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ABSTRACT
The Weibull distribution has been used to analyze data from many fields, including
engineering, survival and lifetime analysis, and weather forecasting, particularly wind
speed data. It is useful to measure the central tendency of wind speed data in specific
locations using statistical parameters for instance the mean to accurately forecast the
severity of future catastrophic events. In particular, the common mean of several
independent wind speed samples collected from different locations is a useful statistic.
To explore wind speed data from several areas in Surat Thani province, a large
province in southern Thailand, we constructed estimates of the confidence interval
for the common mean of several Weibull distributions using the Bayesian equitailed
confidence interval and the highest posterior density interval using the gamma prior.
Their performances are compared with those of the generalized confidence interval and
the adjustedmethod of variance estimates recovery based on their coverage probabilities
and expected lengths. The results demonstrate thatwhen the commonmean is small and
the sample size is large, the Bayesian highest posterior density interval performed the
best since its coverage probabilities were higher than the nominal confidence level and
it provided the shortest expected lengths. Moreover, the generalized confidence interval
performed well in some scenarios whereas adjusted method of variance estimates
recovery did not. The approaches were used to estimate the common mean of real
wind speed datasets from several areas in Surat Thani province, Thailand, fitted to
Weibull distributions. These results support the simulation results in that the Bayesian
methods performed the best. Hence, the Bayesian highest posterior density interval is
the most appropriate method for establishing the confidence interval for the common
mean of several Weibull distributions.

Subjects Computational Science, Natural Resource Management, Atmospheric Chemistry,
Environmental Impacts, Food, Water and Energy Nexus
Keywords Common mean, Bayesian method, Prior gamma distribution, Equitailed confidence
interval , The highest posterior density, Generalized confidence interval, Adjusted method of
variance estimates recovery, Simulation

INTRODUCTION
Greenhouse gases are produced by both natural processes and human activity, especially
the burning of fossil fuels for electricity generation. Greenhouse gases have the ability to
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absorb infrared radiation, or heat radiation, that radiates off the surface of the earth. When
there are large amounts of greenhouse gases, infrared radiation cannot be reflected back
outside the atmosphere, causing the increased average global temperature and initiating
extreme weather events. In 2017, Thailand ranked 20th in the world’s greenhouse gas
emissions. It is located in the equatorial region, which is influenced by ocean currents that
produce heavy rain and high wind speed during the monsoon season from mid-May to
mid-October. These phenomena can be hazardous to both humans and animals, causing
catastrophes that affect agricultural productivity, which is an important part of Thailand’s
economy. The southern region of Thailand is a coastal area that is influenced by the
southeast monsoon winds, and Surat Thani is a province on the southeastern coast of
Thailand located on a peninsula that juts out into the sea. Thus, monitoring the wind speed
to quantify and predict its potential intensity is a useful endeavor. Several distributions are
suitable for studying wind speed data, which may differ depending on the month, season,
and year. One of these is the Weibull distribution, which has been applied in several studies
on analyzing wind speed.Genc et al. (2005) studied wind power potential by estimating two
parameters of aWeibull distribution.Dokur & Kurban (2015) used theWeibull distribution
to determine the wind energy potential in the Bilecik region and provided estimates of
its parameters. Sasujit & Dussadee (2016) used the Weibull distribution to provide an
assessment of wind energy and electricity generation in northern Thailand. Islam, Dussadee
& Chaichana (2016) used it to estimate the wind power potential on Saint Martin’s
Island in Bangladesh. La-ongkaew, Niwitpong & Niwitpong (2021) applied the coefficient
of variation of the Weibull distribution to estimate the dispersion of wind speed data in
Thailand. Shu & Jesson (2021) assessed the characteristics of wind speed datasets by using
Weibull distributions. As well as assessing wind speed data, the Weibull distribution has
been applied in studies in other areas. For illustration, it was utilized to assess the survival
time of guinea pigs injected with varying doses of tubercle bacilli. (Bjerkedal et al., 1960),
the failure times of air-conditioning systems in two airplanes (Proschan, 1963), the amounts
of insurance claims (Hamza & Sabri , 2022), the shelf life of Pezik pickles (Keklik, Isikli &
Sur , 2017), and the moisture content of milled rice (Ling, Teng & Lin, 2018).

The mean is a very important statistic for measuring the central tendency of a dataset
and has been used in many applications; e.g., the amount of nitrogen-bound bovine serum
albumin in mice (Hand et al., 1993; Schaarschmidt, 2013; Sadooghi-Alvandi & Malekzadeh,
2014), the amount of selenium in non-fat milk powder (Philip, Sun & Sinha, 1999), the
CD4+ cell counts of HIV patients after initiating anti-vital therapy (Liang, Su & Zou,
2008), and rainfall in Chiang Mai, Thailand (Maneerat, Niwitpong & Niwitpong, 2019).
Interval estimation for the mean of a distribution has been investigated by several
research groups. Chen & Mi (1996) applied several maximum likelihood estimators
for constructing the confidence interval for the mean of an exponential distribution
based on grouped data. Colosimo & Ho (1999) estimated the confidence interval for
the mean of a Weibull distribution for lifetime analysis based on censored reliability
datasets. Peng (2004) provided estimates for the confidence interval for the mean of
heavy-tailed distributions. Krishnamoorthy, Lin & Xia (2009) established estimates for
the confidence interval for the mean of a Weibull distribution using the generalized
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variable approach andWald confidence intervals. Thangjai, Niwitpong & Niwitpong (2020)
applied Bayesian methodology to construct estimates of the confidence interval for the
mean of a normal distribution with an unknown coefficient of variation. Maneerat,
Nakjai & Niwitpong (2022) proposed using Bayesian noninformative priors to estimate
the confidence interval for the mean of a three-parameter delta-lognormal distribution.
Moreover, functions of the mean such as the difference between and the ratio of two means
have also been reported. Lee & Lin (2004) used the generalized confidence interval (GCI)
approach to estimate the confidence interval for the ratio of the means of two normal
populations.Niwitpong & Niwitpong (2010) proposed estimates for the confidence interval
for the difference between the means of two normal populations where the ratio of their
variances is known. Niwitpong, Koonprasert & Niwitpong (2012) proposed estimates for
the confidence interval for the difference between the means of several normal populations
with known coefficients of variation. Thangjai, Niwitpong & Niwitpong (2017) used the
GCI and large sample approaches to estimate the confidence interval for the mean and the
difference between the means of several normal distributions with unknown coefficients
of variation.Maneerat & Niwitpong (2020) compared medical care costs by using Bayesian
intervals for the ratio of the means of several delta-lognormal distributions.

Since it is common practice to collect data in different settings, inference based on the
common mean of several populations is a useful statistic. Indeed, many researchers have
estimated the confidence interval for this scenario. Krishnamoorthy & Lu (2003) used the
concept of the generalized p-value to estimate the confidence interval for the common
mean of several normal populations. Lin & Lee (2005) proposed a generalized pivotal
quantity (GPQ) using the best linear unbiased estimator for estimating the confidence
interval of the common mean of several normal populations when the variances are
unknown. Later, Ye, Ma &Wang (2010) provided interval estimation for the common
mean when the scalar parameters among several inverse Gaussian populations have become
unknown. Behboodian & Jafari (2014) used the GCI approach to determine the confidence
interval for the common mean of several lognormal populations, while Smithpreecha,
Niwitpong & Niwitpong (2018) proposed new methods to calculate the confidence interval
for the common mean of several lognormal distributions based on the GCI and adjusted
method of variance estimates recovery (MOVER) methods. Lin & Wu (2011) proposed an
estimation method based on a higher-order likelihood-based procedure for the confidence
interval for the common mean of several inverse Gaussian distributions. Maneerat &
Niwitpong (2021) estimated the confidence interval for the common mean of several
delta-lognormal populations using the fiducial GCI (FGCI), large sample, MOVER,
parametric bootstrap, and highest posterior density (HPD) intervals using the Jeffreys’ rule
or normal-gamma-beta prior.

In the present study, our goal was to compare the wind speed data from several locations
to predict the occurrence of severe wind speed events. Since Surat Thani is a large province
on the southeast coast of Thailand, using the common mean of the wind speed datasets
from different areas will help in this endeavor, and thereby estimating the confidence
interval for the common mean of several Weibull populations becomes important. The
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advantage of this study is that it will assist provincial authorities in estimating the amount
of wind and predicting wind speed in order to monitor the occurrence of severe wind
speed. Notwithstanding, the commonmean of various Weibull populations has never been
investigated. We used Bayesian methodology for the equitailed confidence interval and
the HPD interval based on the gamma prior to estimate the confidence interval for the
common mean of several Weibull distributions and compare their performances with GCI
and adjusted MOVER. Furthermore, we applied these novel methods to assess real wind
speed datasets from several locations in Surat Thani province, Thailand. Furthermore,
there is no previous study on the implementation of their methodology for measuring the
commonmean of wind speed data. To fill the gap, novelmethods for the confidence interval
for the common mean of Weibull distributions were proposed by contemplating the wind
speed data concentration measurements. The paper is organized as follows. The parameter
of interest of Weibull distribution is introduced, and the details of all proposed methods
are described in the section ‘‘Materials & Methods’’. Numerical results are reported in the
next section. In the application section, wind speed data from Khiri Rat Nikhom, Koh
Samui, and Kanchanadit in Surat Thani province, Thailand are used to illustrate. Finally,
a discussion and conclusions are provided in the last section.

MATERIALS & METHODS
A flowchart of the research methodology is shown in Fig. 1.

Suppose that Xi= (Xi1,Xi2,...,Xini) are random variables from Weibull populations with
size ni, scale parameters ci, shape parameters ki, and probability density function (pdf)

f (xij;ci,ki)=
ki
ci

(
xij
ci

)ki−1

exp

[
−

(
xij
ci

)ki
]
,xij > 0, (1)

for i= 1,2,...,p and j = 1,2,...,ni. The cumulative distribution function is defined by

F(xij;ci,ki)= 1−exp

[
−

(
xij
ci

)ki
]
. (2)

The parameters ci and ki were estimated based on the maximum likelihood estimation.
The maximum likelihood estimators (MLEs) of the two parameters must always be
computed numerically. The MLE k̂i of ki is solution of the following equation

1
k̂i
−

∑[
x k̂iij ln(xij)

]
∑

(x k̂iij )
+

1
ni

∑
ln(xij)= 0, (3)

and the MLE ĉi of ci is given by

ĉi=
[∑

x k̂iij /ni
] 1

k̂i . (4)

Consider p independent Weibull populations, the means for which can be derived as

µi= ci0
(
1+

1
ki

)
. (5)
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Figure 1 Flowchart of the research methodology.
Full-size DOI: 10.7717/peerj.15513/fig-1

Thus, the estimator of µi can be approximated as

µ̂i= ĉi0
(
1+

1
k̂i

)
, (6)

where 0 is a gamma function used as an extension of the factorial function for nonintegral
numbers. For positive number r , the gamma function can be defined as

0(r)=
∫
∞

0
xr−1e−xdx = (r−1)! (7)

An approximation approach can be applied to determine the variance of an estimator.
A delta method is a well-known approach for estimating the variance of µ̂i as follows:

ˆvar(µ̂i)= ˆvar
(
k̂i
)(∂µi

∂ki
|ĉi,k̂i

)2

+2 ˆCov
(
k̂i, ĉi

)(∂µi

∂ki
|ĉi,k̂i

)(
∂µi

∂ci
|ĉi,k̂i

)
+ ˆvar (ĉi)

(
∂µi

∂ci
|ĉi,k̂i

)2

.(8)

The formulas for the covariance and variance estimates of ĉi and k̂i are calculated by using
the Fisher information matrix (see Cohen (1965) for more detailed information) as follows:
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Notations and Abbreviations.
GCI Generalized confidence interval
MOVER Method of variance estimates recovery
HPD Highest posterior density
MLEs Maximum likelihood estimators
AIC Akaike Information Criterion
MCMC Markov chain Monte Carlo
RWM Random walk Metropolis
Xi random variables
ci scale parameter
ki shape parameter
ni number of sample size
p number of sample case
µi means
µ̂i estimator of means
µ̂ estimator of the common mean
µ̂(t ) Bayesian estimator of the common mean
ˆvar(µ̂i) variance estimate of µ̂i

0(r) gamma function; 0(r)= (r−1)!
Rki Generalized pivotal quantity of ki
Rci Generalized pivotal quantity of ci
Rµ Generalized pivotal quantity of µ
f (xij;ci,ki) Probability density function
F(xij;ci,ki) Cumulative distribution function
L(c ′,k|x) Likelihood function
π(c ′,k|x) Posterior density function of c ′ and k
π(k|c ′,x) Conditional posterior distribution of k
π(c ′|k,x) Conditional posterior distribution of c ′

π(k) Prior distribution of k
π(c ′) Prior distribution of c ′

F−1=

[
−
∂2µ

∂k2
−
∂2µ

∂c∂k

−
∂2µ

∂c∂k
−
∂2µ

∂c2

]−1
=

[
ˆvar
(
k̂
) ˆCov

(
k̂, ĉ
)

ˆCov
(
k̂, ĉ
)

ˆvar (ĉ)

]
According to Graybill & Deal (1959), the estimator for common mean µ is derived by

using the weighted average of mean µ̂i based on p individual samples as follows:

µ̂=

p∑
i=1

µ̂i

ˆvar(µ̂i)
/

p∑
i=1

1
ˆvar(µ̂i)

, (9)

where µ̂i is defined as in Eq. (6), and ˆvar(µ̂i) is the variance estimate of µ̂i, which is defined
in Eq. (8).
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GENERALIZED CONFIDENCE INTERVAL
Weerahandi (1993) introduced the GCI based on the concept of GPQ. Let X = (X1, X2,
. . . , Xn) be a random variable from a distribution with probability density function, which
depends on a parameter of interestϕ, and a nuisance parameter γ . And let x = (x1,x2,...,xn)
be the observed value of random variablesX . R(X ;x,ϕ,γ ) is called the GPQ if the following
two properties hold. These are the distribution of the random quantity R(X ;x,ϕ,γ ) is free
of unknown parameters, and the observed value r(X ;x,ϕ,γ ) do not depend on nuisance
parameters. Then, if R(X ;x,ϕ,γ ) satisfies the two properties, the quantiles of R form a
(1−α) confidence interval. Now, let Rϕ(α) be the α-th quantile of R(X ;x,ϕ,γ ). Hence,
the 100 α-th two-sided GCIs for the parameter of interest is [Rϕ(α/2),Rϕ(1−α/2)].

Let ĉi0 and k̂i0 be the observed values of ĉi and k̂i based on a sample of size ni from
Weibull(ci,ki). Using the results from Thoman, Bain & Antle (1969), the distributions
of k̂i

ki
and k̂iln

(
ĉi
ci

)
do not depend on c and k. Consequently, we see that k̂i

ki
∼ k̂∗i and

k̂iln
(
ĉi
ci

)
∼ k̂∗i ln(ĉ

∗

i ), where ĉ
∗

i and k̂∗i are the MLEs based on a sample of size ni from
Weibull(1,1). The GPQs of shape and scale parameters from Weibull distributions were
given in Krishnamoorthy, Mukherjee & Guo (2007).

Rki =
ki
k̂i
k̂i0=

k̂i0
k̂∗i
,i= 1,2,...,p, (10)

and

Rci =

(
ci
ĉi

) k̂i
k̂i0
ĉi0=

(
1
ĉ∗i

) k̂∗i
k̂i0
ĉi0 ,i= 1,2,...,p. (11)

The GPQ for estimating µ based on the i− th sample is determined as

Rµi =Rci0

(
1+

1
Rki

)
. (12)

The GPQ for the commonmean is a weighted average of the GPQ Rµi based on p individual
sample as

Rµ=
p∑

i=1

Rµi

R ˆvar(µ̂i)
/

p∑
i=1

1
R ˆvar(µ̂i)

, (13)

where R ˆvar(µ̂i) is a GPQ of ˆvar(µ̂i).
As a result, the 100 (1−α)% two-sided confidence interval for the common mean using

GCI is

CIGCI .µ=
[
LGCI .µ,UGCI .µ

]
=
[
Rµ(α/2),Rµ(1−α/2)

]
, (14)

where Rµ(α/2) is the 100 α/2-th percentile of Rµ.
The following algorithm is used to construct LGCI .µ and UGCI .µ.
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Algorithm 1
For g = 1 tom, wherem is the number of generalized computation
1. Generate data X∗i1,X

∗

i2,...,X
∗

ini fromWeibull(1,1)
2. Compute ĉ∗i and k̂∗i
3. Compute GPQ of ki, Rki from Eq. (10)
4. Compute GPQ of ci, Rci from Eq. (11)
5. Compute GPQ of µi, Rµi from Eq. (12)
6. Compute GPQ of µ, Rµ from Eq. (13)
End g loop
7. Compute Rµ(α/2) and Rµ(1−α/2)

ADJUSTED METHOD OF VARIANCE ESTIMATES RECOVERY
Based on MOVER originally introduced by Donner & Zou (2010), we used it with the large
sample method to estimate adjusted MOVER. Again, the pooled estimator of the common
mean can be defined as in Eq. (9).

µ̂=

p∑
i=1

µ̂i

ˆvar(µ̂i)
/

p∑
i=1

1
ˆvar(µ̂i)

.

Consider two parameters of interest µ1 and µ2 with µ̂1 and µ̂2 as their respective
estimators. Assuming that µ̂1 and µ̂2 are independent, then lower limit L and the upper
limit U for µ̂1+ µ̂2 can be defined as

[L,U ] = (µ̂1+ µ̂2)±zα/2
√
V (µ̂1)+V (µ̂2), (15)

where zα/2 is the 100 (α/2)− th percentile of the standard normal distribution.
By using the central limit theorem, the variance estimates for µ̂i at µi= li,i =1 ,2 are

given by

V̂ (µ̂l1)=
(µ̂1− l1)2

z2α/2
, (16)

and

V̂ (µ̂l2)=
(µ̂2− l2)2

z2α/2
, (17)

where l1 and l2 are the lower limits of µ1 and µ2, respectively.
Furthermore, the variance estimates for µ̂i at µi= ui,i =1 ,2 are given by

V̂ (µ̂u1)=
(u1− µ̂1)2

z2α/2
, (18)

and

V̂ (µ̂u2)=
(u2− µ̂2)2

z2α/2
, (19)

where u1 and u2 are the upper limits of µ1 and µ2, respectively.
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Based on Eqs. (15)– (19), the 100(1−α)% confidence limit for µ̂1+ µ̂2 can be written
as

L= (µ̂1+ µ̂2)−
√
(µ̂1− l1)2+ (µ̂2− l1)2, (20)

and

U = (µ̂1+ µ̂2)+
√
(u1− µ̂1)2+ (u2− µ̂2)2. (21)

For p independent samples to which adjusted MOVER is applied, lower limit L and
upper limit U for the sum of µi can be written as

[L,U ] = (µ̂1+ ...+ µ̂p)±zα/2
√
V (µ̂1)+ ...+V (µ̂p). (22)

The variance estimates of µ̂i at µi= li and µi= ui, where i= 1,2,...,p are given by

V̂ (µ̂li)=
(µ̂i− li)2

z2α/2
, (23)

and

V̂ (µ̂ui)=
(ui− µ̂i)2

z2α/2
. (24)

In the present study, the lower and upper limits of µ̂i are applied based on the Wald
confidence interval as follows:

[li,ui] =
[
exp

(
lnµ̂i−zα/2

√
ˆvar(lnµ̂i)

)
,exp

(
lnµ̂i+zα/2

√
ˆvar(lnµ̂i)

)]
. (25)

When using the large sample concept to perform interval estimation for µ, the variance
estimate of µ̂i can be defined as

ˆvarw(µ̂i)=
1
2
[
V̂ (µ̂li)+ V̂ (µ̂ui)

]
=

1
2

[
(µ̂i− li)2

z2α/2
+

(ui− µ̂i)2

z2α/2

]
. (26)

Therefore, the 100(1−α)% two-sided confidence interval for the common mean using
the Adjusted MOVER with the Wald confidence interval becomes

CIAM .µ=
[
LAM .µ,UAM .µ

]
. (27)

LAM .µ=

[
µ̂−zα/2

√
1∑p

i=11/V̂ (µ̂li)

]
=

[
µ̂−

√
1∑p

i=11/(µ̂i− li)2

]
, (28)

and

UAM .µ=

[
µ̂+zα/2

√
1∑p

i=11/V̂ (µ̂ui)

]
=

[
µ̂+

√
1∑p

i=11/(ui− µ̂i)2

]
, (29)

where µ̂i is defined as in Eq. (6).
The following algorithm is used to construct LAM .µ and UAM .µ.
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Algorithm 2
1. Compute µ̂i from Xi

2. Compute µ̂ from Eq. (9)
3. Compute lower and upper limits of µ̂i from Eq. (25)
4. Compute LAM .µ from Eq. (28)
5. Compute UAM .µ from Eq. (29)

BAYESIAN CONFIDENCE INTERVAL
Bayesian methodology is based on Baye’s theorem for updating the probability based on
prior knowledge. The posterior probability is first obtained by using a prior probability
distribution and a likelihood function. Here, Bayesian methods for establishing the
confidence interval for the common mean of several Weibull distributions are presented.
Assume X is a random variable with a Weibull distribution. If c ′=

( 1
c

)k
, then the pdf can

be expressed as

f (x;c ′,k)= c ′kxk−1exp(−c ′xk),x > 0. (30)

A Bayesian confidence interval estimate is constructed based on the posterior
distribution, a conditional distribution derived from the observed sample data that is used
to gain information about the parameter, which is regarded as a random quantity. This is
achieved in accordance with the relationship posterior distribution ∝ prior distribution ×
likelihood function. Hence, we have to provide a suitable prior distribution and likelihood
function. In this study, we assumed that the shape and scale parameters follow the gamma
prior distribution; i.e.,

π(k)∼ gamma(v1,z1), (31)

and

π(c ′)∼ gamma(v2,z2), (32)

where v1,z1,v2,z2 are the hyperparameters. As a consequence, the joint posterior density
function of c ′ as well as k given x can indeed be printed as

π(c ′,k|x)∝π(c ′)π(k)×L(c ′,k|x), (33)

and the likelihood function L(c ′,k|x) is given by

L(c ′,k|x)=
∏

c ′kxk−1exp(−c ′xk). (34)

For Weibull distribution, π(c ′,k|x) cannot be obtained in close form, we used a Gibbs
sampling procedure, the Markov chain Monte Carlo (MCMC) method introduced by
Geman & Geman (1984), to generate a sample from the posterior density function. The
MCMC method is widely used for Bayesian computation in complex statistical models.
It generates the samples by rolling a properly constructed Markov chain for an extended
period of time. The Gibbs sampler requires samples from fully conditional distributions,
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which is computationally intensive. The respective conditional posterior distributions of
the shape and scale parameters are

π(k|c ′,x)∝ kn+v1−1exp
[
−kv1− c ′

∑
xk
]
, (35)

and

π(c ′|k,x)∼ gamma(n+v2,z2+
∑

xk). (36)

Although we used Gibbs’ sampling directly for the conditional posterior distribution of
the scale parameter, the conditional posterior distribution of the shape parameter does not
have a closed form, so Gibbs’ sampling could not be applied in a straightforward manner.
Therefore, the Random Walk Metropolis (RWM) algorithm was utilized to generate
random samples from an unknown distribution. Similar to acceptance-rejection sampling,
the algorithm requires that the applied value has an acceptable probability for each iteration
of the algorithm to ensure that the Markov chain converges for the goal density (Saraiva
& Suzuki, 2017). To use the RWM algorithm to update the shape parameter, the updated
value is approved with probability min(1,Ak), where Ak is defined by

Ak =
L(k̃,c ′|x)π(k̃)
L(k,c ′|x)π(k)

, (37)

where c ′(t ) and k(t ),t =1 ,2,...,T are the Bayesian estimators of c ′ and k based on Gibbs’
sampling, respectively. Subsequently, we used the following algorithms to generate the
samples and compute the Bayesian estimates.

Algorithm 3 The Gibbs algorithm
1. Consider the initial state of parameter (c ′(0),k(0)).
For t = 1 to T , where T is the number of iterations using MCMC by Gibbs sampling
2. Generate c ′(t )∼ gamma(n+v2,z2+

∑
xk

(t−1)
)

3. Update k(t ) using RWM algorithm
End t loop
4. Discard the first 1,000 samples

Algorithm 4 RWM
1. The initial state of (c ′(t ),k(t−1))
2. Generate ε from Normal distribution with parameter (0,σ 2

k )
3. Calculate k̃= k(t−1)+ε
4. Calculate Ak as given in Eq. (37)
5. Generate u from Uniform distribution with parameter (0,1)
6. Set k(t )= k̃, if u≤min(1,Ak), else set k(t )= k(t−1)

Again, let Xi = (Xi1, Xi2, . . . , Xini) be a random sample from Weibull distribution with
size ni, scale parameter ci and shape parameter ki. The pooled estimator for the common
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mean based on the Bayesian method is

µ̂(t )
=

p∑
i=1

µ̂
(t )
i

ˆvar(µ̂(t )
i )
/

p∑
i=1

1

ˆvar(µ̂(t )
i )
,i= 1,2,...,p,t = 1,2,...,T , (38)

where ˆvar(µ̂(t )
i ) are the variance estimates of µ̂(t )

i , which is obtained from Eq. (8). After
computing the Bayesian estimates by following Algorithms 3 and 4, and Eq. (38), the
confidence interval for µ can be constructed.

Therefore, the 100 (1−α)% two-sided confidence interval for the common mean using
the Bayesian method is given by

CIB.µ=
[
LB.µ,UB.µ

]
, (39)

where LB.µ and UB.µ are the lower bound and upper bound of the 100 (1−α)% equitailed
confidence interval and the HPD interval of µ, respectively.

The HDInterval package in the R programming suite was used to compute the HPD
interval. The assumption for HPD is that all the values inside the HPD interval have a
higher probability density than any outside of it, and thus include the most credible value
(Kruschke, 2015). In addition, it gives the narrowest length of the interval in the domain of
the posterior probability distribution.

The following algorithm is used to construct LB.µ and UB.µ.

Algorithm 5
1. Compute ĉ ′(t ) and k̂(t ) from Algorithm 3
2. Compute µ̂(t ) from Eq. (38)
3. Construct the 95% equitailed confidence interval and HPD interval for µ using Eq. (39)

RESULTS
A simulation studywas conducted using the R statistical package. The coverage probabilities
and expected lengths of the confidence interval methods were used to evaluate their
performance. The data were generated from several independent Weibull distributions
denoted as Weibull(ci,ki) where ki= 2 and ci=µ/0

(
1+ 1

ki

)
, for i= 1,2,...,p; common

meanµ= 0.5,1,5, or 10; the number of samples p= 2,4, or 6; and sample sizes ni for which
are provided in Tables 1–3. For each set of parameters, we conducted 5,000 simulation runs,
2,500 pivotal quantities for GCI, and 20,000 MCMC realizations using Gibbs sampling
with a burn-in of 1,000 for the Bayesian methods. The method with a coverage probability
above the nominal confidence level of 0.95 and the shortest expected length was considered
the best-performing one for each scenario. The simulation results for p= 2,4, and 6 are
reported in Tables 1–3, respectively. Figure 2 shows the algorithm utilized to help estimate
the coverage probabilities and expected lengths of the methods.
For p= 2, the coverage probabilities calculated using the GCI method were larger than

or close to the nominal confidence level for all sample sizes. The Bayesian two-tailed
credible interval method was satisfactory in most cases while the Bayesian HPD method
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Table 1 Comparison results of the 95% confidence intervals for the commonmean of several Weibull
distributions for p= 2.

n µ Coverage probability (Expected length)

GCI AM Equitailed HPD

102 0.5 0.9382 (0.2531) 0.8530 (0.1944) 0.9428 (0.2485) 0.9394 (0.2470)
1 0.9512 (0.5104) 0.8636 (0.3929) 0.9444 (0.4849) 0.9366 (0.4819)
5 0.9458(2.5280) 0.8564 (1.9456) 0.9388 (2.4279) 0.9322 (2.4125)
10 0.9440 (5.0889) 0.8586 (3.9137) 0.9402 (4.9150) 0.9316 (4.8824)

10,20 0.5 0.9495 (0.2033) 0.8850 (0.1663) 0.9552 (0.2009) 0.9495 (0.1996)
1 0.9492 (0.4048) 0.8740 (0.3301) 0.9422 (0.3929) 0.9386 (0.3904)
5 0.9494 (2.0277) 0.8816 (1.6591) 0.9456 (1.9807) 0.9378 (1.6975)
10 0.9475 (4.0627) 0.8800 (3.3107) 0.9412 (3.9779) 0.9335 (3.9512)

202 0.5 0.9488 (0.1737) 0.9060 (0.1476) 0.9534 (0.1718) 0.9486 (0.1711)
1 0.9532 (0.3467) 0.9056 (0.2941) 0.9514 (0.3392) 0.9464 (0.3377)
5 0.9498 (1.7309) 0.9030 (1.4764) 0.9452 (1.7021) 0.9396 (1.6946)
10 0.9558 (3.4724) 0.9050 (2.9559) 0.9498 (3.4234) 0.9478 (3.4082)

10,50 0.5 0.9615 (0.1412) 0.9220 (0.1219) 0.9600 (0.1397) 0.9595 (0.1390)
1 0.9570 (0.2834) 0.9110 (0.2444) 0.9530 (0.2793) 0.9508 (0.2779)
5 0.9476 (1.6690) 0.9092 (1.2023) 0.9489 (1.5734) 0.9481 (1.5689)
10 0.9464 (2.8311) 0.9036 (2.4481) 0.9446 (2.0847) 0.9418 (2.7905)

20,50 0.5 0.9597 (0.1241) 0.9277 (0.1106) 0.9580 (0.1233) 0.9557 (0.1227)
1 0.9490 (0.2477) 0.9175 (0.2210) 0.9470 (0.2449) 0.9457 (0.2438)
5 0.9512 (1.2406) 0.9257 (1.1089) 0.9485 (1.2291) 0.9462 (1.2234)
10 0.9467 (2.4793) 0.9115 (2.2078) 0.9455 (2.4602) 0.9425 (2.4489)

502 0.5 0.9528 (0.1065) 0.9282 (0.0969) 0.9528 (0.1059) 0.9452 (0.1056)
1 0.9524 (0.2121) 0.9250 (0.1928) 0.9520 (0.2103) 0.9478 (0.2097)
5 0.9532 (1.0648) 0.9294 (0.9668) 0.9518 (1.0574) 0.9497 (1.0543)
10 0.9440 (2.1286) 0.9196 (1.9363) 0.9436 (2.1161) 0.9386 (2.1097)

50,100 0.5 0.9420 (0.0859) 0.9225 (0.0794) 0.9545 (0.0856) 0.9525 (0.0852)
1 0.9480 (0.1716) 0.9255 (0.1587) 0.9465 (0.1705) 0.9470 (0.1698)
5 0.9360 (0.8608) 0.9185 (0.7966) 0.9355 (0.8566) 0.9345 (0.8531)
10 0.9402 (1.3567) 0.9118 (1.3012) 0.9399 (1.3509) 0.9356 (1.3502)

1002 0.5 0.9552 (0.0740) 0.9372 (0.0691) 0.9540 (0.0737) 0.9534 (0.0735)
1 0.9520 (0.1482) 0.9350 (0.1385) 0.9516 (0.1475) 0.9488 (0.1471)
5 0.9524 (0.7390) 0.9320 (0.6915) 0.9506 (0.7367) 0.9492 (0.7348)
10 0.9441 (1.4235) 0.9343 (1.3928) 0.9478 (1.4211) 0.9472 (1.4208)

Notes.
102 stands for (10,10). Bold values denote the coverage probability higher than the nominal confidence level and the shortest
expected length.

only performed well when µ= 0.5 or 1 for large sample sizes. Nevertheless, those using the
adjusted MOVER method did not meet the goal in any situation. For p= 4, the coverage
probabilities using the GCI method were slightly smaller than 0.95 but performed better
with larger sample sizes whereas adjusted MOVER still performed badly. Meanwhile, the
Bayesian methods had coverage probabilities higher than 0.95 only when µ= 0.5 for
large sample sizes. Moreover, similar results were obtained for p= 6. Finally, the coverage
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Table 2 Comparison results of the 95% confidence intervals for the commonmean of several Weibull
distributions for p= 4.

n µ Coverage probability (Expected length)

GCI AM Equitailed HPD

104 0.5 0.9252 (0.1850) 0.8316 (0.1334) 0.9498 (0.1834) 0.9442 (0.1828)
1 0.9308 (0.3690) 0.8386 (0.2663) 0.9316 (0.3540) 0.9266 (0.3528)
5 0.9220 (1.8568) 0.8294 (1.3312) 0.9120 (1.7956) 0.9060 (1.7892)
10 0.9266 (3.6970) 0.8342 (2.6697) 0.9186 (3.5896) 0.9108 (3.5772)

102,202 0.5 0.9320 (0.1490) 0.8545 (0.1146) 0.9485 (0.1472) 0.9430 (0.1466)
1 0.9365 (0.2976) 0.8670 (0.2294) 0.9375 (0.2892) 0.9305 (0.2880)
5 0.9240 (1.4913) 0.8715 (1.1435) 0.9190 (1.4583) 0.9145 (1.4518)
10 0.9365 (3.0107) 0.8610 (2.3123) 0.9310 (2.9476) 0.9250 (2.9346)

204 0.5 0.9228 (0.1262) 0.8830 (0.1025) 0.9372 (0.1250) 0.9332 (0.1247)
1 0.9356 (0.2518) 0.8906 (0.2048) 0.9390 (0.2469) 0.9352 (0.2462)
5 0.9264 (1.2643) 0.8838 (1.0276) 0.9210 (1.2438) 0.9172 (1.2404)
10 0.9278 (2.5146) 0.8850 (2.0498) 0.9252 (2.4798) 0.9222 (2.4729)

102,502 0.5 0.9375 (0.1035) 0.8955 (0.0857) 0.9475 (0.1019) 0.9480 (0.1015)
1 0.9490 (0.2053) 0.9060 (0.1705) 0.9490 (0.2023) 0.9470 (0.2015)
5 0.9355 (1.0345) 0.8960 (0.8533) 0.9325 (1.0234) 0.9325 (1.0191)
10 0.9325 (2.0581) 0.8920 (1.7011) 0.9235 (2.0369) 0.9215 (2.0284)

202,502 0.5 0.9396 (0.0892) 0.9223 (0.7760) 0.9476 (0.0886) 0.9505 (0.0882)
1 0.9446 (0.1784) 0.9193 (0.1549) 0.9476 (0.1764) 0.9446 (0.1757)
5 0.9457 (0.8112) 0.9202 (0.7334) 0.9466 (0.8035) 0.9454 (0.8010)
10 0.9476 (1.7894) 0.9260 (1.5547) 0.9450 (1.7751) 0.9426 (1.7682)

504 0.5 0.9436 (0.0762) 0.9238 (0.0680) 0.9502 (0.0758) 0.9494 (0.0756)
1 0.9426 (0.1527) 0.9258 (0.1362) 0.9440 (0.1513) 0.9410 (0.1510)
5 0.9482 (0.7629) 0.9276 (0.6798) 0.9468 (0.7579) 0.9438 (0.7560)
10 0.9402 (1.5241) 0.9204 (1.3603) 0.9396 (1.5150) 0.9380 (1.5113)

502,1002 0.5 0.9540 (0.0614) 0.9360 (0.0560) 0.9550 (0.0611) 0.9550 (0.0609)
1 0.9465 (0.1226) 0.9335 (0.1121) 0.9475 (0.1219) 0.9465 (0.1215)
5 0.9485 (0.6153) 0.9330 (0.5614) 0.9490 (0.6119) 0.9460 (0.6096)
10 0.9412 (1.2574) 0.9336 (1.1556) 0.9482 (1.2544) 0.9479 (1.2539)

1004 0.5 0.9482 (0.0527) 0.9380 (0.0488) 0.9510 (0.0525) 0.9496 (0.0520)
1 0.9452 (0.1054) 0.9328 (0.0976) 0.9462 (0.1049) 0.9444 (0.1047)
5 0.9452 (0.5270) 0.9330 (0.4877) 0.9438 (0.5251) 0.9430 (0.5239)
10 0.9516 (1.0576) 0.9206 (0.9843) 0.9344 (1.0556) 0.9415 (1.0550)

Notes.
104 stands for (10,10,10,10). Bold values denote the coverage probability higher than the nominal confidence level and the
shortest expected length.

probabilities and expected lengths of the proposed methods for circumstances with varying
sample cases, sample sizes, and common mean, are summarized in Figs. 3–5, respectively.
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Table 3 Comparison results of the 95% confidence intervals for the commonmean of several Weibull
distributions for p= 6.

n µ Coverage probability (Expected length)

GCI AM Equitailed HPD

106 0.5 0.9028 (0.1565) 0.8186 (0.1074) 0.9424 (0.1549) 0.9398 (0.1544)
1 0.8974 (0.3117) 0.8088 (0.2147) 0.9034 (0.2991) 0.8990 (0.2983)
5 0.9084 (1.5608) 0.8190 (1.0768) 0.8968 (1.5088) 0.8924 (1.5043)
10 0.9042 (3.1252) 0.8236 (2.1468) 0.8904 (3.0312) 0.8842 (3.0222)

103,203 0.5 0.9125 (0.1249) 0.8580 (0.0928) 0.9420 (0.1230) 0.9395 (0.1225)
1 0.9380 (0.1707) 0.9115 (0.1390) 0.9390 (0.1682) 0.9400 (0.1675)
5 0.9015 (1.2454) 0.8510 (0.9273) 0.8955 (1.2152) 0.8955 (1.2102)
10 0.914 (3.0203) 0.9002 (2.0118) 0.9045 (2.9023) 0.9056 (2.9011)

206 0.5 0.9198 (0.1045) 0.8890 (0.0832) 0.9394 (0.1035) 0.9372 (0.1035)
1 0.9194 (0.2093) 0.8870 (0.1664) 0.9258 (0.2051) 0.9206 (0.2046)
5 0.9146 (1.0454) 0.8816 (0.8329) 0.9108 (1.0284) 0.9094 (1.0259)
10 0.9172 (2.0924) 0.8836 (1.6653) 0.9112 (2.0634) 0.9084 (2.0583)

103,503 0.5 0.9320 (0.0858) 0.8995 (0.0693) 0.9480 (0.0841) 0.9455 (0.0837)
1 0.9225 (0.1709) 0.8925 (0.1388) 0.9290 (0.1683) 0.9270 (0.1676)
5 0.9350 (0.8562) 0.8965 (0.6932) 0.9335 (0.8465) 0.9340 (0.8429)
10 0.9425 (2.0648) 0.9025 (1.7096) 0.9375 (2.0425) 0.9360 (2.0341)

203,503 0.5 0.9355 (0.0734) 0.9235 (0.0632) 0.9490 (0.0729) 0.9490 (0.0726)
1 0.9315 (0.1469) 0.9115 (0.1264) 0.9335 (0.1453) 0.9295 (0.1448)
5 0.9378 (0.8126) 0.9145 (0.6566) 0.9388 (0.8100) 0.9356 (0.7989)
10 0.9412 (1.3555) 0.9243 (1.1923) 0.9456 (1.3510) 0.9434 (1.3502)

506 0.5 0.9396 (0.0625) 0.9258 (0.0553) 0.9474 (0.0622) 0.9450 (0.0621)
1 0.9328 (0.1251) 0.9256 (0.1105) 0.9372 (0.1240) 0.9364 (0.1237)
5 0.9338 (0.6258) 0.9232 (0.5534) 0.9330 (0.6218) 0.9308 (0.6203)
10 0.9364 (1.2508) 0.9216 (1.1075) 0.9342 (1.2441) 0.9320 (1.2412)

503,1003 0.5 0.9455( 0.0503) 0.9380 (0.0457) 0.9555 (0.0502) 0.9540 (0.0500)
1 0.9470 (0.1005) 0.9295 (0.0913) 0.9455 (0.0999) 0.9455 (0.0995)
5 0.9355 (0.5028) 0.9310 (0.4568) 0.9370 (0.5002) 0.9330 (0.4983)
10 0.9403 (0.9148) 0.9345 (0.8292) 0.9389 (0.9045) 0.9388 (0.9028)

1006 0.5 0.9460 (0.0431) 0.9384 (0.0397) 0.9502 (0.0430) 0.9480 (0.0429)
1 0.9430 (0.0862) 0.9354 (0.0795) 0.9496 (0.0859) 0.9474 (0.0857)
5 0.9460 (0.4315) 0.9334 (0.3982) 0.9440 (0.4298) 0.9416 (0.4288)
10 0.9471 (0.8117) 0.9352 (0.7813) 0.9467 (0.8095) 0.9431 (0.8078)

Notes.
106 stands for (10,10,10,10,10,10). Bold values denote the coverage probability higher than the nominal confidence level and
the shortest expected length.

APPLICATION OF THE METHODS TO ESTIMATE WIND
SPEED DATA FROM VARIOUS AREAS OF SURAT THANI
Surat Thani is the largest province in southern Thailand and is located on the west coast
of the Gulf of Thailand. Ten years of monthly wind speed data were obtained from
weather stations in three districts: Khiri Rat Nikhom, Koh Samui, and Kanchanadit
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Figure 2 The algorithm for estimating the coverage probability and expected length.
Full-size DOI: 10.7717/peerj.15513/fig-2

Figure 3 Performance comparison of the methods according to the number of samples ( p) in terms of
their (A) coverage probabilities and (B) expected lengths.

Full-size DOI: 10.7717/peerj.15513/fig-3
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Figure 4 Performance comparison of the methods according to the sample size ( n) in terms of their
(A) coverage probabilities and (B) expected lengths.

Full-size DOI: 10.7717/peerj.15513/fig-4

Figure 5 Performance comparison of the methods according to the commonmean (µ) in terms of
their (A) coverage probabilities and (B) expected lengths.

Full-size DOI: 10.7717/peerj.15513/fig-5

(2010-2019) by the Thailand Meteorological Department (Table 4). The data summary
statistics are displayed in Table 5. First, we used the Akaike Information Criterion (AIC)
to check whether the Weibull distribution was appropriate for these datasets, with the
results in Table 6 showing that this was indeed the case with the smallest AIC value.
Moreover, Fig. 6 exhibits Q-Q plots of the datasets showing that the Weibull distribution
is definitely appropriate, and confirming with P-value of these areas are 0.3708, 0.4826,
and 0.5681, respectively. The estimated common mean of the datasets is 0.8869. The 95%
interval estimation results for the common mean computed by using all four methods are
summarized in Table 7. Furthermore, a trace plot of the generated µ values is shown in
Fig. 7.
It can be seen that these findings confirm the simulation results for a large sample size.

Adjusted MOVER provided the shortest expected length, while that of the Bayesian HPD
interval was smaller than those of GCI and the Bayesian equitailed confidence interval.
However, once again adjusted MOVER yielded a coverage probability that was lower than
the other methods and did not reach the target. Meanwhile, both Bayesian methods yielded
coverage probabilities higher than the target and the expected length of the Bayesian HPD
interval was slightly narrower than that of the Bayesian equitailed confidence interval.
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Table 4 Monthly wind speed data from three areas in Surat Thani.

Monthly wind speed data (m/s)

1.0289 1.0289 1.1832 0.9774 0.9260 0.6688 0.7717 0.7717 0.8231 0.8746
1.0803 0.8746 1.0803 0.9260 1.0289 0.8231 0.6688 0.9774 1.2347 0.7717

Khiri Rat Nikhom 0.9774 0.7202 1.1832 1.0289 0.7717 0.6688 0.9774 0.8746 1.0803 1.0803
0.7717 0.8746 0.8746 0.8746 0.6688 0.5659 0.9774 0.6173 0.7202 0.6173
0.8231 0.7202 0.5659 0.5144 0.5144 0.6173 0.6688 0.5659 0.6173 0.4116
0.9774 0.7717 0.5659 0.5659 1.2347 1.2347 1.3376 0.9260 0.9774 1.0289
0.5659 0.7717 0.4630 0.5144 1.3890 1.2861 1.3376 1.0289 1.2347 1.1318

Koh Samui 0.6173 0.9774 0.9260 0.8746 1.4919 1.2347 1.6462 1.1832 1.2347 1.1318
0.2572 0.7202 0.8231 0.9774 1.2347 1.3890 1.7491 1.2347 1.2347 1.1832
0.6688 1.2347 0.8746 1.0803 1.2861 1.1318 1.8520 1.0803 1.2347 1.3376
0.2572 0.3601 0.6173 1.0289 0.9260 0.4116 0.9774 0.8746 0.9260 0.8746
0.2572 0.3601 0.5659 0.8231 1.1318 0.7202 0.8231 1.1318 1.3890 0.8231

Kanchanadit 0.2572 0.3601 0.7202 0.8231 0.7202 0.5659 1.1832 1.0289 1.0289 1.2861
0.1029 0.4630 0.7202 0.6173 0.6173 0.6173 1.2347 0.8231 0.4630 0.5659
0.1543 0.3087 0.3087 0.3601 0.3087 0.4630 0.8746 0.6173 0.3087 0.2572

Table 5 Summary statistics for the wind speed data from three areas in Surat Thani.

Areas ni ĉi k̂i µ̂i

Khiri Rat Nikhom 50 0.9064 4.7668 0.8299
Koh Samui 50 1.1804 3.6349 1.0642
Kanchanadit 50 0.7564 2.2178 0.6699

Table 6 AIC values of the wind speed datasets from three areas in Surat Thani.

Methods

Weibull Gamma Log-normal Normal Exponential Cauchy

Khiri Rat Nikhom −17.4248 −16.8662 −15.4456 −17.3832 83.2807 8.1797
Koh Samui 34.2095 40.3958 46.7676 34.4694 108.2886 49.2098
Kanchanadit 28.7958 31.0278 36.1130 32.6032 61.7694 58.5561

Notes.
Bold values denote the smallest AIC value.

Therefore, the Bayesian HPD interval is the most suitable for estimating the confidence
interval for the common mean of several Weibull distributions for large sample sizes.

DISCUSSION
La-ongkaew, Niwitpong & Niwitpong (2021) proposed Bayesian methods using the gamma
prior for estimating the difference between the parameter values of several Weibull
distributions and applied them to wind speed data measured at wind energy stations in
Thailand. We extended this idea to construct estimates for the confidence interval for the
common mean of several Weibull distributions using GCI, adjusted MOVER, and the
Bayesian equitailed confidence interval and HPD interval both based on the gamma prior.
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Figure 6 Weibull Q-Q plots of the wind speed data from three areas in Surat Thani: (A) Khiri Rat
Nikhom, (B) Koh Samui, and (C) Kanchanadit.

Full-size DOI: 10.7717/peerj.15513/fig-6

Table 7 The 95% interval estimation for the commonmean of the wind speed data from three areas in
Surat Thani.

Method Confidence intervals forµ

Lower Upper Length

GCI 0.7812 0.9044 0.1232
AM 0.8502 0.9266 0.0764
Equitailed 0.7850 0.9040 0.1190
HPD 0.7820 0.9007 0.1186
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Figure 7 Commonmean (µ) vs. the number of iterations using theMCMC algorithm.
Full-size DOI: 10.7717/peerj.15513/fig-7

The findings demonstrate that the Bayesian HPD interval achieved the best performance
when µ was small with large sample sizes when its coverage probability and expected
length were both taken into consideration. Furthermore, GCI managed to perform well
together with small sample sizes whereas adjusted MOVER did not perform well in any of
the scenarios tested.

Increasing the number of sample cases (p) caused the coverage probabilities of the
methods to be less than 0.95 and the expected length to decrease. Although the sample
sizes increased, the coverage probabilities of all of the proposed methods improved (closer
to 0.95), and the expected lengths became narrower. Moreover, for unequal sample sizes,
the Bayesian HPD interval yielded a coverage probability greater than or close to 0.95 with
the shortest expected length.

We applied the confidence interval estimates for the common mean of three wind speed
datasets from Surat Thani, Thailand, for which the Bayesian HPD interval performed
the best. Knowledge of predicting the common mean of the wind speed across this large
province could help the provincial authorities to prepare for adverse weather events. Since
the Bayesian HPD interval performed the best in this scenario, it has the ability to estimate
the confidence interval for the common mean of wind speed datasets from many areas
provided that they follow Weibull distributions. As mentioned above, the wind speed
distribution may differ for a specific site during different months, seasons, and years. The
data should be tested for any kind of distribution using any of the criteria presented either
AIC, p-value or qq-plot.

CONCLUSIONS
We proposed the Bayesian equitailed confidence interval and the HPD interval using
the gamma prior for estimating the confidence interval for the common mean of several
Weibull distributions and compared their performances with GCI and adjusted MOVER.
From the simulation results, both Bayesian methods yielded coverage probabilities greater
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than or close to the target with shorter expected lengths than the other methods in most
cases for p= 2. They performed well in many cases for large sample sizes for p= 4 and 6.
Our findings indicate that GCI generally performed well in terms of coverage probability
whereas the Bayesian methods performed better than the others when the value of µ was
small. Moreover, adjusted MOVER performed poorly in all cases.

We used wind speed data from Surat Thani province, Thailand, to measure the efficiency
of the proposed methods. In this case, the Bayesian HPD interval performed the best and
can be used to estimate the confidence interval for the common mean of several Weibull
distributions for this particular scenario. In future work, we will expand our research to
establish simultaneous confidence intervals for the difference between the means of more
than two populations.
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