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ABSTRACT

Background: A balance on nutrient supply and redox homeostasis is required for cell
survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy
failure.

Objective: To investigate the mechanism of anti-proliferation of cardamonin by
inducing oxidative stress in ovarian cancer cells.

Methods: After 24 h of drug treatment, CCK8 kit and wound healing test were used
to detect cell viability and migration ability, respectively, and the ROS levels were
detected by flow cytometry. The differential protein expression after cardamonin
administration was analyzed by proteomics, and the protein level was detected by
Western blotting.

Results: Cardamonin inhibited the cell growth, which was related to ROS
accumulation. Proteomic analysis suggested that MAPK pathway might be involved
in cardamonin-induced oxidative stress. Western blotting showed that cardamonin
decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results
were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of
cardamonin was weakened.

Conclusion: Raptor mediated the function of cardamonin on cellular redox
homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.

Subjects Biochemistry, Cell Biology, Molecular Biology, Pharmacology
Keywords Cardamonin, Ovarian cancer, Oxidative stress, Raptor, ERK1/2

INTRODUCTION

Epithelial ovarian cancer (EOC) is one of the leading causes of cancer-related mortality
among females due to the high risk of metastasis and recurrence (Torre et al., 2018).
The standard treatment for ovarian cancer is optimal debulking combined with
platinum-based chemotherapy, while the majority of patients eventually develop
chemotherapy resistance (Feng et al., 2021). Therefore, there is an urgent need to find
high-efficiency and low-toxicity therapeutic drugs to improve chemotherapy sensitivity for
ovarian cancer.

A balance on nutrient supply and redox homeostasis is required for cell survival. Under
the condition of ischemia and hypoxia, malignant cells acquire metabolic adaptation,
which leads to overproduction of reactive oxygen species (ROS) (Panieri ¢» Santoro, 2016).
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Changes in intracellular ROS levels are inseparable from the tumor cell growth and exert
discrepant impacts on cancer cell survival (Hayes, Dinkova-Kostova & Tew, 2020).
Appropriate increase of ROS promotes the proliferation and migration of tumor cells,
whereas excessive ROS induces oxidative stress and cell death by damaging to DNA,
protein, mitochondria and endoplasmic reticulum. As a result, antioxidants in cancer cells
are largely synthesized. It has been reported that the first-line chemotherapeutics such as
cisplatin and paclitaxel commonly generated excessive of ROS in ovarian cancer cells,
thereby promoting cell death (Kleih et al., 2019). However, the elevated capacity of
anti-oxidative in tumor cells can neutralize the oxidative stress and render cells to
chemotherapy resistance (Yang et al., 2018). Multiple pathways have been reported to be
involved in the regulation of ROS production and elimination. For example, the cross-talk
between AMPK and AKT was proved to be related with ROS regulation and cancer
progression (Zhao et al., 2017). Although numerous of studies have devoted to uncovering
the potential mechanisms of ROS regulation, the optimal targets of ROS remain unknown.

The MAPK signaling pathway participates in several cellular processes and can be
activated by ROS (Chang et al., 2021). There are four members in MAPK family, including
extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs),
extracellular regulated protein kinases 5 (ERK5) and p38. Among them, ERK1/2 was well
studied in cell signal transduction regulating and high activation of ERK1/2 was related to
the occurrence and development of cancer (Guo et al., 2020). On the contrary, inhibition of
ERK1/2 was proved to suppress tumor cell epithelial-mesenchymal transition (EMT) and
induce apoptosis in ovarian cancer cells (Shi ef al., 2020). ERK1/2 inhibition could also
aggravate intracellular oxidative stress and inflammation by promoting intracellular ROS
accumulation (Wang et al., 2021a). In addition, ERK/p38 MAPK combined with the NF-
kB pathway was involved in cell proliferation of hepatocellular carcinoma in a
ROS-dependent manner (Yuan et al., 2019). Notably, it was reported that ROS generation
induced by ERK might partially contribute to cell apoptosis (Park et al., 2017).

The atypical serine/threonine kinase mTOR is a key regulator of cell growth and
metabolism, who contains two structurally and functionally distinct complexes, mTOR
complex 1 (mTORC1) and mTORC2. Regulatory-associated protein of TOR (Raptor) is an
mTOR-binding partner that also acts as a scaffold protein to p70 S6 kinase 1 (p70S6k1)
and eukaryotic initiation factor 4E-binding protein 1 (4EBP1). Raptor is indispensable for
mTOR-catalyzed phosphorylation of downstream translation regulators. Upon
stimulation, mTOR is activated and regulates several intracellular physiological processes
through a variety of pathways (Kim ¢ Guan, 2019). Importantly, high activation of mTOR
in tumor cells will reprogram the cell metabolism by altering the availability of metabolic
enzymes (Liu & Sabatini, 2020). In mTOR hyper-activated cells, decreased level of ROS
was observed, which subsequently led to uncontrolled cell growth and drug resistance
(Wang et al., 2021c). Inhibition of mTOR could inhibit the cell proliferation and migration
in ovarian cancer (Fan et al., 2021). Targeting the PI3K/AKT/mTOR signaling pathway
could regulate cell fate by inducing oxidative stress damage in glioma cells (Li ef al., 2020).
Rapamycin, a classical inhibitor of mTORCI, inhibited the tumor cells growth through
inducing cell oxidative stress (Zimmerman et al., 2020). Deregulated of PI3K/AKT/mTOR
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and Raf/MEK/Erk signaling pathways were observed simultaneously in human cancer cells
(Wilhelm et al., 2004; Will et al., 2014), and the subsequent excessive production of ROS
has been reported to be associated with apoptosis and autophagy (Niu et al., 2015a; Pan
et al., 2015). In addition, simultaneous inhibition of mTOR and ERK1/2 could further
increase the accumulation of ROS in tumor cells (Jasek-Gajda et al., 2020), suggesting a
synergistic effect of combined mTOR and ERK1/2 inhibitors for cancer therapy. Recently,
drugs that targeting nodes of these two pathways are being investigated, providing a
promising therapeutic strategy for chemotherapy-resistant cancer (Chen et al., 2018).
However, the crosstalk between the two pathways remains unclear.

Cardamonin is a chalcone and its anti-cancer role has been extensively studied.
Our previously results showed that cardamonin have a chemo-preventive effect on non-
small-cell lung cancer, Lewis lung cancer, breast cancer and ovarian cancer (Niu ef al.,
2015b; Shi et al., 2018b; Tang et al., 2014). We also demonstrated that the pharmacological
activities of cardamonin are related to mTORCI1 inhibition partly through
down-regulating the expression of Raptor (Liao et al., 2010; Niu et al., 2013; Shi et al.,
2018b; Zheng et al., 2010; Zhu et al., 2021). Notably, cardamonin exerts bidirectional
regulation of redox homeostasis under different circumstance. Cardamonin protected the
heart from oxidative damage and inflammatory injury by activating Nrf2-related
cytoprotective system in cardiac muscle cells (Qi ef al., 2020), whereas cardamonin
suppressed tumor cell growth by inducing oxidative stress through NF-kB/mTOR and
HIF-1a pathways (Jin et al., 2019; Ruibin et al., 2020). Therefore, further studies are
needed to investigate the mechanism by which cardamonin regulates oxidative
homeostasis. In the present study, we attempted to explore the correlation between the
mechanism of cardamonin-induced oxidative stress and ERK1/2 and mTOR pathways in
ovarian cancer cells.

MATERIALS AND METHODS

Reagents and chemicals

Cardamonin (no 110763, purity >99%; National Institutes for Food and Drug Control,
Beijing, China), rapamycin (Sigma-Aldrich Co., St Louis, MO, USA), MHY1485 (HY-
B0795; MedChemExpress, Monmouth Junction, NJ, USA), AZD0364 (S8708; Seleck
Chemicals, Houston, TX, USA), N-Acetyl-L-cysteine (S26121; Yuanye Biological Co.,
Shanghai, China), and glutamic acid (§G8540-200; Solarbio Co., Beijing, China) were
dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich Co., St Louis, MO, USA) and
stored at 4 °C. CCK8 kit was purchased from Wabcan Co. and Reactive Oxygen Species
Assay Kit was purchased from Beyotime Institute of Biotechnology (Jiangsu, China).
Antibodies against mTOR, p-mTOR (Ser2481), Raptor, p-p44/42 MAPK (ERK1/2), p44/
42 MAPK (ERK1/2), S6K1, p-S6K1 (Thr389), B-actin and the secondary antibodies were
purchased from Cell Signaling Technology (Danvers, MA, USA).

Cell culture
Human ovarian cancer SKOV3 and A2780 cells were obtained from the Boster Biological
Technology Co., Ltd (Wuhan, Hubei, China). SKOV3 cell line, Raptor knockout SKOV3
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cell line (previously constructed by CRISPR/Cas 9) and A2780 cell line were prepared with
appropriate medium containing 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin. Cells were incubated in 37 °C constant temperature incubator with 5% CO,.

Cell viability analysis

Cell viability was determined by CCKS8 assay. Cells were seeded into a 96-well plate with
about 1 x 10 cells per well, and then treated with indicated drugs for 24 h.

The supernatant was discarded carefully, and then 10% CCKS reagent was added to each
well. Cells were continuing incubated for 1 h. The absorbance was determined at 450 nm
by a microplate reader (Model 1680; Bio-Rad Laboratories Inc., Hercules, CA, USA).

Wound healing assay

Cells were seeded in 6-well plates and a “wound” was inflicted by a sterile pipette tip when
cells grown into a confluent monolayer. Then cells were washed with PBS twice and
incubated with drugs for 24 h. Photos were taken at x100 magnification at 0 and 24 h after
drugs treatment, and the wound closure was measured by ImageJ program.

Flow cytometry

Cells were seeded in 6-well plates, and treated with drugs for 24 h. Then cells were
incubated with 10 uM dichlorodihydro-fluorescein diacetate (DCFH-dA) in a constant
temperature shaker at 37 °C for 30 min in the dark. A density of 1 x 10° cells were collected
and re-suspended in PBS, and the Dichlorofluorescein diacetate (DCF-dA) fluorescence
intensity was determined by flow cytometry within 2 h. The mean fluorescence intensity
(MFI) was used to quantify the levels of ROS.

Tandem mass tag (TMT)-labeling proteomic analysis

Samples were ground into cell powder and sonicated by a high-intensity ultrasonic
processor with lysis buffer (8 M urea, 1% Protease Inhibitor Cocktail). Removed the
remaining debris by centrifugation and collected the supernatant, following by
determining the protein concentration with a BCA kit. Digested the protein solution with
dithiothreitol and alkylated the protein with iodoacetamide at room temperature in
darkness. Diluted the protein sample and digested proteins by trypsin. TMT labelling was
conducted according to the manufacturer’s protocol from the TMT kit and as described
previously (Zhang et al., 2019), then LC-MS/MS analysis was performed by an EASY-nLC
1000 UPLC system, and the Maxquant search engine (v.1.5.2.8) was used to process the
MS/MS data.

Western blotting analysis

Cells were washed twice with ice-cold PBS after treated with indicated drugs for 24 h and
re-suspended in lysis buffer for 30 min. Lysates were centrifuged and the supernatant was
collected. Protein concentration was measured by a BCA kit. Proteins were then separated
on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by transferring to
polyvinylidene fluoride membranes. The membranes were blocked in 5% bovine serum
albumin for 1 h and then incubated with indicated antibodies at 4 °C overnight. Washed
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Figure 1 Cardamonin inhibited the cell viability and migration of SKOV3 cells and A2780 cells. Cells were treated with cardamonin (5, 20 pM)
for 24 h, respectively. (A) The cell viability of SKOV3 cells. (B) The cell viability of A2780 cells. (C) The migration of SKOV3 cells. (D) The migration

of A2780 cells. Mean + SD, n = 3, *P < 0.05 vs control group.

Full-size ]

DOL: 10.7717/peerj.15498/fig-1

the membranes with Tris-buffered saline containing 0.1% Tween 20 for three times and
then incubated the membranes with the appropriate secondary antibodies for 1 h. Washed
the membranes for another three times, and added the HRP-enhanced chemiluminescence
reagents to react with the secondary antibodies, and then developed the bands on the

membranes by autoradiography (KODAK Film, Shanghai, China). Finally, protein bands

were quantified by Biolmaging Systems.

Statistical analysis

Statistical analysis was performed by using the SPSS 21.0 software (SPSS, Inc., Chicago, IL,
USA), and all experimental data were expressed as mean + SD. Differences between two
groups were evaluated by the Student’s t-test and multi-component comparison were

performed by one-way analysis of variance (one-way ANOVA). P < 0.05 was considered to

be statistically significant.

RESULTS

Cardamonin inhibited the cell viability and migrat
of oxidative stress in ovarian cancer cells

ion through induction

To verify whether the inhibitory of cardamonin on cell viability and migration was related

to induction of oxidative stress, A2780 and SKOV?3 cells were
of cardamonin. Cell viability and migration were measured by

treated with different doses
CCKS8 kit assay and wound

healing assay, respectively. Results showed that cardamonin inhibited the cell viability of
both A2780 and SKOV3 cells in a dose-dependent manner (Figs. 1A and 1B). In addition,
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Figure 2 Cardamonin induced ROS accumulation in ovarian cancer cells. Cells were treated with cardamonin (5, 20 pM) or BAY11-7082
(10 pM) for 24 h, respectively. (A) The ROS level in SKOV3 cells. (B) The ROS level in A2780 cells. Cells were treated with cardamonin (20 pM),
NAC (1 mM) or Glu (2 mM) for 24 h, respectively. For further study, cells were pretreated with NAC (1 mM) in SKOV3 and A2780 cells for 1 h, and
followed by cardamonin (20 uM) treatment for 24 h, respectively. (C) The ROS level in SKOV?3 cells. (D) The ROS level in A2780 cells. Mean + SD,
n =3, *P < 0.05 vs control group, “P < 0.05 vs Cardamonin (20 pM) group. Full-size K&l DOT: 10.7717/peerj.15498/fig-2

cardamonin significantly inhibited the migration of SKOV3 cells. However, A2780 cells
appeared to grow in superposition, with only a slight change in cell migration rate after 24
h of culture, and cardamonin had little inhibitory effect on its migration (Figs. 1C and 1D).
Next, we further studied the effect of cardamonin on intracellular ROS level and cell death.
Results showed that intracellular ROS was markedly increased by cardamonin (5, 20 pM)
and BAY11-7082 (10 uM, a positive agent). We observed a little stronger effect of
cardamonin in ROS induction on SKOV3 cells than that on A2780 cells (Figs. 2A and 2B).
Then the reactive oxygen scavenger N-acetyl-L-cysteine (NAC) and the oxidative stress
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inducer glutamate (Glu) were used to further confirm whether the inhibitory of
cardamonin on ovarian cancer was related to ROS production. Cells were pretreated with
NAC or Glu 1 h before cardamonin treatment. NAC reduced but Glu promoted the
accumulation of intracellular ROS content. In addition, the effect of cardamonin on
generation of ROS was weakened by NAC pretreatment (Figs. 2C and 2D). Accordingly,
NAC treated alone showed little effect (a moderately decreased) on cell viability, while Glu
markedly inhibited the cell viability. Furthermore, cell viability was partly restored by NAC
pretreatment in cardamonin groups (Figs. 3A and 3B). The inhibitory of cardamonin on
the migration of cancer cells was also proved to be related with ROS accumulation.

The results of the wound healing assay showed that Glu significantly inhibited while NAC
promoted the migration, respectively; in addition, NAC partially abolished the inhibitory
of cardamonin on cell migration in SKOV3 cells. Nevertheless, the migration was not
affected by any drugs except for NAC in A2780 cells (Figs. 3C and 3D).

Cardamonin inhibited the ERK1/2 pathway

To characterize proteomic alterations associated with cardamonin (20 uM), we conducted
comparative proteomic analyses in SKOV3 cells. The InterProScansoft was used to
annotate the GO functions of the proteins and the protein sequence alignment method and
Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the
protein pathways. The results showed that the MAPK signaling pathway, which was
reported previously in relation with redox homeostasis regulation, was significantly
down-regulated by cardamonin (Fig. 4A). We also confirmed that cardamonin markedly
decreased the phosphorylation ERK1/2 without affecting the total protein levels by
Western blotting analysis both in SKOV3 and A2780 cells (Figs. 4B-4E).

Cardamonin inhibited the mTORC1 pathway

Our previous study showed that cardamonin inhibited the expression of hypoxia-inducible
factor-a (HIF-a) and vascular endothelial growth factor (VEGF), under CoCl,-mimicked
hypoxia conditions, which was partially correlated with mTOR inhibition (Xue et al,
2016). The role of mTOR in oxidative stress regulated by cardamonin was then further
investigated. In line with previous studies, cardamonin inhibited the phosphorylation of
S6K1 at Thr389 and mTOR at Ser2448, without affecting the total protein expression.
In addition, the inhibitory of cardamonin on the phosphorylation of mTOR and S6K1 was
weakened by MHY1485 (a classic mTOR agonist) (Figs. 5).

Raptor coupled mTORC1 and ERK1/2 inhibition by cardamonin with
oxidative stress induction in ovarian cancer cells

It was reported that cardamonin markedly decreased the expression of Raptor, revealing
an indispensable role of Raptor in regulation of mTORCI activity by cardamonin (Shi
et al., 2018b). Here, we tested whether Raptor also participated in cardamonin-induced
oxidative stress through ERK1/2 and (or) mTORCI1 pathways. Raptor was knocked out
(KO) by CRISPR-Cas9 in SKOV3 cells (Fig. 6A). Cell viability and migration were
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Figure 3 Cardamonin inhibited the cell viability and migration of ovarian cancer cells by induction oxidative stress. Cells were treated with
cardamonin (5, 20 pM), NAC (1 mM) or Glu (2 mM) for 24 h, respectively. For further study, cells were pretreated with NAC (1 mM) in SKOV3 and
A2780 cells for 1 h, and followed by cardamonin (5, 20 uM) treatment for 24 h, respectively. (A) The cell viability of SKOV3 cells. (B) The cell
viability of A2780 cells. (C) The migration of SKOV?3 cells. (D) The migration of A2780 cells. Mean + SD, n = 3, *P < 0.05 vs control group, *P <0.05
ys Cardamonin (20 pM) group. Full-size K&] DOT: 10.7717/peer;j.15498/fig-3

significantly inhibited in Raptor deletion cells (Figs. 6B and 6C). However, the production
of intracellular ROS was increased in Raptor KO SKOV3 cells (Fig. 6D).

Raptor KO and WT SKOV3 cells were treated with cardamonin (20 uM) and
rapamycin (0.1 pM), respectively, and the ROS level was drastically increased in Raptor
KO groups, suggesting a potential role of Raptor in ROS induction (Fig. 7A). Consistently,
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Figure 4 Cardamonin inhibited ERK1/2 pathway activity. Cells were treated with cardamonin (20 pM) for 24 h, and then total protein was
extracted for proteomic analysis and Western blotting assay. (A) KEGG pathway enrichment analysis of the DAPs under cardamonin treatment. (B)
The protein bands of p-ERK1/2 and actin in SKOV3 cells. (C) The relative density ratios of p-ERK1/2 protein were normalized to actin in SKOV3
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A2780 cells. For all panels, error bars are presented as the mean + SD, = 3, * P < 0.05 vs control group.  Full-size Kl DOI: 10.7717/peerj.15498/fig-4
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Figure 5 Cardamonin inhibited mTORCI pathway activity. Cells were treated with cardamonin (20 pM), rapamycin (0.1 uM) or MHY1485
(2 uM) for 24 h, respectively. For further study, cells were pretreated with MHY1485 (2 pM) in SKOV3 and A2780 cells for 1 h, and followed by
cardamonin (20 uM) or rapamycin (0.1 uM) treatment for 24 h, respectively. Then, total protein was extracted for Western blotting analysis. (A) The
protein bands of p-mTOR, mTOR, p-S6K1, S6K1 and actin in SKOV3 cells. (B) The protein bands of p-mTOR, mTOR, p-S6K1, S6K1 and actin in
A27803 cells. (C) The relative density ratios of p-S6K1 and p-mTOR protein were normalized to actin in SKOV?3 cells. (D) The relative density ratios
of p-S6K1 and p-mTOR protein were normalized to actin in A2780 cells. For all panels, error bars are presented as the mean + SD, n =3, *P < 0.05 vs
non-specific control (NC) group, “P < 0.05 vs non-MHY1485 pretreatment groups.

Full-size k] DOTI: 10.7717/peer].15498/fig-5

cell viability was significantly inhibited in Raptor KO SKOV3 cells, and the inhibitory
effect of cardamonin on Raptor KO SKOV3 cells was attenuated (Fig. 7B). Similar results

were observed in wound healing assay (Fig. 7C).

Next, the related proteins expression of mMTOR and ERK1/2 pathways were examined in
Raptor KO SKOV3 cells. Results showed that the expression of p-S6K1 (Thr389) and

p-mTOR (Ser2448) was decreased by cardamonin and rapamycin. Similarly, the

expression of p-ERK1/2 (Thr202/Tyr204) was also inhibited in cardamonin, rapamycin
and ERK1/2 inhibitor AZD0364 groups. Notably, the inhibitory effect of cardamonin on
the expression of p-S6K1, p-mTOR and p-ERK1/2 was weakened in Raptor KO cells.

Zhu et al. (2023), PeerdJ, DOI 10.7717/peerj.15498

10/21


http://dx.doi.org/10.7717/peerj.15498/fig-5
http://dx.doi.org/10.7717/peerj.15498
https://peerj.com/

Peer/

o sClrl
== Raplor KO

.‘;‘1.4 1.0
g2 £ o
sgCtrl Raptor KO é 1.0 5
Eos 3 06
Raptor —— 508 ¥ 7
pror | - 2oo 2o
P-actin | = w— T 02
~ oo 00
sgCtrl Raptor KO 24 48 72 9 120
Time (h)
C D -
= aptor
sgCtrl Raptor KO B Raworko
oh £ S 8
: 2z
8 - g -
" i 5
bl : . i
24h | i
i ) [ E— . . i,
sgCtrl Raptor KO ki o " seCtrl Raptor KO

FITC-A
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Interestingly, the total protein expression of Raptor was only decreased by cardamonin
(Fig. 8).

DISCUSSION

Ovarian cancer is a common gynecologic malignancy with high mortality. Most patients
received optimal debulking combined with platinum-based chemotherapy and obtained a
good outcome during initial period. Unfortunately, it has been reported that a majority of
patients will relapse and eventually develop platinum resistance (Torre et al., 2018; Webber
et al., 2019). Therefore, it is of great clinical significance to develop a potential target drug
with low toxicity for ovarian cancer therapy.

As a matter of fact, drugs targeting to ROS production is a new strategy for cancer
therapy. ROS plays an essential role in cell progression such as cell cycle, cell
differentiation and cell death (Kumari et al., 2018). Moderate level of ROS can provide a
pro-survival signal to cancer cells. As the present study showed, the viability of ovarian
cancer cells was slightly reduced by NAC. However, beyond the steady-state level of
intracellular ROS, either shortage or surplus, will damage the growth of tumor cells.

So tumor cells will undergo metabolic reprogramming for immortal proliferation.

The malfunction of metabolism and mitochondria may elevate oxidative stress and
deliciated redox balance, suggesting that targeting redox balance in tumor cells has
potential therapeutic benefits. The role of cardamonin in regulation of redox homeostasis
has been studied previously. Surprisingly, cardamonin exerted two opposite effects in ROS
accumulation. Cardamonin exhibited antioxidant activity by up-regulating of Nrf2 and
NF-kB, and then prevented cells from oxidative stress and inflammatory damage in
cardiomyocytes (Qi et al., 2020; Tan et al., 2021); on the other hand, cardamonin enhanced
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mitochondrial oxidative stress through inhibiting HIF-1a or NF-«B, which ultimately
inhibits the tumor cell proliferation and migration (Jin et al., 2019; Li et al., 2017).

The present study showed that cardamonin exerts anti-cancer effects partly through
inducing ROS in agreement with most common chemotherapeutics such as platinum and
taxanes. We have previously demonstrated that cardamonin induced apoptosis and
autophagy in ovarian cancer cells, and changes in ROS was proved to be a key factor in
inducing apoptosis and autophagy (Li et al., 2022; Shi et al., 2018a). Studies also have
shown that autophagy stimulated by external factors might related to apoptosis through
relieving environmental stress (Adams & Cory, 2007), providing ATP, activating caspase
(Bovellan et al., 2010) and degradation of damaged organelles (Kraft, Peter & Hofmann,
2010). Therefore, it is of great significance to further study whether the inhibition of

cardamonin on ovarian cancer cell viability is related to ROS mediated apoptosis and cell
autophagy.

Zhu et al. (2023), Peerd, DOI 10.7717/peerj.15498

A 0 12/21


http://dx.doi.org/10.7717/peerj.15498/fig-7
http://dx.doi.org/10.7717/peerj.15498
https://peerj.com/

Peer/

A B C
£ 16 Raptor = eChl s 12 p-S6K1
sgCtrl Raptor KO gg 1‘21 gg 1.0 .
; £ 10 . =& 08 : o #
Rapamycin (0.1 uM) S T 2 gg 08 §§ 06 i
Cardamonin 20 pM) -+ - -+ - S0t : . o 5204
B=ER>1 g > Q
22 =38 0.2
5 02 =7
Raptor S s - o o % 00 £ 00
> & SO s
SOK1 S S s S - a— SRR
—— e, i e 6\0‘;«\ <&
K1 — i SR
p-S6K1 |8 T ae o
g s duil b
D E p-ERK1/2
MTOR S S S e S = 12
= B
B g _ m— soCtr]
mTOR ,
%2 58 x x =
i 208
ERKLZ e e e o 4 - [3 00
, - = i &2
FR=S 5204
p-ERK1/2 MR L e o 25 oz
2 £=20
oot g 2 0.0
pactin | &S ©
ot Oh
S
€ &5
sz’i& X
F
Raptor
H P I
sgCitrl Raptor KO
AZD0364 (1 uM) S S

Cardamonin (20 uM)

- + -
Raptor ”- — -

SOK] e - — e —

- + -

Relative expression of protein
(compared to B-actin)

Relative expression of protein
(compared to B-actin)

. . o o
p-S6K1 .. —— —
mTOR — e —
L Ao ] J K p-ERK1/2
= -8
Pp-MTOR S o w o v g _ 212 = Bplor ko
8.5 ]
- = . . ol % 3 1.0 . * %
ERK1/2 . g3 T 08 .
: i3 i3 06
P-ERK1/2 " e e i o £2 g2 04
) £3 £8 02
P-actin e s s w— —— $ oo < 00
5 S s> S
[ 09\> D‘K\Q s @QQ QQ-
> xS QS >
S N} PO QQG’
c;b‘&\ Sl w

Figure 8 Raptor coupled mTORCI and ERK1/2 inhibition by cardamonin with oxidative stress induction. SKOV3 and Raptor KO SKOV?3 cells
were treated with cardamonin (20 pM) or rapamycin (0.1 pM) or AZD0364 (1 uM) for 24 h, respectively. Then, total protein was extracted for
Western blotting analysis. (A and F) The protein bands of Raptor, S6K1, p-S6K1, mTOR, p-mTOR, ERK1/2, p-ERK1/2 and actin in two cell lines.
(B-E and H-K) The relative density ratios of Raptor, p-S6K1, p-mTOR and p-ERK1/2 protein were normalized to actin in two cell lines. For all
panels, error bars are presented as the mean + SD, n = 3, *P < 0.05 vs control group, “P < 0.05 vs sgCtrl groups.

Full-size E&) DOI: 10.7717/peerj.15498/fig-8

Zhu et al. (2023), PeerdJ, DOI 10.7717/peerj.15498 13/21


http://dx.doi.org/10.7717/peerj.15498/fig-8
http://dx.doi.org/10.7717/peerj.15498
https://peerj.com/

Peer/

Consistent with the ROS inducer BAY11-7082, cardamomin significantly induced
intracellular ROS levels, which may account for its inhibition of cell viability and
migration. The anti-cancer effect of cardamonin through deprivation of the redox balance
was further verified by scavenging and inducing intracellular ROS using NAC and Glu,
respectively. Notably, cardamonin exhibited strong inhibition on the migration of SKOV3
cells while showed little effect on that of A2780 cells. In addition, neither NAC nor Glu
affected the migration of A2780 cells, which may be related to the low metastatic capacity
of A2780 cells and the low sensitivity of A2780 cells to changes in ROS levels (Zhao et al.,
2016). Besides, different cell lines and incubation time should be taken into account, study
has shown that, A2780 cell mobility only showed a subtle difference when incubated for
24 h, but significantly changed when incubated for 48 h. However, there was a noticeable
change in migration of SKOV3 cells after incubated for 24 h (Wang et al., 2022). Taken
together, it is demonstrated that ROS production or scavenging plays a crucial role in
chemotherapy responses in ovarian cancer cells. Furthermore, different signal
transduction pathways might be involved in the regulation of ROS by cardamonin under
certain circumstance. It is reported that cardamonin could inhibit the expression of HIF-
la and subsequently enhanced mitochondrial oxidative phosphorylation and ROS
accumulation, which finally induced apoptosis in breast cancer cells (Jin et al., 2019).
Therefore, whether cardamonin increases ROS in ovarian cancer by targeting
mitochondria needs further investigation.

Accumulating evidence indicated that hyper-activation of ERK1/2 might regulate cell
cycle progression and tumorigenesis (Cheng et al., 2021), and ROS-induced ERK activation
is related to autophagy-dependent cell death (Hao et al., 2020). ERK1/2 senses ROS
signaling by different mechanisms including Ras activation, MAPK kinases (MAPKK)
activation or MAPK phosphatases inactivation. Studies have also shown that inactivation
of ERK1/2 might induce the accumulation of ROS by suppression of Nrf2, HO-1 and TrxR,
which finally resulted in cell growth inhibition (Jasek-Gajda et al., 2020). Results of
proteomic analyses and Western blotting analysis showed that cardamonin had a
significant effect on the MAPK signaling pathway. Combined with the results of previous
studies, cardamonin-induced oxidative stress and cell death in ovarian cancer cells might
be related to the inhibition of ERK1/2 signaling pathway.

Since regulation of ROS level is not sufficient to suppress tumor growth by ERK alone,
we further explored whether mTORCI was related with ROS induction by cardamonin.
mTORCI1 is a well known positively regulator of malignancy, and it has been demonstrated
that ROS-dependent inhibition of mTOR pathway might result in autophagy, apoptosis
and cell death in ovarian cancer cells (Shi et al., 2018b; Wang et al., 2021b). Rapamycin, a
classic inhibitor of mTORCI, has been reported to increase ROS generation and finally
induce tumor cell apoptosis and death (Zimmerman et al., 2020). Conversely, activation of
the PI3K/Akt/mTOR pathway was found to protect A549 cells from H,O,-induced
oxidative injury and apoptosis (Ma et al., 2021). In consistent with our previous studies,
cardamonin and rapamycin inhibited the activity of mTORCI, which could be rescued by
mTOR agonist MHY1485. These findings indicated that oxidative stress induced by
cardamonin partly through inhibiting of mMTORC1 pathway in ovarian cancer cells.
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Furthermore, we investigated the role of ERK1/2 and mTORCI in cardamonin-induced
oxidative stress, based on the potentially link between these two pathways (Li et al., 2011).
Previously, we confirmed that cardamonin suppressed the proliferation by mTORC1
inhibition through down-regulation the expression of Raptor in ovarian cancer cells (Shi
et al., 2018b). It is interestingly to clarify whether Raptor is a critical protein in mediating
the ROS production by cardamonin and whether Raptor is a linker between ERK1/2 and
mTOR signal pathways. Phosphorylation of Raptor on multiple sites is essential for its
fine-tuning effect on mTORCI1 signaling (Antonia et al., 2019; Foster et al., 2010) and the
translocation of mTOR to lysosomes (Sancak et al., 2008). Over-expression of Raptor was
related to drug resistance (Shchegolev et al., 2020). As expected, deletion of Raptor
remarkably inhibited cell viability and migration, accompanied by an increased
intracellular ROS level. In addition, the induction of ROS and subsequently inhibition on
cell growth were weakened by cardamonin in Raptor KO SKOV3 cells, indicating an
indispensable role of Raptor in anti-cancer effect of cardamonin on ovarian cancer.

It was reported that Raptor bound to SOHC2, an agonist of RAS upstream of ERK1/2,
thereby blocking the ERK1/2 pathway and cell proliferation. SHOC2-Raptor interaction
also triggered the negative cross-talk between RAS-ERK and mTORCI1 pathways (Xie
et al., 2019). We tested the related proteins expression of mTOR and ERK1/2 pathway
upon Raptor depletion, and the results showed that a significantly decrease of p-mTOR, p-
S6K1 and p-ERK1/2 was observed in Raptor KO SKOV3 cells. As a control, AZD0364
decreased expression of p-ERK1/2 and its inhibitory effect was unaffected by Raptor
depletion. The findings supported the speculation that Raptor is the particular protein
regulated by cardamonin, and partially mediated the induction of oxidative stress through
mTOR and ERK1/2 pathways. In addition, regarding Raptor as a scaffold for mTOR
activity is an over-simplification, it was reported that mTORC1-independent Raptor also
makes sense in cell metabolism and cancer progression (Van Nostrand et al., 2020).
Generally, whether Raptor regulates ERK1/2 in an mTORCI1-dependent or mTORCI-
independent manner and by which mechanism Raptor senses ROS signaling requires
further investigation.

CONCLUSION

In conclusion, the present study elucidates that cardamonin controls cell proliferation
through inducing oxidative stress and reveals an underlying cross talk between mTORCI
and ERK1/2 pathways via Raptor, providing a promising target for novel drug
development and ovarian cancer therapy.

SIGNIFICANCE

The present research has demonstrated that the inhibition of cardamonin on ovarian
cancer via inducing oxidative stress. The underlying mechanism was associated with
down-regulating Raptor expression and regulation of the mTORC1-ERK1/2 pathway. This
study provides a promising target for ovarian cancer therapy.
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