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ABSTRACT
Backgorund: The production of red fruits, such as blueberry, has been threatened by
several stressors from severe periods of drought, nutrient scarcity, phytopathogens,
and costs with fertilization programs with adverse consequences. Thus, there is an
urgent need to increase this crop’s resilience whilst promoting sustainable
agriculture. Plant growth-promoting microorganisms (PGPMs) constitute not only a
solution to tackle water and nutrient deficits in soils, but also as a control against
phytopathogens and as green compounds for agricultural practices.
Methods: In this study, a metagenomic approach of the local fungal and bacterial
community of the rhizosphere of Vaccinium corymbosum plants was performed.
At the same time, both epiphytic and endophytic microorganisms were isolated in
order to disclose putative beneficial native organisms.
Results: Results showed a high relative abundance of Archaeorhizomyces and
Serendipita genera in the ITS sequencing, and Bradyrhizobium genus in the 16S
sequencing. Diversity analysis disclosed that the fungal community presented a
higher inter-sample variability than the bacterial community, and beta-diversity
analysis further corroborated this result. Trichoderma spp., Bacillus spp., and Mucor
moelleri were isolated from the V. corymbosum plants.
Discussion: This work revealed a native microbial community capable of
establishing mycorrhizal relationships, and with beneficial physiological traits for
blueberry production. It was also possible to isolate several naturally-occurring
microorganisms that are known to have plant growth-promoting activity and confer
tolerance to hydric stress, a serious climate change threat. Future studies should be
performed with these isolates to disclose their efficiency in conferring the needed
resilience for this and several crops.
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INTRODUCTION
Blueberries (Vaccinium sp.) are one of the most important fruit crops in the world, due to
their high levels of polyphenols, antioxidants, vitamins, minerals, and fibers (de Souza
et al., 2014) that present numerous health benefits as anti-aging compounds, cancer
prevention and of several degenerative diseases (de Macêdo et al., 2017; Becker et al., 2019).
The high demand for healthier foods coupled with the increasing world population
resulted in the expansion of the production of these fruits, with an average annual growth
rate of 6.96% worldwide (FAOSTAT, 2023; Knoema, 2023). However, this crop is currently
facing a number of challenges associated with climate change, as the global temperature is
rising, contributing to longer and warmer summers, more and harsher heat waves, and a
decline in rainfall levels, leading to severe drought periods and nutrient scarcity (Lobos &
Hancock, 2015; Linares et al., 2020; Smrke et al., 2021). Besides climate issues, blueberry
production finds several other obstacles, including high production costs associated with
fertilization, weed management, and disease and pest control (Yu et al., 2020).

To survive under diverse threatening conditions, plants take advantage of the
collaboration with their epiphytic and endophytic microbial communities (Sarma et al.,
2015). These multipurpose beneficial communities are generally referred to as plant
growth-promoting microorganisms (PGPMs) and support plants in water use, nutrient
uptakes such as phosphorus and nitrogen, and the breaking down of minerals and organic
matter (Kumar, Patel & Meena, 2018). They also compete for nutrients and produce
antibiotics and lytic enzymes to prevent the development of pathogens (Sattiraju et al.,
2019). On the other hand, plants secrete up to 40% of their photosynthesis products into
the soil, supplying carbon to the microbiome population in the rhizosphere (Berendsen,
Pieterse & Bakker, 2012).

A well-characterized group of PGPMs are fungi belonging to the Trichoderma genus.
These microorganisms are a naturally occurring green strategy that plays a significant role
in interacting with the plant’s root system to boost growth and nutritional quality while
producing secondary metabolites that influence pathogenic defense either directly as
antibiotics or indirectly by eliciting the plant defense mechanisms against different
pathogens (Vinale & Sivasithamparam, 2020). For instance, the up-regulation of
defense-related pathways increases the expression of volatile organic compounds (VOCs),
namely jasmonic acid and ethylene, that trigger induced systemic resistance, or salicylic
acid, driving wound repair and systemic acquired resistance (Ferreira & Musumeci, 2021).

Currently, one of the most important challenges of environmental sustainability is to
meet the needs of a rapidly growing human population; however, cultivable land is limited,
so it is paramount to adopt appropriate agrobiotechnological measures to maximize food
production while minimizing pollution and remediating contaminated soil (Abhilash et al.,
2016). To this end, promoting native microorganisms’ growth is essential to strengthening
the plants’ resilience to a multitude of abiotic and biotic challenges.

Nowadays, profiling microbial samples from the soil is drastically facilitated by the
development of novel metagenomic tools that surpass traditional approaches, avoiding the
ineffective culturing step. In fact, the cultivation and isolation of microorganisms provide
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very limited results, as only around 1% of the soil microbiome is culturable, remaining the
majority unexplored. Fortunately, metagenomics emerged as a driving force to survey the
biodiversity of microbial communities (Daniel, 2005; Woli�nska, 2019).

In Portugal, blueberry production has increased considerably in the last years, placing
the country in the top 10 of the world’s biggest producers, with an estimated annual growth
of 31.27% (FAOSTAT, 2023; Knoema, 2023), significantly impacting Portuguese
agriculture and economy (Hilário et al., 2020). However, to date, only a single study in
Portugal has dwelled on the microbial communities associated with the rhizosphere of
blueberry plants, being this study focused only on the bacterial community (Gonçalves
et al., 2022).

Despite the previous existence of studies that seek to know the community of
microorganisms in blueberry plants, it is of great necessity to know both bacterial and
fungi communities present in a native form. In this way, this knowledge will be meaningful
to disclose more specific strategies to improve local blueberry production, taking the most
out of the indigenous nature attributes, and avoiding the need for agrochemicals that
degrade soil quality and the desired fruit. Therefore, and in the frame of the European
Green Deal, with special emphasis on the Farm to Fork strategy, this work aimed to
characterize the local rhizosphere-colonizing microbiome from blueberry plants in a
biological orchard in the Douro region of Portugal. In order to achieve this, we resort to
metagenomic sequencing of bacterial 16S and fungal ITS regions, and at the same time,
isolation and identification, through molecular characterization, of the native mycorrhiza
rhizobium. This allowed the establishment of a first report on the total profiling of the
native community of blueberries’ rhizosphere in Portugal and the assessment of the
putative presence of key native PGPMs.

MATERIALS AND METHODS
Sample selection and collection
For rhizosphere characterization, root, and soil samples from 6-year-old Blueberry plants,
namely, Vaccinium corymbosum ‘Brigitta’ variety, grown under appropriate soil
conditions, biological agricultural practices, and without the presence of other plant
species, were collected in the Enxertada Indie Farmers production (Resende, 41�07′13.4″N
7�53′17.8″W) in October 2021. The ‘Brigitta’ variety was selected due to its high
commercial value and belongs to the Northern highbush blueberry groups that are
representative of the blueberry production in the north and center of Portugal,
including in the sampling region. For root samples, roots with arbuscular morphology of
V. corymbosum plants were selected; for soil samples, soil containing arbuscular roots with
a depth of 5 cm was collected.

A total of 10 V. corymbosum plants were randomly chosen and one soil sample per plant
was collected (n = 10) (R1 to R10), to characterize the representative bacterial and fungal
microorganisms’ populations at the site. The soil was placed in sterile bags and transported
to the laboratory, and stored at −80 �C for further processing. For the root samples,
another nine V. corymbosum plants were randomly chosen and the samples were collected
in duplicate per plant (n = 9). The roots were also placed in sterile bags, and transported to
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the laboratory to be processed within 24 h of collection, for isolation of epiphytic and
endophytic fungi and bacteria.

Field sampling was approved by Enxertada Indie Farmers under the project STOP.
SUZUKII.

ITS and 16S amplicon metagenomic sequencing of V. corymbosum
rhizosphere
Genomic DNA from soil for metagenomic analysis was obtained. For the ten soil samples,
the Soil DNA Purification Kit (EURx�, Gdansk, Poland) was used following the
manufacturer’s instructions with a slight modification, namely, the Bead Tube containing
100 mg of sample was first snapfrozen in liquid nitrogen. DNA quality and quantity from
every sample were carried out resorting to LVis Plate and the FLUOstar� Omega
Multiplate reader (BMG, LABTECH, Ortenberg, Germany). To characterize the
rhizobiome of the rhizosphere of V. corymbosum plants, amplicon metagenomic
sequencing of the internal transcribed spacer (ITS) rRNA of the ITS1 region and 16S
ribosomal RNA (rRNA) of the V3-V4 region was carried out on the DNA soil samples, at
Novogene Europe (Novogene Co., Cambridge, UK). Briefly, after passing the quality
control (QC), and amplification of the ITS and 16S regions, library construction was made
with the amplicons (one library per sample). Sequencing by synthesis (SBS) technology
was used resorting to the Illumina NovaSeq 6000 platform (Illumina�, San Diego, CA,
USA) to generate 250 bp paired-end raw reads, and once sequencing was completed, QC
and bioinformatics analysis were conducted.

Metagenomic data analysis
For the metagenomic ITS and 16S amplicon sequencing analysis, the pipeline outsourced
by Novogene was followed. After assessing the sequencing coverage and quality, Qiime
(V1.7.0) and Uparse software (Uparse v7.0.1090) were used to identify the total tags
obtained and operational taxonomic units (OTUs). Then, the top 10 highest abundant
fungal and bacterial genus of V. corymbosum rhizosphere were obtained (R1 to R10),
alongside the phylum relative abundance, resorting to blastall (Version 2.2.25) and Unite
(V8.2) database. An evolutionary tree of the top 100 genera, and a phylogenetic tree of the
top 10 genera identified in every sample were created using MUSCLE (Version 3.8.31).
Also, alpha-diversity analysis for each sample was performed through diversity indexes
(Shannon and Simpson) and richness indexes (Chao1 and ACE), and Venn diagrams to
disclose the core microbiota, whilst, for beta-diversity analysis between the samples, a
non-metric multidimensional scaling (NMDS) was applied. QIIME (Version 1.7.0) was
used for both alpha and beta diversity analysis, and results were displayed with R software
(Version 2.15.3; R Core Team, 2013).

Isolation of endophytic and epiphytic microorganisms
To isolate epiphytic and endophytic fungi and bacteria, root samples were processed in
two different ways. Healthy root segments were cut into various 3–5 cm segments. One
segment was placed directly on potato dextrose agar (PDA) medium (27 g of potato
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dextrose broth; 1.5% Agar; distilled water up to 1 L) supplemented with 50 mM
kanamycin, to isolate epiphytic fungi, whilst for epiphytic bacteria, two different segments
were placed directly on Luria Bertani (LB) medium (37 g of LB broth; 1.5% Agar; distilled
water up to 1 L) and brain heart infusion (BHI) medium (20 g of BHI broth; 1.5% Agar;
distilled water up to 1 L). For endophytic microorganisms, the segments were washed in
sterile dH2O and then went through a disinfection process consisting of 1-min washes each
in 10% bleach, followed by 70% ethanol (EtOH) and 5 consecutive washes with sterile
dH2O. After drying, the root samples were also placed on PDA supplemented with 50 mM
kanamycin, to isolate fungi, and for bacteria, two segments were placed on LB and BHI
mediums, (one segment each). Plates were then incubated at 25 �C for 5–7 days and at
room temperature for 2–3 days, for fungal and bacterial growth respectively. PDAmedium
was supplemented with an antibiotic to prevent the growth of bacteria during fungi
isolation (Vohník, 2020). Morphologically different fungal and bacterial colonies were
purified on new plates containing PDA medium and LB or BHI medium respectively,
followed by incubation at 25 �C for 7 days and at room temperature for 2 days,
respectively. In the end, a visual assessment was conducted to determine the
morphological characteristics of the isolated fungi and bacteria. A photographic record
was also performed. Fungal and bacterial isolates were stored in potato dextrose broth
(PDB) and LB at −80 �C in 60% and 30% glycerol, respectively.

Fungal and bacterial DNA extraction, amplification and sequencing
For genomic DNA extraction, the Plant & Fungi DNA Purification Kit (EURx�, Gdansk,
Poland) was used for the 63 fungal isolates following the manufacturer’s instruction, with
100 mg of fresh fungal tissue. For the 59 bacterial isolates, the Bacterial & Yeast Genomic
DNA Purification Kit (EURx�, Gdansk, Poland) was used following the manufacturer’s
instructions. DNA quality and quantity from every bacterial and fungal sample were
carried out resorting to LVis Plate and the FLUOstar� Omega Multiplate reader (BMG,
LABTECH, Ortenberg, Germany). Endophytic and epiphytic fungal and bacterial isolates
were identified by Sanger sequencing of the ITS and 16S partial region, respectively.
To achieve that, a polymerase chain reaction (PCR) was carried out using a reaction
mixture containing 1x Taq Master Mix (Bioron, Römerberg Germany), 1 mM of primers
(listed in Table 1), and 1 ng of DNA template. The PCR cycle parameters were 2–5 min at
94 �C, followed by 25 cycles of 94 �C for 25 s, 49 �C or 55 �C (ITS, and 16S respectively) for

Table 1 Primers used for ITS and 16S rRNA Sanger sequencing.

Primer 5′ -> 3′ sequence Reference

ITS

ITS1 TCCGTAGGTGAACCTGCGG White et al. (1990)

ITS4 TCCTCCGCTTATTGATATGC White et al. (1990)

16S rRNA

27F AGAGTTTGATCCTGGCTCAG Lane (1991)

1492R GGTTACCTTGTTACGACTT Lane (1991)
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30 s, 72 �C for 50 s, and a final extension at 72 �C for 3 min. PCR amplicons were assessed
by electrophoresis in a 1% agarose gel stained with GreenSafe Premium (NZYTech©,
Lisboa, Portugal), at a constant voltage (120V) in 1x TBE buffer, and purified using the
NZYGelpure Kit (NZYTech©, Lisboa, Portugal) following the manufacturer’s instructions.
Sequencing was outsourced to STAB Vida (Lisbon, Portugal).

Culturable fungal and bacterial identification
To confirm the identity of the fungal and bacterial isolates, raw sequences of the Sanger
sequencing of the ITS and 16S regions were assembled with Geneious Prime 2022.1
(Biomatters, Auckland, New Zealand), and then assessed by BLASTn for existing
homology in the GenBank database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Isolates’
identity was determined after assessing the query cover, E-value, and percentage of identity
obtained.

RESULTS
Metagenomic data analysis
Illumina-sequencing of ITS amplicons produced 1,787,299 raw reads, that after
qualification and removal of chimeras produced 1,293,940 effective tags, from which 556
OTUs were identified with an average length of 265 nt, and 97.98% Q20 score. Sequencing
of 16S amplicons produced 1,800,579 raw reads, that after qualification and removal of
chimeras produced 907 824 effective tags, from which 3,625 OTUs were identified with an
average length of 413 nt and 98.24% Q20 score (Table 2). The fungal and bacterial
communities associated with the rhizosphere of V. corymbosum from Enxertada Indie
Farmers production are depicted in Figs. 1 and 2 (fungi), and Figs. 3 and 4 (bacteria) by an
evolutionary tree of the 100 most abundant genera and top 10 most abundant genera in
each sample. Among the fungal community, the Ascomycota (75.47%) and Basidiomycota
(24.53%) were the most prevalently identified phyla (Fig. S1), while the bacterial
community was dominated by Acidobacteriota (41.88%), Proteobacteria (29.48%) and
Actinobacteria (15.06%) phyla (Fig. S2).

Among the top 100 most abundant genera of fungi in the analyzed samples,
Archaeorhizomyces (31.49%), Serendipita (16.52%), Atractospora (15.26%), and
Penicillium (7.57%) genera stood out as the most abundant genera among the total
generated OTUs (Fig. 1). However, it is noticeable that Serendipita and Penicillium
abundance was more homogenous across samples (Figs. 1 and 2). Despite less
predominance among the whole fungal community, some particular genera dominated
singular samples: Galerina (21.02% in R4) and Pezoloma (20.22% in R6) (Fig. 2).

The bacterial community composition of the collected samples disclosed more
homogenous results as the 10 most abundant genera of bacteria represented only between
20.75% and 30.66% of the sample community (Fig. 3). Several genera were predominant
across all samples, such as Subgroup_2 (7.58%), Bradyrhizobium (7.32%), Acidothermus
(6.29%), Candidatus Solibacter (5.11%), Bryobacter (4.72%) and Acidibacter (3.61%)
(Fig. 4).
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Alpha-diversity and beta-diversity of microbial communities
The richness (Chao1 and ACE indices) and diversity (Shannon and Simpson indices) of
the communities were evaluated. As disclosed by the relative abundances of genera,
analyzed samples showed a heterogenous diversity and richness of the fungal community,
with Shannon and Simpson indices revealing a 30.19% and 23.81% coefficient of variation,
while Chao1 and ACE indices displayed a 58.67% and 57.35% coefficient of variation
(Table 3). Meanwhile, the bacterial communities disclosed very little variation of diversity
and richness between samples, with the Shannon and Simpson indices presenting a 3.02%
and 0.16% coefficient of variation whereas Chao1 and ACE indices presented a 9.65% and
9.40% coefficient of variation (Table 3).

Table 2 Sequencing data and quality of ITS and 16S rRNA sequencing. Single, total and mean number of raw paired-end reads (raw reads), tags
merged from reads (raw tags), cleaned and filtered tags (clean tags and effective tags) and operational taxonomic units (OTUs). Percentage of yielded
effective tags in relation to produced raw reads. Single and mean number of sequenced effective tags nucleotides (base) and their average length.
Single and mean percentage of Q20 and Q30 scores and GC content of effective tags.

Soil
sample

Raw
reads

Raw tags Clean
tags

Effective
tags

Effective tags
(%)

OTUs Base
(nt)

Average
length
(nt)

Q20
(%)

Q30
(%)

GC content
(%)

ITS

R1 155,590 134,367 121,460 120,129 77.21% 425 32,349,810 269 98.6 96.56 55.01

R2 184,863 162,014 122,527 121,987 65.99% 282 36,837,738 302 96.97 92.77 54.85

R3 171,154 155,678 131,205 130,046 75.98% 215 39,584,999 304 96.62 92.04 54.51

R4 182,557 157,156 109,792 109,178 59.80% 417 32,475,292 297 97.52 93.89 51.19

R5 170,089 161,707 149,993 149,260 87.75% 330 42,733,120 286 99.15 97.32 54.99

R6 146,530 110,773 92,765 90,347 61.66% 598 23,273,395 258 98.22 96.05 50.33

R7 194,018 134,255 121,547 115,467 59.51% 1,217 29,139,615 252 99.07 97.49 53.93

R8 185,367 142,641 142,450 140,579 75.84% 979 32,195,048 229 97.54 95.85 50.62

R9 197,154 157,997 157,911 157,324 79.80% 435 35,314,304 224 97.82 95.21 51.12

R10 199,977 164,373 160,783 159,623 79.82% 657 37,195,561 233 98.29 96.42 52.92

Mean 178,730 148,096 131,043 129,394 72.34% 556 34,109,888 265 97.98 95.36 52.95

Total 1,787,299 1,480,961 1,310,433 1,293,940 5,555

16S rRNA

R1 170,688 159,243 156,519 86,747 50.82% 2,929 35,846,478 413 98.36 94.59 56.60

R2 183,187 168,332 165,057 93,749 51.18% 3,681 38,746,901 413 98.27 94.43 56.91

R3 188,628 172,749 169,282 99,543 52.77% 3,523 41,086,071 413 98.24 94.43 57.29

R4 181,437 167,544 164,431 90,597 49.93% 3,830 37,408,294 413 98.25 94.43 57.00

R5 172,924 160,906 158,029 84,100 48.63% 3,202 34,730,044 413 98.28 94.44 56.28

R6 187,731 173,025 169,585 96,238 51.26% 3,687 39,763,304 413 98.22 94.32 57.08

R7 174,883 160,798 157,893 83,548 47.77% 3,814 34,532,604 413 98.23 94.24 57.05

R8 178,887 164,797 161,674 90,725 50.72% 3,864 37,459,285 413 98.22 94.29 57.10

R9 173,178 157,647 154,428 89,798 51.85% 4,024 37,162,831 414 98.11 93.99 57.08

R10 189,036 173,832 170,324 92,779 49.08% 3,699 38,309,489 413 98.17 94.17 57.12

Mean 180,058 165,887 162,722 90,782 50.40% 3,625 34,378,830 413 98.24 94.33 56.95

Total 1,800,579 1,658,873 1,627,222 907,824 36,253
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To further complement the analysis of inter-sample diversity, a multivariate analysis by
non-linear multidimensional scaling (NMDS) was performed. The results showed a
general dissimilarity between all fungal communities (Fig. 5), disclosing no correlation
between any sample. On the other hand, the bacterial communities associated were shown
to be generally more closely related to each other, especially R6, R7, R8, R9, and R10
samples, which grouped in the upper-right quadrant (Fig. 6).

Figure 1 Evolutionary tree of the 100 most abundant genera of fungi across the different samples. Each bar represents the relative abundance of
the genus in each sample. Each color of the branches corresponds to one phylum. Full-size DOI: 10.7717/peerj.15525/fig-1
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Core microbiota of rhizosphere samples
The alpha diversity of the fungal and bacterial communities was also analyzed regarding
the common OTUs between samples. Although unique OTUs were found in every sample,
there were 20 common OTUs on fungi identification (Fig. 7A). Trichoderma and
Serendipita genera were the most abundant genera among the core fungi with three OTUs

Figure 2 Relative abundance of the top 10 most abundant genera identified by ITS sequencing in
each sample. Full-size DOI: 10.7717/peerj.15525/fig-2

Figure 3 Relative abundance of the top 10 most abundant genera identified by 16S sequencing in
each sample. Full-size DOI: 10.7717/peerj.15525/fig-3
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each (Table S1). Moreover, the bacterial community revealed a set of 1,152 common OTUs
(Fig. 7B). The genera Bryobacter (27 OTUs), Subgroup_2 (26 OTUs), IMCC26256 (23
OTUs), Candidatus_Solibacter (21 OTUs), MB-A2-108 (21 OTUs), Haliangium (19
OTUs), 67-14 (17 OTUs) and Acidothermus (17 OTUs), were frequently encountered
among this set (Table S2).

Figure 4 Evolutionary tree of the 100 most abundant genera of fungi across the different samples. Each bar represents the relative abundance of
the genus in each sample. Each color of the branches corresponds to one phylum. Full-size DOI: 10.7717/peerj.15525/fig-4
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Identification of isolated fungal and bacterial communities from the
rhizosphere
The isolation of endophytic and epiphytic microorganisms yielded a total of 167 fungal
and 288 bacterial isolates from the nine root samples collected. Of this total, after assessing
each one for different morphological characteristics, isolates were grouped together
resulting in 63 fungi and 59 bacteria isolates (Tables S3 and S4). From these, 20 endophytic
and 18 epiphytic unique fungi and nine endophytic and 18 epiphytic unique bacteria were
identified by BLASTn (Table 4). A list of identification results of endophytic and epiphytic
fungi and bacteria isolates with their E-value, query cover, and identity were summarized
in Tables S1 and S2.

Table 3 Alpha diversity indexes of the fungal and bacterial communities of each sample. Diversity
indexes (Shannon and Simpson) and richness indexes (Chao1 and ACE) with respective mean, standard
deviation (Stand. Dev.) and coefficient of variation (Coeff. Variation).

Soil sample Observed species Shannon Simpson Chao1 ACE

ITS

R1 371 3.28 0.73 438.65 461.98

R2 265 3.20 0.76 282.22 282.48

R3 180 2.82 0.69 206.86 225.23

R4 362 3.38 0.82 403.89 405.32

R5 279 1.32 0.28 337.16 349.08

R6 598 4.06 0.87 832.18 737.55

R7 1,161 5.32 0.88 1,247.03 1,274.72

R8 910 4.49 0.78 1,167.67 1,138.07

R9 374 3.38 0.84 473.32 494.28

R10 579 4.07 0.85 713.27 757.82

Mean 3.55 0.74 625.44 625.80

Stand. Dev. 1.07 0.18 366.93 358.91

Coeff. Variation 30.19% 23.81% 58.67% 57.35%

16S

R1 2,698 9.07 0.99 2,878.98 2,917.65

R2 3,365 9.29 0.99 3,723.17 3,746.40

R3 3,168 9.19 0.99 3,516.07 3,573.15

R4 3,534 9.64 1.00 3,861.02 3,910.73

R5 2,913 9.08 0.99 3,169.96 3,215.31

R6 3,342 9.48 1.00 3,606.90 3,685.56

R7 3,489 9.74 1.00 3,865.35 3,793.94

R8 3,549 9.65 1.00 3,818.78 3,902.55

R9 3,698 9.79 1.00 3,987.78 4,017.09

R10 3,397 9.75 1.00 3,664.03 3,726.39

Mean 9.43 0.99 3,567.14 3,607.96

Stand. Dev. 0.28 0 344.34 339.09

Coeff. Variation 3.02% 0.16% 9.65% 9.40%
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Figure 5 Multivariate analysis of the fungal communities of each soil sample by non-linear
multidimensional scaling (NMDS) to evaluate the dissimilarity between each associated
community. Full-size DOI: 10.7717/peerj.15525/fig-5

Figure 6 Multivariate analysis of the bacterial communities of each soil sample by non-linear
multidimensional scaling (NMDS) to evaluate the dissimilarity between each associated
community. Full-size DOI: 10.7717/peerj.15525/fig-6
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Regarding the fungal community, different species of the Trichoderma genus were
identified (Trichoderma asperellum, T. atroviride, T. citrinoviride, T. crissum, T. gamsii,
T. hamatum, T. harzianum, T. koningii, T. longibrachiatum, T. spirale, T. sulphureum,
T. virens,), both endophytically and epiphytically. Furthermore, other genera were
identified: Cunninghamella, Diaporthe, Fusarium, Macrophomina, Mucor, Oidiodendron,
Penicillium, Phomopsis, Rosellinia, Sclerotium, Setophoma and Trametes. Several bacterial
genera were identified, comprising Acinetobacter, Bacillus, Chryseobacterium, Citrobacter,
Enterobacter, Erwinia, Klebsiella, Leclercia, Leifsonia, Lelliottia, Lysinibacillus,Micrococcus,
Paenibacillus, Pantoea, Priestia, Pseudomonas, Staphylococcus and Stenotrophomonas.

Among the identified genera, Trichoderma (49.20%), Fusarium (14.28%), and
Phomopsis (11.1%) were the most prevalent fungi, followed by Diaporthe (6.34%), Mucor
(4.76%) and Penicillium (3.17%), whilst for bacteria, the most prevalent were Bacillus
(27.12%), followed by Priestia (16.95%), Lysinibacillus (13.56%), Pseudomonas (10.17%),
Pantoea (5.08%), Paenibacillus (3.39%), Micrococcus (3.39%), and Klebsiella (3.39%).

DISCUSSION
Blueberry production has been facing several challenges in the form of drought and
nutrient scarcity due to the ongoing climate change, the unregulated application of
chemical fertilizers, and diseases caused by several pathogens (Tournas & Katsoudas, 2005;
Guo et al., 2021a; Jiang et al., 2022; Zhang, Liu & Zhang, 2022; Zhao et al., 2022). Thus, an
urgent strategy to tackle these issues, whilst following the call for sustainable agriculture as
proposed by the European Green Deal is in serious need. To answer this call, several
microorganisms, from plant growth-promoting bacteria to antagonistic microorganisms
and mycorrhizal fungi have been extensively explored as a solution (Redman et al., 2021;
Acuña-Rodríguez et al., 2022; Bello et al., 2022; Wei et al., 2022). With this in mind, the
characterization of the native fungal and bacterial community structure of the rhizosphere

Figure 7 Venn diagram of the common operational taxonomic units (OTUs) of the ITS (A) and 16S
(B) metabarcoding. Each petal in the flower diagram represents for a sample or group, with different
colors for different samples. The core number in the center is for the number of OTUs present in all
samples, while number in the petals for the unique OTUs only showing in each sample.

Full-size DOI: 10.7717/peerj.15525/fig-7
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Table 4 List of isolated endophytic and epiphytic fungi and bacteria.

Code Type Species Code Type Species

ITS F1 Endophytic Diaporthe columnaris 16S rRNA B1 Endophytic Bacillus sp.

F2 Diaporthe sp. B2 Enterobacter sp.

F3 Fusarium diaminii B3 Erwinia billingiae

F4 Fusarium oxysporum B4 Lysinibacillus sp.

F5 Fusarium sp. B5 Micrococcus sp.

F6 Mucor moelleri B6 Paenibacillus sp.

F7 Penicillium adametzii B7 Pantoea sp.

F8 Phomopsis sp. B8 Priestia sp.

F9 Rosellinia necatrix B9 Pseudomonas sp.

F10 Sclerotium glucanicum B10 Epiphytic Acinetobacter sp.

F11 Setophoma terrestris B11 Bacillus thurigiensis

F12 Trametes villosa B12 Bacillus sp.

F13 Trichoderma atroviride B13 Chryseobacterium sp.

F14 Trichoderma hamatum B14 Citrobacter sp.

F15 Trichoderma harzianum B15 Klebsiella sp.

F16 Trichoderma koningii B16 Leclercia sp.

F17 Trichoderma longibrachiatum B17 Leifsonia sp.

F18 Trichoderma spirale B18 Lelliottia amnigena

F19 Trichoderma virens B19 Lysinibacillus sp.

F20 Trichoderma sp. B20 Micrococcus sp.

F21 Epiphytic Cunninghamella elegans B21 Paenibacillus sp.

F22 Diaporthe columnaris B22 Pantoea sp.

F23 Fusarium oxysporum B23 Priestia megaterium

F24 Macrophomina phaseolina B24 Priestia sp.

F25 Mucor moelleri B25 Pseudomonas sp.

F26 Oidiodendron maius B26 Staphylococcus sp.

F27 Penicillium paraherquei B27 Stenotrophomonas sp.

F28 Phomopsis columnaris

F29 Phomopsis sp.

F30 Trichoderma asperellum

F31 Trichoderma atroviride

F32 Trichoderma citrinoviride

F33 Trichoderma crassum

F34 Trichoderma gamsii

F35 Trichoderma hamatum

F36 Trichoderma spirale

F37 Trichoderma sulphureum

F38 Trichoderma sp.
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of V. corymbosum ‘Brigitta’ could disclose several microorganisms that could be explored
as agents to improve the resilience of the plants, promote plant growth and development,
and pose as a second key player against plant diseases.

In this study, the Ascomycota and Basidiomycota phyla expectedly dominated the
fungal communities. There have been previous reports of the high predominance of these
groups associated with the rhizosphere of not only Vaccinium spp. (Li et al., 2020; Dong
et al., 2022; Zhou et al., 2022), but other crop and non-crop plants as well (Fuentes et al.,
2020; Cheng et al., 2022; Liu et al., 2022). This is easily explained as these phyla encompass
a plethora of plant-associated microbes, such as mycorrhizal fungi, saprophytic organisms,
and plant pathogens (Berbee, 2001;Hannula et al., 2012). Serendipita and Peniccilium were
two of the most abundant genera distributed across all or most of the collected samples.
Serendipita spp., such as Serendipita indica or S. vermifera, have been previously described
as mycorrhizal endophytic fungi of several plants, which confer protection towards
infection, detoxification of xenobiotics, tolerance to hydric and mechanical stress,
enhancement of plant and root growth and modification of soil physicochemical
properties (Sun et al., 2014; Hosseini, Mosaddeghi & Dexter, 2017; Sarkar et al., 2019;
Hosseini & Mosaddeghi, 2021; Wang et al., 2022). Moreover, Trzewik,
Marasek-Ciolakowska & Orlikowska (2020) reported protective behavior of S. indica
towards infection by the phytopathogen Phytophthora cinnamomic in V. corymbosum,
extending the beneficial interaction of Serendipita spp. with blueberry plants (Trzewik,
Marasek-Ciolakowska & Orlikowska, 2020). On the other hand, Penicillium spp. are
common soil colonizers due to their key role in phosphorous cycling, an important
macronutrient, as they are able to solubilize it for plant uptake (Wakelin et al., 2004;
Pandey et al., 2008; Sharma et al., 2013; de Oliveira Mendes et al., 2014). In fact, the
application of Penicillium spp., as biofertilizers is already commercially available
(Richardson et al., 2009). The particular association of this genus with V. corymbosum has
also been reported and co-inoculation of mycorrhizal fungi and Penicillium chrysosporium
has been shown to promote the growth of blueberry plants in early stages (Arriagada et al.,
2012; Pescie et al., 2021). Other genera were found to be prominent in singular or few of the
collected samples, namely the Archaeorhizomyces, Atractospora, and Pezoloma genera.
Despite scarce information about the Archaeorhizomyces genus, it is known to
ubiquitously colonize soil samples (Rosling et al., 2011). However, the nature of its
relationship with the plant and other mycorrhizal fungi still remains unknown (Choma
et al., 2016; Cruz-Paredes et al., 2019). Nevertheless, association with Vaccinium spp. has
been previously reported (Li et al., 2020; Rodriguez-Mena et al., 2022). The Atractospora
genus is mainly characterized as saprophytic, associated with submerged wood in
freshwater (Réblová, Fournier & Štěpánek, 2016). Atractospora spp. have been previously
identified in different soil samples (Xie et al., 2019a; Shen et al., 2020; Lemmel et al., 2021),
yet plant-fungus relationships have not been dwelled on. Ericoid mycorrhizal fungi (EMF)
interact closely with Ericaceae plants, in which Vaccinium spp. are included, establishing
mutualistic relationships characterized by the exchange of carbon, nitrogen, and
phosphorous compounds (Read, Leake & Perez-Moreno, 2011; Leopold, 2016). Pezoloma is
a known genus of EMF and was the most abundant genus in the R6 sample. Although this
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was not a ubiquitously present genus in our samples, it has been previously described as
part of the core rhizobiome of different Vaccinium spp. (Li et al., 2020). Additionally, other
EMF have been identified in our samples, namely, the genera Oidiodendron, which has
been previously associated with conferring zinc tolerance (Vallino et al., 2009; Khouja
et al., 2013; Chiapello, Martino & Perotto, 2015) and Hyaloscypha (Leopold, 2016; Fehrer
et al., 2019; Wei & Chen, 2022). The Alternaria genus was also part of the rhizobiome of
several of the analyzed samples. This genus is composed of both saprophytic and
pathogenic species by producing host-selective toxins responsible for tissue necrosis
(Thomma, 2003). Alternaria atenuata and A. tenuissima have already been reported to
have caused leaf spot diseases in V. corymbosum in different countries (Kwon et al., 2014;
You et al., 2014; Nadziakiewicz et al., 2018). Identification of phytopathogenic
microorganisms is of great importance to better establish control plans (Hanson et al.,
2000). Gathering these observations, we conclude that the identified genera that compose
the rhizobiome structure of the collected samples were overall expected as they compose
both ubiquitous and mutualistic organisms of V. corymbosum.

Moreover, the predominance of the Acidobacteria, Proteobacteria, and Actinobacteria
phyla regarding the bacterial communities also comes with no surprise as previous reports
have stated the abundance of these groups, not only in rhizosphere soils of several plants
(Fuentes et al., 2020; Cheng et al., 2022), but in Vaccinium spp. in particular (Li et al., 2020;
Gonçalves et al., 2022; Rodriguez-Mena et al., 2022). The presence of Acidobacteria seems
to be dependent on the soil pH conditions and, in general, acidic soils seem to favor the
growth of these bacteria (Sait, Davis & Janssen, 2006; Rousk et al., 2010; Darnell & Cruz-
Huerta, 2011). However, this correlation is also dependent on the subgroups of this
phylum (Sait, Davis & Janssen, 2006; Rousk et al., 2010). In our study, Bryobacter,
Subgroup_2, and Candidatus Solibacter were three of the most dominant genera regarding
the overall bacterial composition of our samples, belonging to subgroup 1, 2, and 3 of
Acidobacteria. This is in accordance with the required acidity to grow blueberry plants,
which has been proposed to not surpass pH 6 as it causes nutrient uptake deficiency
(Darnell & Cruz-Huerta, 2011). Moreover, some species of several subgroups of
Acidobacteria have been shown to play an important role in nutrient-deficient soils and
inhospitable habitats (Rawat et al., 2012). Bradyrhizobium and Acidibacter were the most
dominant genera in the Proteobacteria phylum. Inoculation of Bradyrhizobium spp. has
been proven to have a positive impact on the growth of some legumes due to their
nitrogen-fixing capacity (Elsheikh & Ibrahim, 1999; Egamberdiyeva, Qarshieva &
Davranov, 2004; Bedmar, Robles & Delgado, 2005; Badawi, Biomy & Desoky, 2011;
Delamuta et al., 2015). Nonetheless, this is not the first time this genus was identified as
one of the most abundant genera associated with the rhizosphere of Vaccinium spp. and,
simultaneously, with higher nitrogen content in blueberry plants (Morvan et al., 2020).
The Acidibacter genus, similar to the Actinobacteria genus Acidothermus has been already
reported as one of the most abundant genera of Vaccinium spp. rhizobiome (Chen et al.,
2019; Guo et al., 2021b; Rodriguez-Mena et al., 2022; Wang, Sun & Xu, 2022).
The relevance of these genera is stressed in previous reports that prove that their relative
abundance has been shown to be modulated according to the soil nutrient availability,
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namely upon application of fertilizers, suggesting this group is an indicator of soil
properties (Fu et al., 2021; Ren et al., 2021). Our results reveal the presence of bacterial taxa
common in blueberry plants’ rhizosphere, simultaneously reflecting the physicochemical
properties of the soil, which are important modulators of bacterial ecology (Li et al., 2017;
Tiquia et al., 2002; Zhang et al., 2017).

Despite showing expected fungal and bacterial taxa, our analysis revealed an increased
heterogeneity among the fungal communities across the different samples. The alpha
diversity analysis proves that both diversity and richness indices disclose a higher variation
than the bacterial communities. Corroborating these data, the beta diversity analysis by
NMDS clustered the samples according to the 16S sequencing, while no correlation
between samples was found according to the ITS sequencing. This observation may be
justified by a higher sensitivity by fungi upon soil properties’ shifts, namely water, nitrogen,
and carbon content (He et al., 2017; Kaisermann et al., 2015; Wang et al., 2019).
Furthermore, fungi and plant, namely arbuscular mycorrhizal fungi, establish spatial,
physiological, and plant attributes-dependent structures, which contribute to variation in
the identified community even in samples from the same root system (Deveautour et al.,
2021; Mummey & Rillig, 2008; Powell & Bennett, 2016).

The core rhizobiome was another parameter of great importance as it aided in a better
characterization of the ubiquitous microorganisms of the analyzed rhizosphere.
Serendipita genus was one of the dominant genera among the common OTUs identified in
our samples, which is not surprising considering its aforementioned mycorrhizal
characteristics. Moreover, although not showing a particularly noticeable predominance,
the Trichoderma genus, part of the Ascomycota phylum, was present in all our samples.
These common soil colonizers have been thoroughly studied regarding their beneficial
interaction with plants, particularly their significant impact on competing with
phytopathogens and exchange of metabolites which can induce physiological changes in
the plant and alter fruit quality (Lombardi et al., 2020; de Sousa et al., 2020; Vitti et al.,
2016). Their antimicrobial and mycoparasitic characteristics have been extensively
reviewed and have important biotechnological applications in agriculture for
phytopathogens control (Alfiky & Weisskopf, 2021; Harman et al., 2004; Reithner et al.,
2011). Thus, the presence of Trichoderma spp. is desired as they are naturally occurring
phytopathogenic-competing microbes (Kamble et al., 2021; Xu et al., 2022). Apart from the
previously mentioned taxa Bryobacter, Subgroup_2, Candidatus Solibacter, and
Acidothermus, other bacterial genera stood out among the common OTUs, namely
IMCC26256, MB-A2-108, 67-14, all belonging to the Actinobacteria phylum and
Haliangium, a Proteobacteria. Contrarily to the fungal communities, many more bacterial
OTUs were common to all samples (20 ITS OTUs vs 1,152 16S rRNA OTUs), suggesting a
much more stable bacterial community of the analyzed soils.

The application of microorganisms as a biotechnological alternative to climate change
effects mitigation in plant growth, and the relevance of the rhizosphere have been the
subject of extensive study and review (Alshaal et al., 2017; Drigo, Kowalchuk & van Veen,
2008; Hakim et al., 2021; Naamala & Smith, 2020; Rodriguez & Durán, 2020). Following
this demand, this study also aimed to isolate naturally occurring microorganisms with
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plant growth-promoting potential. Even though assessment of plant growth-promoting
activity in blueberry plants is scarce, several of the identified fungi and bacteria belong to
taxa that have been previously identified as potential PGPM and its use as biofertilizers
have been proposed (Casarrubia et al., 2020; de Silva et al., 2000; Ważny et al., 2022).
Moreover, some of them have also been revealed to enhance tolerance to heavy metals,
salinity, and water stress, particularly, fungi from the Phomopsis, Oidiodendron, Trametes,
Trichoderma, and Diaporthe genera (da Silva Santos et al., 2022; Lombardi et al., 2020;
Malik et al., 2020; Ważny et al., 2022; Xie et al., 2019b) and bacteria from the Bacillus,
Enterobacter, Lysinibacillus, Micrococcus, Pantoea, Paenibacillus, Priestia, Pseudomonas,
Acinetobacter, Chryseobacterium, Citrobacter, Klebsiella, Leclercia, Leifsonia,
Staphylococcus and Stenotrophomonas genera (Afrasayab, Faisal & Hasnain, 2010; Ajmal
et al., 2022; Alexander et al., 2019; Chhetri et al., 2022; Dubey et al., 2021; Gupta et al., 2019;
Khan et al., 2020; Kour et al., 2020; Nascimento et al., 2020; Naureen et al., 2017; Nordstedt
et al., 2021; Rana et al., 2020; Sansinenea, 2019; Snak et al., 2021). From the species of fungi
identified, Mucor moelleri, Cunninghamella elegans, and some species of Trochoderma,
such as T. harzianum, T. atroviride, and T. asperellum have been particularly studied for
their plant growth-promoting (PGP) properties (Freitas et al., 2019;Hernandez et al., 2023;
Nartey et al., 2022; Rao et al., 2022; Yu et al., 2021). Moreover, the bacterial species
Lelliottia amigena and Pristia megaterium have also been previously reported to promote
plant growth (Elakhdar, El-Akhdar & Abo-Koura, 2020; Sharma et al., 2022). The isolation
rate of Trichoderma spp. and Bacillus spp. stood out from the remaining taxa pointing
towards a promising scale-up of biomass production of these microorganisms for in-field
application. The presence of phytopathogenic agents was also identified by the presence of
Fusarium oxysposrum, Rosellinia necatrix, Setophoma terrestris, and Diaporthe columnaris,
which also raises the threat to the efficacy of biofertilizers and demand for the formulation
of biocontrol products to combat these disease-causing agents (Moya-Elizondo et al., 2019;
Sawant, Song & Seo, 2022; Sayago et al., 2020). Overall, the isolation of these
microorganisms and their PGP potential described in the literature opens doors for further
assessment of their PGP properties in V. corymbosum and understanding their potential
for biotechnological application to reduce the impacts of climate change in the production
of blueberry.

CONCLUSIONS
Characterizing the root fungal and bacterial communities is of great interest to producers
as tight links are established and could provide answers to the demand for new
biotechnological alternatives to climate change consequences in plants, such as
bioformulations that promote the colonization of the rhizosphere with PGPMs and
antagonists of phytopathogens. In this study, the microbial structure of V. corymbosum
‘Brigitta’ rhizosphere was unveiled, disclosing a predominance of common soil colonizers
among fungi and bacteria, which expectedly reflect the physicochemical composition of
blueberry plants’ soils and the establishment of naturally occurring mutualistic links. Even
though this study focused on a single region of the country, the data obtained here is
representative of a highly worldwide used blueberry-produced group and is of great use for
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further studies with different Portuguese regions. Overall, we found a native microbial
community that, according to what has been previously described, is capable of
establishing mycorrhizal relationships and that confer beneficial physiological traits to the
host plant. In order to provide applied solutions to mitigate climate change consequences
in blueberry plants, we isolated and identified a plethora of naturally-occurring
microorganisms that have previously been reported to have PGP activity and confer
tolerance to hydric stress, a serious climate change threat. Further research should focus on
testing the PGP and antagonistic potential of this collection of microorganisms in
V. corymbosum and assess their potential to alleviate symptoms of climate change, such as
drought, carbon accumulation andnutrient deficiency in blueberry plants, in order to
increase their resilience against unfavorable climatic conditions and pathogenic agents.
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