c.157[0]), differing from the condition in Olympicetus avitus (Fig. 7A-B). The surfaces lateral to
the condyles are shallowly convex transversely, and the paroccipital processes are broad, 
oriented posteroventrally to a point nearly, but not reaching the posterior edge of the condyles 
(c.198[2]; Fig. 6).
Basioccipital—The basioccipital is partially covered by part of the atlas posteriorly and hyoids 
posteroventrally (Fig. 7). The basioccipital crests are oriented ventrolaterally, diverging 
posteriorly at about an angle between 60-70º. Sediment covering the lateral surface of the crests 
makes it hard to determine their transverse thickness, but they seem to have been transversely 
narrow (c.192[0]); 195[2]), with their posteroventralmost end forming a small flange as in 
Simocetus rayi (c.194[2]; Fig 7C-D). No well-developed rectus capitus anticus fossa is 
discernible on the ventral surface (c.193[0]).
Squamosal—The zygomatic processes are partially eroded, more so on the left side;, however, 
its general morphology is conserved on the right side. The processes are oriented anteriorly 
(c.143[0]) and seem to have been relatively long (c.189[?3]). In lateral view the dorsal edge of 
the zygomatic process is greatly convex dorsally (c.144[0]), whilewhereas ventrally it is strongly
concave (c.151[0]) (Fig. 8). The apex of the zygomatic process has a transverse cleft (best 
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preserved on the right side; c.337[1]; Fig. 8), which is presentoccurs in the type of Olympicetus 
avitus (LACM 149156) as well as in Olympicetus sp. (CCNHM 1000), and may be a unique 
feature of the genus (Racicot et al., 2019). Posteriorly the sternomastoid fossa is nearly absent 
(c.145[0]), contrasting with the deeper fossa observed in O. avitus and Olympicetus sp. 1 (see 
below). In dorsal view, the zygomatic process is mediolaterally broad, forming a transversely 
narrow and relatively shallow squamosal fossa as in O. avitus (c.147[1]; Fig. 6). The floor of the 
squamosal fossa is slightly sigmoidal, sloping gently anteroventrally towards its anterior end 
(c.148[1], 149[0]), and is bounded laterally and posteriorly by a fairly continuous supramastoid 
crest (c.150[0]), which extends medially to join the nuchal crest (Fig. 6). Medially, the 
squamosal plate is flat, with an interdigitated suture with the parietal that slopes anteroventrally 
at about 45º towards the anterior edge of the squamosal fossa and subtemporal crest and contacts 
the alisphenoid. Posteroventrally, the postglenoid process is long, more so than in Simocetus rayi
and O. avitus, and anteroposteriorly broad, with near parallel anterior and posterior borders that 
end in a squared-off ventral end (c.152[2]; Figs. 7C-D, 8). Abaft the postglenoid process, the 
external auditory meatus is deep and anteroposteriorly broad (c.190[0]), bounded anteriorly by a 
low anterior meatal crest, that, as in O. avitus, seems to have formed the posterior edge of a fossa
for the reception of the sigmoid process of the squamosal. The posttympanic process does not 
extend as far ventrally as the postglenoid process; its ventral surface is tightly sutured to the 
posterior process of the tympanic bulla (Figs. 7C-D, 8). In ventral view, the glenoid fossa is 
poorly defined, although medially there is a very shallow, nearly indistinguishable 
tympanosquamosal recess occurs medially (c.179[?1,2]), as in O. avitus and S. rayi. 
Anteromedially the falciform process is anteroposteriorly broad with a nearly square outline 
(about 15 mm by 15 mm; c.177[0]), medially contacting the distal half of the anterior process of 
the periotic (fig. 10C), resembling the condition observed in Simocetus rayi, Archaeodelphis 
patrius and basilosaurids (Allen, 1921; Luo and Gingerich, 1999; Fordyce, 2002; Uhen, 2004). 
In posterior view, the squamosal has a relatively narrow exposure lateral to the exoccipitals 
(c.146[1]; Fig. 7A-B).           
Pterygoid—In ventral view, the pterygoids form robust, cylindrical hamular processes that are 
not excavated by the pterygoid sinuses (c.173[1], 174[0]) and are separated anteriorly along the 
midline by a diamond-shaped exposure of the vomer, resembling the condition observed in 
Simocetus rayi (Fig. 7; Fordyce, 2002:fig. 4). The hamuli are long, extending posteriorly as far as
the level of the middle of the zygomatic processes (c.175[3]). The dorsal lamina extends 
dorsally, reaching the frontal, and, judging from the preserved sutures, posteriorly, to join the 
parietal and alisphenoid, forming the roof of the sinus fossa as in Olympicetus avitus (c.166[0]; 
Fig. 8-9). As in Simocetus rayi, the ventralmost point of the pterygoid sinus fossa is at the base 
of the hamuli just anterior to the Eustachian notch, suggesting that the nasal passages were 
underlaidn by the sinus fossa (Fig. 7C-D). The medial lamina forms the deep Eustachian notch, 
and bulges laterally at this point; posteriorly, it extends to contact the basioccipital crest. The 
pterygoid sinus fossa is dorsoventrally high (~45 mm), and somewhat compressed mediolaterally
(~23 mm wide), extending forwards to the level of the posterior edge of the supraorbital process 
of the frontal (c.164[2]; Figs. 7C-D, 8-9).
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Alisphenoid—Only small portions of the alisphenoid can be observed on both sides. In lateral 
view, only a small portion of the alisphenoid is exposed on the temporal fossa, where it forms the
posteromedial part of the subtemporal crest (c.142[1], 166[0]) as in other Olympicetus (Velez-
Juarbe, 2017; see below).
Orbitosphenoid/Optic Infundibulum—The orbitosphenoid is fused with surrounding bones, 
unlike the ontogenetically younger specimen of Olympicetus avitus. Within the optic 
infundibulum, the foramen rotundum and orbital fissure seem to have a similar diameter, both 
being transversely broader (~10 mm) than high (~6 mm) (Fig. 9), with the first located in a 
slightly more posteromedial position, resembling the condition in O. avitus (Fig. 9). However, no
distinct groove for the ophthalmic artery is preserved in Olympicetus thalassodon, differing from
Simocetus rayi, O. avitus and Olympicetus sp. 1 (Fordyce, 2002:fig.13; Figs. 8-9). The foramen 
rotundum opens ventrolateral to the orbital fissure, with the path for the maxillary nerve (V2) 
being bound ventrally by the pterygoid and palatine (Fig. 9).
Periotic—Only a small portion is visible on the right side. The anterior process contacts the 
falciform process anteriorly for about half its length. Posterior to this contact, a portion of the 
anterior process is visible, as is the epitympanic hiatus, which is bounded posteriorly by a 
prominent ventrolateral tuberosity (Fig. 10C).
Tympanic Bulla—Both bullae are still articulated with the cranium and mainly visible in ventral
view (Fig. 10). The tympanic bullae are transversely narrow and elongated (c.252[0]), differing 
from the proportionately broader bullae of Olympicetus avitus and O. sp. A (see below). In 
ventral view, the lateral surface is more convex and the straighter medial side is gently convex 
anteriorly, with no indication of a spine (c.251[0]). The posterior surface of the bulla is bilobed, 
being divided by a broad interprominential notch (c.267[1]) that is divided by a transverse ridge 
(c.268[0]), differing from the bulla of Olympicetus avitus, but resembling that of Olympicetus sp.
A. Both posterior prominences are level with each other (c.270[0]), the ventromedial keel forms 
a smooth curve posteriorly (c.253[0]), while more anteriorly it is poorly defined as the surface is 
nearly flat (c.274[2], 275[?0]).
A vertical, broad lateral furrow can be observed in lateral view (c.257[0], 258[0]), while more 
dorsally the sigmoid process curves posteriorly at its base, and is nearly vertical and 
perpendicular to the long axis of the bulla (c.259[0], 260[0]; Fig. 10B-C). Although not entirely 
visible, the dorsal edge of the sigmoid process likely contacted the sigmoid fossa of the 
squamosal (c.261[?0]). The posterior process is partially visible at its contact with the 
posttympanic process in lateral view (c.250[0]; Figs. 7C-D, 8, 10A-B), and seems to have had 
more or less the same thickness throughout its length (c.266[0]).
Mandible—Left and right mandibular rami are nearly in articulation with the skull and are only 
missing coronoid processes and their distal ends, including the symphyseal region (Figs. 7C-D, 
8). As preserved, the mandibles are nearly straight, with their ventral border gently arching 
dorsally at about mid length (c.39[0], 43[1]; Figs. 7C-D, 8), differing from the highly arched 
mandible of Simocetus rayi (Fordyce, 2002). Proximally, the pan bone region is transversely 
thin, and likely formed an enlarged mandibular fossa (c.44[1]). Posterodorsally on the right side, 
the lateral edge of the condyle can be observed, suggesting that its dorsal surface sits at the level 
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of, or below, the alveolar row (c.46[1]; Fig. 8). Anteriorly, the right ramus preserves five double-
rooted teeth in-situ, which are interpreted as representing p3-4 and m1-3, whilewhereas the left 
ramus preserves three teeth, that are interpreted as m1-2 and p4 (Figs. 8-9, 11-12). Multiple 
mental foramina are longitudinally arranged along the rami below the alveolar row; most are 
oval, ranging in size from 2 to 4 mm in height and up to 10 mm long, with the more posterior 
ones connected by a fissure as in Olympicetus avitus (Fig. 8; Velez-Juarbe, 2017:fig.7A).
Dentition—Taking a conservative approach to the tooth count, itthis specimen is interpreted as 
non-polydont as in Simocetus rayi (Fordyce, 2002), although incipient polydonty cannot be 
entirely ruled out, as it seems to be present on other simocetids from the eastern North Pacific 
(e.g., LACM 140702; Barnes et al., 2001). Between the teeth and alveoli, the preserved upper 
and lower dentition is interpreted to represent C, P1-4, M1-2 and p3-4, m1-3 (Figs. 8-9, 11-
12). No conspicuous signs of tooth wear are observed in either upper or lower teeth, similar to 
the condition observed in Olympicetus avitus, and differing from that in Simocetus rayi, which 
shows signs of apical wear (Fordyce, 2002). The postcanine teeth are proportionately large, 
multicusped, transversely flattened, and nearly as high as long (c.31[1], 314[0]), resembling the 
condition observed in postcanine teeth of Olympicetus avitus, Olympicetus sp. 1, and Simocetus 
rayi (Figs. 8-9, 11-12). As in Olympicetus avitus and Simocetus rayi, the crowns of postcanine 
teeth of O. thalassodon have a mesiodistally concave buccal surface, while being and are more 
convex lingually, with the apex of the crowns slightly recurved lingually. The bases of the 
crowns isare ornamented with vertical striae extending apically from ecto- and entocingula, 
particularly on the posteriormost upper teeth (c.27[1], 32[1], 33[0]; Figs. 11-12). The crowns 
consist of a main apical denticle, and smaller accessory denticles along the mesial and distal 
carinae; both apical and accessory denticles are more triangular than the more lanceolate ones 
observed in O. avitus (c.34[0]; 35[0]; Figs. 11-12; Velez-Juarbe, 2017). In double-rooted teeth, 
the roots become fused proximally, with broad grooves on both buccal and lingual sides that 
extend to the base of the crown, giving it an 8-shaped cross section as in Simocetus rayi 
(Fordyce, 2002). In P4 and M1 the mesial root is cylindrical, tapering distally, whilewhereas the 
distal root is buccolingually broader and oblong in cross section, while i. In M2 this condition is 
reversed, with the mesial root being transversely broader; mesial and distal roots of the lower 
teeth seem to be subequal in size, both being cylindrical and tapering distally.
The anteriormost end of the right maxilla has a single alveolus (diameter = 6mm) that curves 
posterodorsally and is interpreted as that of a canine, which is separated by a short interalveolar 
septum from two adjoining alveoli (each with a diameter ~7mm) for a double-rooted P1 (Figs. 8, 
11B). The second (P2) and third (P3) upper premolars are missing on the left side and 
incompletely preserved on the right; they are slightly higher than long, consisting of a main 
denticle with at least two accessory denticles on the mesial and distal edges, resembling teeth 
‘ap1’ and ap2’ of O. avitus (Fig. S1; Velez-Juarbe, 2017:fig.7D-E, Q-R). Three closely 
associated teeth that became disarticulated from the maxilla, but  are still joined by matrix, and 
along with three other loose teeth, represent left and right P4, M1-2; these have more equilateral 
crowns, being nearly as long as wide, with stronger lingual and labial cingula and ornamentation 
along the base of the crowns; the crowns of P4 and M1 consists of a main apical denticle, with 
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four distal and three mesial accessory denticles that diminish in size towards the base (c.328[1], 
329[2]; Figs. 11E-H, 12A-B, 12E-F). , tTheir overall morphology resembles that of teeth ‘mo1’ 
and ‘mo2’ of Olympicetus avitus (Fig. S1; Velez-Juarbe, 2017;fig.7M-N, Z-Aa). The second 
molar (M2) is the smallest of the series, and the crown is longer than tall; i. Its crown consists of 
a main apical denticle, four distal and two mesial accessory denticles, with the apices of all 
denticles being slightly slanted distally (Figs. 11D, 11I, 12C-D). As in Simocetus rayi and 
Xenorophus sloanii, the mesial and distal carinae on the upper posterior postcanines trend 
towards the buccal side of the teeth so that in occlusal view, the apical and accessory denticles 
are arranged in an arch (Fordyce, 2002; Uhen, 2008). These characteristics and other features 
discussed below allow for the reassignment of some of the teeth of Olympicetus avitus, with 
teeth ‘mo1’ and ‘mo2’ representing right and left M2, respectively, whilewhereas ‘ap1’ and 
‘ap2’ represent left upper premolars (Fig. S1; Velez-Juarbe, 2017:fig.7). An isolated single-
rooted tooth is interpreted as an upper canine or incisor (FIg. 12H-I). The crown is conical, with 
vertical striation along its lingual surface and a buccal cingulum; mesial and distal carinae seem 
to be present, with larger denticles along the distal carina. 
The preserved lower dentition includes p3-4, m1-3, and p4, m1-2 on the right and left mandibles,
respectively (Figs. 8, 11A-C, 12C). As with the upper premolars, p3-4, m1-3 have a triangular 
outline of the crown in buccal or lingual views; while in occlusal view the mesial and distal 
carinae do not trend buccally as opposed to the upper molars. Furthermore, in p3-4 and m1-2 the 
mesial carina has two accessory denticles (c.330[2]) that are much smaller than the apical 
denticle, whilewhereas three to four accessory denticles occur along the distal carina there are 
three to four accessory denticles (c.331[4]), with the apical ones being nearly as large as the 
apical denticle, and then diminishing in size towards the base of the crown (Fig. 8, 11A-C, 12C). 
There is nearly no ornamentation along tThe buccal sides of the lower premolars and molars are 
unornamented, with only a few inconspicuous vertical striae, but no prominent cingulum, while 
lingually striae are more prevalent, and a cingulum is present (Figs. 11A-C, 12G). As in the 
upper toothrow, the last tooth, in this case m3, is the smallest in the series, seemingly lacking 
accessory denticles on the mesial carina, and having three subequal denticles along the distal 
carina. As with the preceding teeth, ornamentation is nearly absent on the buccal side (Fig. 11A).
An isolated tooth adjacent to the posterior end of the left maxilla and mandible, may represent 
the left m3 (Fig. 12J). This tooth resembles the right m3, but its mesial carina is partially 
damaged, so it is unclear if any accessory denticles were present; its distal carina contains three 
denticles that diminish in size basally. The lower postcanine dentition of Olympicetus 
thalassodon appears to be characterized by having less conspicuous ornamentation on the buccal 
side, and more vertically aligned carinae. Based on these characteristics the lower dentition of 
Olympicetus avitus is reinterpreted as follows: teeth ‘pp1-4’ represent left p3-m2, while ‘pp5’, 
‘pp7’, and ‘pp6’ represent p3, p4, and m1 from the right side ( Fig. S1; see also Velez-Juarbe, 
2017:fig.7F-G, J, L, S-T, W, Y).
Hyoid—Most of the hyoid elements are preserved in LACM 158720, including the basihyal, 
stylohyals and thyrohyals (Fig. 13A-C). The basihyal has a rectangular, blocky outline, with both
lateral ends expanded, forming broad, quadrangular rugose surfaces for the articulation of the 
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paired elements (stylo- and thyrohyals). The mid portion is subtriangular in cross-section, and 
the dorsal surface is shallowly concave transversely. The partial, left thyrohyal obscures the 
posteroventral surface of the bone. The partial left and the complete right thyrohyals and 
stylohyals are preserved (Fig. 13A-C). The thyrohyals are not fused to the basihyal and are fairly 
straight, with a transversely oval cross section at mid-length; overall they are shorter, but more 
robust than the stylohyals, and not flattened, wing-like as in extant mysticetes and odontocetes 
(c.338[0]; Fig. 13). The proximal articular surface has a rectangular outline, and the surface is 
rugose and shallowly convex. Distally, the shaft is twisted, so that the distal articular surface is 
nearly perpendicular to the long axis of the proximal surface. The distal articular surface has a 
more oval outline that is rugose and shallowly convex. The stylohyals are long and slender, and 
the right stylohyal is nearly in articulation with the paroccipital process (Fig. 13A-B). Along the 
long axis they are bowed laterally, with the shaft having a more flattened, oval cross-section 
along its length, with both, proximal and distal ends expanded, being overall, nearly identical to 
the stylohyoid of Olympicetus avitus (Velez-Juarbe, 2017). The proximal end is transversely 
expanded with a nearly flat, rugose articular surface. Distally, the shaft becomes twisted, so that 
the distal end is offset at about 45º from the proximal articular surface. The lack of fusion 
between the thyrohyal and basihyal, and the cylindrical shape of the thyrohyal resembles the 
condition observed in basilosaurids (e.g., Dorudon atrox [Andrews, 1906], Cynthiacetus 
peruvianus Martínez-Cáceres and de Muizon, 2011; Uhen, 2004; Martínez-Cáceres et al., 2017) 
and some stem mysticetes (e.g., Mammalodon colliveri Pritchard, 1939, Fucaia buelli Marx et 
al., 2015, Mystacodon selenensis Lambert et al., 2017; Fitzgerald, 2010; Muizon et al., 2019), 
whilewhereas in more derived odontocetes (e.g., Brygmophyseter shigensis (Hirota and Barnes, 
1995), Kogia breviceps (Blainville, 1838), Albireo whistleri Barnes, 1984, Kentriodon nakajimai
Kimura and Hasegawa, 2019, Tursiops truncatus (Montagu, 1821); Fig. 13D-G) these bones are 
partially or completely fused, and the thyrohyals tend to be more flattened and plate- or wing-
like (Reidenberg and Laitman, 1994; Hirota and Barnes, 1995; Barnes, 2008; Johnston and 
Berta, 2011; Kimura and Hasegawa, 2019).
Cervical Vertebrae—The atlas, axis and C3-7 are partially preserved, and unfused (c.279[0], 
280[0]; Fig. 14; Table 2). The dorsal arch of the atlas has a low, blunt mid-dorsal ridge that 
extends nearly the whole length of the arch. The vertebral foramen is broken, although it seems 
to have occupied the same position as that of Olympicetus avitus (Velez-Juarbe, 2017). The 
anterior articular facets are obscured asbecause the atlas is still attached to the skull, while the 
posterior facets have a reniform outline, and form a dorsoventrally elongate, smooth, flat surface 
that extends dorsal to the articulation for the odontoid process (Fig. 14A). On the ventral arch, 
the hypapophysis that would have articulated with the odontoid process is short as in O. avitus 
and unlike the longer, more robust process of Simocetidae gen. et sp. A, and Echovenator 
sandersi (Churchill et al., 2016). The transverse processes are oriented slightly posterolaterally, 
and are divided by a broad, rounded notch into a larger, more robust dorsal process and a 
smaller, knob-like ventral process (c.278[2]; Fig. 14A). The neural canal has an oval outline.
The axis is missing the dorsal arch. The odontoid process is short and blunt. The anterior 
articular surface has a subtriangular outline and is flat to shallowly concave, extending 
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anteroventrally and being continuous with the ventral surface of the odontoid process (Fig. 14B).
The transverse processes are oriented posterolaterally, with a triangular outline when viewed 
anteriorly. Their ventral surface is anteroposteriorly broad, forming a flat surface that faces 
ventrally and slightly posteriorly, with a sharp anterior edge (Fig. 14B-D). Dorsomedially, the 
posterior surface of the transverse process forms a relatively deep, concave surface. Cervicals 3-
6 are missing their dorsal arches and transverse processes for the most part, while only a small 
portion of C7 is preserved. The centra are anteroposteriorly flat and slightly wider than high;, the
epiphyses are unfused (Fig. 14C-D). The right transverse process of C3 is partially preserved, 
and its morphology is similar to that of the axis.
Remarks—Olympicetus thalassodon represents an adult individual, in contrast with the other 
specimens of Olympicetus thus far described, which represent neonatal (LACM 126010, 
CCNHM 1000), and subadult (LACM 149156, LACM 124105) individuals (Vélez-Juarbe, 2017;
Racicot et al., 2019). This could potentially raise the question whether O. thalassodon represents 
an adult individual of O. avitus or Olympicetus sp. 1 (described in detail below). However, O. 
thalassodon differs from O. avitus and Olympicetus sp. 1 by characters that do not seem to be the
result of differences between individuals of the same species or ontogenetic stage. For example, 
O. thalassodon differs from other Olympicetus by having a larger, more elongate tympanic bulla 
(Table 3). Nevertheless, ontogenetic variation can be ruled out to explain this difference 
asbecause odontocetes show precocial development of the tympanic bullae (Buffrénil et al., 
2004; Lancaster et a., 2015). Other characteristics, such as the number of denticles in the carinae 
of upper and lower molars, can also be ruled out as resulting from ontogenetic or intraspecific 
variation. These taxa can alsofurther be differentiated from each other by morphological 
characters of the orbital region, such as the arrangement of the bones that form the dorsolateral 
edge of the ventral infraorbital foramen, the height of the orbit relative to the lateral edge of the 
rostrum, and the composition of the posterior wall of the antorbital notch.
 
OLYMPICETUS sp. 1
(Figs. 15-20; Tables 1, 3, 6)
Material—LACM 124105, partial skull, including two partial teeth, left tympanic bulla and 
right periotic; missing distal end of rostrum, zygomatic arches, parts of the neurocranium and 
mandible. Collected by J. L. Goedert December 17, 1983.
Locality and Horizon—LACM Loc. 5123, Murdock Creek, Clallam Co., Washington State, 
U.S.A. (48º 09’ 25”N, 123º 52’ 10”W). See above for additional information from this locality. 
Formation and Age—Pysht Formation, between 30.5–26.5 Ma (Oligocene: late Rupelian-early 
Chattian; Prothero et al., 2001a; Velez-Juarbe, 2017).
Temporal and Geographic Range—Oligocene of Washington, U.S.A.

Description
The description is based solely on LACM 124105 and will focus on morphological characters 
that differentiate it from Olympicetus avitus and O. thalassodon. As with the type of 
Olympicetus avitus, LACM 124105 seems to represent a subadult individual, showing some 
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partially open sutures, such as the basisphenoid-presphenoid suture. Multiple areas of the skulls 
show evidence of erosion (e.g., rostrum, skull roof), likely as a result of wave action, asbecause 
specimens from this locality are usually recovered as concretions along the beach.
Premaxillae—Only part of the left ascending process of the premaxilla is preserved (Fig 15). 
The ascending process borders the external nares as it ascends towards the vertex (c.74[0]);, 
however, its incomplete preservation posterior to the nasals does not permit identification of its 
posteriormost extent. A relatively deep sulcus extends along its anterior border, which is 
consistent with the placement and morphology of the posterior extent of the posterolateral sulcus 
in Olympicetus avitus (c.73[2); Figs. 15, 17; Velez-Juarbe, 2017). 
Maxilla—Only part of the rostral portion of the maxilla is preserved (Figs. 15-18). Ventrally, the
palatal surface is incompletely preserved along the midline and along the alveolar rows;, 
however, the parts that are preserved indicate that it was transversely convex, with the alveolar 
rows slightly more elevated dorsally (Fig. 17). Posteriorly, the contact between the maxillae and 
palatines seems to have been triangular to anteriorly bowed (c.20[?0], 21[1]; Fig. 16) as in other 
Olympicetus. The alveolar rows, although incompletely preserved, diverged posteriorly, and had 
at least three pairs of closely-spaced, double-rooted postcanine teeth (c.23[0], 26[0]). Based on 
the preserved posterior border of the alveolar row, it seems that at least a short maxillary 
infraorbital plate was present (c.60[1]; Fig. 17). In posteroventral view, the ventral infraorbital 
foramen has an oval outline (~12 mm wide by 9 mm high); its dorsolateral, ventral, and 
ventromedial edges are defined by the maxilla, whileand its dorsomedial edge is defined by the 
frontal (c.58[0], [59[0]). 
In dorsal view, the rostrum seems to have been fairly wide (c.7[1]; Fig. 15). Dorsally, at the base 
of the rostrum, the maxilla faces dorsolaterally, and is shallowly convex to flat as it ascends over 
the supraorbital processes of the frontal; thus as in other species of Olympicetus, it lacks a rostral 
basin (c.66[0]; Fig. 15). At the base of the rostrum, there are at least three anterior dorsal 
infraorbital foramina ranginge in diameter between 2-5 mm, with a fourth, more posterior 
foramen, dorsomedial to the antorbital notch (c.65[3]; Figs. 16-18). The maxillae are eroded at 
the level of the antorbital notches, so it is uncertain if these formed part of the posterior wall of 
the notch as in Olympicetus avitus. The ascending process of the maxilla partially covers the 
supraorbital process of the frontal, extending posteriorly and posteromedially beyond the anterior
half of the process, coming into contact with the nasal process of the frontal near the midline and
forming a gently sloping surface towards the edge of the orbit, but not reaching its lateral border 
(c.49[0], 77[1], 78[2], 79[0], 80[0], 130[0], 308[1]; Fig. 15).
Vomer—The vomer is mostly missing anterior to the antorbital notches and eroded 
anteroventrally,; nevertheless, it is evident that it formed the lateral and ventral surfaces of the 
mesorostral canal. Ventrally, the vomer likely was exposed through a diamond-shaped window 
towards the posterior end of the palate as in other simocetids (Fig. 16). Dorsal and posterodorsal 
to this point the vomer forms the nasal septum, forming the medial walls of the choanae. From 
the posterior palatal exposure, the vomer gently slopes posterodorsally, to form a triangular, 
horizontal plate extending over the still open, basisphenoid-presphenoid suture, but not reaching 
as far posterior as the fused basisphenoid/basioccipital contact (c.191[0]; Fig. 16). The horizontal
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plate of the vomer contacts the dorsal laminae of the pterygoids along its anterolateral ends (Figs.
16-18).
Palatine—Only some very small fragments of the right palatine are preserved. Posterodorsally, a
fragment of lateral surface of the palatine reaches the frontal, forming part of the infundibulum 
for the sphenopalatine and infraorbital foramina, as well as the posterior border of a round (~5 
mm diameter) sphenopalatine foramen (Fig. 18). The infundibulum has an oval outline, being 
broader than high (20 mm x 10 mm), and is bounded dorsally by the frontal and lacrimal, and the
maxilla ventrally and ventrolaterally (Fig. 18).
Nasal—Although incompletely preserved, the nasals seem to have been the highest point of the 
vertex, were longer than wide, and dorsoventrally thin, as in other simocetids (c.114[0], 116[0], 
118[?0], 124[0], 125[0], 312[0]; Figs. 15, 17). Along their posterior borders, theythe nasals are 
separated by the narrow, narial processes of the frontals (Fig. 15). The anterior edges of the 
nasals isare incompletely preserved, but extended far forward of the anterior edge of the 
supraorbital processes, whilewhereas posteriorly it seems that they reach a level in line with the 
anterior edge of the supraorbital processes (c.81[3], 123[0]; Fig. 15). 
Frontal—As in other Olympicetus, there is a wedge-shaped exposure of the frontals occurs 
along the midline, surrounded by the maxillae laterally and nasals anteriorly, although poor 
preservation of the surrounding bones does not allow precise determination of the size of this 
exposure relative to the nasals (Fig. 15). Along the midline, the bone is poorly preserved, 
although it does seem likethat the frontals are lower than the nasals, preserving the saddle-like 
profile (in lateral view) seen in other species of Olympicetus. Posteriorly, the frontal-parietal 
suture seems to have been broadly V-shaped dorsally, and sinusoidal in the temporal region, with
no extension of the parietals into the supraorbital processes. Laterally, the supraorbital processes 
slope very gently ventrolaterally (c.47[?0]; Fig. 17). Dorsally, the maxillae only partially cover 
the supraorbital processes, leaving the preorbital and postorbital processes broadly exposed 
dorsally (Fig. 15). Anteroventrally, the preorbital process contacts the lacrimal. The postorbital 
processes are incompletely preserved, but seem to have been relatively short, robust, and 
oriented posteroventrolaterally (Fig. 15, 17). In lateral view the dorsal edge of the orbit is highly 
arched but positioned at a lower position (c.48[1]; Fig. 17), relative to the lateral edge of the 
rostrum, than is observed in Olympicetus avitus or O. thalassodon. A low, and sharp temporal 
crest extends anterolaterally from near the frontal/parietal suture and into the posterodorsal and 
dorsal surface of the supraorbital process (c.132[2]; Fig. 15), differing from the condition in 
other Olympicetus. 
Ventrally, the frontal contacts the lacrimal anteroventrally, and the maxilla and/or palatine more 
medially, resulting in the frontal forming part of the posterodorsal edge of the infundibulum for 
the ventral infraorbital and sphenopalatine foramina (Figs. 16, 18). The optic foramen is partially
covered by sediment; its general orientation seems to be anterolateral, with its posterior border 
being defined by a low, but sharp infratemporal crest (c.63[0]). Similar to other simocetids, a 
small (~3 mm diameter) ethmoid foramen is anterolateral to the optic foramen and is 
accompanied by four to five smaller (1-2 mm) foramina located along the dorsolateral roof of the
orbit (Figs. 16, 18).
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Lacrimal + Jugal—Only a small portion of the jugal is preserved, but it is evident that it was 
not fused with the lacrimal (c.54[0], 55[0]; Figs. 17-18). The portion of the jugal that is 
preserved is stout and cylindrical, tapering medially, and wedged between the lacrimal and 
maxilla, which excludes it from forming part of the ventral infraorbital foramen (Figs. 17-18). 
The lacrimal is large, and rod-like, broadly visible in dorsal and lateral views, but with a 
proportionately small ventral exposure (c.51[1], 56[0]). It contacts the preorbital process of the 
frontal anteroventrally, tapering medially, and seems to have been exposed anteriorly, forming 
part of the posterior wall of the antorbital notch, but not extending dorsally onto the supraorbital 
process (c.52[0]; Figs. 15, 17-18).
Parietal—The parietals are exposed dorsally, but badly eroded (c.135[0], 136[?]; Fig. 15). The 
parietals contact the frontals along a broad, V-shaped suture, but differ from the condition seen 
in other species of Olympicetus in that they do not extend into the base of the supraorbital 
processes. In cross section through the intertemporal region, the parietals seem to have an ovoid 
outline (c.137[?1]), resembling the condition in Olympicetus avitus. Along the temporal surface 
the parietal becomes more inflated posteriorly towards its contact with the squamosal and 
alisphenoid (Figs. 17-18). Ventrally, the parietal has an internal projection that contacts the 
squamosal medial to the periotic fossa, constricting the cranial hiatus as in other simocetids 
(c.184[2]; Fig. 16).
Supraoccipital—The supraoccipital is only partially preserved, with the exception of its 
dorsolateral borders. The nuchal crests are sharp, directed dorsolaterally, and only slightly 
overhanging the temporal fossae (c.154[1]; Fig. 15), and curving posteroventrally to join the 
supramastoid crests of the squamosals.
Exoccipital—The exoccipital is poorly preserved. Dorsal to the remaining parts of the right 
occipital condyle, there is what seems to be a shallow dorsal condyloid fossa (c.157[?1]). The 
surface lateral to the condyles is flat to shallowly convex.
Basioccipital—As preserved, the basioccipital crests seem to have been relatively thick 
transversely (c.192[?1]) and oriented posterolaterally, at about an angle of 45 degrees (c.195[3]; 
Fig. 16). The rest of the ventral surface is incompletely preserved.
Squamosal—The zygomatic processes are incompletely preserved. Posteromedially, the 
sternomastoid fossa forms a distinct emargination that is overhung dorsally by the supramastoid 
crest, much more than in Olympicetus avitus (c.145[1]; Fig. 15). The supramastoid crest seems to
have been continuous with the nuchal crest (c.150[0]; Fig. 17). The squamosal plate contacts the 
parietal along an anteroventrally sloping interdigitated suture, meeting the alisphenoid to form 
part of the subtemporal crest (Fig. 17). Ventrally, the squamosal is heavily eroded, and only a 
small portion of the periotic fossa is preserved, where it contacts the medial extension of the 
parietal (Fig. 16).
Pterygoid—Most of the pterygoid is missing on both sides of the skull. A portion of the dorsal 
lamina extends posterodorsally towards the parietal and contributes to the posteroventral edge of 
the optic infundibulum as in Olympicetus avitus (Figs. 17-18). As preserved, the pterygoid sinus 
fossa is anteroposteriorly longer than wide, and is located entirely anterior to the foramen ovale 
(c.164[2], 169[0]; Figs. 16, 18).
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Alisphenoid—As seen in Olympicetus avitus, the alisphenoid forms the posterodorsal surface of 
the pterygoid sinus fossa (Figs. 16, 18). The medial and posterior ends of the bone are 
incompletely preserved or eroded on both sides, making it difficult to determine the position of 
the alisphenoid-squamosal suture or the path of the mandibular nerve (V3). On the temporal 
wall, the exposure of the alisphenoid is limited to a small sliver, asbecause it is mostly 
overlapped by the parietal and the squamosal (c.142[1]; Figs. 17-18).
Basisphenoid—Posteriorly the basisphenoid is fused with the basioccipital, whileand anteriorly 
its suture to the presphenoid (sphenoidal synchondrosis) is still open, resembling the growth 
stage of the type of Olympicetus avitus (Velez-Juarbe, 2017). The ventral surface is flat and 
covered by the horizontal plate of the vomer (Fig. 16).
Optic Infundibulum—The optic infundibulum is a slightly sinusoidal opening bounded by the 
frontal anteriorly and dorsally, parietal posteriorly, pterygoid ventrally and anteroventrally (Fig. 
18). The optic foramen, orbital fissure and foramen rotundum are still partly covered by 
sediment. The frontal forms most of the borders of the optic foramen anterodorsally, 
whilewhereas posteroventrally the foramen rotundum was bounded laterally by the parietal and 
floored by the pterygoid. The anteroventral edge of the parietal that forms part of the 
infundibulum has a narrow groove that trends anterodorsally, and would have carried the 
ophthalmic artery, resembling the condition in Simocetus rayi and Olympicetus avitus (Fig. 18; 
Fordyce, 2002; Velez-Juarbe, 2017). While aAlong the ventral edge of the infundibulum, the 
pterygoid has a distinct, but shallow groove, that would have presumably carried the maxillary 
nerve (V2), extending along its dorsolateral surface and diverging slightly over its lateral surface 
anteriorly (Fig. 18).
Malleus—The left malleus is still attached with the corresponding tympanic (Fig. 19). The head 
has a semicircular outline, with paired facets for articulation with the incus that are oriented at 
about 90 degrees to each other; the more anterior facet is about twice as large as the posterior 
one, as in Olympicetus avitus (Fig. 19; Velez-Juarbe, 2017). The tubercule is relatively large, 
nearly as long as the head (c.199[0]; Fig. 19). The manubrium is prominent, with its apex 
forming a slightly recurved muscular process (Fig. 19). The anterior process is fused laterally to 
the tympanic, dorsally forming a continuous surface with the mallear ridge. Meanwhile, the 
ventral edge of the anterior process is shelf-like and together with the mallear ridge forms a deep,
narrow sulcus for the chorda tympani (Fig. 19A, C, E).
Tympanic Bulla—Only the left tympanic bulla is preserved (Fig. 19) but missing its posterior 
process. Overall it closely resembles in size and morphology that of Olympicetus avitus (Velez-
Juarbe, 2017). In dorsal or ventral view, the bulla has a heart-shaped outline, being relatively 
short and wide (c.252[1]), unlike the larger and transversely narrower bulla of Olympicetus 
thalassodon (Figs. 10, 19). The lateral surface of the tympanic bulla is broadly convex, 
whilewhereas the medial surface is straight; the posterior prominences give the bulla a bilobed 
outline posteriorly, whilebut anteriorly, the lateral surface converges medially more steeply than 
the medial surface along a smooth curve. There is no indication of the presence of an anterior 
spine (c.251[0]). Posteriorly, a broad interprominential notch extends from the level below the 
elliptical foramen, continuing along the ventral surface of the bulla as a short, shallow median 
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furrow for only about a third of its length (c.267[0]). The interprominential notch is divided by a 
transverse ridge (c.268[0]; Fig. 19D), resembling the condition observed in Olympicetus 
thalassodon, and differing from that of O. avitus, which does not have an interprominential 
ridge. The inner and outer prominences extend posteriorly to nearly the same level (c.270[0]). 
The ventromedial keel is poorly defined, forming a smooth curve around the posterior part of the
involucrum, its posteromedial surface just slightly bulging farther medially than the rest of the 
involucrum (c.253[0], 274[2], 275[0], 276[0]). The elliptical foramen seems to have been 
narrow, and nearly vertical (c.262[0]).
In lateral view, the ventral edge of the bulla is nearly flat (c.269[0]), differing from the more 
broadly concave ventral margin observed in some xenorophids, like Albertocetus meffordorum 
(Uhen, 2008). The lateral furrow is nearly vertical, forming a relatively broad sulcus (c.257[0], 
258[0]; Fig. 19B). Dorsally, the sigmoid process is vertical and perpendicular to the long axis of 
the bulla (c.259[0]), with its posterior edge curving anteriorly along a smooth curve (c.260[0]). 
The mallear ridge extends obliquely from the anteromedial base of the sigmoid process towards 
the dorsalmost extension of the lateral furrow. A narrow, dorsally open sulcus for the chorda 
tympani extends anteriorly for a length of 17 mm along the dorsomedial edge of the outer lip, 
originating at the junction between the anterior process of the malleus and the mallear ridge (Fig.
19A, C, E). The anterodorsal crest descends steeply towards the anterior edge of the bulla.
In medial view the dorsal and ventral edges of the involucrum gradually converge towards the 
anterior end of the bulla (c.271[0]; Fig. 19A). The involucrum has numerous, faint vertical ridges
(c.272[1]), differing from the deeper grooves observed in xenorophids, like Albertocetus 
meffordorum (Uhen, 2008).
Periotic—Only the right periotic is preserved (Fig. 20A-H) and is overall very similar to that of 
Olympicetus sp. (CCNHM 1000) described by Racicot et al. (2019). The anterior process is 
oriented anteriorly and short relative to the length of the pars cochlearis, with its anteroventral 
and anterodorsal ends being bluntly pointed, and together giving it a nearly squared-off outline in
medial or lateral view (c.201[0], 202[0], 204[2]; Fig. 20C-D). In medial or lateral view, the 
anterior process is deflected ventrally to a point below the ventral edge of the pars cochlearis 
(c.203[1]; Fig. 20C-D). The anteroventral surface of the anterior process forms a slightly convex 
to flat ventral surface (c.205[0]; Fig. 20C-D). In lateral view, at the base of the anterior process 
there is a shallow, C-shaped sulcus that begins near the anteroventral edge, curves 
posteroventrally towards the lateral tuberosity, then curves anterodorsally; it is interpreted as a 
combined anteroexternal+parabullary sulcus (sensu Tanaka and Fordyce, 2014; Fig. 20G-H). 
This condition resembles that of other early odontocetes such as Waipatia maerewhenua 
Fordyce, 1994, and Notocetus vanbenedeni Moreno, 1892, but differs from others like Otekaikea
marplesi (Dickson, 1964) where these sulci are separate, and from the much deeper sulcus in 
Papahu taitapu Aguirre-Fernández and Fordyce, 2014 (Tanaka and Fordyce, 2014; Viglino et 
al., 2022). In cross-section, the anterior process is ovoid, being dorsoventrally taller (~14 mm) 
than mediolaterally wide (~9 mm) (c.209[1]). The anterior part of the ventral surface of the 
anterior process has as well-defined anterior bullar facet (c.210[3]; Fig. 20E-F). Posterior to the 
anterior bullar facet, the fovea epitubaria forms a smooth curve that is interrupted by a prominent
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lateral (ventrolateral) tuberosity (c.212[1]). The lateral tuberosity has a triangular outline in 
ventral view but does not extend as far laterally as in other stem odontocetes such as Cotylocara 
macei (Geisler et al., 2014), being instead barely visible in dorsal view. A broadly arched 
epitympanic hiatus lies posterior to the lateral tuberosity and anterior to the base of the posterior 
process (c.213[1]). Posteromedial to the epitympanic hiatus, is a small (diameter: ~2 mm) 
rounded fossa incudis, while anterior to it and medial to the lateral tuberosity is a broad 
(diameter: ~6 mm), circular mallear fossa (c.214[1], 215[0]; Fig. 20E-F). The lateral surface of 
the periotic is generally smooth with the exception of the posterior process, whose lateral surface
is rugose (c.217[2]; Fig. 20G-H). Medially, the anterior process is separated from the cochlea by 
a well-defined groove (anterior incisure, sensu Mead and Fordyce, 2009) that extends 
anterodorsally, and marks the origin for the tensor tympani muscle (c.218[1]).
In dorsal view, a low crest delimits laterally the dorsal surface of the periotic; it extends from the
low pyramidal process towards the anterodorsal spine of the anterior process (Fig. 20A-B). 
Medial to this crest is an elongated depression, the suprameatal fossa, which is about 13.5 mm 
long by 7 mm wide, and around 1.5 mm deep (Fig. 20A-B). The fundus of the internal acoustic 
meatus is funnel-shaped, with an oval outline, delimited by a low ridge (c.235[0]; 236[0]). The 
area cribrosa media (sensu Mead and Fordyce, 2009; Orliac et al., 2020; = inferior vestibular 
area of Ichishima et al., 2021) and the spiral cribiform tract are separated by a very low ridge, 
these two are in turn separated from the area cribrosa superior (previously called the foramen 
singulare, Orliac et al., 2020; = superior vestibular area of Ichishima et al., 2021) by a low 
transverse crest that lies about 3 mm below the upraised rim of the internal acoustic meatus, 
while it is separated from the dorsal opening of the facial canal by a ridge that is slightly lower 
(~4 mm from the edge of the rim) (c.237[2]; Fig. 20A-B). The proximal opening of the facial 
canal has an oval outline and is located anterolateral to the spiral cribriform tract (c.238[0], 
239[1]); a. Anterodorsally it is bridged, forming a “second” foramen, which is smaller and 
rounded (Fig. 20A-D), resembling the condition observed in other early odontocetes, such as 
Waipatia maerewhenua, and similarly, is interpreted as the foramen for the greater petrosal nerve
(Fordyce, 1994). The aperture for the endolymphatic duct (vestibular aqueduct) is slit-like (~4 
mm long by 1 mm wide), and located posterolateral to the internal acoustic meatus, just below 
the more vertical posterior surface of the pyramidal process and separated from the fenestra 
rotunda by a very wide distance (c.230[3]; Fig. 20A-D). In contrast, the aperture for the 
perilymphatic duct (cochlear aqueduct) is rounded (diameter = 3mm) and located posteromedial 
to the internal acoustic meatus and medial to the aperture for the endolymphatic duct, and 
broadly separated from the fenestra rotunda (c.228[1], 229[2]). A small, curved depression 
posteroventral to the aperture for the endolymphatic duct is interpreted as a shallow stylomastoid
fossa (c.225[1]). The dorsomedial surface of the cochlear portion has a shallow depression that 
accentuates the raised medial rim of the internal acoustic meatus. In medial view, the cochlea is 
dorsoventrally thin (maximum height ~11 mm), its ventromedial surface is anteroposteriorly 
convex, and a low, faint ridge extends along its ventrolateral end (c.221[0]; Fig. 20C-F). In 
ventral view, the cochlear portion has a subrectangular outline (c.219[1], 220[1], 222[1]). 
Posteriorly, the fenestra rotunda is located towards the lower half of the posterior surface, and it 
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is wider than high (4 x 2 mm), with a kidney-shaped outline (c.223[0]). Posterolateral to the 
fenestra rotunda, the lateral caudal tympanic process projects farther posteriorly than the rest of 
the posterior surface of the cochlea, although it is not as prominent as that of other simocetids 
(i.e. CCNHM 1000; Racicot et al., 2019), and i. Its ventral and posterior borders intersect along a
curved edge (c.226[1]; Fig. 20C-F). Ventrally, the fenestra ovalis is longer than wide (4 x 3 mm) 
and located towards the posterior half of the cochlea. The ventral opening of the facial canal (~2 
mm in diameter) is lateral to the fenestra ovalis, and is separated by a sharp crest. The facial 
canal opens posteroventrally and continues as a groove that merges with the stapedial muscle 
fossa at the base of the posterior process; the fossa is deep and rounded, with its posterodorsal 
edge nearly in line with the fenestra rotunda (c.224[0]).
The posterior process is short and robust, with its long axis oriented posterolaterally (c.246[1], 
247[1], 249[0]; Fig. 20A-B, E-F). Proximally, the lateral surface of the posterior process is 
rough, with an irregular, near vertical ridge interpreted here as a poorly-developed articular rim 
(c.240[1]), resembling the condition in other simocetids (i.e. CCNHM 1000) and early 
odontocetes like Notocetus vanbenedeni, and differing from the more prominent articular rim 
observed in platanistids (Muizon, 1987; Racicot et al., 2019; Viglino et al., 2022; Fig. 20A-B). 
The dorsal edge of the posterior process forms a straight linehas a linear profile (c.248[0]). The 
posterior bullar facet has a kite-shaped outline; its surface is smooth and shallowly concave 
transversely (c.242[0], 243[0]); the edges of the facet are sharp, with the exception of the 
posteromedial edge which is rounder (c.244[0]).
Dentition—Only two, incompletely preserved teeth are associated with LACM 124105 (Fig. 
20I-L). Both are postcanine teeth, with striated enamel, and ecto- and entocingula and at least 
two denticles along the mesial carina (c.27[1], 32[1] 33[0], 35[?1]). On both teeth, one of the 
surfaces is concave, which resembles the condition observed on the buccal side of upper 
postcanine teeth of other simocetids (e.g., Olympicetus thalassodon). The roots are long and 
conical, becoming fused proximally. Tooth PCa (Fig. 20I, K) measures 12 mm long 
(mesiodistally) by 6 mm wide (buccolingually), whileand tooth PCb (Fig. 20J, L) measures 9 
mm high and 6 mm wide (buccolingually).
Remarks—LACM 124105 shares multiple diagnostic features with the other named species of 
Olympicetus, such as having a temporal fossa that is broadly open dorsally, unfused 
lacrimal/jugal (c.54[0]), lacking a maxillary foramen (c.76[0]; = posterior dorsal infraorbital 
foramen), and maxilla covering only about the anterior half of the supraorbital process of the 
frontal (c.77[1]). However, it does differ by having a more sharply defined infratemporal crest, 
the orbit at a lower position relative to the edge of the rostrum (c.48[1]; Fig. 17), the dorsolateral 
edge of the ventral infraorbital foramen formed by the maxilla (c.58[0]), and more notably, the 
lateral end of the temporal crest extending along the posterodorsal surface of the supraorbital 
process of the frontal (c.132[2); Fig. 15). These differences are considered to be species-related, 
and not the result of ontogenetic change as this specimen shows a similar growth stage as the 
type of Olympicetus avitus (LACM 149156; Vélez-Juarbe, 2017). Nevertheless, because of its 
incomplete preservation, it is preferably left in open nomenclature until better material belonging
to this taxon is identified.
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Results of the Phylogenetic Analysis
The phylogenetic analysis resulted in four most parsimonious trees, 3691 steps long, with 
retention index (RI) = 0.518 and consistency index (0.181). Other statistical values are shown in 
the strict consensus tree (Figs. 21, S2). Based on these results, Simocetidae now seems to form a 
monophyletic group that consists of Simocetus rayi, CCNHM 1000 (Olympicetus sp.), 
Olympicetus sp. 1, Olympicetus avitus, O. thalassodon, and Simocetidae gen. et sp. A (LACM 
124104) (Figs. 21, S2).

Discussion
WhileAlthough particular attention has been paid to Oligocene mysticetes from the North Pacific
over the last few decades (e.g., Barnes et al., 1995; Okazaki, 2012; Marx et al., 2015; Peredo et 
al., 2018; Solis-Añorve et al., 2019; Hernández-Cisneros, 2022; Hernández-Cisneros and Nava-
Sánchez, 2022), the same cannot be said with regards to the odontocetes. Oligocene odontocetes 
from around the North Pacific are not entirely missing from the scientific literature and have 
been mentioned multiple times, often identified informally as “non-squalodontid odontocetes”, 
“agorophiid” or “Agorophius-like” (see Whitmore and Sanders, 1977; Goedert et al., 1995; 
Barnes, 1998; Barnes et al., 2001; Fordyce, 2002; Hernández Cisneros et al., 2017). However, 
given their importance, most of these have yet to be properly describedm, and our understanding 
of species richness and relationships between Oligocene odontocetes from the North Pacific is 
not fully understood. More importantly, these early odontocetes can potentially advance our 
understanding of the origins and early diversification of odontocetes, as well as acquisition of 
some of their distinguishing features, such as echolocation.
The first of these taxa to be described was Simocetus rayi from the early Oligocene (33.7-30.6 
Ma) Alsea Fm. of Oregon, which was placed in its own family, Simocetidae, and is currently one
of the geologically oldest named odontocetes (Prothero et al., 2001b; Fordyce, 2002). Since then,
only two other North Pacific Oligocene odontocetes have been named, specifically, the 
platanistoid Arktocara yakataga from the Oligocene Poul Creek Fm. in Alaska, which may be 
amongst the earliest crown odontocetes, and the stem odontocete Olympicetus avitus from the 
Pysht Fm. in Washington (Boersma and Pyenson, 2016; Vélez-Juarbe, 2017). More recently, 
Racicot et al. (2019) described a neonatal skull (CCNHM 1000) from the Pysht Fm. in 
Washington, thatwhich closely resembles Olympicetus avitus, but did not group with Simocetus 
rayi nor with O. avitus, and. iInstead, all three taxa occupied different positions outside of crown
odontocetes (Racicot et al., 2019). Other potential Oligocene odontocetes include the 
squaloziphiid Yaquinacetus meadi Lambert, Godfrey and Fitzgerald, 2018, and the platanistoid 
Perditicetus yaconensis Nelson and Uhen, 2020, both from the latest Oligocene to early Miocene
Nye Mudstone, but more precise chronostratigraphic resolution would be needed to determine 
their precise age.
Herein, the description of three additional specimens from the mid-Oligocene Pysht Formation in
Washington have potentially clarified the relationship between stem odontocetes from the North 
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Pacific. The results (Figs. 21, S2) show a more inclusive Simocetidae, differing from earlier 
analyses (e.g., Vélez-Juarbe, 2017; Racicot et al., 2019) where Simocetus and Olympicetus 
occupied different positions within stem odontocetes. Furthermore, the phylogenetic analysis 
recovered CCNHM 1000 as part of the Simocetidae, differing from the analysis of Racicot et al. 
(2019), where it was recovered at the base of a clade including all odontocetes, with the 
exception of Xenorophidae. As discussed by Racicot et al. (2019), CCNHM 1000 does resemble 
Olympicetus avitus; more specifically, based on the new specimens described here, it shares with
Olympicetus spp. closely-spaced posterior buccal teeth (c.26[0]), buccal teeth with ecto- and 
entocingula (c.32[1], 33[0]), presence of a small maxillary infraorbital plate (c.60[1]), and the 
presence of a transverse cleft on the apex of the zygomatic process (c.337[1]), amongst others. 
However, CCNHM 1000, does show some dental characteristics that set it apart from O. avitus 
as discussed by Racicot et al. (2019), and others that differentiate it from other specimens of 
Olympicetus, such as presence of an interparietal (c.136[0]), a more anterior position of the apex 
of the supraoccipital (c.140[1]), and a very low nuchal crest (c.154[2]). Some of these characters,
such as the position of the apex of the supraoccipital and the morphology of the nuchal crest are 
also observed in the neonate skull (LACM 126010) referred to O. avitus, suggesting that these 
characters change ontogenetically, with neonatal individuals displaying more plesiomorphic 
conditions. Along these same lines, the presence of a distinct interparietal in CCNHM 1000, 
most likely another ontogenetic feature, is interpreted in the present phylogenetic analysis as a 
plesiomorphic character, which when combined with the other ontogenetic characteristics 
mentioned previously, may account for the more basal position of CCNHM 1000 in the 
phylogenetic analysis (Fig. 21). Besides this, it seems clear that CCNHM 1000 should be 
regarded as a neonate of Olympicetus sp. 
The inclusion of CCNHM 1000 has some interesting implications for Simocetidae. Racicot et al. 
(2019) described the inner ear morphology of CCNHM 1000, showing that it does not have the 
capability of ultrasonic hearing, which is suggestive that other taxa within this clade are also 
non-echolocating odontocetes, at least as neonates. Future studies on the inner ear morphology of
the periotics of other simocetids of more advanced ontogenetic stages, such as specimens of 
Simocetus rayi, Olympicetus thalassodon, Olympicetus sp. (LACM 124105), as well as those of 
other simocetids that will be described in future works, such as USNM 244226 (Olympicetus 
sp.), USNM 205491 (Simocetidae gen. et sp. nov.), and LACM 140702 (Simocetidae gen. et sp. 
nov.), will likely provide more information to this regard.

Stem Odontocetes from the North Pacific
The early odontocete clade Simocetidae now includes six OTUs: Simocetus rayi, Olympicetus 
avitus, Olympicetus sp. (LACM 124105), O. thalassodon (LACM 158720), Simocetidae gen. et 
sp. A (LACM 124104) and CCNHM 1000 (Fig. 21). All specimens, with the exception of S. 
rayi, are from the Pysht Fm., with three of them,: LACM 124104, LACM 124105, LACM 
158720 and CCNHM 1000, coming from the same general area (LACM Locs. 5123 and 8093). 
The results of the phylogenetic analysis resemble those of an earlier, preliminary study that also 
recovered a monophyletic Simocetidae composed of most of the OTUs used here as well as a 
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few others undescribed specimens from the eastern North Pacific, but that also recovered 
Ashleycetus planicapitis, from the early Oligocene of South Carolina, as part of that clade 
(Velez-Juarbe, 2015). In contrast, the results of the present work suggest that Simocetidae 
represents an endemic radiation of North Pacific stem odontocetes, that parallels that of the 
Aetiocetidae in the same region (Hernández Cisneros and Velez-Juarbe, 2021), and the 
Xenorophidae (here considered to include Ashleycetidae and Mirocetidae; Fig. 21) in the North 
Atlantic and Paratethys (Marx et al., 2016a). Interestingly, simocetids and xenorophids overlap 
temporally with some platanistoids such as Arktocara yakataga and Waipatia spp. (Fordyce, 
1994; Tanaka and Fordyce, 2015; Boersma and Pyenson, 2016; Tanaka and Fordyce, 2017; 
Gaetan et al., 2019; Viglino et al., 2021; but see Viglino et al., 2022 with regards to W. 
maerewhenua). This suggests that crown odontocetes appeared at least by the late Oligocene, 
pending a more precise assessment of the age or A. yakataga, and that the initial diversification 
of odontocetes may have occurred during the latest Eocene to early Oligocene. This is further 
supported by the early Rupelian (33.7-30.6 Ma; Prothero et al., 2001b) age of the Alsea Fm., 
where Simocetus rayi was found, which places Simocetidae amongst, if not the earliest, 
diverging odontocete clade (pending a better age assessment for Mirocetus riabinini; Sanders 
and Geisler, 2015). The discovery and description of additional odontocetes from the Makah, 
Pysht, and Lincoln Creek formations in Washington State, and Alsea and Yaquina formations in 
Oregon, would likely provide new insights with regards to early odontocete diversification. This 
highlights the importance of the fossil record of the North Pacific towards further understanding 
the early history and radiation of odontocetes. 
At present, there are no published accounts of simocetids from the western North Pacific, 
although these are expected to be present based on the occurrence of closely-related marine 
tetrapods in Oligocene deposits on both sides of the basin (e.g., plotopterids, desmostylians, 
aetiocetids; Olson, 1980; Domning et al., 1986; Ray et al., 1994; Olson and Hasegawa, 1996; 
Inuzuka, 2000; Barnes and Goedert, 2001; Sakurai et al., 2008; Ohashi and Hasegawa, 2020; 
Mayr and Goedert, 2016, 2022; Mori and Miyata, 2021; Hernández-Cisneros and Vélez-Juarbe, 
2021), which makes this apparent absence an interesting question. However, some records from 
Japan bear close resemblance to simocetids and should be analyzed further. These include a 
mandible with two cheek teeth (KMNH VP 000011) and an isolated tooth (KMNH VP 000012) 
referred by Okazaki (1988) to Squalodon sp. from the Oligocene Waita Formation of the Ashiya 
Group. The general morphology of the mandible (KMNH VP 000011) resembles Olympicetus 
thalassodon and other basal odontocetes with multi-cusped cheek teeth, such as Prosqualodon 
davidis Flynn, 1947, and Waipatia maerewhenua. In these taxa the dorsal surface of the 
mandibular condyle is at about the same level as the horizontal ramus and the ventral border is 
relatively straight (Flynn, 1947; Fordyce, 1994). Furthermore, the two cheek teeth preserved with
KMNH VP 000011 are much more like those of Olympicetus, with the more anterior tooth (B3 
in Okazaki, 1988) having only a small accessory denticle along the base of the mesial carina, 
while three larger denticles are observed distally, that increase in size apically, greatly 
resembling the premolars of O. thalassodon (Figs. 11A, C, 12G). Meanwhile, the second tooth 
(B7 in Okazaki, 1988) resembles the m3 of Olympicetus thalassodon, by being smaller than the 
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more anterior teeth, and having three accessory denticles along the distal carina that diminish in 
size towards the base of the crown, lacking accessory denticles along the mesial carina, and little 
to no ornamentation on the buccal side. The isolated tooth (KMNH VP 000012) resembles cheek
tooth ‘pp4’ of Olympicetus avitus (reinterpreted above as the left m2), as they are relatively low 
and long, with multiple accessory denticles along the mesial and distal carinae, as well as having 
lingual and buccal cingula (Okazaki, 1988; Vélez-Juarbe, 2017). One distinguishing character is 
that the accessory denticles of Olympicetus spp. and the Waita Fm. odontocetes are closer in size 
to the main cusp than those of other basal odontocetes with multi-cusped cheek teeth. For 
example, lower cheek teeth of Squalodon calvertensis, Prosqualodon davidis, P. australis 
Lydekker, 1894, Phoberodon arctirostris Cabrera, 1926, and Waipatia spp. do have accessory 
denticles along their distal edges, but those are much smaller than the main cusp (Kellogg, 1923; 
Flynn, 1947; Fordyce, 1994; Tanaka and Fordyce, 2015; Gaetan et al., 2019; Viglino et al., 
2019). The combination of these morphological features suggests that the specimens described 
by Okazaki (1988) could be considered as aff. Olympicetus sp., although this requires to be 
confirmedconfirmation by direct observation of the specimens. Other cetaceans from the Ashiya 
Group include the toothed mysticete Metasqualodon symmetricus Okazaki, 1982, from the Waita
Fm., considered to represent an aetiocetid or a more basal mysticete outside Aetiocetidae, and 
the eomysticetid Yamatocetus caniliculatus Okazaki, 2012, from the Jinnobaru Fm. (Okazaki, 
1987, 1994; Fitzgerald, 2010; Geisler et al., 2017). 
Similarly, other potential records of simocetids are found in the late Oligocene El Cien 
Formation of Baja California Sur. Hernández-Cisneros et al. (2017) briefly discussed two skulls 
from the El Cien Fm., comparing one with Simocetus rayi and the other with an undescribed 
skull (USNM 205491) from the Alsea Fm.; they may represent other undescribed simocetids. 
These odontocetes from El Cien Fm. are currently under study (A. E. Hernández-Cisneros, pers. 
comm.), and other described taxa from this formation include kekenodontids, aetiocetids, 
eomysticetids, and other stem mysticetes (Hernández-Cisneros and Tsai, 2016; Hernández-
Cisneros et al., 2017; Solis-Añorve et al., 2019; Hernández-Cisneros, 2022; Hernández-Cisneros 
and Nava-Sánchez, 2022). These records from the Jinnobaru Fm. and El Cien Fm., resemble the 
odontocete assemblage of the Pysht Fm., which includes simocetids, aetiocetids and other early 
mysticetes, and it is therefore likely that simocetids would be present in these units as well 
(Barnes et al., 1995; Peredo and Uhen, 2016; Vélez-Juarbe, 2017; Shipps et al., 2019; Hernández
Cisneros and Vélez-Juarbe, 2021; this work).

Dentition and Feeding in Simocetids
As in most other groups of stem odontocetes (e.g., xenorophids, agorophiids), simocetids have an
heterodont dentition, but do seem to have a more conservative tooth count, closer to that of 
basilosaurids such as Cynthiacetus peruvianus (Martínez-Cáceres and Muizon, 2011), which 
consists of three incisors, one canine, four premolars, two upper and three lower molars, a 
pattern that is also observed in early mysticetes like Janjucetus hunderi Fitzgerald, 2006, and 
Mystacodon selenensis (Fitzgerald, 2010; Lambert et al., 2017). While the tooth count of some 
simocetids is hard to interpret (e.g., Olympicetus avitus; Vélez-Juarbe, 2017), others such as 
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Simocetus rayi and Olympicetus thalassodon offer more definite clues with regards to their 
dentition. In the case of Simocetus rayi, its tooth count seems to be secondarily reduced from the 
plesiomorphic condition through the loss of the upper incisors, while the lower ones are retained 
(Fordyce, 2002). Although most are not preserved in the holotype, the teeth of S. rayi were 
widely separated and small (when compared to those of Olympicetus). In contrast, the teeth of 
Olympicetus thalassodon are closely spaced, and based on the preserved teeth and alveoli, the 
dental formula of the latter is tentatively interpreted as ?I3, C, P4, M2/?i3, c, p4, m3. The 
presence of three incisors is based in part on LACM 140702, although, there is also the 
possibility that O. thalassodon had no incisors, resembling the condition of S. rayi. Nevertheless,
if these interpretations are correct, then the dentition of simocetids is the most plesiomorphic 
amongst odontocetes, paralleling that of early mysticetes. This would contrast with xenorophids, 
which seem to have a polydont dentition; for example, Xenorophus sloanii and Echovenator 
sandersi both have a significantly higher count of postcanine teeth (Sanders and Geisler, 2015; 
Churchill et al., 2016). However, the dentition of many xenorophids is still unknown, including 
key taxa, such as Archaeodelphis patrius, which may offer additional insight into early 
odontocete dental evolution. 
Although different simocetids seem to share similar conservative tooth counts and generalized 
features of their teeth, there are some interesting differences between some of the species. One 
conspicuous difference between the dentition of Olympicetus avitus and O. thalassodon is the 
presence of a “carnassial”-like tooth in the former (Fig. S1; tooth ‘mo3’ in Velez-Juarbe, 
2017:fig.7O,Bb). This tooth is distinguished from all other postcanine teeth by having a lingual 
lobe with a secondary carina with accessory denticles that descends lingually from the apex (Fig.
13E), while its root is expanded lingually, giving the impression of the presence of three roots 
(mesial, distal and lingual), rather than two (mesial and distal) as in the other postcanine teeth. 
Meanwhile, a third, lingual root seems to be present in the P4 of Simocetus rayi (Fordyce, 2002),
in an unnamed Simocetus-like taxon from the Lincoln Creek Fm. (Barnes et al., 2001) and in 
LACM 124104 (described above), and could be a character that is shared among some 
simocetids, although better preserved specimens are needed to corroborate this. The presence of 
a third, lingual root and a lingual lobe is otherwise unknown in other odontocetes, toothed 
mysticetes, and basilosaurids (Uhen, 2004; Martínez-Cáceres et al., 2017), but present in more 
basal forms (e.g., protocetids and kekenodontids; Kellogg, 1936; Kassegne et al., 2021; Corrie 
and Fordyce, 2022). A somewhat similar crown morphology is observed in protocetids such as 
Indocetus ramani Sahni and Mishra, 1975, Aegyptocetus tarfa Bianucci and Gingerich, 2011, 
and Togocetus traversei Gingerich and Cappetta, 2014, as well as in Kekenodon onamata Hector,
1881, all of which have a protocone lobe supported by a lingual root in the more posterior upper 
premolars and molars (Bajpai and Thewissen, 2014; Kassegne et al., 2021; Corrie and Fordyce, 
2022). However, the lobe on the lingual side of the teeth of protocetids and K. onomata is located
distolingually, differing from the condition observed in O. avitus and LACM 124104, in which 
the lobe is located mesiolingually, and may thus not be homologous. Interestingly, tooth B7 
(sensu Sanders and Geisler, 2015) of Xenorophus sloani seems to present a more inconspicuous 
version of the “carnassial” tooth of simocetids this tooth occupies a position similar to that of P4 
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in Simocetus rayi, and this character should be explored further as more specimens become 
available.
Some of the morphological characters observed in described simocetids, such as the arched 
palate, short and broad rostrum, smaller and widely-spaced teeth, as in Simocetus rayi, were 
interpreted as features of a bottom suction feeder (Fordyce, 2002; Werth, 2006; Johnston and 
Berta, 2011). Olympicetus shares some of these features, such as the arched palate. However, O. 
thalassodon, has closely spaced, larger teeth, as well as a relatively gracile, unfused hyoid 
apparatus (Figs. 11-13A-C; Johnston and Berta, 2011; Viglino et al., 2021; Werth and Beatty, 
2023), which suggest that this taxon was instead a raptorial or combined feeder (Fig. 22). Taking
this into account, it is likely that simocetids employed different methods of prey acquisition, 
likely akin to the amount of variation observed in other contemporaneous groups, such as 
xenorophids, which include taxa with long narrow rostra (e.g., Cotylocara macei; Geisler et al., 
2014) that can be interpreted as raptorial feeders, as well as a brevirostrine suction feeding taxon 
(i.e. Inermorostrum xenops; Boessenecker et al., 2017). Thus it seems that several methods of 
prey acquisition evolved iteratively across different groups of odontocetes soon after their initial 
radiation (Hocking et al., 2017; Kienle et al., 2017).

Conclusions
Three new specimens of odontocetes from the early to late Oligocene Pysht Formation were 
described herein, further increasing our understanding of richness and diversity of early 
odontocetes, specially for the North Pacific region. Inclusion of this new material in a 
phylogenetic analysis showed that Simocetidae is a much more inclusive clade, which besides 
Simocetus rayi, now includes Olympicetus avitus, O. thalassodon sp. nov., Olympicetus sp. 1, 
and a large unnamed taxon. Of these, Olympicetus thalassodon is one of the most completely 
known simocetids, offering new information on the cranial and dental anatomy of early 
odontocetes, while the inclusion of CCNHM 1000 within this clade suggest that simocetids may 
not have had the capabilities for echolocation at least during their earlier ontogenetic stages. This
shows that some morphological features that have been correlated with the capacity to 
echolocate, such as an enlarged attachment area for the maxillonasolabialis muscle, and presence
of a premaxillary sac fossae (Fordyce, 2002; Geisler et al., 2014), may have appeared before the 
acquisition of ultrasonic hearing. Furthermore, the dentition of simocetids, as interpreted here, 
seems to be the most plesiomorphic amongst odontocetes, while other craniodental features 
within members of this clade suggests various forms of prey acquisition techniques, including 
raptorial or combined in Olympicetus spp., and suction feeding in Simocetus (as suggested by 
Fordyce, 2002). Meanwhile, body size estimates for simocetids show that small to moderately 
large taxa are present in the group, the largest taxon being represented by LACM 124104, with 
an estimated body length of 3 meters. This length places it amongst the largest Oligocene 
odontocetes, only surpassed in bizygomatic width (and therefore estimated body length) by 
Mirocetus riabinini and Ankylorhiza tiedemani (Boessenecker et al., 2020; Sander et al., 2021). 
Finally, the new specimens described here add to a growing list of Oligocene marine tetrapods 
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from the North Pacific, further facilitating faunistic comparisons with other contemporaneous 
and younger assemblages in the region, such as those in Mexico (e.g., El Cien Fm.) and Japan 
(e.g., Waita Fm.), thus improving our understanding of the evolution of marine faunas in the 
region.
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