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ABSTRACT
Background: Despite the association of ferroptosis with various tumors, the specific
mechanism by which it influences colon adenocarcinoma (COAD)microenvironmental
equilibrium remains elusive. This study aims to elucidate how ferroptosis affects
COAD microenvironmental homeostasis and its potential impact on COAD
research.
Objective: By employing genetic screening and single-cell analysis of tumor data, we
investigated the role of ferroptosis genes in COADmicroenvironmental homeostasis.
The genes were correlated with immune cell infiltration in tissue samples and patient
outcomes.
Methods: Ferroptosis-associated genes were initially identified through the FerrDb
database. Utilizing the tidyverse and Seurat packages, genes with substantial
expression differences were extracted, and clustering analysis was performed on the
single-cell data. A Venn diagram depicted shared differential genes for ferroptosis
and tumors. To screen key ferroptosis genes, further enrichment analysis and
immune cell infiltration analysis were conducted. Lastly, human COAD cell lines
were employed to overexpress CDGSH iron sulfur domain 2 (CISD2) through
cellular assays to validate its function in COAD.
Results: Following screening of The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) databases, 414 COAD patient samples and 341
normal samples were included. Through the FerrDb database, 259 ferroptosis genes
were identified. Clustering the single-cell data revealed 911 tumor marker genes, of
which 18 were ferroptosis genes. Analysis of variance (ANOVA) and univariate
regression analysis determined that only CISD2 was statistically significantly
associated with clinical outcomes. Additionally, CISD2 was found to positively
correlate with activated memory T cells and negatively correlate with regulatory T
cells (Tregs) and plasma cells in COAD, as well as being significantly associated with
several immune-related and cancer-related pathways. CISD2 expression was elevated
in most tumors, likely due to cell cycle regulation and immune system activation.
Moreover, CISD2 upregulation inhibited COAD cell proliferation and enhanced
5-fluorouracil (5-FU) sensitivity. Our findings indicate, for the first time, that CISD2
governs the cell cycle and stimulates the immune system to impede COAD
progression.
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Conclusion: By modulating the cell cycle and mediating immune infiltration, CISD2
may inhibit COAD development by influencing tumor immune microenvironment
equilibrium, providing valuable insights into the relevance and potential impact of
the research results on the COAD research field.

Subjects Bioinformatics, Cell Biology, Molecular Biology, Gastroenterology and Hepatology,
Medical Genetics
Keywords scRNA-seq, Ferroptosis, CISD2, Colon Adenocarcinoma (COAD), Tumor
microenvironment homeostasis

BACKGROUND
In 2020, colon cancer is projected to constitute approximately 6% of all cancer cases, with
an expected 2.3 million new occurrences and nearly 1.8 million cancer-related fatalities
(Sung et al., 2021). Colon cancer development is a heterogeneous malady stemming from
the alteration of multiple pathways, culminating in homeostatic imbalance and subsequent
tumor growth (Vogelstein et al., 1988). Due to the lack of suitable early diagnostic tools,
roughly 20% of patients are diagnosed with metastatic colon cancer (Ciardiello et al., 2022).
Although its pathogenesis remains enigmatic, colon cancer and its complications have
deleterious impacts on individuals’ quality of life and life expectancy.

In recent years, substantial advancements have been made in the comprehension of
molecular markers and the development of innovative treatment strategies for COAD (Lee
& Chan, 2011; Nowak & Hornick, 2016; Punt, Koopman & Vermeulen, 2017; Gonzalez,
Washington & Shi, 2017). These breakthroughs have led to a paradigm shift in the
management of COAD, with an increasing emphasis on molecular profiling and
personalized medicine (Amir-Aslani &Mangematin, 2010). These molecular markers have
not only enhanced the prognostic accuracy but have also informed the development of
targeted therapies. Some well-established emerging treatment strategies include immune
checkpoint inhibitors, such as PD-1/PD-L1 and CTLA-4 blockers, as well as targeted
therapies against EGFR, VEGF, and other signaling pathways (Ciardiello et al., 2006; Seidel,
Otsuka & Kabashima, 2018; Rotte, 2019; Le et al., 2021). Furthermore, recent research has
underscored the significance of ferroptosis and the tumor immune microenvironment in
COAD (Xia et al., 2019). A deeper understanding of the interplay between ferroptosis and
the immune microenvironment could pave the way for the development of
groundbreaking therapeutic approaches, ultimately improving the prognosis for COAD
patients.

Ferroptosis, a process necessitating metallic iron, phospholipids containing
polyunsaturated fatty acid chains (PUFA-PLs), and reactive oxygen species (ROS),
facilitates programmed cell death (Jiang, Stockwell & Conrad, 2021). Intricately connected
to internal environmental homeostasis, ferroptosis partakes in diverse tumor progression
stages and activates various tumor suppressors, such as p53 and BRCA1-associated protein
1 (BAP1) (Jiang et al., 2015; Zhang et al., 2018; Chen et al., 2021; Zhao, Yang & Yang,
2022). Oncogenes or oncogene signaling-mediated ferroptosis escape incites tumor
initiation, progression, metastasis, and treatment resistance (Ubellacker et al., 2020; Yi
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et al., 2020). Accordingly, ferroptosis-related genes may play a major role in maintaining
tumor microenvironment homeostasis. Consequently, ferroptosis-related genes likely play
a pivotal role in maintaining tumor microenvironment equilibrium. Prostaglandin E2
(PGE2) impedes CD8+ T cell-mediated immune responses reliant on conventional type 1
dendritic cells (cDC1) and curtails cDC1 infiltration into tumor sites by inhibiting natural
killer (NK) cell production of chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C
motif) ligand 1 (XCL1) (Zelenay et al., 2015; Böttcher et al., 2018). Ferroptosis has been
associated with elevated prostaglandin-endoperoxide synthase 2 (PTGS2) expression and
PGE2 release, promoting tumorigenesis when ferroptotic cells reach sufficient numbers
(Yang et al., 2014, p. 4).

As malignant cells proliferate, they enlist adjacent nontransformed cells, ultimately
forming the tumor microenvironment through the release of various intercellular
communication factors, such as cytokines, chemokines, and vesicles (Balkwill, Capasso &
Hagemann, 2012). Although metastasis is the primary cause of death in colon cancer
patients, no universal mutation is culpable (Jones et al., 2008; Mlecnik et al., 2016).
The malignant microenvironment, however, exhibits features like transforming growth
factor (TGF)-β, which significantly augments the prevalence of cancer-associated
fibroblasts (CAFs)-induced tumor-initiating cells. TGF-β signaling inhibitors can obstruct
cross-signaling between cancer cells and the microenvironment, thereby arresting disease
progression (Calon et al., 2015). Diminished type 1 T helper cell (TH1) activity or impaired
immune cytotoxicity may also portend unfavorable outcomes in colon cancer patients
(Galon et al., 2006; Mlecnik et al., 2016). Consequently, the tumor microenvironment,
encompassing the immune microenvironment, might contribute more substantially to
tumor prognosis than mutations alone.

Cancer immunotherapy, mainly employing immune checkpoint inhibitors and immune
cell recombination therapy, has substantially improved patient survival outcomes,
emphasizing the crucial significance of immunological and related biomarkers (Sharma &
Allison, 2015; Hargadon, Johnson & Williams, 2018; Xu et al., 2021; Sun et al., 2022b; Mei,
Li & Kang, 2022; Chen et al., 2022a; Luo et al., 2022). Nevertheless, immunotherapy’s
efficacy remains relatively low in cancer patients. The tumor microenvironment comprises
cancer cells and infiltrating immune cells, forming a complex and dynamic landscape.
Tumor-infiltrating immune cells exhibit numerous connections with ferroptosis, a
modality of cancer cell death. This study investigates the role of ferroptosis in maintaining
the immune microenvironmental equilibrium in colon cancer. By exploring novel targets,
colon cancer can be diagnosed and treated at earlier stages.

MATERIALS AND METHODS
Data refinement and preprocessing
Single-cell sequencing information was obtained from the Gene Expression Omnibus
(GEO) database, dataset GSE110009, comprising four specimens. In R language version
4.1.2, the tidyverse and Seurat packages were employed for single-cell RNA sequencing
(scRNA-seq) data, and following batch effect removal, data integration and quality control
were conducted. Additionally, The Cancer Genome Atlas (TCGA) provided sequencing
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and clinical information for colon adenocarcinoma (COAD) patients. The Genotype-
Tissue Expression (GTEx) project supplied sequencing data for typical human colon
tissues. TCGA and GTEx data were merged, and the limma package eliminated batch
effects. Gene expression data normalization and scaling were carried out using the
Trimmed Mean of M-values (TMM) method and log2 transformation. The FerrDb
database offered information on ferroptosis genes. Factors such as patient age, sex, and
tumor stage were considered in the analysis as potential confounders. A multivariate
regression model was used to adjust these factors, assessing the independent association
between the identified biomarkers and outcomes of interest. To further support quality
control and preprocessing steps, comparisons of data distribution and quality metrics
before and after preprocessing were performed. This comparison aimed to demonstrate
the effectiveness of preprocessing methods in removing technical biases and preserving
biologically relevant information.

Examination of scRNA-seq data
Quality control of the GSE110009 single-cell data was conducted, excluding samples with
less than 200 detected genes and mitochondrial gene content exceeding 5%. Furthermore,
cells with extreme quantities of unique molecular identifiers (UMIs) were omitted.
We extracted 2,000 highly variable genes between cells for further analysis. Data
normalization was executed using the NormalizeData function, allowing observation of
each component’s contribution to features. Dimensionality reduction was performed using
Principal Component Analysis (PCA), retaining the top 20 principal components for
downstream analysis. Cell clustering was carried out using the t-distributed stochastic
neighbor embedding (tSNE) algorithm. Marker genes for each cluster were identified using
the FindAllMarkers function, with a minimum log-fold change of 0.25 and a False
Discovery Rate (FDR) threshold of 0.05. Heatmaps were generated based on the top 10
marker genes for each cluster. Subsequently, cell types were annotated for each cell cluster
and manually verified and corrected using the CellMarker website as a reference (Zhang
et al., 2019).

Identification of ferroptosis-colon cancer associated genes and
construction of protein-protein interaction (PPI) network
Ferroptosis genes were overlapped with colon cancer genes. Pearson correlation analysis
was performed to determine the correlations between intersecting genes with a correlation
coefficient threshold of |r| > 0.3 and a p-value < 0.05. The PPI network of intersected genes
was visualized using STRING and Cytoscape, with a combined score threshold of 0.4.

Enrichment analysis
Co-associated genes between ferroptosis and colon cancer were subjected to enrichment
analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) databases as pervious studies (Chen et al., 2017;Wu et al., 2021; Sun et al.,
2022a). These databases were selected based on their comprehensive and well-curated
annotations for biological processes, molecular functions, cellular components (GO), and
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metabolic and signaling pathways (KEGG). We converted gene names to ENTREZID
using the R package org.Hs.eg.db. For enrichment analysis, we employed the R package
clusterProfiler (Wu et al., 2021), which uses hypergeometric tests to determine the
statistical significance of gene set overlaps. Multiple testing corrections were performed
using the Benjamini-Hochberg method to control the false discovery rate (FDR). Enriched
KEGG pathways and GO terms were considered significant at an FDR-adjusted p-value
threshold of 0.05. The visualization of enrichment analysis results was carried out with the
ggplot2 package, generating bar plots and dot plots to represent the enriched terms and
pathways, along with their corresponding gene ratios and adjusted p-values. To further
support the enrichment analysis gene set enrichment analysis (GSEA) was performed as
previous research (Subramanian et al., 2007; Powers et al., 2018; Chen et al., 2022b).

Differential expression and prognostic analysis
To ascertain the differential expression of ferroptosis-colon cancer co-associated genes,
two independent sample rank sum tests were employed. Univariate Cox regression
analysis evaluated genes associated with colon cancer to identify gene prognostic
indicators.

Immune microenvironment
The CIBERSORT website compared 22 immune cell infiltrations between colon cancer
and normal samples, as well as 46 prevalent immune checkpoints (Chen et al., 2018).
The TIMER website verified the relevance of key genes to immune cells (Li et al., 2017).

Single gene analysis
Genes were classified into high and low expression groups based on their median
expression. Receiver operating characteristic (ROC) curves determined key genes’
diagnostic efficacy. Kaplan-Meier (KM) curves evaluated the significance of key genes for
the prognosis of colon cancer patients.

Construction of PPIs for key genes and enrichment and differential
analysis
The GeneMANIA website searched for genes interacting with key genes (Franz et al.,
2018). STRING sought protein interactions between key genes, and Cytoscape visualized
the data (Szklarczyk et al., 2021). Gene Set Variation Analysis (GSVA) enrichment analysis
identified differential pathways between high and low expression groups of key genes
(Hänzelmann, Castelo & Guinney, 2013). The clusterProfiler package conducted Gene Set
Enrichment Analysis (GSEA) (Yu et al., 2012). The TCGA and GTEx databases were
integrated for key gene differential analysis in pan-cancer.

Copy number variations in ferroptosis key genes in cancer
The TCGA database provided data on copy number variations (CNVs), methylation, and
mutations. Ferroptosis key genes were categorized as activator genes, suppressor genes,
and unclassified. The randomcoloR package was employed to analyze CNV variants of
ferroptosis key genes in cancer. To examine the expression profiles and CNV correlations
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of ferroptosis key genes, Spearman correlation analysis was conducted. The chAMP
package was utilized to analyze methylation differences between ferroptosis key genes in
tumor and normal tissues (Ramey et al., 2019). To investigate the relationship between
ferroptosis key gene expression profiles and gene methylation, Spearman correlation
analysis was employed. The Magrittr package was used to assess the frequency of
mutations in ferroptosis key genes in cancer.

Examination of crucial ferroptosis genes in colorectal carcinoma
GEPIA2 was employed to analyze survival in relation to ferroptosis-colorectal carcinoma
co-associated genes (Tang et al., 2019), plotting KM survival curves for high and low
median expression groupings of key genes.

GSEA enrichment analysis of vital genes at the pan-carcinoma level
Twenty cancers were classified as high or low expression based on the median expression
of essential genes. To explore the role of these genes in cancer, we investigated the
enrichment pathways of differentially expressed genes between groups using
clusterProfiler (Yu et al., 2012).

Cellular experiments
Human colorectal carcinoma cell lines HCT116 were acquired from the Shanghai Cell
Resource Center of the Chinese Academy of Sciences. Cells were cultured in DMEM
complete medium supplemented with 10% fetal bovine serum and 1% penicillin-
streptomycin at 37 �C in a humidified incubator with 5% CO2. Cells were seeded at a
density of 1 × 105 cells/mL in 6-well plates for all experiments. Sigma, Poole, UK, supplied
5-FU (F6627-10G) dissolved in dimethylsulfoxide. Working concentrations of 5-FU were
prepared by diluting the stock in complete culture medium immediately before treatment.
Cells were treated with 100 µM 5-FU or equivalent volumes of DMSO (vehicle control) for
48 h after 24 h of initial seeding. Treatment groups were established: control, CISD2-OE,
control+5-FU, CISD2-OE+5-FU, shCISD2-1, and shCISD2-2. After the drug treatment,
scratch assays were performed to assess cell migration. Scar formation was examined
under an inverted microscope at 0 and 30 h post-scratch. ImageJ was used to measure cell
scratch distances, and the migration rates of each cell group were calculated using the
formula (30 h edge distance − 0 h edge distance)/0 h edge distance × 100%.

Stabilization of transfected cell lines
To construct the CISD2 vector, PCR-amplified human CISD2 cDNA was subcloned into
pCDHCMV-MCS-EF1-copGFP and pCDH-CMV-MCS-EF1-puro (System Biosciences,
Palo Alto, CA, USA), as described in prior research. Following the manufacturer’s
instructions, the empty vector or lentiviral recombinant vector was co-transfected into
HEK-293T cells along with packaging plasmids (pMD2.G and psPAX2); target cells were
infected by lentiviral supernatants. Lipofectamine3000 (Invitrogen, Carlsbad, CA, USA)
was employed to transfect HCT116 cells, which exhibit low endogenous CISD2 expression.
Puromycin (Invitrogen, Carlsbad, CA, USA) was utilized to select antibiotic-resistant
HCT116 cells, and western blotting verified all transfections.
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Constructing expression vectors
Previously reported target shRNA sequences were subcloned from pLVX-shRNA (Takara)
to suppress CISD2 (Shao et al., 2021). Recombinant lentiviral plasmids were purified using
an extraction kit (Accurate Biotechnology, Hunan, China) and verified via sequencing. To
ascertain the vector’s efficacy, it was combined with a vector containing scrambled DNA.
Lentiviruses were packaged using 293T cells, with pLVX-shRNA, pMD2G, and pSPAX2
lentiviral plasmids co-transfected into 293T cells. Recombinant lentiviruses for silencing
CISD2 were generated using a lip3000 transfection kit (Shao et al., 2021).

CISD2 suppression
HCT116 cells were transfected with scramble or CISD2 knockdown lentivirus using
six-well plates (NEST Biotechnology) at an MOI of 20, as reported earlier (Shao et al.,
2021). After 24 h of infection, cells were harvested via centrifugation, resuspended in
preheated complete culture medium, and administered selective antibiotics. Following a 7-
day screening, CISD2 expression was gauged through immunoblotting. Verified cells were
then used for subsequent experimentation.

Western blot
Cells were cleansed twice with phosphate-buffered saline (PBS). Subsequently, the total
protein extracts were procured by lysing the cells in chilled RIPA lysis buffer (P0013B;
Beyotime, Jiangsu, China) for a quarter of an hour, followed by centrifugation. To execute
electrophoresis and membrane transfer, 20 g samples were loaded into each lane of the
SDS-PAGE gel. The primary antibody was incubated overnight at 4 �C. Post incubation,
the membrane was cleansed with tris-buffered saline containing 0.1% Tween-20 (TBST)
and exposed to the secondary antibody for an hour. Visualization was achieved through
chemiluminescence.

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA was extracted from HCT116 cells utilizing Tiangen’s TRNzol-A+ reagent
(Beijing, China). The qRT-PCR analysis was performed using total RNA and primers as
previously described (Huang et al., 2015). Standard curves facilitated the determination of
relative RNA levels in each specimen. To ascertain the integrity of the cDNA input, β-actin
served as an internal control.

Cell viability assay
The viability of the reconstituted cells seeded into 96-well culture plates was assessed
employing the Cell Counting Kit-8 (CCK8) assay kit (Meilunbio, Dalian, China).
The reagent generates a soluble yellow formazan product in the cell culture medium by
reducing WST-8 through cellular dehydrogenases, exhibiting a distinct absorption peak at
450 nm.
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Statistical analysis
For contrasting pairs of groups, the Student’s t-test was employed, while for multiple group
comparisons, one- or two-way ANOVA with Tukey’s multiple comparison test was
utilized. Statistical significance was defined as p < 0.05.

RESULTS
Ferroptosis and colon cancer associations uncovered through
single-cell analysis
The flowchart of this study is shown in Fig. 1. Upon integrating four samples from the
GSE110009 dataset through cell clustering (Fig. 2A), cell annotation revealed eight distinct
subgroups: mast cells, natural killer cells, T-cells, macrophages, plasma-cells, B-cells,
dendritic-cells, and cancer-cells (Figs. 2B and 2C). Among 911 colon cancer marker genes,
19 were found to be associated with ferroptosis (Fig. 2D). Further analysis of the 18
ferroptosis-colon cancer co-associated genes, excluding ATP5MC3, revealed significant
correlations (Fig. 2E) and protein-protein interactions (Fig. S1B).

Figure 1 Flowchart of the research process. Full-size DOI: 10.7717/peerj.15476/fig-1
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Exploration of ferroptosis-related genes
Following the integration of TCGA and GTEx data and the removal of batch effects (Figs.
S1C and S1D), PCA validation confirmed data integration (Figs. S1E and S1F). In COAD
pathogenesis, CEBPG, VDAC2, and HNF4A carried high mutational loads and potentially
played crucial roles (Fig. 3A). GO enrichment analysis suggested significant associations
between ferroptosis-colon cancer co-related gene functions and pathways such as oxidative
stress response, toxic substance response, and DNA-binding transcription factor binding
(Fig. 3B). Additionally, KEGG enrichment analysis highlighted Glutathione metabolism
and Biosynthesis of unsaturated fatty acids pathways (Fig. 3C). Notably, only three genes
were statistically significant in the Ferroptosis-Colon Cancer Common Associated Gene
Difference Analysis (Fig. 3D). The remaining 15 ferroptosis genes were suggested to play
important roles in COAD, and a one-way COX regression analysis showed that only
CISD2 had a statistically significant impact on prognosis (Fig. 3E).

Immune microenvironment examination
In colorectal cancer samples, macrophages M0 and M1 displayed greater infiltration
compared to normal samples, aligning with general findings (Fig. 4A). Colorectal cancer
samples also exhibited increased infiltration of mast cells activated, neutrophils, NK cell

Figure 2 Biomarkers correlated with tumor ferroptosis in single cells. (A) Dimensionality reduction of single-cell data via t-Distributed Sto-
chastic Neighbor Embedding (tSNE), clustered into 11 categories; (B) cellular annotation, classified into a total of eight groups; (C) top 10 dif-
ferentially expressed genes for the 11 cell types; (D) Venn diagram depicting the overlap of tumor biomarkers and ferroptosis genes; (E) correlation
heatmap illustrating the association of 18 ferroptosis genes. Full-size DOI: 10.7717/peerj.15476/fig-2
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resting, T cells CD4 memory activated, and T cells follicular helper. Conversely, CD8 T
cells and NK cells activated, which are more effective in killing cancer cells, demonstrated
reduced infiltration in colon cancer, potentially contributing to progression and poor
prognosis. Colon cancer samples also expressed more immune checkpoints, possibly
leading to increased immune escape (Fig. 4B). Cibersort results revealed that CISD2
positively correlated with T cells memory activated (p < 0.001) and negatively correlated
with T cells regulatory Tregs and Plasma cells (p < 0.001) (Fig. 4C). CISD2 also showed
positive correlations with B cells, neutrophils, macrophages, CD8 T cells, and dendritic
cells (p < 0.05) (Fig. 4D), indicating a significant relationship between CISD2 and immune
response.

Discrepancies in CISD2 expression
CISD2 expression levels reveal notable distinctions between high and low expression
TCGA colon cancer samples, examined through comparative analysis (Fig. 5A). Clinical
stratification demonstrates a higher prevalence of CISD2 at advanced T-stages and initial

Figure 3 Examination of crucial genes in ferroptosis. (A) Waterfall chart displaying the mutational analysis of 18 genes. (B) Bar diagram
representing Gene Ontology (GO) enrichment results. (C) Bar diagram showcasing Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
results. (D) Box plot illustrating the differences of 18 genes between normal and Colon Adenocarcinoma (COAD) specimens. (E) Univariate
regression analysis of 15 differing genes. In Figure, ‘ns’ denotes a result that is not statistically significant, while asterisks (�, �� and ����) represent
significance levels of 0.05, 0.01, and 0.0001, respectively. Full-size DOI: 10.7717/peerj.15476/fig-3
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N-stages (p < 0.05) (Figs. 5B–5G). The ROC curve suggests superior diagnostic efficacy of
CISD2 over CISD1 (Fig. 5H). Consequently, CISD2 is considered a protective factor for
colon cancer, exhibiting a robust immunological connection. CISD2 exhibits a strong
association with CISD1 and CISD3, as illustrated by the gene interaction network
(Fig. S2A). PPI identifies proteins interacting with CISD2, potentially influencing its
expression and function (Fig. S2B). Elevated CISD2 expression correlates with increased
protein secretion, MTORC1 signaling activation, and E2F target activation. Thus, high
CISD2 expression is intimately linked to cell cycle regulation and growth metabolism.
Conversely, low CISD2 expression displays increased KARS signaling DN, hedgehog
signaling, myogenesis, and apical surface activation, suggesting interactions with colon
cancer-related pathways (Fig. S2C). This insinuates a strong immune response association
for CISD2, potentially impeding colon cancer progression (Fig. S2D). In a pan-cancer
analysis, CISD2 was highly expressed in most colon tumors (p < 0.001) (Fig. S2E).

CISD2 upregulation impedes proliferation and tumor-promoting
activity in colon cancer cells, enhancing 5-FU sensitivity
To explore CISD2’s potential role in colon cancer cell proliferation and carcinogenesis, we
established HCT116 cell lines stably expressing CISD2. Western blots detected CISD2

Figure 4 Immune microenvironment assessment. (A) Box plots exhibiting disparities in 22 immune cells between tumor and healthy samples. (B)
Box plots revealing variations in immune checkpoints between tumor and normal samples. (C) Association between 22 immune cells and CISD2.
(D) Correlation of CISD2 and six immune cells in colorectal cancer. In Figure, ‘ns’ denotes a result that is not statistically significant, while asterisks
(�, ��, ��� and ����) represent significance levels of 0.05, 0.01, 0.001, and 0.0001, respectively. Full-size DOI: 10.7717/peerj.15476/fig-4
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protein expression levels in transfected and control cells. CISD2 overexpression
upregulated protein levels, while shCISD2-1 and shCISD2-2 downregulated them
(Fig. 6A). OD-CISD2 cells exhibited significantly elevated CISD2 mRNA levels compared
to shCISD2 transfected cells, as determined by PCR (p < 0.001, t-test) (Fig. 6B). Assessing
CISD2’s impact on colon cancer cell invasiveness, we conducted a wound healing assay.
Control cells nearly healed 48 h post-scratch creation, while CISD2 cells did not.
Overexpression CISD2 groups displayed fewer healing areas compared to control groups
(p = 0.012, t-test) (Fig. 6C). The invasive propensity of colon cancer cells is curtailed by the
augmentation of CISD2 expression. The CCK-8 assay demonstrated a notable reduction in
the HCT116 cell count overexpressing CISD2 (p = 0.043 vsNC, t-test) (Fig. 6D). An empty

Figure 5 Analysis of CISD2. (A) Survival data for high and low CISD2 subgroups and display of diûerential genes. (B–G) Association between
patient age, sex, T-stage, N-stage, M-stage, and overall stage with CISD2 expression. (H) Receiver Operating Characteristic (ROC) curves
demonstrating the diagnostic accuracy of CISD2. (I) Survival curves for discerning prognostic disparities between groups with and without CISD2
expression. Full-size DOI: 10.7717/peerj.15476/fig-5
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vector-transfected control group experienced increased cell growth and proliferation
compared to CISD2 overexpressing cells. Notwithstanding the application of FU-5, CISD2
expression persisted in overexpressed cells (p < 0.001, t-test) and remained unaltered by
FU-5. Figure 5C depicts the inhibition of scratch healing in CISD2 cells by FU-5 (p < 0.001,
t-test). Additionally, Fig. 5C reveals a considerable enhancement of scratch healing
following CISD2 overexpression (p = 0.011, t-test). HCT116 cells with CISD2
overexpression were also substantially reduced by FU-5 after the CCK-8 viability assay
(p < 0.001, t-test) (Fig. 6D). Consequently, the upregulation of CISD2 may bolster the
sensitivity of HCT116 cells to FU-5 treatment.

Figure 6 Proliferation, invasion, and migration of HCT116 cells linked to CISD2. (A,B) Validation of
CISD2 relative expression by western blot (A) and Quantitative Reverse Transcription Polymerase Chain
Reaction (qRT-PCR) (B), <��� = indicates p < 0.001; (C) wound-healing assays employed to evaluate the
impact of CISD2 knockdown on cell migration; (D) HCT116 cells treated with 5-Fluorour ouracil (5-FU)
(5 mM). The Cell Counting Kit-8 (CCK8) assay was utilized to measure cell viability, normalized to cells
in the presence of Dimethyl Sulfoxide (DMSO) (vector control) set to 100% for each cell line. The data
represents the mean ± Standard Deviation (SD) of three independent experiments (n = 3).

Full-size DOI: 10.7717/peerj.15476/fig-6
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Oncogenic genetic variations in ferroptosis-associated genes
Ferroptosis genes SCD, CISD1, and CISD2 displayed a greater predisposition to somatic
copy number deletions compared to HSPB1, HNF4A, and PRDX6 (Fig. 7A). The
correlation between somatic copy number mutations and gene expression in tumors was
investigated, as these mutations govern gene expression in neoplasms. The majority of
tumors exhibited significant somatic copy number mutations linked to ferroptosis genes
(Fig. 7B). These findings imply that copy number aberrations in ferroptosis genes are
prevalent in most cancers and can influence gene expression. In most cancers, GPX2,
HNF4A, and STMN1 were hypomethylated (Fig. 7C), while the majority of cancer genes
exhibited hypermethylation (Fig. 7A). Promoter DNA methylation in most cancers was
observed for ferroptosis-cancer co-associated genes based on this outcome. It is plausible
that these co-associated genes are less regulated by methylation (Fig. 7D) due to the
correlation analysis of methylation levels and gene expression. In contrast, GPX2, CA9,
NQO1, and HNF4A displayed the opposite effect. Thus, these findings suggest that
methylation may play a more significant role in regulating GPX2, CA9, and HNF4A gene
expression than somatic copy number mutations. Mutation analysis revealed elevated
mutation rates for IDH1, HNF4A, and ATF4 in LGG, UCEC, and SKCM, as well as higher
mutation rates for this ferroptosis-cancer co-associated gene.

Figure 7 Copy Number Variation (CNV), methylation, and gene mutations in pan-cancer. (A) Expression of ferroptosis genes in pan-cancer. (B)
Dot plot illustrating the correlation between gene expression and CNV of ferroptosis genes. (C) Comparison of ferroptosis gene methylation between
tumors and normal samples. (D) Relationship between ferroptosis gene expression and gene methylation. (E) Tumors containing mutations in the
ferroptosis gene. Full-size DOI: 10.7717/peerj.15476/fig-7
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Pan-cancer immune microenvironment
In accordance with the correlation analysis of CISD2 and immune cells, CISD2 exhibits a
positive association with common lymphoid progenitors, granulocyte-monocyte
progenitors, neutrophils, and CD8-positive T cells, providing an extensive insight into its
influence on the tumor immune landscape. Nevertheless, a majority of tumors
demonstrated negative correlations between CISD2 and endothelial cells, hematopoietic
stem cells, and NK T cells. Patients with elevated CISD2 expression exhibited increased
infiltration of tumor-eradicating CD8-positive T cells, leading to a more favorable
prognosis (Fig. 8A).

Pan-cancer GSEA enrichment investigation
A comprehensive characterization of CISD2 in 20 malignancies revealed significant
associations with cancer-related pathways (WNT-beta-catenin signaling, TNFA signaling
through NFKB, TGF-beta signature, etc.), and oxidative metabolism-associated pathways
(xenobiotic metabolism, reactive oxygen species pathway). However, a substantial
correlation with epithelial cells was observed for CISD2 (Fig. 8B). A negative association
between CISD2 and epithelial-mesenchymal transition, as well as apical junctions, may
impede tumor proliferation and metastasis.

Figure 8 Pan-cancer immune inûltration enrichment analysis based on single genes. (A) Correlation between CISD2 and immune cells. (B)
Investigation of CISD2 in tumors using Gene Set Enrichment Analysis (GSEA). Full-size DOI: 10.7717/peerj.15476/fig-8
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Ferroptosis cancer survival gene analysis
Subsequent survival analysis of the ferroptosis-colon cancer co-associated gene served to
determine patient prognosis (Fig. 9A). Heterogeneity may exist among ferroptosis-related
genes across tumor types. It was discerned that the prognostic impact of CISD2 varies
considerably among distinct tumors based on median expression levels. In patients with
LUAD and LGG, the prognosis was markedly superior in the low CISD2 expression
cohort, whereas in patients with UCEC and KIRC, a significantly improved prognosis was
observed in the high CISD2 expression cohort (Figs. 9B–9E). This study unveiled the
overarching prognostic implications of ferroptosis in cancer.

DISCUSSION
Approximately two-thirds of patients with stage III colon cancer, along with certain
individuals presenting high-risk stage II disease, undergo adjuvant chemotherapy to
mitigate the recurrence risk following colectomy (Kannarkatt et al., 2017; Miller et al.,
2022). By examining scRNA-seq samples from the GSE110009 dataset, we identified the
crucial ferroptosis gene CISD2, enhancing patient survival outcomes.

CISD2, an enduring gene situated on human chromosome 4q, plays a significant role.
Mice with Cisd2 knockout exhibit mitochondrial rupture, dysfunction, and autophagic cell
death (Chen et al., 2009). Elevated CISD2 and CISD1 proteins have been observed in
human epithelial breast cancer cells; inhibiting CISD2 and CISD1 expression results in
increased iron accumulation within mitochondria, autophagy activation, and significant
reduction of cell proliferation and tumor growth (Sohn et al., 2013). CISD2 modulates ER
Ca2+ uptake and Ca2+ pump activity to maintain intracellular Ca2+ homeostasis through
interactions with Serca2b. CISD2 deficiency disrupts calcium homeostasis, endoplasmic
reticulum stress, NAFLD, and NASH. CISD2 hemizygous deletions have been identified in

Figure 9 Pan-cancer survival analysis. (A) Survival outcomes of ferroptosis genes across various cancers. (B–E) Kaplan-Meier curves depicting
CISD2 expression in lung adenocarcinoma (LUAD), uterine corpus endometrial carcinoma (UCEC), kidney renal clear cell carcinoma (KIRC), and
lower grade glioma (LGG). Full-size DOI: 10.7717/peerj.15476/fig-9
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numerous human HCCs (Shen et al., 2017). Our analysis of CISD2 gene and copy number
variation in colon cancer indicates that CISD2 significantly influences clinical prognosis
and is more prone to undergo somatic copy number deletion.

In this investigation, CISD2 was determined to be essential for maintaining immune
microenvironment homeostasis in colon cancer. CISD2 infiltration of T cells in colorectal
cancer samples exhibited a positive correlation with CISD2 levels. According to the
relationship between CISD2 and immune cells, colon cancer patients with high CISD2
expression and CD8+ T cells experienced improved outcomes. Furthermore, CISD2
expression was intimately linked to glioma progression and M2 polarization (Zhang et al.,
2022). Consequently, CISD2 is hypothesized to impede tumor growth by promoting
immune cell infiltration and preserving endoplasmic reticulum calcium homeostasis.

Moreover, we discerned an inverse correlation between the methylation status of CISD2
and two CpG sites within COAD specimens. It is well-established that aberrant DNA
methylation, including hypermethylation of CpG islands in gene promoters, contributes to
the silencing of tumor suppressor genes in cancer (Baylin, 2001; Esteller, 2002, 2007). This
negative association suggests that heightened methylation of these specific CpG sites may
lead to downregulation of CISD2 in COAD samples, potentially impacting the tumor
microenvironment and patient prognosis. Nevertheless, further functional investigations
are warranted to validate this hypothesis and elucidate the precise mechanisms involved.

Through single-cell and single-gene analyses of colon cancer tumor samples, we
identified a correlation between CISD2 and clinical outcomes, with elevated CISD2
expression conferring a protective effect against colon cancer and suppressing the immune
system. In this study, we meticulously examined the ramifications of differential CISD2
expression and genetic alterations on the clinical prognosis and associated mechanisms for
colon cancer patients at both cellular and genetic levels, which is of paramount importance
for investigating the iron regulatory mechanism in colon cancer. However, the specific
mechanisms remain elusive, and there is a scarcity of clinical and experimental data.
And potential confounding variables, such as patient age, gender, and tumor stage, may
have influenced the observed associations between CISD2 expression and clinical
outcomes. While we attempted to control for these variables in our analyses, residual
confounding may still be present. Additionally, our findings are based on the analysis of
existing databases and datasets, which may introduce biases related to data quality, sample
selection, and study design. Future studies should incorporate independent cohorts and
experimental validation to confirm our observations and further investigate the functional
implications of CISD2 methylation and expression in COAD.

CONCLUSION
By modulating the cell cycle and activating the immune system, CISD2 demonstrates
statistical significance for prognosis in colon cancer. Consequently, CISD2 plays a crucial
role in controlling the tumor microenvironment by regulating tumor homeostasis. The
negative correlation between CISD2 methylation status and 2 CpG sites in COAD samples
suggests a potential functional relevance in the downregulation of CISD2, but further
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studies are necessary to fully understand the underlying mechanisms and confirm these
findings.

ABBREVIATIONS
5-FU 5-Fluorouracil

ANOVA Analysis of Variance

BAP1 BRCA1-associated protein 1

CAFs cancer-associated fibroblasts

CCK8 Cell Counting Kit-8

CCL5 chemokine (C-C motif) ligand 5

cDC1 conventional type 1 dendritic cells

CISD2 CDGSH Iron Sulfur Domain 2

CNV Copy Number Variation

COAD Colon Adenocarcinoma

DMSO Dimethyl Sulfoxide

GEO Gene Expression Omnibus

GO Gene Ontology

GSEA Gene Set Enrichment Analysis

GTEx Genotype-Tissue Expression

KEGG Kyoto Encyclopedia of Genes and Genomes

KIRC Kidney Renal Clear Cell Carcinoma

LGG Lower Grade Glioma

LUAD Lung Adenocarcinoma
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