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ABSTRACT
Breast cancer (BRCA) is themost diagnosed cancer worldwide and is responsible for the
highest cancer-associated mortality among women. It is evident that anoikis resistance
contributes to tumour cell metastasis, and this is the primary cause of treatment failure
for BRCA. However, anoikis-related gene (ARG) expression profiles and their prog-
nostic value in BRCA remain unclear. In this study, a prognostic model of ARGs based
on The Cancer Genome Atlas (TCGA) database was established using a least absolute
shrinkage and selection operator analysis to evaluate the prognostic value of ARGs in
BRCA. The risk factor graph demonstrated that the low-risk group had longer survival
than the high-risk group, implying that the prognostic model had a good performance.
We identified 11 ARGs that exhibited differential expression between the two risk
groups in TCGA and Gene Expression Omnibus databases. Through Gene Ontology
and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses, we revealed
that the screened ARGs were associated with tumour progression and metastasis. In
addition, a protein–protein interaction network showed potential interactions among
these ARGs. Furthermore, gene set enrichment analysis suggested that the Notch and
Wnt signalling pathways were overexpressed in the high-risk group, and gene set
variation analysis revealed that 38 hallmark genes differed between the two groups.
Moreover, Kaplan–Meier survival curves and receiver operating characteristic curves
were used to identify five ARGs (CD24, KRT15, MIA, NDRG1, TP63), and quantitative
polymerase chain reaction was employed to assess the differential expression of these
ARGs. Univariate and multivariate Cox regression analyses were then performed for
the key ARGs, with the best prediction of 3 year survival. In conclusion, ARGs might
play a crucial role in tumour progression and serve as indicators of prognosis in BRCA.

Subjects Bioinformatics, Oncology
Keywords Breast cancer, Anoikis, Prognosis, CD24, NDRG1

INTRODUCTION
Breast cancer is the most commonly diagnosed cancer worldwide and has the highest
mortality rate among malignant tumours in women (Sung et al., 2021). Despite
comprehensive treatment, such as surgery, cytotoxic chemotherapy, and targeted
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therapy, improves clinical remission rates, dissemination and metastasis often lead to
the failure of anticancer therapy (Loibl et al., 2021). Present reports suggest that metastasis
is responsible for more than 90% of breast cancer-related deaths (Gupta & Massagué,
2006). Therefore, the efficacy of treatment for breast cancer is largely dependent on its
capacity to prevent metastasis. Tumour cell metastasis involves multiple steps, such as
basement membrane invasion, intravasation and transport in the vasculature, and distant
organ colonisation (Valastyan & Weinberg, 2011). It has been confirmed that tumour cells
must overcome various stresses, including anoikis, to achieve distant metastasis (Fanfone
et al., 2022).

Anoikis is a form of apoptosis initiated when cells detach from the extracellular matrix
(ECM) and has been suggested to be regulated via the extrinsic death receptor pathway and
intrinsic mitochondrial pathway (Gilmore, 2005). Usually, epithelial and endothelial cells
maintain contact-dependent growth by activating the cellular signalling pathway; however,
their apoptotic program is initiated after the cell–matrix contact loss, which helps maintain
tissue homeostasis by eliminating shed cells (Gilmore, 2005). Resistance to anoikis has
been reported in malignancies, including breast cancer, and is considered a fundamental
characteristic of metastatic cancer cells. Therefore, anoikis is a potential therapeutic target
for inhibiting cancer metastasis (Adeshakin et al., 2021).

Hence, anoikis has recently become the focus of intense research in the field of tumour
invasion, and potential molecular mechanisms of anoikis resistance have been explored
in several tumours (Wang et al., 2022). A previous study indicated that 14-3-3σ induced
anoikis resistance and hepatocellular carcinoma cell metastasis by epidermal growth factor
receptor-dependent extracellular signal-regulated kinase 1/2 pathway activation (Song et
al., 2021). In addition, anoikis-resistant gastric cancer cells exhibited stronger metastatic
and proangiogenic traits based on CCAAT-enhancer-binding protein β-mediated platelet-
derived growth factor subunit B autocrine and paracrine signalling (Du et al., 2021).
Furthermore, anoikis-resistant molecular mechanisms have been explored in breast
cancer (Tajbakhsh et al., 2019). Human epidermal growth factor receptor (HER) 2 and
Src-dependent lactate dehydrogenase A activation contributed to breast cancer cell
anoikis resistance and metastasis (Jin et al., 2017), and HER2-dependent B cell linker
down-regulation facilitated three-dimensional breast tumour growth (Liu et al., 2022b).
Although research has demonstrated that several genes are involved in anoikis resistance
in breast cancer (Tajbakhsh et al., 2019), research on the clinical relevance of ARGs and the
systematic evaluation of the implications of anoikis in breast cancer is lacking.

In this research, we first constructed an ARG prognostic model for breast cancer based
on the Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA) (TCGA-BRCA)
database and subsequently screened 11 differentially expressed ARGs between high- and
low-risk groups. Functional annotation enrichment and protein-protein interaction (PPI)
network analysis were performed for the screened ARGs. We identified five key ARGs by
assessing their potential diagnostic and prognostic values and determined the messenger
ribonucleic acid (mRNA) levels of the five key ARGs by quantitative polymerase chain
reaction (qPCR). Univariate and multivariate Cox regression analyses were employed
to assess the ability of 2-, 3-, and 4-year survival predictions with respect to key ARGs.
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Altogether, our findings demonstrate the significant roles of ARGs in breast cancer
progression and provide novel research perspectives for anoikis resistance.

MATERIALS & METHODS
Data collection
RNA sequencing data of patients with breast cancer were downloaded fromTCGA database
(https://portal.gdc.cancer.gov/) using the R package TCGAbiolinks (Colaprico et al., 2016).
After eliminating samples with incomplete clinical annotations, 1,083 cases of breast cancer
projects, including 111 cases with matched adjacent tissues, were obtained (TCGA-BRCA),
and the data format was level 3 HTSeq-fragments per kilobase per million. Additionally,
corresponding clinical information was obtained from the UCSC Xena database (Goldman
et al., 2020). The mRNA counts of TCGA-BRCA dataset were normalised by using the
limma R package (Ritchie et al., 2015).

The breast cancer-related datasets GSE42568 (Clarke et al., 2013), GSE102484 (Cheng et
al., 2017), and GSE20685 (Kao et al., 2011) were downloaded from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013) using
the R package GEO query (Davis & Meltzer, 2007). The detection platform for the three
datasets was GPL570 (HG-U133_Plus_2). GSE42568 included 104 breast cancer samples
and 17 matching normal tissues, GSE102484 comprised 683 breast cancer samples, and
GSE20685 comprised 327 breast cancer samples.

Eight gene sets of ARGs were retrieved from the Molecular Signatures Database
(MSigDB) (Liberzon et al., 2015), which provides the most comprehensive information
on human gene sets, resulting in 862 ARGs. Furthermore, 794 ARGs were retrieved from
the GeneCards database (Stelzer et al., 2016). By taking the intersection of the two databases
and omitting those genes with missing probes, we obtained 100 ARGs that are common
genes in both databases (Table S1).

Prognostic model construction
The least absolute shrinkage and selection operator (LASSO) prognostic model of 100
ARGs for breast cancer was constructed using the TCGA-BRCA dataset, employing 10-fold
cross-validation with seeds 2021 and a p-value of 0.05. We ran 1000 iterations to guard
against overfitting. The outcomes of the LASSO analysis were visualised. All samples from
the TCGA-BRCA dataset and the BRCA dataset were divided into high- and low-risk
groups, respectively, according to the median risk score of the prognostic model, and the
survival outcomes were displayed in spot graphs. Moreover, the ARG expression profiles
for prognostic model construction were visualised using heatmaps.

Differential expression genes in the high- and low-risk groups
First, the batch effects of GSE42568, GSE20685, and GSE102484 were eliminated using the
R package sva (Leek et al., 2012), and merged BRCA datasets were retrieved from the GEO
database. Second, datasets from TCGA and GEO were standardised and then grouped into
high- and low-risk groups according to the median risk score of the LASSO prognostic
model. Differential gene expression analysis was performed between the two groups, and
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a volcano plot (ggplot2) and heatmap (R package pheatmap) were created to visualise
up-regulated genes (log FC> 0.5 and p< 0.05) and down-regulated genes (log FC<−0.5
and p< 0.05).

Gene enrichment analysis and the PPI network
The clusterProfiler R package was used to perform Gene Ontology (GO) (Gene Ontology
Consortium, 2015) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa
& Goto, 2000) pathway enrichment analyses (Yu et al., 2012) with p< 0.05 and a false
discovery rate (FDR) value ( q-value) of < 0.2. The Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) database was accessed to provide information
regarding known and predicted PPIs (Szklarczyk et al., 2019), From which information
regarding ARGs was extracted from the STRING database, and a PPI network was
constructed using Cytoscape (Shannon et al., 2003). Additionally, GeneMANIA was used
for gene prediction of the selected ARGs, and the results were visualised (Franz et al., 2018).

Gene set enrichment analysis (GSEA) and gene set variation analysis
(GSVA)
GSEA is an analytical method that determines whether predefined gene sets
demonstrate statistically significant and consistent differences between two biological
states (Subramanian et al., 2005). In the current study, TCGA-BRCA genes were divided
into phenotype-related high- and low-risk groups based on the risk score median of the
LASSO prognostic model, and GSEA was performed using the clusterProfiler R package.
The procedure was repeated 1,000 times for each analysis, and c2.cp.v7.2.symbols were
obtained fromMSigDB to serve as the reference gene collection. Statistical significance was
set at FDR < 0.25 and p< 0.05.

We downloaded ‘‘h.all.v7.4.symbols.gmt’’ from the MSigDB database to perform GSVA
based on gene expression levels in the TCGA-BRCA dataset and analyse variations of
functional enrichment between the high- and low-risk groups. Statistical significance was
set at p< 0.05.

Analysis of the prognostic value and receiver operating characteris-
tic (ROC) curve for ARGs
Kaplan–Meier curves were used to estimate the overall survival of patients with breast
cancer based on the ARG expression derived from the TCGA-BRCA dataset. The ROC
curve was used to assess the relationship between ARGs and tumourigenesis, and genes
with an area under the curve (AUC) of the ROC curve >0.6 were considered key genes.

Correlation analysis between clinical characteristics and prognosis
First, we performed univariate Cox regression to evaluate the prognostic value of clinical
characteristics and key ARGs in patients, and a multivariate Cox regression model was
constructed from factors with a p-value of<0.1 in univariate Cox regression. Subsequently,
nomograms were used to predict the 2-, 3-, and 4-year survival probabilities individually
based on a multivariate Cox regression model. The calibration curves were evaluated
graphically by plotting the nomogram-predicted probabilities against the observed
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occurrences, and the 45◦ line represented the best predictive values. The nomograms
and calibration curves were produced by the R package rms. Decision curve analysis
(DCA) was performed using the R package ggDCA (Tataranni & Piccoli, 2019) to evaluate
the predictive effect of the nomograms for survival probability.

Cell cultures and real-time qPCR
The human normal breast epithelial cell lineMCF-10A and breast cancer cell lineHCC1954,
MDA-MB-231, and MCF-7 were procured from the American Type Culture Collection.
MDA-MB-231 is oestrogen (ER)/progesterone (PR)/HER2 negative, HCC1954 is ER/PR
negative and HER2 positive, and MCF-7 is ER/PR positive and HER2 negative. MCF-10A
cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)/F12 medium (GIBCO,
USA) with 5% horse serum (HyClone, USA) and other supplements. MDA-MB-231and
MCF-7 cells were cultured in DMEM (GIBCO, USA) containing 10% foetal bovine serum
(Gibco, Billings, MT, USA), and HCC1954 cells were cultured in Rosewell Park Memorial
Institute 1640 medium (GIBCO, USA) containing 10% foetal bovine serum (Gibco). All
cell lines were incubated at 37 ◦C under 5% carbon dioxide according to the recommended
protocols.

Total RNA was extracted from cells which had been cultured in dishes using TRIzol (Life
Technologies, USA). Reverse transcription was then performed using an Evo M-MLV RT
Mix Tracking Kit with genomic deoxyribonucleic acid (DNA) Clean (Accurate Biology,
Changsha, China), and qPCR was performed using an HS SYBR Green Premix Pro
Taq qPCR Tracking Kit (Accurate Biology, Changsha, China). All steps were performed
according to the manufacturer’s instructions. The primer sequences were as follows:

Genes Forward primer Reverse primer
CD24 CCCCAAATCCAACTAATGC GGACTTCCAGACGCCATT
Keratin 15 (KRT15) GACGGAGATCACAGACCTGAG CTCCAGCCGTGTCTTTATGTC
Melanoma-inhibiting
activity (MIA)

CCTCCGTGTCCACTAAAT TTCTTGCCGTTCATACTC

N-Myc downstream
regulated 1 (NDRG1)

ACACCTACCGCCAGCACA GCCACAGTCCGCCATCTT

Tumour protein p63
(TP63)

CCTTACATCCAGCGTTTC TTTGTCGCACCATCTTCT

The 11Ct method was used to analyse qPCR data. Normalised 1Ct values were
obtained by subtracting the Ct values of the housekeeping reference gene (β-actin) from
the target gene Ct values. 11Ct values were calculated by subtracting the testing group
target gene1Ct values from the average1Ct of the control group. Finally, relative mRNA
expression was obtained by 2−11Ct .

Immunohistochemical (IHC) analysis
IHC information on key genes in breast cancer and normal breast tissues was obtained
from the Human Protein Atlas (HPA) database (Colwill & Gräslund, 2011).
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Statistical analysis
Clinical data handling in the study was performed using the statistical software R (version
4.1.2; R Core Team, 2021). Continuous variables were summarised using the mean ±
standard deviation. The Wilcoxon-rank sum test was used to compare the two groups,
and Student’s t -test was used to compare the normally distributed data of the two groups.
The Kruskal–Wallis test was used for comparing more than two groups, and categorical
variables were compared using the chi-square or Fisher’s exact tests. Survival analyses and
univariate and multivariate Cox regressions were performed using the survival package
in R, and LASSO analyses were performed using the R package glmnet. Furthermore,
survivalROC in the R package was used for creating the ROC curve. The significance of
survival difference was tested with the log-rank test. In addition, two-sided Spearman’s
rank correlation coefficients were employed. One-way analysis of variance was used for
comparing multiple samples of experimental data. Differences with p-values <0.05 were
considered significant.

RESULTS
LASSO prognostic models were established and 11 ARGs with
possible prognostic values were screened
A flow chart of the study is provided in the Fig. 1. BRCA datasets of GEO were obtained
from GSE42568, GSE20685, and GSE102484 after eliminating batch effects. Box plots and
principal component analysis plots displayed the datasets before and after eliminating
batch effects (Figs. S1A–S1D). The results revealed that the batch effect had been effectively
eliminated. We performed LASSO analysis of ARGs based on the TCGA-BRCA dataset
(Fig. 2A) to evaluate the prognostic value of 100 ARGs from the intersection of MSigDB
and the GeneCards database (Table S1), and the variable trajectories graph was used to
visualise the results (Fig. 2B). The risk factor graph demonstrated that those in low-risk
groups had longer survival compared with those in high-risk groups (Fig. 2C) and 12 ARGs
(BIRC3, CD24, FGFR1, IVL, KRT15, L1CAM, MIA, NDRG1, NOS2, PTPN3, SERPINA1,
and TP63) of potential prognostic value were screened (Fig. 2C) (Table 1). Next, we
explored the 12 ARG profiles between two risk groups in the TCGA-BRCA and BRCA
datasets, respectively, and visualised the results with pheatmaps (Figs. 2F and 2G). The box
plot further showed a comparison of each ARG between the two risk groups, and there
were 11 significant differentially expressed ARGs (BIRC3, CD24, IVL, KRT15, L1CAM,
MIA, NDRG1, NOS2, PTPN3, SERPINA1, and TP63) with the same expression trends in
both datasets (Figs. 2H and 2I).

Subsequently, we found 878 differentially expressed genes between the two risk groups
based on the TCGA-BRCA dataset following thresholds of |log FC| > 0.5 and P .adj <
0.05. Of these, 244 genes were up-regulated, and 634 were down-regulated in the high-risk
group, and the volcano plot displayed the results (Fig. 2D). In addition, 196 genes were
obtained from the BRCA dataset under the same thresholds comprising 57 up-regulated
genes and 139 down-regulated genes (Fig. 2E).
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Figure 1 Flowchart of the study. The TCGA-BRCA and BRCA datasets were obtained from the TCGA
and GEO databases, respectively. LASSO analysis was constructed using 100 ARGs based on the TCGA-
BRCA dataset, and we screened 12 ARGs with possible prognostic values. Subsequently, all samples from
TCGA-BRCA and BRCA datasets were divided into high- and low-risk groups based on the prognostic
model’s median risk score. Each ARG was compared between the two risk groups, and 11 significant dif-
ferentially expressed ARGs with the same expression trends in both datasets were identified. Next, GO and
KEGG enrichment analyses and PPI network construction were performed using the 11 ARGs. We fur-
ther performed GSEA and GSVA based on the TCGA-BRCA dataset and obtained five key ARGs by plot-
ting KM survival curves and ROC curves (AUC> 0.6) for each ARG based on the TCGA-BRCA dataset.
Finally, univariate and multivariate Cox regression analyses were performed for key ARGs, and qPCR
was used to detect gene expression in different cell lines. Results of ARG protein expression with an HR
of>1 were downloaded from the HPA database. TCGA, The Cancer Genome Atlas; BRCA, breast inva-
sive carcinoma; GEO, Gene Expression Omnibus; LASSO, least absolute shrinkage and selection operator;
ARGs, anoikis-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopaedia of Genes and Genomes;
PPI, protein-protein interaction; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis;
KM, Kaplan–Meier curve; ROC, receiver operating characteristic curve; AUC, area under the curve; qPCR,
quantitative polymerase chain reaction; HR, hazard ratio; HPA, human protein atlas.

Full-size DOI: 10.7717/peerj.15475/fig-1

Results of the gene enrichment analysis and PPI network based on
screened ARGs
We performed GO and KEGG enrichment analysis, including cellular components,
biological processes (BPs), molecular functions (MFs), and signalling pathways, with the
criteria of p< 0.05 and FDR (q-value)< 0.25 (Table 2) to elucidate the biological functions
of the selected 11 ARGs. GO analysis demonstrated that 11 ARGs are predominantly
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Figure 2 Prognostic model establishment and DEG screening between the high- and low-risk groups in breast cancer. (A) A LASSO prognos-
tic model was constructed using 100 ARGs. (B–C) Variable trajectories graph and risk factor graph of the prognostic model. (D–E) Volcanic maps
of the DEGs between the two risk groups based on the TCGA-BRCA and BRCA datasets, respectively. (F–G) Heat maps of ARG expression between
the two risk groups in TCGA-BRCA and BRCA datasets, respectively. (H–I) Box plots comparing each ARG between the two risk groups in TCGA-
BRCA and BRCA datasets. ns, p≥ 0.05, *, p< 0.05, **, p< 0.01, ***, p< 0.001, and p< 0.05 were considered statistically significant. DEGs, differen-
tially expressed genes; LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome Atlas; BRCA, breast invasive carcinoma;
ARGs, anoikis-related genes.

Full-size DOI: 10.7717/peerj.15475/fig-2
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Table 1 List of description and expression difference of anoikis-related genes of the LASSOmodel.

Gene symbol Description log FC P .Value adj. P

BIRC3 Baculoviral IAP Repeat Containing 3 −0.551334371 1.89883E−10 4.32641E−09
CD24 CD24 Molecule 0.406051661 0.000275766 0.001024153
FGFR1 Fibroblast Growth Factor Receptor 1 0.19873266 0.008331891 0.01969228
IVL Involucrin 0.606150008 0.000322142 0.001169971
KRT15 Keratin 15 −1.257950408 3.6222E−15 3.52105E−13
L1CAM L1 Cell Adhesion Molecule 0.319550324 0.019858044 0.041563644
MIA MIA SH3 Domain Containing −1.265363973 5.8105E−14 4.00434E−12
NDRG1 N-Myc Downstream Regulated 1 0.371969381 2.8489E−06 1.86671E−05
NOS2 Nitric Oxide Synthase 2 0.482118761 4.97052E−12 1.8252E−10
PTPN3 Protein Tyrosine Phosphatase Non-Receptor Type 3 0.034313831 0.482891244 0.581437763
SERPINA1 Serpin Family A Member 1 −0.677585034 4.08221E−09 6.07581E−08
TP63 Tumor Protein P63 −0.865989129 2.1598E−10 4.82553E−09

Table 2 GO and KEGG enrichment analysis results of anoikis-related genes.

Ontology ID Description Gene ratio Bg ratio p value p. adjust q value

BP GO:0030216 keratinocyte differentiation 3/11 305/18670 6.46e−04 0.096 0.057
BP GO:0001666 response to hypoxia 3/11 359/18670 0.001 0.096 0.057
BP GO:0045861 negative regulation of proteolysis 3/11 363/18670 0.001 0.096 0.057
MF GO:0004866 endopeptidase inhibitor activity 2/11 175/17697 0.005 0.097 0.059
MF GO:0030414 peptidase inhibitor activity 2/11 182/17697 0.005 0.097 0.059
MF GO:0010181 FMN binding 1/11 16/17697 0.010 0.099 0.061
KEGG hsa05222 Small cell lung cancer 2/7 92/8076 0.003 0.071 0.064
KEGG hsa05145 Toxoplasmosis 2/7 112/8076 0.004 0.071 0.064

Notes.
GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

enriched in BP-related processes (such as keratinocyte differentiation, response to hypoxia,
and negative proteolysis regulation) and MF-related processes (such as endopeptidase
inhibitor activity, peptidase inhibitor activity, and flavin mononucleotide [FMN] binding)
(Fig. S2A). KEGG pathway analysis showed that the 11 ARGs were primarily associated with
small-cell lung cancer and toxoplasmosis (Fig. S2A). Figure S2B illustrates the potential links
between these items. Furthermore, the chord diagram illustrated each ARG’s distribution in
the GO items and KEGG pathways (Fig. S2C). CD24, NOS2, and NDRG1 were associated
with the process of response to hypoxia. KRT15, TP63, and IVL were mainly enriched in
the process of keratinocyte differentiation. BIRC3 and NOS2 were closely associated with
small-cell lung cancer pathways. SERPINA1 and BIRC3 were associated with peptidase
inhibitor activity.

PPI networks were constructed using the STRINGdatabase with an interaction threshold
of 0.15 to ascertain the interactions between the 11ARGs in breast cancer. Visualisations
were performed using the Cytoscape software (Fig. S2D). The results indicated potential
interaction between ARGs. Furthermore, genes with similar functions to ARGs were
predicted, and a protein network was constructed using GeneMANIA, with ephrin type-B
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receptor 2, RAN binding protein 9, and activated leukocyte cell adhesion molecule being
closely associated with the 11 ARGs (Fig. S2E).

Signalling pathways and hallmark gene sets associated with risk
groupings
We subsequently performed GSEA and GSVA between high- and low-risk groups based
on the TCGA-BRCA dataset to explore potential relationships between ARGs and gene
sets related to breast cancer. The results of GSEA indicated several significantly enriched
BPs (Table 3), including pre-Notch expression and processing (Fig. 3B), signalling by
Notch (Fig. 3C), T cell factor-dependent signalling in response to Wnt (Fig. 3D), and
signalling by Wnt (Fig. 3E), as illustrated in Fig. 3A. Other BPs, including transcription
of androgen receptor-regulated genes kallikrein-related peptidase (KLK) 2 and KLK3,
DNA damage telomere stress-induced senescence, and processes associated with cell cycle
regulation, are presented in Table 3. We performed GSVA on all genes in TCGA-BRCA to
further explore the differentially expressed hallmark gene sets between the two risk groups.
Table 4 reveals that 38 hallmarks exhibited differences, which were visualised using heat
maps (Fig. 3F), and the gene sets with p-values <0.001 were compared between two risk
groups and visualised using box plot diagrams (Fig. 3G). The results implied that gene sets
of Myc targets, E2F targets, hypoxia, p53, tumour necrosis factor (TNF)-α/nuclear factor
kappa B (NF- κB), interleukin (IL)-6/Janus kinase (JAK)/signal transducer and activator
of transcription 3 (STAT3), and mammalian target of rapamycin complex 1 (mTORC1)
signalling pathway had marked differences in their enrichment between the two
groups.

Analysis of the prognostic significance and ROC curve of the ARGs
Kaplan–Meier survival curves were plotted for 11 ARGs based on the TCGA-BRCA dataset
(Figs. 4A–4I) to further explore the roles of ARGs in the prognosis of patients with breast
cancer. We found that nine ARGs impacted the prognosis of patients with breast cancer
(p< 0.05). Specifically, BIRC3 (hazard ratio [HR] = 0.67, p= 0.015), KRT15 (HR = 0.61,
p= 0.002), MIA (HR = 0.68, p= 0.021), SERPINA1 (HR = 0.58, p= 0.001), and TP63
(HR= 0.64, P = 0.007) were positively correlated with overall survival, while CD24 (HR=
1.69, p= 0.002), IVL (HR = 1.71, p= 0.001), NDRG1 (HR = 1.41, p= 0.036), and NOS2
(HR = 1.46, p= 0.022) were associated with a poor prognosis. We also performed ROC
curves to evaluate the correlation between ARGs and tumourigenesis using TCGA-BRCA
dataset. As a result, the AUC of the ROC curve was calculated, and five key ARGs (CD24,
KRT15, MIA, NDRG1, and TP63) with AUC > 0.6 were demonstrated (Figs. 4J–4N).

Correlation analysis between the clinical characteristics and
prognosis
Clinical information of patients from TCGA-BRCA dataset was extracted to assess the
LASSO prognostic model (Table 5). We initially performed univariate Cox regression to
evaluate the prognostic value of crucial ARGs (CD24, KRT15, MIA, NDRG1, and TP63)
in patients and then formulated a multivariate Cox regression model comprising of those
factors with a p-value< 0.1 in the univariate Cox regression (Table 6). Forest plots revealed
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Table 3 GSEA analysis of the TCGA-BRCA dataset.

Description Set size Enrichment score NES p value p. adjust

Condensation of prophase chromosomes 72 0.648142653 2.609133444 0.000384468 0.007527598
DNA methylation 63 0.64924649 2.550957964 0.000368053 0.007527598
Deposition of new cenpa containing nucleosomes at the
centromere

73 0.62272815 2.511036721 0.000387747 0.007527598

Meiotic recombination 85 0.597551004 2.469681726 0.000414594 0.007527598
SIRT1 negatively regulates rrna expression 66 0.615267088 2.433992405 0.000374532 0.007527598
PRC2 methylates histones and DNA 71 0.599962935 2.413657315 0.000381825 0.007527598
Activated PKN1 stimulates transcription of AR androgen
receptor regulated genes KLK2 and KLK3

65 0.598544909 2.36548707 0.000370508 0.007527598

Recognition and association of DNA glycosylase with site
containing an affected purine

56 0.603186125 2.318484147 0.000351 0.007527598

DNA damage telomere stress induced senescence 80 0.563392337 2.306378423 0.000403551 0.007527598
Mitotic prophase 141 0.504722456 2.267243796 0.000542005 0.008140373
Nonhomologous end joining NHEJ 69 0.566496673 2.266201035 0.000376223 0.007527598
Pre NOTCH expression and processing 107 0.467738962 2.020954761 0.000458295 0.007527598
Signaling by NOTCH 234 0.287501505 1.378143085 0.003220612 0.03396672
TCF dependent signaling in response to WNT 232 0.286479654 1.373337984 0.006405124 0.058235094
Signaling by WNT 329 0.262444276 1.302165188 0.006944444 0.060142944

Notes.
GSEA, Gene Set Enrichment Analysis; TCGA, The Cancer Genome Atlas; BRCA, breast invasive carcinoma.

that two genes (CD24 andNDRG1) were associated with increased risk with HRs> 1, while
three other genes (KRT15, MIA, and TP63) were protective genes with HRs < 1 (Fig. 5A).
Subsequently, we constructed nomograms for ARGs to evaluate the predictive power of
the Cox regression models (Fig. 5B). Furthermore, we performed calibration curves for 2-,
3-, and 4-year survival predictive power of Cox regression model nomograms, respectively
(Figs. 5C–5E). The results indicated that the blue line corresponding to the 3-year survival
was closest to the ideal diagonal 45◦ line (grey line), implying that the Cox regression
models yielded the most reliable prediction for the 3-year survival. Finally, DCA was
used to assess the clinical applicability of the LASSO-Cox prognostic model for the 2-, 3-,
and 4-year survival (Figs. 5F–5H), and the blue line in the graphs represents the model’s
predictive power. The range on the x-axis of the blue line was higher than that of the red
line (all positive) and grey line (all negative) for the 3-year survival, indicating the best
clinical applicability in terms of the 3-year survival.

mRNA levels of ARGs in MCF-10A, MDA-MB-231, HCC1954, and
MCF-7 cell lines
Gene mRNA levels of key ARGs in normal mammary and breast cancer cell lines were
detected using qPCR. We ascertained that CD24 expression was up-regulated in breast
cancer cells compared with normal breast epithelial cells (Fig. 6A). Moreover, KRT15,
MIA, and TP63 levels significantly decreased in breast cancer cells (Figs. 6B, 6C and
6E). However, mRNA levels of NDRG1 varied across the three breast cancer lines, being
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Table 4 GSVA analysis of the TCGA-BRCA dataset.

Ontology log FC Ave Expr t P . value adj. P

HALLMARK_P53_PATHWAY 0.119329283 −0.031254621 8.399741679 1.39E−16 6.95E−15
HALLMARK_IL6_JAK_STAT3_SIGNALING 0.160554553 −0.019901999 7.747293348 2.15E−14 5.38E−13
HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.149491843 −0.018780161 7.593211543 6.72E−14 1.12E−12
HALLMARK_ALLOGRAFT_REJECTION 0.165689567 −0.01910031 7.335435252 4.33E−13 5.41E−12
HALLMARK_G2M_CHECKPOINT −0.160835941 −0.030063227 −7.23791024 8.62E−13 8.62E−12
HALLMARK_KRAS_SIGNALING_DN 0.077950216 0.027929351 7.179824705 1.30E−12 1.08E−11
HALLMARK_INTERFERON_GAMMA_RESPONSE 0.162439186 −0.023700528 6.976246774 5.27E−12 3.76E−11
HALLMARK_APOPTOSIS 0.105082386 −0.016017823 6.93050969 7.19E−12 4.49E−11
HALLMARK_INFLAMMATORY_RESPONSE 0.1292374 −0.01320064 6.588259013 6.93E−11 3.85E−10
HALLMARK_E2F_TARGETS −0.160184208 −0.027553265 −6.55175209 8.78E−11 4.39E−10
HALLMARK_MITOTIC_SPINDLE −0.107442266 −0.026580477 −6.479749206 1.39E−10 6.33E−10
HALLMARK_IL2_STAT5_SIGNALING 0.10427956 −0.023708254 6.38643486 2.52E−10 1.05E−09
HALLMARK_INTERFERON_ALPHA_RESPONSE 0.162750622 −0.025587788 6.349727433 3.17E−10 1.13E−09
HALLMARK_SPERMATOGENESIS −0.079775897 0.024668073 −6.349696603 3.17E−10 1.13E−09
HALLMARK_COAGULATION 0.102292767 0.017160336 6.17528166 9.33E−10 3.11E−09
HALLMARK_ESTROGEN_RESPONSE_LATE 0.09490817 −0.013436064 6.131517793 1.22E−09 3.81E−09
HALLMARK_COMPLEMENT 0.103046183 −0.015778926 6.011855981 2.50E−09 7.37E−09
HALLMARK_XENOBIOTIC_METABOLISM 0.075977134 0.000803129 5.709659661 1.46E−08 4.06E−08
HALLMARK_MYC_TARGETS_V1 −0.110050823 −0.039521363 −5.536657383 3.87E−08 9.83E−08
HALLMARK_ESTROGEN_RESPONSE_EARLY 0.098760419 0.003536364 5.533710477 3.93E−08 9.83E−08
HALLMARK_KRAS_SIGNALING_UP 0.093897872 −0.006226696 5.43040401 6.94E−08 1.65E−07
HALLMARK_WNT_BETA_CATENIN_SIGNALING 0.081765544 −0.029949865 4.613361613 4.44E−06 1.01E−05
HALLMARK_MTORC1_SIGNALING −0.08067193 −0.030607917 −4.531864271 6.50E−06 1.41E−05
HALLMARK_MYC_TARGETS_V2 −0.094920667 −0.035952966 −3.947820502 8.40E−05 0.000174914
HALLMARK_BILE_ACID_METABOLISM 0.053809556 0.000674898 3.933254506 8.91E−05 0.000178277
HALLMARK_PROTEIN_SECRETION −0.068629916 −0.00796288 −3.623357806 0.000304306 0.000585204
HALLMARK_HYPOXIA 0.053946213 −0.019883061 3.427859931 0.000631247 0.001139569
HALLMARK_UNFOLDED_PROTEIN_RESPONSE −0.053072207 −0.042682246 −3.424870074 0.000638159 0.001139569
HALLMARK_APICAL_SURFACE 0.05269076 0.000821367 3.364386226 0.00079404 0.001369035
HALLMARK_FATTY_ACID_METABOLISM 0.045000694 −0.013810827 3.099805318 0.001986498 0.003302312
HALLMARK_APICAL_JUNCTION 0.049957108 −0.006908797 3.090764305 0.002047433 0.003302312
HALLMARK_ADIPOGENESIS 0.041776924 −0.029142429 2.799430327 0.005210284 0.008141069
HALLMARK_MYOGENESIS 0.044253317 −0.00702594 2.695291931 0.007141694 0.010820749
HALLMARK_GLYCOLYSIS −0.038843193 −0.042366566 −2.663039667 0.007858759 0.011556999

(continued on next page)
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Table 4 (continued)

Ontology log FC Ave Expr t P . value adj. P

HALLMARK_NOTCH_SIGNALING 0.047821813 −0.018464182 2.570911437 0.010275841 0.014679772
HALLMARK_PANCREAS_BETA_CELLS 0.036594431 0.073863399 2.521151193 0.011839923 0.016444337
HALLMARK_HEME_METABOLISM 0.028007544 −0.020449587 2.287809617 0.022340814 0.030190289
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.036597558 −0.039232763 2.049238101 0.040679537 0.053525707

Notes.
GSVA, Gene Set Variation Analysis; TCGA, The Cancer Genome Atlas; BRCA, breast invasive carcinoma.
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Figure 3 GSEA and GSVA. (A) Four biological processes of GSEA for TCGA-BRCA dataset. Enrichment
analysis of the pre-Notch expression and processing (B), signalling by Notch (C), TCF dependent sig-
nalling in response to Wnt (D), signalling by Wnt (E) in TCGA-BRCA dataset. (F) Heat maps of GSVA
for TCGA-BRCA dataset. (G) Box plots of significantly differently enriched hallmark genes between the
two risk groups. ***, p < 0.001 and p < 0.05 were considered statistically significant. GSEA, gene set en-
richment analysis; TCGA, The Cancer Genome Atlas; BRCA, breast invasive carcinoma; TCF, T cell factor;
GSVA, gene set variation analysis.

Full-size DOI: 10.7717/peerj.15475/fig-3

up-regulated in MDA-MB-231 cells and down-regulated in HCC1954 and MCF-7 cells
(Fig. 6D).

CD24 and NDRG1 protein levels in breast cancer tissues
The expression levels of CD24 and NDRG1 that had an HR of>1 in the multivariable Cox
regression model were detected using IHC based on the HPA database. It was observed,
in comparison to normal breast tissues, there was a significant increase in the CD24 and
NDRG1 expression in breast cancer (Figs. S3A–S3D).
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Figure 4 KM survival curves and ROC curves. KM curves of BIRC3 (A), CD24 (B), IVL (C), KRT15
(D), MIA (E), NDRG1 (F), NOS2 (G), SERPINA1 (H), and TP63 (I). ROC curves of CD24 (J), KRT15
(K), MIA (L), NDRG1 (M), and TP63 (N). KM, Kaplan–Meier; BIRC3, baculoviral IAP repeat-containing
protein 3; CD24, cluster of differentiation 24; IVL, involucrin; MIA, melanoma-inhibiting activity; KRT15,
keratin 15; NDRG1, N-Myc downstream regulated 1; NOS2, nitric oxide synthase 2; SERPINA1, serpin
family A member 1; TP63, tumour protein p63; ROC, receiver operating characteristic.

Full-size DOI: 10.7717/peerj.15475/fig-4

DISCUSSION
Breast cancer remains a serious threat to women due to its high incidence and mortality
rates (Sung et al., 2021), with distant metastasis being the primary cause of breast cancer-
associated mortality worldwide (Liang et al., 2020). However, treatments for metastasis
remain elusive. Therefore, it is necessary to study the underlying molecular mechanisms
of metastasis, while at the same time, there is an urgent need to explore novel clinical
diagnostic and prognostic biomarkers and therapeutic targets for breast cancer. Anoikis
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Table 5 Patient characteristics of BRCA patients in the TCGA datasets.

Characteristic Levels Overall

n 1083
T stage, n (%) T1 277 (25.6%)

T2 629 (58.2%)
T3 139 (12.9%)
T4 35 (3.2%)

N stage, n (%) N0 514 (48.3%)
N1 358 (33.6%)
N2 116 (10.9%)
N3 76 (7.1%)

M stage, n (%) M0 902 (97.8%)
M1 20 (2.2%)

Pathologic stage, n (%) Stage I 181 (17.1%)
Stage II 619 (58.4%)
Stage III 242 (22.8%)
Stage IV 18 (1.7%)

Age, n (%) <=60 601 (55.5%)
>60 482 (44.5%)

OS event, n (%) Alive 931 (86%)
Dead 152 (14%)

DSS event, n (%) Alive 978 (92%)
Dead 85 (8%)

PFI event, n (%) Alive 936 (86.4%)
Dead 147 (13.6%)

Age, median (IQR) 58 (48.5, 67)

resistance has been established as a hallmark of advanced malignancy due to its ability to
promote tumour cell invasion andmetastasis (Adeshakin et al., 2021). Recently, researchers
focused more on ARGs due to their potential prognostic and therapeutic value (Liu et al.,
2022a). However, a comprehensive understanding of ARGs in relation to breast cancer is
lacking.

In this study, we performed a LASSO analysis based on the TCGA-BRCA dataset through
ARGs and divided all samples of TCGA-BRCA and BRCA datasets into high- and low-risk
groups based on the median risk score of the prognostic model. Then we screened 11
significant differentially expressed ARGs between two risk groups with the same expression
patterns in both datasets, suggesting their potential prognostic value in breast cancer
samples. Thus, to further investigate the potential function and associated molecular
mechanisms of the screened ARGs, we performed function and pathway enrichment
analysis. The results revealed that ARGs were primarily enriched in the processes of
response to hypoxia, proteolysis regulation, peptidase inhibitor activity, FMN binding, and
small-cell lung cancer. To the best of our knowledge, resistance to a hypoxic environment,
which is one of the hallmarks of tumour cells, could enhance the anoikis resistance of
tumour cells and promote cell survival and distant metastasis (Wang et al., 2021;Wobma et
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Table 6 Cox regression to identify hub genes and clinical features associated with OS.

Characteristics Total (N ) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

CD24 1082
Low 540 Reference
High 542 1.694 (1.217–2.359) 0.002 1.583 (1.132–2.213) 0.007
KRT15 1082
Low 540 Reference
High 542 0.606 (0.438–0.837) 0.002 0.673 (0.468–0.969) 0.033
MIA 1082
Low 540 Reference
High 542 0.685 (0.497–0.944) 0.021 0.836 (0.568–1.231) 0.365
NDRG1 1082
Low 540 Reference
High 542 1.410 (1.023–1.944) 0.036 1.409 (1.010–1.966) 0.043
TP63 1082
Low 540 Reference
High 542 0.640 (0.464–0.883) 0.007 0.798 (0.558–1.142) 0.218

Notes.
OS, overall survival.

al., 2018). As predicted, our results remain consistent with those previous studies that found
ARGs to be enriched in hypoxia-related functional processes. Proteolysis is a fundamental
metabolic process essential for life and abnormal regulation of proteolysis and peptidase
activity are associated with cancer. For example, tumour cell metastasis can be facilitated
by the degradation of the extracellular matrix by secreted proteinases (Osuala et al., 2019).
FMN, which is a cofactor of enzymes, has been the focus of photodynamic therapy for
tumours (Yang, Chang & Chen, 2017). Therefore, our data enhances our understanding of
ARGs in breast cancer and guides further research.

It is now evident that activation of theNotch andWNT signalling pathwaywas associated
with anoikis resistance in various malignancies, including breast cancer (Tan et al., 2019;
Kwon et al., 2014; Leong et al., 2007). GSEA results revealed that the Notch and Wnt
signalling pathways were enriched in the high-risk group, which implies that the poor
prognosis of patients with breast cancer in the model might be associated with abnormal
pathway activation. Notably, the results further revealed potential regulatory relationships
between ARGs and the Notch and Wnt signalling pathways, which need to be further
explored in the future. Growing evidence has indicated that the androgen receptor
modulates breast cancer progression (Magklara, Brown & Diamandis, 2002). However,
the relationship between anoikis and the expression of androgen receptor-regulated
genes KLKs remains unclear. Herein, GSEA revealed that ARGs might be involved in the
process of transcription of genes KLK2 and KLK3 in breast cancer, which might offer
clues for a more in-depth investigation of ARGs and anoikis resistance in breast cancer. In
addition, GSVA results revealed that 30 gene sets exhibited significant differences between
the two risk groups, comprising Myc targets, E2F targets, hypoxia, p53, TNF α/NF-κB,
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Figure 5 Analysis of clinical correlation with the prognostic models. (A–B) Forest plots (A) and nomo-
grams (B) of the multivariate Cox regression model for key ARGs. (C–E) Calibration curves of the 2- (C),
3- (D), and 4-year (E) survival for nomograms of multivariate Cox regression. Black lines at the top cor-
respond to the distributions of predicted survival probabilities of samples. (F-H) 2- (F), 3- (G), and 4-year
(H) DCA of multivariate Cox regression. ARGs, anoikis-related genes; DCA, decision curve analysis.

Full-size DOI: 10.7717/peerj.15475/fig-5

IL-6/JAK/STAT3, and mTORC1 signalling pathways, implying a potential correlation
between these pathways and the role of ARGs in the invasion and metastasis of breast
cancer. Previous studies have demonstrated that p53 induced anoikis and decreased breast
cancer metastasis (Cheng et al., 2009), and mTORC1 has been reported to be associated
with anoikis in breast cancer (Ng et al., 2012). This further supported our study. However,
the relationship between anoikis and Myc and E2F in breast cancer is yet to be identified.
We uncovered their potential association in breast cancer in the study.

Subsequently, to elucidate the prognostic value of ARGs and their correlation with
breast cancer progression, we plotted survival and ROC curves individually. As a result, five

Cao et al. (2023), PeerJ, DOI 10.7717/peerj.15475 18/26

https://peerj.com
https://doi.org/10.7717/peerj.15475/fig-5
http://dx.doi.org/10.7717/peerj.15475


Figure 6 MRNA levels of ARGs inMCF-10A, MDA-MB 231, HCC1954, andMCF-7 cell lines.mRNA
levels of CD24 (A), KRT15 (B), MIA (C), NDRG1 (D), and TP63 (E) determined by qPCR. The mean±
SD is shown. * p< 0.05. mRNA, messenger ribonucleic acid; ARGs, anoikis-related genes; MCF, Michigan
Cancer Foundation; CD24, cluster of differentiation 24; KRT15, keratin 15; MIA, melanoma-inhibiting
activity; NDRG1, N-Myc downstream regulated 1; TP63, tumour protein p63; qPCR, quantitative poly-
merase chain reaction; SD, standard deviation.

Full-size DOI: 10.7717/peerj.15475/fig-6

AGRs (CD24, KRT15, MIA, NDRG1, and TP63), which met the criteria, were identified
as key genes and were used for univariate and multivariable Cox regression analysis
combined with clinical characteristics of the TCGA samples. Furthermore, calibration
curves demonstrated a good prognostic performance of the Cox regression model, with
the most accurate prediction being made at the 3-year survival. DCA indicated the best
clinical applicability in the 3-year survival. Precise prognosis prediction is essential for
treating patients with breast cancer. This new information in our study might provide
more information for developing prognostic tools. Therefore, the five ARGs might play
significant roles in breast cancer progression and aggressiveness.

We confirmed the strong expression of CD24 in breast cancer through qPCR and
IHC, which is consistent with previous reports (Barkal et al., 2019). CD24 is a mucin-like
glycosylated glycophosphatidylinositol-anchored molecule, which could help resist anoikis
in various tumours (Li, Sun & Wang, 2015). It has been suggested recently that CD24 is
an immune checkpoint promoting immune evasion through its ability to bind to sialic
acid-binding immunoglobulin-like lectin 10 (Barkal et al., 2019). Furthermore, it has been
confirmed that CD24 might be a potential therapeutic target, according to preclinical
studies (Ni, Zhao & Wang, 2020). Nevertheless, there are some conflicting reports on the
role of CD24 in cancer (Ni, Zhao & Wang, 2020). Our study provided clear evidence of
significant CD24 up-regulation at the protein and mRNA levels in breast cancer, and it has
been suggested to be a high-risk factor resulting in poor prognosis in patients with breast
cancer.
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KRT15, a type I keratin, has been shown to be highly expressed in oesophageal carcinoma,
colorectal cancer, and gastric cancer (Chen & Miao, 2022), whereas it is down-regulated
in breast and prostate cancers (Chong et al., 2012). Nevertheless, its precise functional role
and associated molecular mechanisms in breast cancer remain unclear. Our data suggests
that KRT15 might be a tumour suppressor gene and could be associated with longer overall
survival of patients with breast cancer. Furthermore, enrichment analysis proposed further
avenues of exploration into the role of KRT15 in anoikis.

MIA is secreted by malignant melanoma cells and is associated with cell detachment
from the ECM and the promotion of melanoma cell invasion and metastasis (Schmidt &
Bosserhoff, 2009). To date, the relationship between MIA and breast cancer has not been
reported. Our study is the first to reveal that MIA acts in a protective manner in patients
with breast cancer. We also used qPCR to confirm that the MIAmRNA levels were lower in
breast cancer cell lines compared with normal breast cells, which gave insights into breast
cancer progression and metastasis.

Currently, the exact role of NDRG1in breast cancer remains controversial (Joshi,
Lakhani & Reed, 2022). Herein, survival analysis demonstrated that NDRG1 might be
an oncogene associated with a poor prognosis. Furthermore, IHC results from the HPA
database demonstrated that NDRG1 protein expression was higher in breast cancer tissues.
However, NDRG1 mRNA levels were increased in MDA-MB-231 cells and decreased in
HCC 1954 cells and MCF-7 cells compared with normal mammary cells, indicating that
NDRG1might play distinct roles in different breast cancer subtypes. Consequently, we shall
further examine the protein and mRNA levels of NDRG1 in additional clinical samples.
Simultaneously, a study of the underlying molecular mechanisms of NDRG1 is required to
determine its role in breast cancer.

Protein p63 encoded by the TP63 gene belongs to the p53 transcription factor family, and
various isoforms are generated due to alternative splicing (Gatti et al., 2019). Two major
subtypes of p63 (TAp63 and 1Np63) have contrasting roles in breast cancer. TAp63 acts
as a tumour suppressor, while 1Np63 might promote tumourigenesis and progression in
breast cancer (Gatti et al., 2019). Our study demonstrated that decreased TP63 expression
is a negative and independent prognostic factor in breast cancer, and the TAp63 mRNA
level was down-regulated inMDA-MB-231, HCC1954, andMCF-7 cells in laboratory tests,
consistent with previous reports. In conclusion, five key ARGs were closely associated with
breast cancer progression.

In this study, we initially examined the prognostic values and expression profiles of
ARGs in patients with breast cancer. However, our study has some limitations. We did
not perform a prognostic analysis of breast cancer subtypes, and the laboratory data did
not comprise the key ARG protein levels in clinical samples and cell lines. We leave these
questions to future studies and further investigate the molecular mechanisms of key ARGs
in breast cancer.
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CONCLUSIONS
This study primarily aimed to determine the critical role of ARGs in breast cancer
progression and search for valuable diagnostic and prognostic markers. The findings
revealed that the ARG-based predictive model could accurately predict the survival of
patients with breast cancer. We also investigated the possible BPs of ARGs and elucidated
expression features and potential prognostic value for each ARG. Our data emphasize the
significant roles of ARGs in breast cancer progression and provide novel research ideas for
anoikis resistance.
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