

1 Restoring South African subtropical succulent thicket
2 using *Portulacaria afra*: exploring the rooting window
3 hypothesis

4
5
6

7 Nicholas C. Galuszynski ^{1,2}, Ryan Forbes², Gavin M. Rishworth^{3,4}, Alastair J. Potts^{1,2}

8

9 ¹ Spekboom Restoration Research Group, Nelson Mandela University, Gqeberha,
10 South Africa

11 ² Botany Department, Nelson Mandela University, Gqeberha, South Africa

12 ³ Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha,
13 South Africa

14 ⁴ Zoology Department, Nelson Mandela University, Gqeberha, South Africa

15

16 Corresponding Author:

17 Alastair J. Potts¹

18 Department of Botany, Nelson Mandela University, Gqeberha 6031, South Africa

19 Email address: alastair.potts@mandela.ac.za

20

21 **Abstract**

22 Drought prone, arid, and semiarid ecosystems are challenging to restore due to the generally
23 low levels of natural recruitment and survival of reintroduced plants. This is evident in the
24 restoration of degraded habitats in the Albany Thicket Biome (South Africa). The current
25 restoration practise for this ecosystem focuses predominantly on planting *Portulacaria afra* L.
26 Jacq., which is dominant in terms of cover and biomass in intact succulent thicket, but largely
27 absent in regions degraded by domestic livestock. This has been achieved by planting unrooted
28 cuttings with little consideration of soil water availability in a drought-prone ecosystem, which
29 may contribute to the reported variable rates of cutting establishment and survival.

Commented [RLO1]: Suggest you need to include an adjective around 'degraded' as intact systems don't need restoration.

Too many commas here?

Semi-arid or semi-arid?

Commented [RLO2]: practice

30 Establishment is dictated by successful rooting and this study tests the effects of the timing of
31 water availability after planting on the root development of *P. afra* cuttings.
32 Cuttings were harvested from seven individual plants and grown in a glasshouse setting. From
33 each plant, a total of 84 branchlets were harvested, with twelve per individual used in each
34 watering treatment, resulting in a total of 84 branchlets per treatment. The treatments
35 represented a time-staggered initial watering after planting, including on the day of planting, 4
36 days, 7 days, 14 days, 21 days, and 28 days after planting. After 32 days, all treatments were
37 watered on a bi-weekly basis for two weeks; a control treatment with no watering throughout the
38 experiment was included. The proportion of rooted cuttings per treatment and dry root mass
39 were determined at the end of the experimental period (day 42). The early onset of watering
40 promoted rooting ($H_5=11.352$, $p = 0.045$) and had a weak, but non-significant, impact on the
41 final dry root mass ($F_{5,36} = 2.109$ $p = 0.0631$). Unexpectedly, parent-plant identity appeared to
42 have a strong interaction effect on the accumulation of root mass ($F_{36,460} = 5.026$, $p < 0.001$;
43 $LR_7 = 122.99$, $p < 0.001$). The control treatment, which had no water throughout the
44 experiment, had no root development.
45 These findings suggest that water availability is required for the onset of rooting in *P. afra*
46 cuttings. However, the duration of the experiment was insufficient to detect the point at which *P.*
47 *afra* cuttings could no longer root once exposed to soil moisture, and thus no rooting window
48 could be defined. Despite harvesting material from the same source population, experiencing
49 the same macro-environmental conditions, parent-plant identity strongly impacted root
50 development — this may explain the variability of cutting establishment and survival in
51 restoration initiatives and experiments. Further work is required to characterise the rooting
52 window, and also to explore the effect of parent plant condition on in-field and experimental
53 restoration results; we urge that experiments using *P. afra* closely track the parent-source at the
54 individual level as this may be a factor that may strongly influence the results.

55 **Introduction**

56 The persistence of arid and semiarid ecosystems in a degraded state is often maintained by
57 complex interactions operating at various spatial and temporal scales (D'Odorico et al., 2013;
58 Evans and Geerken, 2004). Restoration of these ecosystems may thus require targeting key
59 processes, such as erosion, herbivory, pathogens, and drought (James et al., 2013). A lack of
60 reliable rainfall, for example, can restrict the regeneration of degraded arid and semiarid
61 ecosystems, resulting in low rates of plant establishment (Valliere et al., 2019; Haase and
62 Davis, 2017). Extended periods of low soil moisture may contribute to the poor survival of

Commented [RLO3]: I found this a bit tricky to follow and suggest it could be written more succinctly.

Commented [RLO4]: I would move this to after the description of the treatments.

Commented [RLO5]: New paragraph as this is now results?

Commented [RLO6]: But very importantly. This may be a key result!

Commented [RLO7]: Condition or genetics?

Commented [RLO8]: Likely contributes

Commented [RLO9R8]: replace with 'and'

63 *Portulacaria afra* L. Jacq. cuttings planted in succulent thicket restoration initiatives, especially
64 since the standard protocol is to plant unrooted cuttings—a long period of low soil moisture may
65 retard or prevent rooting.

66 Succulent thicket represents the arid and semiarid components of the Albany Subtropical
67 Thicket biome (termed "arid" and "valley" thicket in Vlok et al., 2003), which is endemic to South
68 Africa. Although this vegetation occurs in a region that experiences ~~aseasonal rainfall~~, with
69 peaks in spring and autumn, it is still subject to frequent and often ~~prolonged droughts that can~~
70 ~~extend across multiple years~~, including consecutive months with no rainfall (Mahlalela et al.,
71 2020; Palmer et al., 2020; Vlok et al., 2003). Despite this, succulent thicket has been described
72 as an evergreen dwarf forest (Midgley et al., 1997), characterised by a low canopy of trees and
73 shrubs — usually with a canopy cover >70% — and an understory rich in succulents and
74 geophytes (Vlok et al., 2003). A common and often distinguishing characteristic of succulent
75 thicket is the abundance of the leaf and stem succulent tree, *P. afra*, which is frequently the
76 most dominant species in terms of canopy cover and biomass (Guralnick and Gladsky, 2017;
77 Vlok et al., 2003; Penzhorn et al., 1974). This species plays a key role in landscape-level
78 facilitation, modifying local environmental conditions through shading effects (Wilman et al.,
79 2014; Sigwela et al., 2009), intercepting rainfall (Cowling and Mills, 2011), and improving water
80 infiltration by accumulating soil organic matter (van Luijk et al., 2013; Lechmere-Oertel et al.,
81 2008). This facilitation is purported to enable the persistence of a closed-canopy scrub forest-
82 like vegetation in arid areas (Lechmere-Oertel et al., 2005b).

83 Livestock production has caused widespread and extreme degradation of succulent thicket
84 vegetation, which exhibits limited evidence of natural regeneration (Sigwela et al., 2009;
85 Lechmere-Oertel et al., 2005b). This degradation is ~~commonly~~ characterised by the complete
86 loss of *P. afra* and the associated transition into a savanna-like habitat with limited ecological
87 functioning (Lechmere-Oertel et al., 2005b, 2005a, 2008). Succulent thicket restoration,
88 therefore, focuses predominantly on the reintroduction of *P. afra* as both a pioneer and
89 ecosystem-engineering species.

90 The ability of *P. afra* to regenerate clonally is well documented (Oakes, 1973; MacOwens, 1897)
91 and may reflect a co-evolution with elephant browsing (Stuart-Hill, 1992). This trait has been
92 exploited in succulent thicket restoration programs as unrooted *P. afra* cuttings have established
93 after being planted across a wide range of degraded thicket sites (van der Vyver et al., 2021a;
94 Mills and Robson, 2017; Mills et al., 2015). The simplicity of *P. afra* reintroduction and potential
95 for restored habitats to act as carbon sinks (van der Vyver and Cowling, 2019; Mills and
96 Cowling, 2006, 2014) prompted experimental investigations into the feasibility of succulent

Commented [RLO10]: Is this qualifier necessary in this audience?

Commented [RLO11]: Weakly seasonal

Commented [RLO12]: Simplify to 'multiyear droughts'

97 thicket restoration at a biome scale (Mills et al., 2015; termed the "Thicket Wide Plot (TWP)"
98 experiment; an experiment of 330 restoration plots (termed the "Thicket Wide Plot (TWP)"
99 experiment) were established across the natural range of succulent thicket between 2008 and
100 2009; each plot consisted comprising of a 50×50 m herbivore enclosure within which various
101 unrooted planting treatments were tested (described in van der Vyver et al., 2021a). However,
102 the survival within these plots ranged from zero to nearly 100% (van der Vyver et al., 2021b).
103 The factors responsible for the low survival have been attributed include to frost, herbivory, and
104 planting outside of the target habitat (Duker 2021; van der Vyver et al., 2021b),
105 however although, the influence of weather conditions prior to and post planting could not be
106 explored due to a lack of data.

107 As mentioned above, succulent thicket occurs within an aseasonal rainfall zone, receiving
108 sporadic rainfall predominantly in autumn and spring, with an annual mean ranging from 100 to
109 450 mm (Vlok et al., 2003; Everard, 1987) and prolonged droughts are common with variable
110 local rainfall patterns. Thus, the soil moisture necessary to stimulate and support root growth
111 may be absent for long periods. The reasons for failed establishment (i.e., lack of rooting)
112 remain unknown. Here we hypothesise that soil moisture in the first month after planting may
113 affect the initiation of rooting and thus root growth of this succulent species, potentially providing
114 insights into the variable survival reported in field plantings (van der Vyver, 2021b; Mills and
115 Robson, 2017).

116 Materials & Methods

117 Harvesting

118 Samples Branchlets were harvested on 27 July 2020 from a nurban site road verge within the
119 city of Gqeberha, Eastern Cape, South Africa, where *P. afra* had been used planted
120 approximately xx years ago to stabilise a road verge i.e. used for slope rehabilitation; this
121 experiment was conducted during the 2020 COVID-19 pandemic, where movement was highly
122 restricted and thus material available for sampling was geographically limited. 84 branchlets
123 were harvested Material for the experiment was harvested from seven randomly selected
124 individual plants (hereafter "parent-plants"). From each parent plant, a total of 84 branchlets
125 were harvested; Twelve replicate branchlets per parent-plant were used in each of the seven
126 watering treatments (described below). The stem length and basal diameter were recorded for
127 each branchlette prior to planting; the branchlettes were smaller than the cuttings used in the
128 standard planting protocol or the TWP experiment (also termed "truncheons" in van der Vyver et

Commented [RLO13]: Perhaps integrate this section with the previous climate description to save on words

Commented [RLO14]: ... periods that exceed the survival period of the cutting.

Commented [RLO15]: Suggest this is unnecessary and implies that the approach was weakened by this.

Commented [RLO16]: Is this a term? If so, then use consistently throughout

129 al., 2021a,b), with a stem width (mean \pm sd) of 5.60 ± 0.87 mm and a cutting length of 222 ± 26
130 mm. Smaller branches were used (hence branchlette) to accommodate the limited space
131 available in seedling trays and the glasshouse area.

132 ~~All plants were harvested for the experiment on 27 July 2020.~~

133 Experimental layout

134 A total of twelve seedling trays, with planting cavities of 90 ml, were used for the experiment. All
135 planting cavities were filled with ~~oven-dried~~ clay-rich soil obtained from an area supporting
136 thicket. This soil was standardised by drying it in an oven at 60°C until it reached a constant
137 mass, then sieving it through a one-millimetre mesh to homogenise soil particle size.
138 All planting was conducted on 28 July 2020. Each tray included seven treatment rows, with one
139 branchlette per parent-plant represented in each treatment. Each row was separated by an
140 empty cavity to reduce shading effects and potential water overflow between adjacent
141 treatments; also, all trays were raised to avoid water entering from the bottom of a cavity (see
142 Figure S1 for more details). Treatment order was randomised across each tray, and parent-
143 plant order was randomised in each treatment by row. All trays were placed in a ~~well-lit~~well-lit
144 portion of a glass house and randomly repositioned and rotated ~~on-a-weekly-basis~~. Maximum
145 and minimum temperature, and relative humidity were monitored in the glass house for the
146 duration of the experiment. ~~In brief, across the experiment period the mean \pm sd of the maximum~~
147 ~~temperature was $28.1\pm4.4^{\circ}\text{C}$, minimum temperature was $18.4\pm1.7^{\circ}\text{C}$, and relative humidity~~
148 $53.9\pm10.2\%$ (see Figure S2 for further details).

Commented [RLO17]: These 'results' perhaps should not be reported here, but rather in the figure S2

149 Watering treatments

150 The watering treatments represent a time staggered initial watering after planting. This included
151 watering on the day of planting (D01), 4 days (D04), 7 days (D07), 14 days (D14), 21 days
152 (D21), and 28 days (D28) after planting, and a control treatment (C) with no watering for the full
153 duration of the experiment. After 32 days from the start of the experiment, all treatments were
154 watered twice weekly for an additional two weeks. All watering events involved saturating the
155 soil.

156 Data collection and analysis

157 After 42 days from initial planting ~~(8 September 2020)~~, all branchlettes were carefully removed
158 from the soil and ~~rooting was evaluated (the~~ percentage of ~~cuttings~~ per parent plant that rooted
159 ~~within each per~~ treatment was calculated). The roots ~~biomass~~ was removed from each

Commented [RLO18]: Why change the term to 'cuttings' here?

160 branchlette, and the soil was searched to ensure that all roots and root fragments were
161 accounted for. Each branchlette's roots were rinsed to remove any excess soil. and
162 subsequently dried at 60°C until constant weight. and weighed. ~~Dry root mass was measured in~~
163 ~~grams to the third decimal place~~.

164 All analyses described below were performed in R v 4.2.1 (R Core Team, 2022). Differences in
165 rooting success (percentage rooted cuttings within each plant across treatments) was evaluated
166 via a nonparametric Kruskal-Wallace test (Hollander and Wolfe, 1973). The dry root mass
167 produced during the experimental period was evaluated and compared using three approaches.
168 Firstly, using a nested ANOVA approach ("RootMass~Treatment/Plant"; Chambers et al., 1992)
169 coupled with a post-hoc Tukey test (Yandell, 1997). Secondly, Kruskal-Wallace tests were
170 performed on the dry root mass across all treatments, and then also separating the data into
171 individual parent plants across all treatments; post-hoc analyses were conducted on sets that
172 returned <0.05 using the 'pgirmess' package (v 1.7.0; Giradoux, 2021). The unwatered control
173 treatment was not included in the Kruskal-Wallace tests or nested ANOVA described above as
174 no rooting was observed in this treatment. Finally, a more sophisticated approach using a linear
175 mixed-effects modelling (LMM) approach was included; using the 'nlme' package (v 3.1-153;
176 Pinheiro et al., 2018). To account for possible effects of stem width on root formation, as the
177 larger area along the stem circumference of thicker stems may produce more roots, ~~root mass~~
178 ~~was divided by stem circumference~~. The full fixed effects model was therefore represented as
179 the standardised ($\bar{x} = 0$; $\sigma = 1$) root mass divided by stem circumference as a function of
180 treatment, or *RootMass/StemCirc ~ Treatment*. The optimal random structure was determined
181 by comparing the residual fit of separate full models (Zuur et al., 2009, 2010) that incorporated
182 different combinations of either random intercepts per plant individual (random = $\sim 1|Plant$) from
183 which the branchlette were taken or varying residual identity structure per plant (varIdent(form =
184 $\sim 1|Plant$)). These were compared under restricted maximum likelihood estimated (REML) using
185 the log-likelihood ratio test and AIC scores (Zuur et al., 2009). The optimal residual variance
186 structure included *Plant* individual as both a random intercept and identity structure. This model
187 was then refitted under maximum likelihood estimation to test if the removal of the fixed effect
188 (*Treatment*) substantially reduced the information criterion (model fit) score, which it did not
189 ($\Delta AIC \leq 2$). The same model was then refitted under REML estimation and the 'summary'
190 statistics of the fixed effects per *Treatment* compared using the t-statistic. The marginal and
191 conditional R2 value for the most parsimonious model was calculated using the 'MuMIn'
192 package (v. 1.47.1 Nakagawa and Schielzeth, 2013; Barton, 2022). All model assumptions in

Commented [RLO19]: I cannot comment on the appropriateness of the stats as I do not understand the various tests well enough.

Commented [RLO20]: Would this not have been better dealt with by treating stem diameter as a co-variable in the analysis, which would tell you if it is an important explanatory factor.

193 terms of homogeneity and normality of residuals were tested and met. The significance of
194 statistical tests are reported according the terminology proposed by Muff et al. (2022).

195 **Results and Discussion**

196 Rooting window hypothesis

197 The timing of initial watering was found to have a moderate, significant effect on the proportion
198 of *P. afra* cuttings that established roots (Figure 1; $H_5=11.352$, $p = 0.045$). The total exclusion of
199 watering (control) inhibited root initiation in all but one of 84 cuttings; this one cutting exhibited
200 root tips and was considered not to have established roots. Early watering (within the first 4
201 days) resulted in the highest percentage of rooting across all parent-plants (Figure 1). However,
202 there was only weak evidence for differences in dry root mass amongst treatments by the end of
203 the experiment ($F_{5,36} = 2.109$, $p = 0.063$; $H_5=9.719$, $p=0.084$; LMM: $F_{5,489} = 1.832$, $p =$
204 0.105), with some indication that root growth was maximised when watering began two to three
205 weeks after planting (D14 and D21 in Figure 2, and higher coefficients in the LMM, although not
206 significant: Table 1). The interaction terms with parent-plants is discussed separately in the
207 section below entitled "Parent-plant effects". These preliminary findings may suggest that while
208 early onset of watering increased the success of root initiation, delayed watering might increase
209 the relative accumulation of root mass in branchlettes that do set root. However, those plants
210 with delayed watering also had a shorter period until the final four watering events that were
211 applied to all treatments in the last two weeks (except the control) — this may have boosted root
212 growth.

Commented [RLO21]: My poor remembrance of stats is crippling me and I battle to comment on the validity and presentation of the results in Table 1. SORry

213 Root generation from stem cuttings consists of different processes: regeneration of damaged
214 tissue at the wounding site, redifferentiation of cells to perform new functions (shoots become
215 roots), root tip formation, and the elongation of root tissue to produce functioning roots (Bidabadi
216 and Jain, 2020; Cameron and Thomson, 1969). These processes require different physiological
217 conditions, and the outcome of cellular differentiation is influenced by the relative proportions of
218 endogenous growth hormones (auxins promoting rooting initiation and cytokinins promoting root
219 elongation) that are upregulated at the wound site in response to external stimuli (Fehér, 2019).
220 The timing of watering *P. afra* cuttings may affect the abundance of these growth regulating
221 hormones.

Commented [RLO22]: I don't see the significance of this statement or understand the biological mechanism that would give this result.

222 The authors We were unable to find studies of growth regulating hormones in succulent species;
223 however, water availability and rooting have been explored in woody C3 cuttings (reviewed in
224 De Almeida et al., 2017; da Costa et al., 2013). In general, as cuttings are unable to take up

Commented [RLO23]: Unregulated? What does upregulated mean?

225 moisture until they are rooted, water stress responses are initiated soon after the removal of
226 cuttings from the parent-plant, with the wound site resulting in rapid moisture loss. Early
227 watering of cuttings can facilitate the maintenance of a positive water balance, preventing
228 desiccation and the upregulation of secondary metabolites, which can inhibit cell cycle
229 progression (Wolters and Jürgens, 2009). Soaking of fresh *Populus* cuttings in water prior to
230 planting was found to improve water potential and stimulate rooting compared to unsoaked
231 cuttings (Puri and Thompson, 2003). Dried cuttings had lower water potentials and initiated
232 roots more slowly (Puri and Thompson, 2003). Similarly, cuttings of juniper (*Juniperus*
233 *horizontalis*), azalea (*Rhododendron*), and holly (*Ilex crenata*) all exhibited improved root
234 formation when planted into moisture rich substrates (Rein et al., 1991). Submerging apple tree
235 (*Malus domestica* Borkh.) cuttings in water or agarose reduced the oxidation rate of
236 endogenous auxins, resulting in improved rooting (de Klerk et al., 1999); however, high auxin
237 concentrations have been found to reduce cell elongation and proliferation, slowing the growth
238 of newly formed roots (de Klerk et al., 1999; Cameron and Thomson, 1969). The interaction of
239 endogenous growth hormones that regulate root initiation and growth may explain the
240 abundance of slower-growing roots in early watered *P. afra* cuttings and the rapid growth of few
241 roots in later watered cuttings (D21 and D28, Figure 2; Table 1). However, further research is
242 required to better understand the physiology of *P. afra* rooting and the effect of dry periods after
243 rooting has been initiated.

244 Parent-plant effects

245 An unexpected observation in the data is that the source of the cuttings, i.e., the parent-plant,
246 had a significant effect on the fraction of rooted cuttings and dry root mass (e.g., P3, P4 & P5,
247 Figures 1 & 2; Table 2), providing strong evidence ($F_{36,460} = 5.026$, $p < 0.001$) for a parent-
248 plant interaction effect on root growth. This is demonstrated whereby including individual *Plant*
249 identity in the LMM model as a random effect significantly improved its parsimony compared to
250 the null model ($df = 7$, $LR = 122.99$, $p < 0.001$) and also that the model R2 fit when accounting
251 only for the fixed effect (*Treatment*) was low (0.011) but substantially improved when the
252 individual effect of *Plant* was included (0.219) (Table 1). The inclusion of both a random
253 intercept and a residual variance structure per *Plant* identity within the most parsimonious model
254 (all LR tests $p < 0.001$) suggests that there is both a parent-plant specific difference in the
255 overall dry root mass accumulated per branchlette and a difference in the ~~the~~-variability between
256 branchlettes from a single parent-plant in terms of overall dry root mass accumulated (i.e., some

Commented [RLO24]: This section is very speculative and the reality is there is no way to know if there is any effect or pattern at all to be explained due to the non-significance of the results. The results seem to be more driven by parent than any watering effect. I suggest the section could be reduced to a few sentences describing a hormone hypothesis that can be tested in future, and rather leave out the many examples of woody c3 plant responses.

257 plants were more consistent or more variable in the dry root mass accumulated per branchlette
258 than others). As the experimental design did not intend to describe parent-plant effects on
259 rooting, we did not measure any in-field attributes of the parent-plants at the time of harvesting.
260 Therefore, the discussion of this is speculative, but important, as tracking parent source material
261 has not been included in the design of any experiments exploring *P. afra* establishment thus far
262 (including the TWP experiment). Thus, it may be a hidden but significant confounding factor in
263 such experiments.

264 Cellular redifferentiation and growth require living material with sufficient internal resource
265 supply for cell division. The ~~rootability~~ rooting success of cuttings is potentially affected by tissue
266 age (studied in *Diploknema butyracea*: Zargar and Kumar, 2018; *Dalbergia melanoxylon*: Amri
267 et al., 2010; *Tectona grandis*: Husen and Pal, 2007; *Quercus* spp.: Chalupa, 1993) and
268 orientation of the cuttings on the parent-plant (studied in *Dalbergia melanoxylon*: Amri et al.,
269 2010; *Tectona grandis*: Husen and Pal, 2007b; *Dalbergia sissoo*: Husen, 2004). This effect on
270 rooting is due to the influence these two factors have on the availability of internally stored
271 resources such as endogenous growth hormones and carbohydrates (soluble sugars and
272 starch). Stored carbohydrates provide the energy required for cell division and, thus, are
273 required for root formation and growth (Husen and Pal, 2007a). Furthermore, growth hormones
274 such as auxins play a role in the metabolism and mobilisation of carbohydrates (Ruedell et al.,
275 2015; Husen, 2008). A lack of either of these resources can limit the rooting potential of cuttings
276 (Amri et al., 2010). Older plant tissue tends to exhibit reduced carbohydrate content (Husen,
277 2008; Husen and Pal, 2007a), a loss of sensitivity to growth hormones, decreased endogenous
278 growth hormone content, and an accumulation of growth inhibitory substances (Bidabadi and
279 Jain, 2020; Zargar and Kumar, 2018; Ikeuchi et al., 2016; Amri et al., 2010; Husen and Pal,
280 2007a). Similarly, the source location of cuttings from their parent plant can influence
281 carbohydrate content and sensitivity to growth hormones (Amri et al., 2010; Husen and Pal,
282 2007b; Husen, 2004; Zalesny et al., 2003). These studies show that cuttings taken from
283 different positions (apical, basal, or mid stem) therefore exhibit different rooting potentials. The
284 position in which to source cuttings, however, appears to be species-specific and was not
285 consistent across the studies cited here. As tissue age and cutting location were not considered
286 while harvesting *P. afra* cuttings, nor were the overall state of the plant or its recent history,
287 these factors may have affected rooting at the parent-plant level. Each individuals' cuttings were
288 sourced from a range of branches (3-5) that were harvested and later split into multiple cuttings
289 of similar size for propagation. Therefore, the cuttings from an individual may have varied in
290 relative position from the parent-plant and age. All the plants were harvested from the same

Commented [RLO25]: I think this is the most important result of this paper and should be strongly emphasised for future research.

291 macro-environmental conditions, i.e., from the same slope and within 20 m of each other.
292 Currently, the effect of the parent source material on the cutting establishment and survival has
293 not been tested in *P. afra* restoration, but this should be explored at the intra- and inter-plant
294 level to inform future harvesting ~~practices~~practices for thicket restoration.

295 Implications for thicket restoration

296 Succulent thicket restoration currently utilises unrooted *P. afra* cuttings that are harvested
297 indiscriminately and planted with limited regard for the wetter spring and autumn months (Mills
298 et al., 2015). This approach has resulted in variable success, with survival ranging between zero
299 % and almost 100% (mean survival estimated to be 28%) in large scale plantings (Mills and
300 Robson, 2017). The low survival reported has since been attributed to uncontrolled herbivory
301 and planting into the incorrect target habitat (van der Vyver et al., 2021b), with a large number
302 of experimental plots established in adjacent frost-prone shrublands (Duker et al., 2020) that
303 cannot support the frost sensitive *Portulacaria afra* (Duker et al., 2015).
304 The potential effects of rainfall post planting and *P. afra* source material have not previously
305 been considered in the evaluation of factors influencing cutting survival under field conditions.
306 While watering at planting was included in the TWP experiment, it was not found to have a
307 significant impact on *P. afra* cutting survival (van der Vyver et al., 2021a). In contrast, our results
308 suggest that early access to water does affect rooting in *P. afra* cuttings; however, a waterless
309 period beyond 28 days needs to be tested. The lack of a watering effect reported by van der
310 Vyver et al. (2021a) may be a consequence of rainfall soon after planting, nullifying the
311 treatment effect, or long periods (multiple months) of no rainfall post-planting, which are
312 common in succulent thicket habitats (Mahlalela et al., 2020; Palmer et al., 2020; Vlok et al.,
313 2003). Furthermore, if material is not randomised, the use of cuttings harvested from poor
314 parent material (i.e., harvesting from a nearby, old, or physiologically stressed *P. afra*
315 population) may impact the survival of entire experimental plots or treatments within plots. Thus,
316 further complicating the interpretation of the TWP results.
317 Further work is required to better describe the processes underpinning the parent-plant effect
318 and the water requirements for initiating rooting in *P. afra* as this information may inform best
319 ~~practices~~practices for future restoration initiatives. However, the results presented here suggest
320 that soil moisture is required relatively soon after planting to facilitate root formation. Planting
321 efforts should, therefore, be timed to best take advantage of the rainfall patterns specific to the
322 restoration site in question, and seasonal planting of cuttings sourced from the best available

Commented [RLO26]: But, your Fig 2 data suggests the overall treatment effect has very low statistical significance, and you suggest above (lines 200-212) that delayed watering may be beneficial for root production. This seems a contradiction.

Commented [RLO27]: As above

323 parent material during the wetter autumn and spring months may be advised; however, there
324 can be substantial inter-annual variation in these bimodal rainfall peaks.

325 **Conclusions**

326 The restoration of succulent thicket, a dwarf forest vegetation endemic to South Africa, is
327 dependent on better understanding the regeneration dynamics of the primary target plant
328 species, *P. afra*. This study provides evidence that the timing of water exposure post planting of
329 stem cuttings may impact rooting. Unexpectedly, strong evidence for a parent-plant effect on
330 rooting was also detected. These results highlight the complexity of interpreting the drivers of *P.*
331 *afra* survival under field conditions. Further work is required to better understand the parent-
332 plant effect documented here and to inform restoration practices.

Commented [RLO28]: "has little to no significant impact on rooting success"

333 **Acknowledgements**

334 **References**

335 Amri, E., Lyaruu, H.V.M., Nyomora, A.S., Kanyeka, Z.L., 2010. Vegetative propagation of
336 African Blackwood (*Dalbergia melanoxylon* Guill. & Perr.): effects of age of donor plant, IBA
337 treatment and cutting position on rooting ability of stem cuttings. *New Forests* 39: 183–194.
338 <https://doi.org/10.1007/s11056-009-9163-6>

339 Barton, K., 2022. MuMIn: multi-model inference. R package version 1. 47. 1. <http://r-forge.r-project.org/projects/mumin/>

341 Bidabadi, S.S., Jain, S.M., 2020. Cellular, molecular, and physiological aspects of in vitro plant
342 regeneration. *Plants* 9: 702. <https://doi.org/10.3390/plants9060702>

343 Cameron, R.J., Thomson, G.V., 1969. The vegetative propagation of *Pinus radiata*: Root
344 initiation in cuttings. *Botanical Gazette* 130: 242–251. <https://doi.org/10.1086/336498>

345 Chalupa, V., 1993. Vegetative propagation of oak (*Quercus robur* and *Q. petraea*) by cutting
346 and tissue culture. *Annals of Forest Science* 50: 295s–307s.
347 <https://doi.org/10.1051/forest:19930730>

348 Chambers J.M., Freeny A.E., Heiberger R.M., 1992. Analysis of variance; designed
349 experiments. In *Statistical models in Science*. Routledge, Oxfordshire, England, pp. 145-193.

350 Cowling, R.M., Mills, A.J., 2011. A preliminary assessment of rain throughfall beneath
351 *Portulacaria afra* canopy in subtropical thicket and its implications for soil carbon stocks.
352 *South African Journal of Botany* 77: 236–240. <https://doi.org/10.1016/j.sajb.2010.06.004>

353 de Klerk, G.-J., van der Krieken, W., de Jong, J.C., 1999. Review the formation of adventitious
354 roots: New concepts, new possibilities. *In Vitro Cellular & Developmental Biology - Plant* 35:
355 189–199. <https://doi.org/10.1007/s11627-999-0076-z>

356 D'Odorico, P., Bhattachan, A., Davis, K.F., Ravi, S., Runyan, C.W., 2013. Global desertification:
357 drivers and feedbacks. *Advances in Water Resources* 51: 326–344.

358 Duker, R., Cowling, R.M., du Preez, D.R., Potts, A.J., 2015. Frost, *Portulacaria afra* Jacq., and
359 the boundary between the Albany Subtropical Thicket and Nama-Karoo biomes. *South*
360 *African Journal of Botany* 101: 112–119. <https://doi.org/10.1016/j.sajb.2015.05.004>

361 Duker, R., Cowling, R.M., van der Vyver, M.L., Potts, A.J., 2020. Site selection for subtropical
362 thicket restoration: mapping cold-air pooling in the South African sub-escarpment lowlands.
363 *PeerJ* 8: e8980. <https://doi.org/10.7717/peerj.8980>

364 Evans, J., Geerken, R., 2004. Discrimination between climate and human-induced dryland
365 degradation. *Journal of Arid Environments* 57: 535–554. <https://doi.org/10.1016/S0140->
366 1963(03)00121-6

367 Everard, D.A., 1987. A classification of the subtropical transitional thicket in the Eastern Cape,
368 based on syntaxonomic and structural attributes. *South African Journal of Botany* 53: 329–
369 340. [https://doi.org/10.1016/S0254-6299\(16\)31393-X](https://doi.org/10.1016/S0254-6299(16)31393-X)

370 Fehér, A., 2019. Callus, dedifferentiation, totipotency, somatic embryogenesis: What these
371 terms mean in the era of molecular plant biology? *Frontiers in Plant Science* 10: 536.
372 <https://doi.org/10.3389/fpls.2019.00536>

373 Giraudeau, P., 2021. pgirmess: Spatial Analysis and Data Mining for Field
374 Ecologists. R package version 1.7.0. <https://CRAN.R-project.org/package=pgirmess>

375 Guralnick, L.J., Gladsky, K., 2017. Crassulacean acid metabolism as a continuous trait:
376 variability in the contribution of Crassulacean acid metabolism (CAM) in populations of
377 *Portulacaria afra*. *Helicon* 3: e00293. <https://doi.org/10.1016/j.heliyon.2017.e00293>

378 Haase, D., Davis, A., 2017. Developing and supporting quality nursery facilities and staff are
379 necessary to meet global forest and landscape restoration needs. *REFORESTA* 69–93.
380 <https://doi.org/10.21750/REFOR.4.06.45>

381 Hollander, M., Wolfe, D.A., 1973. Nonparametric Statistical Methods. John Wiley & Sons, New
382 York.

383 Husen, A., 2008. Clonal propagation of *Dalbergia sissoo* Roxb. and associated metabolic
384 changes during adventitious root primordium development. *New Forests* 36: 13–27.
385 <https://doi.org/10.1007/s11056-007-9079-y>

386 Husen, A., 2004. Clonal Propagation of *Dalbergia sissoo* Roxb. by softwood nodal cuttings:
387 Effects of genotypes, application of IBA and position of cuttings on shoots. *Silvae Genetica*
388 53: 50–55. <https://doi.org/10.1515/sg-2004-0009>

389 Husen, A., Pal, M., 2007a. Metabolic changes during adventitious root primordium development
390 in *Tectona grandis* Linn. f. (teak) cuttings as affected by age of donor plants and auxin (IBA
391 and NAA) treatment. *New Forests* 33: 309–323. <https://doi.org/10.1007/s11056-006-9030-7>

392 Husen, A., Pal, M., 2007b. Effect of branch position and auxin treatment on clonal propagation
393 of *Tectona grandis* Linn. f. *New Forests* 34: 223–233. <https://doi.org/10.1007/s11056-007-9050-y>

395 Ikeuchi, M., Ogawa, Y., Iwase, A., Sugimoto, K., 2016. Plant regeneration: cellular origins and
396 molecular mechanisms. *Development* 143, 1442–1451. <https://doi.org/10.1242/dev.134668>

397 James, J.J., Sheley, R.L., Erickson, T., Rollins, K.S., Taylor, M.H., Dixon, K.W., 2013. A
398 systems approach to restoring degraded drylands. *Journal of Applied Ecology* 50: 730–739.
399 <https://doi.org/10.1111/1365-2664.12090>

400 Lechmere-Oertel, R.G., Cowling, R.M., Kerley, G.I.H., 2005a. Landscape dysfunction and
401 reduced spatial heterogeneity in soil resources and fertility in semi-arid succulent thicket,
402 South Africa. *Austral Ecology* 30: 615–624. <https://doi.org/10.1111/j.1442-9993.2005.01495.x>

403 Lechmere-Oertel, R.G., Kerley, G.I.H., Cowling, R.M., 2005b. Patterns and implications of
404 transformation in semi-arid succulent thicket, South Africa. *Journal of Arid Environments* 62:
405 459–474. <https://doi.org/10.1016/j.jaridenv.2004.11.016>

406 Lechmere-Oertel, R.G., Kerley, G.I.H., Mills, A.J., Cowling, R.M., 2008. Litter dynamics across
407 browsing-induced fenceline contrasts in succulent thicket, South Africa. *South African
408 Journal of Botany* 74: 651–659. <https://doi.org/10.1016/j.sajb.2008.04.002>

409 MacOwens, P., 1897. Part 1 - Stock farming, in: *Agricultural Miscellanea: Extracts from
410 Volumes 1 to 5 of the "Agricultural Journal"*. W. A. Richards and Sons, Cape Town, South
411 Africa, pp. 193–194.

412 Mahlalela, P.T., Blamey, R.C., Hart, N.C.G., Reason, C.J.C., 2020. Drought in the Eastern Cape
413 region of South Africa and trends in rainfall characteristics. *Climate Dynamics* 55: 2743–
414 2759. <https://doi.org/10.1007/s00382-020-05413-0>

415 Midgley, J.J., Cowling, R.M., Seydack, A.H.W., Van Wyk, G.F., 1997. Forest, in: *Vegetation of
416 Southern Africa*. Cambridge University Press, Cambridge, pp. 278–295.

417 Mills, A., Vyver, M., Gordon, I., Patwardhan, A., Marais, C., Blignaut, J., Sigwela, A., Kgope, B.,
418 2015. Prescribing innovation within a large-scale restoration programme in degraded
419 Subtropical Thicket in South Africa. *Forests* 6, 4328–4348. <https://doi.org/10.3390/f6114328>

420 Mills, A.J., Cowling, R.M., 2014. How fast can carbon be sequestered when restoring degraded
421 subtropical thicket?: Carbon sequestration in restored subtropical thicket. *Restoration
422 Ecology* 22: 571–573. <https://doi.org/10.1111/rec.12117>

423 Mills, A.J., Cowling, R.M., 2006. Rate of carbon sequestration at two thicket restoration sites in
424 the Eastern Cape, South Africa. *Restoration Ecology* 14: 38–49.
425 <https://doi.org/10.1111/j.1526-100X.2006.00103.x>

426 Mills, A.J., Robson, A., 2017. Survivorship of spekboom (*Portulacaria afra*) planted within the
427 Subtropical Thicket Restoration Programme. *South African Journal of Science* 113:
428 <https://doi.org/10.17159/sajs.2017/a0196>

429 Muff, S., Nilsen, E.B., O'Hara, R.B. and Nater, C.R., 2022. Rewriting results sections in the
430 language of evidence. *Trends in Ecology & Evolution* 37: 203–210.
431 <https://doi.org/10.1016/j.tree.2021.10.009>

432 Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R² from
433 generalized linear mixed-effects models. *Methods in Ecology and Evolution* 4: 133–142.
434 <https://doi.org/10.1111/j.2041-210x.2012.00261.x>

435 Oakes, A.J., 1973. *Portulacaria afra* Jacq. — A potential browse plant. *Economic Botany* 27:
436 413–416. <https://doi.org/10.1007/BF02860694>

437 Palmer, A.R., Ezenne, G.I., Choruma, D.J., Gwate, O., Mantel, S.K., Tanner, J.L., 2020. A
438 comparison of three models used to determine water fluxes over the Albany Thicket, Eastern
439 Cape, South Africa. *Agricultural and Forest Meteorology* 288–289: 107984.
440 <https://doi.org/10.1016/j.agrformet.2020.107984>

441 Penzhorn, B.L., Robbertse, P.J., Olivier, M.C., 1974. The influence of the African Elephant on
442 the vegetation of the Addo Elephant National Park. *Koedoe* 17: 137–158.
443 <https://doi.org/10.4102/koedoe.v17i1.906>

444 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2021. nlme: Linear and Nonlinear
445 Mixed Effects Models. R package version 3.1-153. <https://CRAN.R-project.org/package=nlme>

446

447 Puri, S., Thompson, F. B., 2003. Relationship of water to adventitious rooting in stem cuttings of
448 *Populus* species. *Agroforestry Systems* 58: 1–9. <https://doi.org/10.1023/A:1025494221846>

449 R Core Team, 2022. RStudio: Integrated Development Environment for R.

450 Rein, W. H., Wright, R. D., Seiler, J. R., 1991. Propagation medium moisture level influences
451 adventitious rooting of woody stem cuttings. *Journal of the American Society for Horticultural
452 Science* 116: 632–636. <https://doi.org/10.21273/JASHS.116.4.632>

453 Ruedell, C.M., de Almeida, M.R., Fett-Neto, A.G., 2015. Concerted transcription of auxin and
454 carbohydrate homeostasis-related genes underlies improved adventitious rooting of
455 microcuttings derived from far-red treated *Eucalyptus globulus* Labill mother plants. *Plant
456 Physiology and Biochemistry* 97: 11–19. <https://doi.org/10.1016/j.plaphy.2015.09.005>

457 Sigwela, A.M., Kerley, G.I.H., Mills, A.J., Cowling, R.M., 2009. The impact of browsing-induced
458 degradation on the reproduction of subtropical thicket canopy shrubs and trees. *South
459 African Journal of Botany* 75: 262–267. <https://doi.org/10.1016/j.sajb.2008.12.001>

460 Stuart-Hill, G.C., 1992. Effects of elephants and goats on the kaffrarian succulent thicket of the
461 Eastern Cape, South Africa. *Journal of Applied Ecology* 29: 699–710.
462 <https://doi.org/10.2307/2404479>

463 Valliere, J.M., Zhang, J., Sharifi, M.R., Rundel, P.W., 2019. Can we condition native plants to
464 increase drought tolerance and improve restoration success? *Ecological Applications* 29:
465 e01863 <https://doi.org/10.1002/eap.1863>

466 van der Vyver, M.L., Cowling, R.M., 2019. Aboveground biomass and carbon pool estimates of
467 *Portulacaria afra* (spekboom)-rich subtropical thicket with species-specific allometric models.
468 *Forest Ecology and Management* 448: 11–21. <https://doi.org/10.1016/j.foreco.2019.05.048>

469 van der Vyver, M.L., Mills, A.J., Cowling, R.M., 2021a. A biome-wide experiment to assess the
470 effects of propagule size and treatment on the survival of *Portulacaria afra* (spekboom)
471 truncheons planted to restore degraded subtropical thicket of South Africa. *PLOS ONE* 16,
472 e0250256. <https://doi.org/10.1371/journal.pone.0250256>

473 van der Vyver, M.L., Mills, A.J., Difford, M., Cowling, R.M., 2021b. Herbivory and
474 misidentification of target habitat constrain region-wide restoration success of spekboom (*475 Portulacaria afra*) in South African subtropical succulent thicket. *PeerJ* 9, e11944.
476 <https://doi.org/10.7717/peerj.11944>

477 van Luijk, G., Cowling, R.M., Riksen, M.J.P.M., Glenday, J., 2013. Hydrological implications of
478 desertification: Degradation of South African semi-arid subtropical thicket. *Journal of Arid
479 Environments* 91: 14–21. <https://doi.org/10.1016/j.jaridenv.2012.10.022>

480 Vlok, J.H.J., Euston-Brown, D.I.W., Cowling, R.M., 2003. Acocks' Valley Bushveld 50 years on:
481 new perspectives on the delimitation, characterisation and origin of subtropical thicket
482 vegetation. *South African Journal of Botany* 69: 27–51. [https://doi.org/10.1016/S0254-6299\(15\)30358-6](https://doi.org/10.1016/S0254-
483 6299(15)30358-6)

484 Wilman, V., Campbell, E.E., Potts, A.J., Cowling, R.M., 2014. A mismatch between germination
485 requirements and environmental conditions: Niche conservatism in xeric subtropical thicket
486 canopy species? *African Journal of Botany* 92: 1–6.
487 <https://doi.org/10.1016/j.sajb.2013.12.007>

488 Wolters, H., Jürgens, G., 2009. Survival of the flexible: hormonal growth control and adaptation
489 in plant development. *Nature Reviews Genetics* volume 10: 305–317.
490 <https://doi.org/10.1038/nrg2558>

491 Yandell, B.S., 1997. Practical Data Analysis for Designed Experiments, 1st ed. Routledge,
492 Oxfordshire, England. <https://doi.org/10.1201/9780203742563>

493 Zalesny, R.S., Hall, R.B., Bauer, E.O., Riemenschneider, D.E., 2003. Shoot position affects root
494 initiation and growth of dormant unrooted cuttings of *Populus*. *Silvae Genetica* 52: 273–279.

495 Zargar, A.R., Kumar, D., 2018. Effect of maturity stage of donor plant on propagation of
496 *Diploknema butyracea* through branch cuttings. *World Journal of Agricultural Research* 6: 15–
497 19. DOI: 10.12691/wjar-6-1-4

498 Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common
499 statistical problems. *Methods Ecology and Evolution* 1: 3–14.

500 Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., others, 2009. Mixed effects
501 models and extensions in ecology with R. Springer.

502

503 REVIEWER'S GENERAL COMMENTS

504 The study is simple and well-designed in principle, although the short duration of the experiment
505 does hamper the key conclusion of the 'rooting window'.

506

507 The experimental design is good and allows what seems to be the appropriate stats (apologies
508 for my lack of comment on the stats).

509

510 The findings are valid in themselves, although I tend to think the key result is the lack of
511 significant rooting pattern that comes from the treatment effect. It would appear to me that the
512 statement that water is NOT needed for rooting success (within the time frame of this
513 experiment) gives hope to the massive restoration projects that cannot provide water at planting
514 or thereafter. In this regard, I suggest some of the key statements in the discussion and
515 conclusion could be re-articulated to reflect this, as opposed to saying that early watering does
516 promote rooting.

517

518 The figures and tables are well laid out and understandable.

519

520 I found the discussion section that tries to explain (a non-existent?) pattern of rooting response
521 to watering at a hormonal level a bit too speculative. I think there may be truth in the
522 speculation, but the authors quote many unrelated studies that are not easily comparable, and
523 no conclusion can actually be drawn from the section. I would trim this a bit.

524

525 The incidental result regarding the parent material is such an important result as it COULD offer
526 the key to understanding the variable success of previous field plantings. I would more strongly
527 emphasise this aspect.