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ABSTRACT
The gut microbiota promotes host health by maintaining homeostasis and enhancing
digestive efficiency. The gut microflora in wild birds affects host physiological charac-
teristics, nutritional status, and stress response. The relict gull (Larus Relictus, a Chinese
national first-class protected species) and the black-necked grebe (Podiceps Nigricollis,
a secondary protected species) bred in the Ordos Relic Gull National Nature Reserve
share similar feeding habits and living environments but are distantly related genetically.
To explore the composition and differences in the gut microbiota of these two key
protected avian species in Erdos Relic Gull National Nature Reserve and provide a
basis for their protection, 16S rRNA gene high-throughput sequencing was performed
and the gut microbial diversity and composition of the relict gull (L. Relictus) and
black-necked grebe (P. Nigricollis) was characterized. In total, 445 OTUs (operational
taxonomic units) were identified and classified into 15 phyla, 22 classes, 64 orders,
126 families, and 249 genera. Alpha diversity analysis indicates that the gut microbial
richness of the relict gull is significantly lower than that of the black-necked grebe. Gut
microbe composition differs significantly between the two species. The most abundant
bacterial phyla in these samples were Proteobacteria, Firmicutes, Fusobacteria, and
Bacteroidetes. The prominent phylum in the relict gull was Proteobacteria, whereas
the prominent phylum in the black-necked grebe was Firmicutes. The average relative
abundance of the 17 genera identified was greater than 1%. The dominant genus in
the relict gull was Escherichia-Shigella, whereas Halomonas was dominant in the black-
necked grebe. Microbial functional analyses indicate that environmental factors exert
a greater impact on relict gulls than on black-necked grebes. Compared with the relict
gull, the black-necked grebe was able to use food more efficiently to accumulate its
nutrient requirements, and the gut of the relict gull harboredmore pathogenic bacteria,
which may be one reason for the decline in the relict gull population, rendering it an
endangered species. This analysis of the gut microbial composition of these two wild
avian species in the same breeding grounds is of great significance, offers important
guidance for the protection of these two birds, especially relict gulls, and provides a
basis for understanding the propagation of related diseases.
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INTRODUCTION
Microorganisms are ubiquitous and widely distributed across various environments.
Human and animal intestines contain a large number of microorganisms (Bäckhed et
al., 2005). Dysregulation of the gut microbiome is associated with several diseases in
humans and animals (Dworkin et al., 2006; Bäckhed et al., 2012; Hsiao et al., 2013; Garrett,
2015). The gut microbiota performs many protective and metabolic functions necessary
for host health, including food processing (Trompette et al., 2014), digestion of complex
polysaccharides that cannot be digested by the host, pathogen replacement, vitamin
synthesis (Neish, 2014), regulation of insulin sensitivity, fat storage (Clarke et al., 2012),
and modulating host lipid and glucose metabolism (Evans, Morris & Marchesi, 2013; Wall
et al., 2010).

Avian species occupy significant ecological niches. Changes in the gut microflora of wild
birds affect their physiological characteristics, nutritional status, and stress responses
(Laviad-Shitrit et al., 2019). The gut microorganisms of many rare birds, including
Jankowski’s bunting (Emberiza jankowskii) (Shang, 2021) and whooper swans (Cygnus
cygnus) (Wang et al., 2021) have been studied. Relevant research has provided guidance for
enacting policies to protect rare species. Wild avian species are known to host emerging
human infectious diseases (Mackenzie & Jeggo, 2013), and bird migration facilitates the
spread of pathogens across multiple geographic areas (Mackenzie & Jeggo, 2013). Therefore,
studying the gut microorganisms of wild birds can hinder the spread of related pathogenic
microorganisms, and studying the intestinal microorganisms of avian species plays an
important role in the protection and management of wild birds.

Relict gulls (Larus relictus) belong to the Tertiary relict species, family Gullidae, and order
Charadriiformes. It is a typical bird species endemic to desert and semi-desert habitats. It
is recognized as a vulnerable species by the International Union for the Conservation of
Nature (IUCN) and is a national grade I-protected animal in China (Wang et al., 2013).
Four relatively independent breeding populations of relict gulls exist in the world, and the
Ordos population is the main body of the global relict gull population (Liu et al., 2008;
Wang et al., 2020a). One of the most important breeding grounds for this population
is T-A Nur in Ordos City, Inner Mongolia Autonomous Region, China, which is an
important national nature reserve for relict gulls. They mainly feed on aquatic insects and
invertebrates, and their breeding period is from May to July.

Black-necked grebes (Podiceps Nigricollis) are medium-sized waterbirds that belong to
the Grebe family. They breed in freshwater and saltwater, and congregate in lakes and
coasts during winter. They mainly feed on aquatic invertebrates by diving, and occasionally
feed on small amounts of aquatic plants. Their breeding period is from May to August.
They are rare in China and have been listed as a national second-class protected animal.
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During the breeding period, relict gulls and black-necked grebes reach the Ordos Gull
Nature Reserve and breed there (Song et al., 2022). Relict gulls are the most important
protected species, and black-necked grebes are the protected species with the largest
breeding population in this area. Food, living environment, and genetic factors are the
factors with greatest impact on gutmicrobes. Relict gull and black-necked grebe breeding in
the Ordos Relic Gull Nature Reserve exhibit similar eating habits and living environments.
However, these two avian species are very distantly related genetically. To study the gut
microbial composition of two avian species with the same living environment but relatively
large genetic distance, in June 2021, fecal samples from breeding relict gulls and black-
necked grebes in the Ordos Gull Nature Reserve were collected, and the composition of the
gutmicroorganisms of these two avian species were analyzed by 16S rRNAhigh-throughput
sequencing. This study provides a foundation guiding policies for the protection of these
two important avian species, especially the protection of the relict gull as a first-class
protected animal, and provides insights for combatting the spread of related diseases.

MATERIALS & METHODS
Study area and sample collection
Erdos Relic Gull National Nature Reserve (109◦14′15′′E to 109◦23′6′′E; 39◦42′49N ′′ to
39◦51′12′′N) is located in the middle of Ordos City, Inner Mongolia Autonomous Region,
China. It is a major breeding ground for the Ordos population of relict gulls. The temperate
continental climate is mainly affected by northwest circulation and polar cold air, with
obvious seasonal changes. The vegetation transitions latitudinally from typical grassland
to desertified grassland with sparse vegetation and mostly sandy plants. Local animals are
mainly wetland birds, typical grassland animals, and reptiles.

Six fecal samples of relict gulls and 5 fecal samples of black-necked grebes were collected
in the sampling sites (Fig. 1). To ensure sample collection period consistency, fecal samples
were collected in June 2021. Relict gulls and black-necked grebes leave feces around their
nests. We approached the birds’ nests by following the personnel in the reserve for an
in-depth investigation. Samples were collected from each nest. Fresh upper layer fecal
samples were placed in 5 mL sterile centrifuge tubes, transported to the laboratory on dry
ice, and stored at −80 ◦C for further assays.

Ethics statement
This study was conducted in accordance with the requirements for animal care and ethics
in China. Non-invasive techniques (Darimont, Reimchen & Bryan, 2008) were employed
to obtain fecal samples. The animal study was reviewed and approved by the Animal
Ethics and Welfare Committee (AEWC) of Baotou Teachers’ College. The management
authorities of Ordos City in Inner Mongolia agreed to collect relict gull and black-necked
grebe fecal samples.

Zhao et al. (2023), PeerJ, DOI 10.7717/peerj.15462 3/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.15462


Figure 1 Study area and sampling point.
Full-size DOI: 10.7717/peerj.15462/fig-1

DNA extraction, 16S rRNA high-throughput sequencing, and data
analysis
Total DNA was extracted from fecal samples with a QlAamp Fast DNA Stool Mini Kit
(Qiagen, Hilden, Germany) according to manufacturer’s instructions. The bacterial 16S
rRNA gene V3–V4 hypervariable region was amplified and PCR product was assessed by
2% agarose gel electrophoresis. The amplicon was purified, quantified, and sequenced
using an Illumina Novaseq 6,000 platform. After sequencing data were filtered for quality
control, clean data were clustered into operational taxonomic units (OTU) with 97%
sequence identity. The community compositions of the samples were analyzed at various
taxonomic levels. Sample alpha diversity indices, including Chao1 and Ace indices, were
calculated using the OTU table in QIIME to evaluate the richness and diversity of the
bacterial species. Beta diversity analysis was conducted to detect differences in bacterial
composition between the relict gull and black-necked grebe. Scatter plots were produced
using NMDS and UPGMA according to unweighted and weighted UniFrac distances.
Significant microbiota differences between the two avian species were analyzed using
(linear discriminant analysis (LDA) Effect Size) (LDA > 4.0). The functions of bacteria
with a relative abundance of >1% were predicted using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. Figures were plotted using R software using a specific
method described in a previous study (Liu et al., 2022).
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RESULTS
Statistical analyses of sequence data
A total of 769,048 readable sequences were obtained from 11 samples collected from two
avian species, with 51,164 to 78,257 (mean 69,913 ± 8,415) effective sequences obtained
from each sample. Using 97% sequence conservation as cutoff, 445 OTUs were identified,
with 241± 34meanOTU per sample. The OTUs were classified into 15 phyla, 22 classes, 64
orders, 126 families, and 249 genera. The Rarefaction and Shannon index curves plateaued,
suggesting that deeper sequencing would have no significant effect on microbial diversity
(Figs. 2A, 2B).

A total of 285 UTO were present in relict gulls and black-necked grebes. Sixty OTUs
were present in the gut microbiota of the relict gull only, while 100 OTUs were present in
the gut microbiota of the black-necked grebe only (Fig. 2C). Thirteen phyla were found in
the relict gull and black-necked grebe (Fig. 2D). There were two more gut microbiota phyla
in the relict gull, Acidobacteria and Kiritimatiellaeota, which did not exist in black-necked
grebe. One hundred and seventy six genera were found in both avian species. Sixteen genera
were found in the gut microbiota of relict gulls, and 57 in black-necked grebes (Fig. 2E).

Alpha diversity and beta diversity analyses
Alpha diversity analysis indicated dramatic differences between relict gull and black-necked
grebe were observed in Chao1 (266.43 ± 38.99 and 317.93 ± 15.46) and ACE (255.53
± 33.79 and 309.21 ± 12.47) indices (P < 0.05) (Figs. 3A, 3B). These results indicate that
gut bacteria diversity differed significantly between species.

Beta diversity analysis was conducted to detect differences in bacterial composition
between relict gull and black-necked grebe. Scatter plots were produced using NMDS and
UPGMA according to unweighted and weighted UniFrac distances. Different fecal samples
from the same bird species displayed obvious clustering trends, supporting comparative
data showing a dramatic difference inmicrobial composition between these two bird species
(Figs. 4A–4B, 4D, 4E). The ANOSIM test was used to detect significance in differences
in β diversity. The results revealed that a significant difference in the composition of gut
bacteria exists between the two bird species (Figs. 4C, 4F).

Composition of each species’ gut bacterial community
The bacterial composition of each sample was tested. Fifteen phyla were identified. Four
of these (Proteobacteria, Firmicutes, Fusobacteria, and Bacteroidetes) were present with
a relative abundance of more than 1% (Figs. 5A, 5C). The proportion of these phyla in
aggregate was 97.68% for each sample. The most dominant phylum was Proteobacteria
in the relict gull, and Firmicutes in the black-necked grebe. A total of 249 bacterial
genera were identified, among which 17 had an average relative abundance of more
than 1%. These were Escherichia-Shigella, Halomonas, Catellicoccus, Halolactibacillus,
Gottschalkia, Fusibacter,Cetobacterium,Vibrio, uncultured_bacterium_f_Enterobacteriaceae,
Lactobacillus, Marinobacterium, Candidatus_Arthromitus, Tissierella, Proteiniclasticum,
Sporosarcina, Acetoanaerobium and Epulopiscium. The most dominant genus in the relict
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Figure 2 Feasibility analysis and OTU distribution of the sequencing data. (A) Bacterial rarefaction
curves for the samples; (B) Shannon curves for all the samples; (C) Gut bacterial OTUs distribution in
each group; (D) Gut bacterial phylum distribution in each group; (E) Gut bacterial genus distribution in
each group. YO, relict gulls; PT, black-necked grebes.

Full-size DOI: 10.7717/peerj.15462/fig-2

Figure 3 Gut bacterial α diversities. (A) Chao1 diversity; (B) ACE index of bacteria in each sample. YO,
relict gulls; PT, black-necked grebes.

Full-size DOI: 10.7717/peerj.15462/fig-3
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Figure 4 Gut bacterial β diversities. (A) Weighted unifrac distance NMDS plots; (B) Weighted unifrac
distance UPGMA analysis; (C) ANOSIM analysis for weighted unifrac. YO, relict gulls; PT, black-necked
grebes.

Full-size DOI: 10.7717/peerj.15462/fig-4

gull was Escherichia-Shigella, and in the black-necked grebe it was Halomonas (Figs. 5B,
5D).

Differences between gut microbial compositions of the two bird species
The gut microbiota composition of the relict gull and black-necked grebe were analyzed
to identify significant differences. LEfSe analysis results (Fig. 6) indicated that, at the
phylum level, the abundance of Fusobacteria was substantially higher in the relict gull
than in the black-necked grebe. At the genus level, the abundance of Escherichia_Shigella,
Catellicoccus, Cetobacterium, uncultured_bacterium_f_Enterobacteriaceae, Lactobacillus,
Candidatus_Arthromitus and Sporosarcina was significantly higher in relict gull than in
black-necked grebe, while the abundance of Halomonas, Halolactibacillus, Fusibacter,
Gottschalkia, Marinobacterium, Proteiniclasticum, Acetoanaerobium, Epulopiscium and
Tissierella was significantly higher in the black-necked grebe than in the relict gull (LDA
> 4.0, P < 0.05).

Bacterial community functional prediction
Bacterial functions with a relative abundance >1% were predicted using Picrust2. In the
Class 1 level, the main functions of these bacteria were Metabolism, Environmental
information processing, Genetic information processing, Human diseases, Cellular
processes, and Organism systems. Among all functions, the relative abundance of Human
diseases and Environmental information processing was significantly higher in relict
gulls than in black-necked grebes, while the relative abundance of Cellular processes was
significantly lower in relict gulls than in black-necked grebes (Table 1). At the Class 2 level,
the main functions of these bacteria were Global and overview mapping, Carbohydrate
metabolism, Amino acid metabolism, Membrane transport, Energy metabolism, and
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Figure 5 Bar graph of the bacterial relative abundance at phylum (A, C) and genus (B, D) level. Bac-
teria with relative abundance (%) of more than 1% were revealed. Others, bacterial with a relative abun-
dance of under 1%. YO (YOBJ), relict gulls; PT, black-necked grebes.

Full-size DOI: 10.7717/peerj.15462/fig-5

Figure 6 Linear discriminant analysis effect size (LEfSe) analysis of the microbial species with dra-
matic differences between relict gulls and black-necked grebes. (A) Cladogram. The classification at the
level of phylum, class, order, family and genus were showed from the inside to the outside. (B) Plot from
LEfSe analysis. LDA score> 4.0, P < 0.05. YO, relict gulls; PT, black-necked grebes.

Full-size DOI: 10.7717/peerj.15462/fig-6

Zhao et al. (2023), PeerJ, DOI 10.7717/peerj.15462 8/17

https://peerj.com
https://doi.org/10.7717/peerj.15462/fig-5
https://doi.org/10.7717/peerj.15462/fig-6
http://dx.doi.org/10.7717/peerj.15462


Metabolism of cofactors and vitamins. Among these functions, the relative abundance of
Carbohydrate metabolism, Membrane transport, Glycan biosynthesis and metabolism,
Metabolism of terpenoids and polyketides, Metabolism of other amino acids, and Lipid
metabolism were significantly higher in relict gull than in black-necked grebe, while the
relative abundance of Cell motility, Metabolism of cofactors and vitamins, Amino acid
metabolism, and Global and overview maps were significantly lower in relict gull than in
black-necked grebe (Table 1). At the Class 3 level, the main functions of these bacteria
were Metabolic pathways, Secondary metabolite biosynthesis, Antibiotic biosynthesis,
Microbial metabolism in diverse environments, and ABC transporters. Among these
functions, the relative abundances of Amino sugar and nucleotide sugar metabolism, and
ABC transporters were significantly higher in relict gulls than in black-necked grebes,
whereas the relative abundances of Amino acid and Secondary metabolite biosynthesis
were significantly lower in relict gulls than in black-necked grebes (Table 1).

DISCUSSION
Avian species occupy a very important ecological niche. Thus, the gut microorganisms of
many rare birds have received attention (Shang, 2021;Wang et al., 2021). Relevant research
has provided guidance for the protection of rare species. Wild avian species are known to
host emerging human infectious diseases (Mackenzie & Jeggo, 2013), and bird migration
facilitates the spread of pathogens across multiple geographic areas (Mackenzie & Jeggo,
2013). Therefore, the study of the gut microorganisms of wild avian species can not only
help us understand their life history and related mechanisms, but also hinder the spread of
bird related pathogenic microorganisms. Therefore, the study of intestinal microorganisms
of avian species plays an important role in the protection and management of wild avian
species.

In the current study, 16S rRNA high-throughput sequencing was conducted to compare
the gut microbial diversity and composition of relict gulls and black-necked grebes bred in
the Erdos Relic Gull National Nature Reserve. The results revealed a dramatic difference
in the α diversity of the gut microorganisms of these two avian species. The gut microbial
richness of the black-necked grebe was significantly higher than that of relict gull. Because
these two avian species breed in the same area, differences in gut microbial richness may
be mainly caused by genetic differences between these species. These results indicate that
genetic factors exert a greater impact on gut microorganisms than short-term survival
environments and food, consistent with the results of another study (Wang , 2022), that
found significant differences in gut microbial diversity among five crane species sharing the
same feeding conditions. Another previous study found a negative correlation between gut
microbial diversity and pathogenic bacteria in the intestine (Xiang et al., 2019), indicating
that relict gulls may harbor more pathogenic bacteria in their intestines.

Significant differences in gut microbial composition were observed between relict gulls
and black-necked grebes. The most abundant bacterial phyla in these two avian species
were Proteobacteria, Firmicutes, Fusobacteria, and Bacteroidetes, consistent with previous
studies on gut microbes in wild birds (Jandhyala et al., 2015;Wang et al., 2020b). The most
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Table 1 Bacterial community functional prediction.

Function YO PT

Class 1 Relative
abundance

Relative
abundance

P-values

Cellular processes 3.08± 0.45 4.42± 0.22 0.000527
Human diseases 3.18± 0.24 2.65± 0.14 0.003039
Environmental information Processing 8.41± 0.56 7.58± 0.44 0.034119
Metabolism 76.05± 0.61 76.46± 0.39 0.262796
Organismal systems 1.35± 0.06 1.30± 0.08 0.361889
Genetic information processing 7.92± 0.74 7.59± 0.58 0.478947
Class 2 Relative

abundance
Relative
abundance

p-values

Carbohydrate metabolism 9.87± 0.32 8.67± 0.19 9.35E−05
Cell motility 0.79± 0.36 2.02± 0.13 0.000266
Membrane transport 5.40± 0.47 4.36± 0.25 0.002654
Glycan biosynthesis and metabolism 1.21± 0.09 1.02± 0.04 0.004635
Metabolism of cofactors and vitamins 3.87± 0.15 4.29± 0.17 0.004736
Amino acid metabolism 6.15± 0.58 7.27± 0.17 0.0062055
Metabolism of terpenoids and polyketides 1.17± 0.06 1.05± 0.04 0.010424
Metabolism of other amino acids 1.55± 0.06 1.43± 0.05 0.010833
Global and overview maps 40.06± 0.57 40.91± 0.35 0.024044
Lipid metabolism 2.25± 0.11 2.11± 0.09 0.071736
Nucleotide metabolism 3.96± 0.37 3.65± 0.25 0.174007
Replication and repair 2.92± 0.27 2.74± 0.21 0.300703
Signal transduction 2.97± 0.32 3.18± 0.28 0.317638
Cellular community - prokaryotes 1.62± 0.09 1.69± 0.10 0.34544
Xenobiotics biodegradation and metabolism 1.26± 0.10 1.35± 0.22 0.516895
Translation 3.29± 0.39 3.17± 0.30 0.613705
Folding, sorting and degradation 1.54± 0.06 1.53± 0.06 0.721742
Energy metabolism 3.90± 0.09 3.91± 0.22 0.973499
Class3_name Relative

abundance
Relative
abundance

p-values

Amino sugar and nucleotide sugar metabolism 1.24± 0.13 0.94± 0.05 0.002088
Biosynthesis of amino acids 3.23± 0.19 3.61± 0.14 0.007099
ABC transporters 3.88± 0.24 3.44± 0.18 0.01129
Biosynthesis of secondary metabolites 7.14± 0.15 7.38± 0.13 0.02677
Glycolysis/Gluconeogenesis 1.13± 0.13 0.99± 0.05 0.065509
Purine metabolism 2.22± 0.20 2.04± 0.11 0.117888
Microbial metabolism in diverse environments 4.40± 0.11 4.24± 0.22 0.222044
Pyrimidine metabolism 1.73± 0.18 1.61± 0.13 0.262597
Pyruvate metabolism 1.16± 0.07 1.13± 0.02 0.284799
Two-component system 2.53± 0.31 2.74± 0.27 0.316706
Metabolic pathways 16.08± 0.23 16.21± 0.22 0.428072

(continued on next page)
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Table 1 (continued)

Function YO PT

Ribosome 2.14± 0.26 2.07± 0.22 0.634384
Biosynthesis of antibiotics 5.23± 0.11 5.25± 0.08 0.856164
Carbon metabolism 2.59± 0.02 2.60± 0.09 0.859003
Quorum sensing 1.51± 0.11 1.50± 0.04 0.950863

Notes.
YO, Relict gull; PT, Black-necked grebe.

abundant bacterial phylum in the relict gull was Proteobacteria, whereas the dominant
phylum in black-necked grebes was Firmicutes. Studies have shown that Firmicutes is
more abundant in phytovorous animals, and its main function is to disintegrate cellulose
into volatile fatty acids that can be absorbed by the host, improve the nutrient usage rate,
regulate T cells to enhance host immunity, prevent intestinal inflammation, and maintain
the ecological balance of gut microorganisms (Fernando et al., 2010; Guan et al., 2017),
Proteobacteria are mainly composed of some pathogenic bacteria, which is an indicator
of gut flora instability (Shin, Whon & Bae, 2015). Previous studies have shown that, in
humans, increased Firmicutes/Bacteroidetes (F/B) ratios are correlated with obesity (Ley
et al., 2006; Turnbaugh et al., 2009). In our study, the F/B ratio of black-necked grebes was
significantly higher than that of relict gulls (123.25 vs 96.23), indicating that black-necked
grebes can use food resources more efficiently to maintain body health, which may also be
one reason for efficient reproduction among its population. The ability of the relict gull
to use food resources is relatively poor, and more potential pathogenic bacteria may be
present in their intestines, resulting in it being an endangered species.

Two gut microbiota phyla existed only in the relict gull: Acidobacteria and
Kiritimatiellaeota.Acidobacteria are a widespread bacterial phylum in natural environments
including extreme environments (Lee, Ka & Cho, 2008). Kiritimatiellaeota is a bacterial
phylum that regulates arginine and fatty acid synthesis. It often exists in the guts of
high-altitude animals (Guo et al., 2021) and facilitates high-altitude animals’ use of low-fat
foods to supply energy to adapt to extreme environments. These two bacterial phyla only
existed in the gut of relict gulls and were not found in the gut of black-necked grebes,
indirectly indicating that environmental factors exert a greater impact on relict gulls, in
accord with previous studies showing that the living environment needs of relict gulls were
quite harsh (Zhang et al., 1993).

At the genus level, 17 bacterial genera had an average relative abundance of >1%.
The dominant genus in the relict gull was Escherichia-Shigella, whereas Halomonas was
dominant in black-necked grebes. Escherichia-Shigella can prompt the body to initiate an
inflammatory state (Soares et al., 2012), and its adhesion to host tissues, underlying invasive
chronic Escherichia infection may lead to persistent peripheral inflammation (Small et al.,
2013). Halomonas has also been found to be a human pathogenic bacterium (Stevens et al.,
2009), suggesting that some microorganisms in the intestinal tracts of these avian species
in this area are unfavorable to their survival, and relevant agencies should monitor these
microbes and take relevant protective measures to prevent their spread.
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Relict gulls displayed significantly higher abundance of environmentally derived
microorganisms such as Uncultured bacterium f Enterobacteriaceae (Osaili et al., 2018),
Cetobacterium (Ramírez et al., 2018), and Candidatus_Arthromitus (Del-Pozo et al., 2010)
in their gut than did black-necked grebes. These results indicate that environmental factors
exert a greater effect on relict gull gut microbes than on black-necked grebe gut microbes.

Gut microorganism functions in these two avian species were further analyzed using
the KEGG database. Their main Class 1 level functions were related to Metabolism, and
the proportion of microbe functions associated with Human diseases and Environmental
information processing was significantly higher in relict gulls than in black-necked grebes,
indicating that the relict gull carries more pathogenic bacteria and is more susceptible
to environmental influences. At Class 2 level, Carbohydrate metabolism, Membrane
transport, Glycan biosynthesis and metabolism, Metabolism of terpenoids and polyketides,
Metabolism of other amino acids, and Lipid metabolism were significantly higher in relict
gull than in black-necked grebes, while the relative abundance of Cell motility, Metabolism
of cofactors and vitamins, Amino acid metabolism and Global and overview maps were
significantly lower in relict gulls than in black-necked grebes, indicating that different
avian species had different metabolic flora in their intestines, which may be related to
differences in feeding behaviors between the two species. At Class 3 level, Amino sugar
and nucleotide sugar metabolism and ABC transporters were significantly higher in relict
gulls than in black-necked grebes, while the relative abundance of Biosynthesis of amino
acids and Biosynthesis of secondary metabolites were significantly lower in relict gulls than
in black-necked grebes, indicating that the relict gull had strong metabolic capacity and
poor nutrient synthesis ability, so they cannot make good use of food and environmental
resources for their own functions, which may be one reason underlying their smaller
population.

These differences in gut microorganisms may lead to reduced host functions in the
relict gull, negatively impacting its resilience and population, rendering it an endangered
species. In future protection efforts, more attention should be paid to changes in
gut microorganisms when estimating relict gull population health, and to reducing
pathogenic microorganism numbers in their environment. We also found that some
gut microorganisms in relict gulls were obtained from their food. It is thus possible to
determine the main food types based on gut microorganisms and provide foods in their
habitats that will positively impact their gut microbiota, thereby achieving the goal of
protecting this rare species. This study reveals significant implications for the analysis of
the gutmicrobial composition of these twowild avian species in the same breeding grounds,
which offers important guidance for the protection of these two species, especially the relict
gull as a first-class protected animal, and provides a basis for minimizing the spread of
related diseases.

CONCLUSIONS
Summing up, in the present study, high-throughput sequencing was used to analyze fecal
samples of relict gulls and black-necked grebes breeding in Erdos Relic Gull National Nature
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Reserve in Inner Mongolia, China. The results showed that dramatic differences existed
in the gut microbial diversity and composition of relict gulls and black-necked grebes and
that environmental factors impacted relict gulls more heavily than black-necked grebes.
Compared with the relict gull, the black-necked grebe was able to use food more efficiently
to accumulate its own nutrients, and there were more pathogenic bacteria in the gut of the
relict gull, which may be one reason for the decline in the relict gull population, rendering
it an endangered species. This analysis of the gut microbial composition of these two wild
avian species in the same breeding grounds is of great significance, and offers important
guidance for the protection of these two bird species, especially relict gulls, and provides
insights into the propagation of related diseases.
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