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Abstract 

 

Aposematism continues to be a phenomenon of central interest in evolutionary biology. The life 

history of the mimic poison frog, Ranitomeya imitator, relies heavily on aposematism. In order 

for aposematic signals to be effective, predators must be able to learn to avoid the aposematic 

phenotype. In R. imitator, aposematism is associated with four different color morphs that mimic 

a complex of congeneric species occurring across the mimic frog’s geographic range. 

Investigations of the underlying mechanics of color production in these frogs can provide 

insights into how and why these different morphs evolved. We used histological samples to 

examine divergence in the color production and toxin sequestration mechanisms used by R. 

imitator to produce effective aposematic signals across its geographic range. We measured 

the abundance of melanophores, xanthophores, and poison glands in each color morph. We find 
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that morphs that produce orange skin exhibit a higher abundance of xanthophores and lower 

abundance of melanophores than those that produce yellow skin. In turn, morphs that produce 

yellow skin exhibit a higher abundance of xanthophores and lower abundance of melanophores 

than those that produce green skin. Generally, across the morphs, a high ratio of xanthophores to 

melanophores is associated with colors of brighter spectral reflectance. Additionally, we find 

differences in the abundance of poison glands across the four color morphs, with the Varadero 

(red-headed) morph possessing the greatest abundance of glands. This may represent variation in 

the morphs’ anatomical capacity to sequester the alkaloid toxins that reinforce learned predator 

avoidance of their aposematic signal. However, measurements of glands from wild specimens, 

exposed to alkaloid toxins, are needed to confirm  this result. Together, our results contribute to 

the understanding of color production in amphibians and document divergence in the histology 

of a species that is subject to divergent selection associated with aposematism. 

 

Introduction 
 

The phenomenon of aposematism (the use of conspicuous coloration by prey items to signal 

unpalatability to predators) has long held the interest of ecologists and evolutionary biologists 

(Poulton 1898 ; Ruxton et al. 2019). Because aposematic signals act as a color defense that 

directly impactsaffects predation rate, aposematic organisms are under significant evolutionary 

pressure to develop color production mechanisms suitable to the predators in their local 

environment (Seymoure et al 2018). Likewise, aposematic organisms must be capable of 

producing or sequestering toxins to maintain learned predator avoidance of their color pattern 

within a population level. 

The mimic poison frog, Ranitomeya imitator, is a small dendrobatid frog endemic to Peru 

(Schulte 1986). Like many poison frogs, R. imitator uses bright aposematic colors to signal its 



toxicity to potential predators (Stuckert et al. 2014ab). Additionally, R. imitator provides a 

striking example of color polytypism. Rather than converging on a single species-specific color 

pattern, R. imitator has diverged into four distinct color morphs—banded, striped, spotted, and 

Varadero—across its  geographic  range (Fig 1). 

 

Figure 1. The four color morphs of R. imitator: banded (upper left), striped (upper right), 

spotted (lower left), and Varadero (lower right). 

 

The evolution and persistence of the four color morphs can be explained by Müllerian mimicry 

(Symula 2001, Twomey 2013). Each morph benefits from taking on a different color pattern 

because that color pattern resembles another noxious toxic congener—respectively, R. summersi, 

R. variabilis highland, R. variabilis lowland, and R. fantastica—that share the same geographic 

space. The shared color pattern contributes to reciprocal learned avoidance in local predators 

(Stuckert et al. 2014a); a predator who has been exposed to an unpalatable model will, in the 

future, avoid preying upon the mimic and vice versa.   

    

Color production 

Most color production mechanisms in vertebrates can be categorized either as structural or 

pigmentary. Structural mechanisms produce bright colors, often blues and greens, by reflecting 

light off nanoscale structures found in the integument. By contrast, pigments produced by 

specialized cells in the dermis absorb light of a specific wavelength, leaving the remaining 

wavelengths visible to an observer (Mills 2008). Structural mechanisms and pigmentaryBoth 

mechanisms frequently interact to produce colors of varying hue and brilliance (Segami 2017).  



 

Figure 2. Illustration of a typical chromatophore unit with subcellular structures. Superficial 

xanthophores contain pigment vesicles, carotenoid vesicles and pterinosomes. Iridophores 

contain reflective guanine platelets. Deep melanophores contain melanosomes and may exhibit 

fingerlike projections that wrap around other chromatophores.  

 

Amphibians use specialized cells called chromatophores to produce color. Chromatophores are 

found layered within the dermal and subdermal tissue. Chromatophore layers are usually found 

in close contact with each other and are frequently referred to as chromatophore units (Dushane 

1935). The most superficial chromatophore, the xanthophore, contains pteridine and/or 

carotenoid pigments. These pigments absorb violet, blue, and green light to produce yellow, 

orange, and red coloration (Bagnara 1968, Frost 1984, Twomey 2020). Iridophores may be found 

below xanthophores. Iridophores contain nanoscale guanine platelets that reflect light; 

traditionally, they have been associated with the production of bright blue and green coloration, 

although more recently they have been associated with a broader color spectrum (Bagnara 1968, 

Frost 1984, Twomey 2020). When found beneath xanthophores, iridophores may also increase 

the brightness of superficial colors (Shawkey 2005, Shawkey 2017, Twomey 2020). The deepest 

chromatophore, the melanophore, contains eumelanin or pheomelanin pigments. These pigments 

absorb most of the light in the visible spectrum and produce dark brown or black coloration 

(Bagnara, 1968, Dushane 1935, Frost 1984). When found below iridophores, melanophores may 

enhance blue or green colors by absorbing stray light scattered incoherently by the guanine 

platelets (Shawkey 2017). 
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Toxin sequestration 

While dendrobatid frogs produce most of their colors endogenously, they obtain alkaloid toxins 

exogenously, by consuming ants and mites (Daly 1994, Saporito et al. 2009). Once ingested, 

alkaloid toxins are sequestered in specialized granular glands in the frogs’ dermal tissue 

(Saporito 2010). Granular glands are derived from ectodermal precursor cells during embryonic 

development. However, the glands do not become fully functional until the frogs reach 

their  metamorphic climax, shortly before they begin feeding on ingesting alkaloid toxins 

fromcontaining prey items (Stynoski 2016). As frogs grow from juveniles to adults, the glands 

enlarge and  migrate from the epidermis to the dermis (Saporito 2010, Stynoski 2016). The type 

and quantity of toxins sequestered in granular glands  may vary, depending on the prey items 

available to dendrobatid frogs (Saporito 2006). In some rare cases, dendrobatid frogs may 

metabolically alter alkaloids to intensify increase their toxicity (Daly 2003, Saporito 2006). 

 

Study objectives 

Our study aims to address two main questions: 1) does chromatophore abundance vary across 

color morphs of R. imitator and 2) does poison gland abundance vary between color morphs of 

R. imitator? We used histological samples to measure the abundance of melanophores, 

xanthophores, and poison glands within and between color morphs of R. imitator to answer these 

questions. Answering these questions may contribute to the understanding of an organism’s 

cellular response to an ecological phenomenon, like aposematism, which exerts divergent 

selection on a species across its geographic range.  

 

Materials & Methods 
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Collection of Specimens 

Individuals were collected from each mimetic morph of Ranitomeya imitator from locations near 

the city of Tarapoto, in San Martin Province, Peru.  Six adults from each color morph (24 in 

total) were sacrificed within 24 hours of collection using 20% benzocaine gel applied to the 

venter, according to the AUP D303). Immediately after the individuals were sacrificed, their 

dorsal skins were removed and placed in 10% neutral buffered formalin. All animal use handling 

procedures followed the respective protocols and  necessary for this study  were approved by 

Servicio Nacional Forestal y de Fauna Silvestre (SERFOR permiso CITES N°17 PE001718) in 

Peru and the Institutional Animal Care and Use Committee at East Carolina University (AUP 

D303). 

  

Slide preparation 

Skins were dissected to separate regions of different colors, which were labeled as black, yellow, 

orange, or green. Skin sections of approximately 2 x 1 mm were collected from the separated 

regions. Skin sections were fixed in a 10% phosphate buffered formalin solution for 6-12 hours, 

then run through several dehydrating and clearing solvents in a tissue processor. Finally, a rotary 

microtome was used to embed the skins in paraffin wax, section them into sections with a 

thickness of 5µm, and fix the sections to glass microscope slides. A total of approximately 1,000 

slides were produced, each slide containing 8-10 skin sections.  

  

Histological staining 

Histological slides were stained according to Newcomer’s Schmorl-Melanin protocol, which was 

designed to identify sites of melanin deposition.  Groups of five slides in a slide basket were 
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dipped in a series of reagents, detailed in Supplemental Table 7. Critically, the reagents included 

a potassium ferricyanide solution to stain sites of melanin deposition black and a Nuclear Fast 

Red solution to make surrounding cells distinguishable. At the end of the series, coverslips were 

fixed to slides using a Permount mounting solution. Slidebrite and ethanol solutions were 

changed after 50 slides, or at the earliest sign of cloudiness or discoloration, whichever came 

first. Nuclear Fast Red and ferricyanide solutions were changed weekly. A plastic basket was 

developed so five slides could be submerged in reagent at a time, increasing the efficiency of 

slide processing. 

 

Microscopy 

Histological slides were examined under a brightfield microscope connected to a computer with 

a digital display. A magnification strength of 40X was used to collect images. The first, fifth, and 

last skin section from each slide were selected for imaging, so that sections spanned the length of 

the original skin sample, except when tissue degradation made a section unusable (gaps in tissue 

exceeded width of epidermis). When one section was deemed inviable, the nearest viable section 

was selected for imaging. 

 

Figure 3. Left – degraded tissue section, excluded from the study. Right – intact tissue section, 

used in the study. 

 

Skin sections on the same slide were assumed to be roughly equivalent, since they represent 

tissue of the same color taken from the same frog of the same morph at the same depth. 

Kommentiert [SM17]: Could be reduced to one 
sentence in the supplementary file where you specify 
your staining protocol. 

Kommentiert [SM18]: Resolution of pictures, 
manufacturer of camera equipment and microscope? 

Kommentiert [SM19]:  8-10 5µm wide slices = 
sections per slide? 
→ ~ 50 µm of tissue from a 1-2 mm wide skin sample ≠ 
entire length of skin sample 
 
Did you mount the whole series or ‘only’ every tenth (or 
so) section on a slide? Am I missing something? 
 
Also, 3 replicated per slide, from approx. 1000 slides  
→ ~ 3000 pictures to be analyzed 2072 you state 
…what happened to the remaining 30%, are these the 
degraded samples you are mentioning?  

Kommentiert [SM20]: Not sure about the necessity of 
that figure. Interestingly, there is a tendency to be super 
detailed on less relevant parts, but unspecific on the 
actual data. Can you instead provide sections from 
different skin colors, and try to highlight the anatomical 
differences, even if they are subtle.  
 
If the figure stays in the manuscript it needs to be 
referenced and deserves a scale bar and maybe it is 
better suited for the supplement. 

Kommentiert [SM21]: Sorry, I am confused now. If you 
consider all sections on one slide equivalent why do you 
pooled the first fifth and the last section? 



Automatic white balance and exposure times were used to collect images. A total of 2072 images 

were produced. 

 

Image analysis 

Images were analyzed using ImageJ Software. A Bamboo stylus was used to outline regions of 

different cell types, and the area of each region (in pixels) was calculated. In some cases, several 

discrete regions had to be added together to find the total area of a given cell type. 

 

Figure 4. Regions of epidermis (E), xanthophores (X), melanophores (M), and poison glands (PG) 

in a section of orange skin tissue. 

 

Per previous research, regions Regions stained dark brown or black pigmentation below the 

epidermis but above the dermis were considered to be melanophores (Bagnara 1968, Franco-

Belussi 2020, Frost 1984). Regions of translucent cellular material with interspersed nuclei 

between the epidermis and the melanophores were considered to be xanthophores (Bagnara 

1968, Frost 1984). Round regions of empty vesicles between the epidermis and the dermis were 

considered to be poison glands (Stynoski 2016). The pale region with parallel fibers was 

considered to be dermal tissue, and the pink region with densely crowded nuclei was considered 

to be epidermal tissue (Bagnara 1968, Carriel 2011, Frost 1984). 

 

Statistical analysis 

For each image, we used ImageJ Version 1.53k to measure the total area of the skin section, the 

area of melanophores, the area of xanthophores, and the area of poison glands using. All 
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measurements were recorded in a Microsoft Excel spreadsheet. Statistical analysis were 

conducted with SAS Enterprise Guide 7.1 software.  

Abundance of each chromatophore type was calculated by dividing area of the chromatophore 

type by total area of the skin section.  

Although the data set generated by the present study was large (2072 images were 

measured), not all the data points could be considered independent samples (24 adult frogs 

provided all skin sections imaged). A hierarchical relationship exists between the four color 

morphs and the six frogs from each color morph that were sampled. In order to manage the 

hierarchical nature of the data set, measurements taken from each individual frog were averaged 

and compared to each other in a one-way ANOVA test in SAS Enterprise Guide 7.1, since the 

averages could be treated as independent samples. 

The one-way ANOVA tests run within SAS Enterprise Guide 7.1 compared the variance 

observed between six individual frogs of the same color morph (within group variance) to the 

variance between frogs from different color morphs (between group variance) to test the null 

hypothesis that color morph has no effect on chromatophore abundance (or that all color morphs 

belong to the same statistical group). As Post-Hoc tests we conducted pairwise  

One-way ANOVA tests were followed up by Tukey’s Studentized Range (HSD) tests, . 

Whereas the F-values and P-values generated by one-way ANOVA tests merely allowed us to 

support or reject the null hypothesis that all color morphs belong to the same statistical group, 

Tukey’s Studentized Range test performed pairwise comparisons to quantify the 

differencesidentify differences in mean between groupgroup means s and indicated which groups 

were statistically different and which were not (Tables S1 – S6). 

 

Results 
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Black skin 

All morphs of R. imitator exhibit a dark black dorsal background upon which different colors are 

presented. Black skin from all morphs was typified by a thick band of melanophores directly 

below the epidermis and a complete lack of other types of chromatophores. Finger-like 

projections of melanophores were observed surrounding poison glands. The results of the 

ANOVA suggest no statistically significant differences in melanophore abundance in black skin 

tissue from the striped, spotted, or banded morphs (F = 2.190,  Pr > F = 0.1209, df = 3). However, 

the Tukey’s HSD test indicated that the varadero morph was statistically different from the other 

three morphs, with approximately 2% less melanophore abundance than the other morphs (Table 

S1). 

 

Yellow and orange skin 

Of the four morphs of R. imitator, three exhibit patches of yellow or orange skin. The striped 

morph exhibits yellow skin, and the banded and varadero morphs exhibit orange skin. (No yellow 

or orange skin sections were collected from spotted morphs). Yellow and orange skin tissue sections 

were typified by a thin layer of xanthophores located directly below the epidermis and directly 

above the melanophore layer. At the level of magnification used in this project, the boundary 

between the xanthophore and melanophore layers appeared discrete and was not characterized by 

projections of melanophores into the xanthophore layer. An iridophore layer could not be 

identified with confidence using our staining procedure. 

The results of the ANOVA suggest a statistically significant difference in the abundance 

of xanthophores among color morphs (F = 11.7, Pr > F = 0.0009, df = 3). The Tukey’s HSD test 

specifies a difference between the banded and striped morphs (x̄banded-striped = 5.115) and the banded 
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and varadero morphs (x̄banded-varadero = 4.940). However, there was no significant difference between 

the varadero and striped morphs (Table S2). The abundance of melanophores in yellow and 

orange skin sections was also found to be significantly different across the color morphs (F = 

10.120, Pr > F = 0.0017, df = 3), with the striped morph exhibiting the greatest abundance of 

xanthophores, followed by the varadero morph, then the banded morph (Table S3). 

 

Green skin 

Of the four morphs of R. imitator, two exhibit green skin: the striped morph and the spotted 

morph. Green skin sections were characterized by a thin layer of xanthophores directly below the 

epidermis and above the melanophore layer. Presumably, iridophores were also present in green 

skin tissue, but they were not detectable under the staining protocol and magnification level used 

in this project. 

A one-way ANOVA test indicated a significant difference in the abundance of both 

xanthophores (F = 21.15, Pr > F = > 0.0001, df = 3) and melanophores (F = 21.11, Pr > F =  > 

0.0001, df = 3) between green skin sections and the previously examined yellow/orange skin 

sections. Likewise, the Tukey’s HSD test found statistically significant differences in the 

abundance of xanthophores for all but the striped and varadero morphs (Tables S4, S5). 

 

Poison glands 

Like other dendrobatid frogs, all morphs of R. imitator have specialized glands in the 

integumentary system in which toxins are sequestered and can be released. In the skin sections 

collected for this project, the poison glands appeared as round regions of tissue containing empty 

vesicles and spanning from the dermis to the epidermis. Melanophores often wrapped around the 

perimeters of the glands. 
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The results of a one-way ANOVA test indicate a statistically significant difference in the 

abundance of glands in skin tissue of the four color morphs (F = 86.81, Pr > F = > .0001, df = 3) 

with the varadero morph exhibiting the greatest abundance of glands (x̅varadero = 10.438) and the 

spotted and banded morphs exhibiting no significant differences and tying for least abundance of 

glands (x̅spotted = 4.593, x̅banded = 4.466) (Table S6). 

 

Discussion 

Coloration is a key trait in aposematic organisms, although little is known about the mechanisms 

of color production in polytypic animals. Here we attempt to document phenotypic divergence on 

a cellular level in R. imitator, an aposematic and polytypic frog  under divergent selection across 

its geographic range. In documenting histological differences between the four color morphs of R. 

imitator, the results of this study contributes to the growing body of evidence that the color 

polytypism observed in R. imitator and other dendrobatids may be associated with speciation at an 

early stage (Gray 2007, Segami 2017, Servedio 2011, Twomey 2014, Yang 2019). 

 

No variation in melanophore abundance in black tissue 

Although some dendrobatids do exhibit dorsal backgrounds of varying darkness (Posso-

Terranova. et  al. 2017), no difference in background color has previously been described in R. 

imitator . Moreover, the pressure for R. imitator morphs to resemble their models (all of which 

exhibit dark dorsal backgrounds) would likely act to  conserve the dark dorsal background trait 

within the species. Therefore, it is unsurprising that melanophore abundance in black skin tissue 

does not vary between three of the four color morphs. The outlying Varadero morph exhibits the 

smallest area of black skin on its dorsum, and one previous study found that Varadero tadpoles 

have significantly lower expression of the mitf gene, which encodes the melanogenesis 
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associated transcription factor (Stuckert et al. 2021). Downregulation of melanogenesis in 

Varadero tadpoles would be consistent with a decrease in melanophore abundance in adult 

Varadero frogs. 

 

Xanthophores are more abundant and melanophores less abundant in orange tissue than 

yellow tissue 

A previous comparison of spectral reflectance across the four color morphs of R. imitator found 

that the banded morph exhibits the brightest and most high contrasting colors (Twomey 2016). In 

the present study, the banded morph was found to contain the greatest number of xanthophores 

and the fewest lowest number of melanophores in orange skin tissue, which may be consistent 

with the production of bright colors. The striped morph exhibited the least abundance of 

xanthophores, which may indicate that fewer carotenoid/pteridine pigments are required to 

produce yellow colors than orange colors. Another recent study (Twomey et al. 2020) found that 

the thickness of guanine platelets in the iridophore layer of R. imitator skin can also affect hue in 

the yellow-to-red region of the spectrum, so this may be an additional factor contributing to 

overall coloration. 

 

Xanthophores less abundant and melanophores more abundant in green tissue than orange 

or yellow tissue 

Both morphs capable of producing green coloration exhibit a lower abundance of xanthophores 

than those exhibiting orange colors, which suggests that the production of green coloration may 

depend less on contributions from carotenoid and pteridine pigments and more on contributions 

from iridophores and unquantified subcellular structures. Frogs capable of producing green 

coloration also exhibit a higher abundance of melanophores than frogs that produce orange 



coloration. Previous studies have proposed that melanophore layers may be thickened below 

iridophores to absorb light that is scattered randomly by the guanine platelets, which may explain 

the increased melanophore abundance in green skin (Shawkey 2017). 

A previous comparison of spectral reflectance across the four color morphs of R. imitator 

found that the spotted morph exhibits the least bright and lowest contrast colors (Twomey 2020). 

In the present study, the spotted morph was found to contain the lowest abundance of 

xanthophores and the greatest abundance of melanophores in colored skin tissue, as opposed to  

the banded morph, which exhibits the brightest and most high contrasting colors. Together, these 

results suggest that a high ratio of xanthophores to melanophores may produce bright colors, 

whereas a low ratio of xanthophores to melanophores may produce dull colors. 

 

Figure 5. Summary of results from measurements of chromatophores across color morphs. Few 

significant differences exist in black skin tissue across color morphs. In yellow/orange skin 

tissue, the striped (yellow) morph exhibits lesser xanthophore abundance and greater 

melanophore abundance than the banded or varadero (orange) morphs. In green skin tissue, the 

spotted morph exhibits lesser xanthophore abundance and greater melanophore abundance than 

the striped morph. The morph with brightest colors (banded morph) has the highest ratio of 

xanthophores to melanophores, and the morph with the dullest colors (spotted morph) has the 

lowest ratio of xanthophores to melanophores. Tests of statistical significance can be found in S1 

– S5. 

 

Poison gland abundance does not predict quantity of toxins sequestered by frogs of different 

color morphs in a field survey 



Previous studies have suggested that variations in toxicity across color morphs of polymorphic 

frogs could be attributed either to 1) physiological adaptations allowing some frogs to sequester 

more toxins than others or 2) differences in the diets available to frogs in dispersed populations 

(Saporito 2006, Saporito 2010, Stynoski and O’Connell 2017, Saporito 2010). The present study 

found that the varadero morph may be anatomically equipped to sequester more toxins than other 

R. imitator morphs, having a greater abundance of poison glands than the other morphs. 

However, a field study found that the varadero morph carries the least amount of alkaloid 

defenses, compared to other morphs (Stuckert et al. 2014). This discrepancy suggests that the 

strength of a frogs’ defenses may be more closely related to the availability of dietary alkaloids 

than to anatomical capacity for sequestering toxins.  

Additionally, previous studies have demonstrated that the banded morph exhibits the 

brightest and most high contrasting colors of all the R. imitator color morphs, whereas the striped 

morph exhibits the dullest and least contrasting colors (Twomey 2013). Our results show no 

significant difference between the abundance of poison glands in the banded and spotted morphs, 

which suggests that despite its brighter colors, there may not be an anatomical basis for the 

banded morph to have a higher level of toxicity than the spotted morph. Thus, in the case of R. 

imitator, intraspecific color variation across morphs may not reflect a quantitatively honest 

aposematic signal (Stuckert et al. 2018). 

Importantly, the frogs used in the present study were raised in captivity and were not 

exposed to prey items carrying alkaloid toxins. The absence of toxins may have affected the 

development of glands, meaning that poison gland abundance in captive frogs may not 

accurately represent poison gland abundance in wild frogs. To date, no measurements of poison 

gland abundance in wild R. imitator morphs has been published. The results of this study should 
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be considered preliminary until a comparison of poison glands in captive frogs and wild frogs is 

made. 

 

Limitations 

Two major limitations exist in the present study’s methodology: the magnification power used to 

examine skin sections, and the lack of classification of pigments contained in chromatophores. 

The brightfield microscope used in this study lacked magnification power to identify one of the 

major chromatophores, the iridophore, with confidence. Likewise, subcellular structures could 

not be identified with confidence. Previous studies have demonstrated that the size, distribution, 

and orientation of subcellular structures, like pigment vesicles and guanine platelets, may have 

significant influence on coloration, but their influence could not be accounted for in the present 

study (Frost 1984, Posso-Terranova 2017, Shawkey 2005, Shawkey 2017, Stuckert 2019, 

Twomey et al. 2020). Each of the chromatophores described in the present study is capable of 

producing a variety of pigments. Final skin color may vary depending on the pigment the 

chromatophore is producing (Andrade 2019, Posso-Teranova 2017, Twomey et al. 2020). 

However, the present study did not classify pigments prior to the processing of skin tissue 

samples for microscopic analysis and thus cannot account for variation in color due to pigment 

type.  

 

 

Conclusions 

 

Ranitomeya imitator provides science with a striking example of color polytypism, produced by 

the mimic poison frog’s need to present aposematic signals familiar to predators across its 

geographic range. The present study demonstrated that the divergent selection associated with 



aposematism has led to divergence in the relative abundance of color-producing chromatophores 

across the four color morphs. Morphs that produce orange skin exhibit a higher abundance of 

xanthophores and lower abundance of melanophores than those that produce yellow skin. In turn, 

morphs that produce yellow skin exhibit a higher abundance of xanthophores and lower 

abundance of melanophores than those that produce green skin. Generally, across the morphs, a 

high ratio of xanthophores to melanophores can be associated with colors of brighter spectral 

reflectance. Additionally, the study documented differences in the relative abundance of poison 

glands across the four color morphs, with the varadero morph possessing the greatest abundance 

of glands. This finding may represent variation in the morphs’ anatomical capacity to sequester 

the alkaloid toxins that reinforce learned predator avoidance of their aposematic signal. 

However, measurements of glands from wild specimens, exposed to alkaloid toxins, are needed 

to support this result. 

 

Future directions 

To date, the majority of studies of coloration in dendrobatid frogs have taken advantage of 

natural color variations to establish correlations between color production mechanisms and 

observed color patterns. Studies attempting to experimentally manipulate color production 

mechanisms would be extremely valuable to the field.  For example, the present study found that 

the spotted morph had a much lower abundance of xanthophores in its green tissue than the 

banded morph had in its orange tissue. Previous studies have identified pax7 and xdh as genes 

associated with the early development of xanthophores and have found both genes to be 

differentially expressed across the color morphs of R. imitator during development (Stuckert 

2020). If the pax7 and/or xdh gene could be overexpressed in spotted R. imitator embryos and 



the overexpression of those genes led to adult spotted frogs with more abundant xanthophores 

and a more orange color pattern, there would be direct evidence that increasing xanthophore 

abundance causes the development of orange skin rather than merely being correlated with it. 
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