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ABSTRACT
Butterflies and moths (Lepidoptera) are becoming model organisms for genetics
and evolutionary biology. Decoding the Lepidoptera genomes, both nuclear and
mitochondrial, is an essential step in these studies. Here we describe a protocol to
assemble mitogenomes from Next Generation Sequencing reads obtained through
whole-genome sequencing and report the 15,338 bpmitogenome of Lerema accius. The
mitogenome is AT-rich and encodes 13 proteins, 22 transfer-RNAs, and two ribosomal-
RNAs, with a gene order typical for Lepidoptera mitogenomes. A phylogenetic study
based on the protein sequences using both Bayesian Inference and Maximum Likeli-
hoodmethods consistently place Lerema acciuswith other grass skippers (Hesperiinae).

Subjects Entomology, Genomics
Keywords Illumina sequencing, Clouded Skipper, De novo assembly, Hesperiinae

INTRODUCTION
The order Lepidoptera contains approximately 160,000 described and half a million
estimated species (Kristensen, Scoble & Karsholt, 2007). It represents one of the most
diverse and fascinating groups of insects with many species emerging as model organisms
for genetics and evolution (Clarke & Sheppard, 1972; Nishikawa et al., 2013; Kunte et
al., 2014; Zhan et al., 2011; Hines et al., 2012; Surridge et al., 2011; Engsontia et al., 2014;
Zhang, Kunte & Kronforst, 2013). Studies of these model organisms benefit significantly
from decoding the genomes of select Lepidoptera species. Recently, we published the
genome draft of Clouded Skipper Lerema accius using next generation sequencing
techniques (Cong et al., 2015). Traditional genome assemblers failed to automatically
assemble the Clouded Skipper mitogenome together with the nuclear genome. This
failure probably resulted from a difficulty in distinguishing the mitogenome NGS reads
from those of nuclear genome as well as a high erroneous k-mers frequency due to high
mitochondrial DNA coverage. However, a dedicated effort should allow assembly of the
mitogenome from whole-genome sequencing reads.

The insect mitogenome is circular, consisting of 14–19 kilobases (kb) that contain 13
protein-coding genes (PCGs), two ribosomal-RNA-coding genes (rRNAs), 22 transfer-
RNA-coding genes (tRNAs), and an A+ T rich displacement loop (D-loop) control
region (Cameron, 2014). Because of their maternal inheritance, compact structure, lack of
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genetic recombination, and relatively fast evolutionary rate, mitogenomes have been used
widely in molecular phylogenetics and evolution studies (Cameron, 2014;Moritz, Dowling
& Brown, 1987). Here, we assemble and annotate the complete mitogenome of Lerema
accius from next generation sequencing reads. Phylogenetic analyses using published
mitogenomes of skipper butterflies (Hesperiidae) place Lerema accius among other grass
skippers (Hesperiinae).

METHODS
Library preparation and Illumina sequencing
We collected a male Lerema accius adult in the field (USA: Texas: Dallas County, Dallas,
White Rock Lake, Olive Shapiro Park, 10-Nov-2013, GPS: 32.8621,−96.7305, elevation:
141 m) under permit #08-02Rev from Texas Parks and Wildlife Department (Natural
Resources Program Director David H. Riskind). We removed the wings and abdomen
of the deceased specimen (USA: Texas: Dallas County, Dallas, White Rock Lake, Olive
Shapiro Park, 10-Nov-2013, GPS: 32.8621,−96.7305, elevation: 141 m), and used the
remaining tissue to extract genomic DNA using the ChargeSwitch gDNA mini tissue
kit (Life Technologies, Grand Island, NY, USA). About 500 ng of genomic DNA was
used to prepare 250 bp and 500 bp paired-end libraries, respectively, following the
Illumina TruSeq DNA sample preparation guide using enzymes from NEBNext Modules
(New England Biolabs, Ipswich, MA, USA). These two libraries were pooled (and they
occupied about 60% of one illumina lane) together with other libraries (not used for
the mitogenome assembly) to sequence 150 bp from both ends with a rapid run on the
Illumina HiSeq 2500 platform at the UT Southwestern Medical Center genomics core
facility. The sequencing reads have been deposited in NCBI SRA database under accession
numbers: SRR2089773– SRR2089775.

Mitogenome assembly
Sequencing reads were processed by MIRABAIT (Chevreux, Wetter & Suhai, 1999) to
remove contamination from sequence adapters and trimmed low-quality regions (quality
score <20) at both ends. Using the mitogenomes of four skippers (Carterocephalus
silvicola, Potanthus flavus, Polytremis nascens and Polytremis jigongi) as references, we
applied mitochondrial baiting and iterative mapping (MITObim) v1.6 (Hahn, Bachmann
& Chevreux, 2013) to extract the sequencing reads of the mitogenome in the 250 bp and
500 bp libraries.

About 1,161,000 reads (1.04% of all reads) were extracted using MITObim. Because the
average size of the reference mitogenomes is 15,400 bp, we expected an average coverage
of about 22,600 fold (1,161,000×150×2/15,400). We used JELLYFISH software (Marcais
& Kingsford, 2011) to obtain the frequencies of 15-mers in these reads. The frequencies
of some 15-mers were much lower than expected. They might come from regions in the
mitogenome that were poorly covered in the sequencing reads; alternately, they might
arise from sequencing errors, heterogeneity in different copies of mitochondrial DNA
and reads from the nuclear genome. The second scenario could cause problems in de
novo assembly, and thus we applied QUAKE (Kelley, Schatz & Salzberg, 2010) to correct
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errors in 15-mers with frequencies lower than 1,000 and excluded reads containing low-
frequency 15-mers after error correction. We assembled the error-corrected reads into
contigs de novo with Platanus (Kajitani et al., 2014). The contigs were further assembled
into scaffolds using all the reads (including the ones containing 15-mers with frequencies
lower than 1,000).

This automatic procedure assembled a draft mitogenome of 15,332 bp without
any gaps. However, since the genome assembler Platanus is not deigned to assemble
circular mitogenomes, the linear representation of the circular DNA may either (1)
miss a fragment after its 3′-terminus and before its 5′-terminus or (2) have redundant
fragments that appear both at the 3′-terminus and 5′-terminus. We manually inspected
the sequences at the 5′- and 3′-termini and revealed that there was no redundant fragment
but instead a fragment of six base pairs was missing. We determined the sequence of
the missing fragment by searching for the two 32 bp fragments at the 5′- and 3′-termini
of the draft mitogenome in the sequencing reads and selected the sequence between
them. A majority (99.8%) of the reads revealed the same missing fragment (others
likely contained sequencing errors) and we manually added it into the mitogenome. We
also adjusted the linear representation of the circular DNA by circular permutation so
that the sequence started with the trnM(cau) gene, which was the convention for most
Lepidoptera sequences deposited in the database.

Annotation and analysis of the mitochondrial genome
The mitogenome sequence was annotated using the MITOS web server (Bernt et al.,
2013). We translated the sequences of PCGs to protein sequences using the genetic code
for invertebrate mitogenomes. The predictions from MITOS were manually curated using
other published skipper mitogenomes as references, and the starts and ends of genes were
modified, if necessary, to be consistent with other species. The open reading frames (after
modification) of the protein coding genes were validated. Secondary structures of tRNA
genes were predicted using the same server.

Assembly quality assessment
We mapped the 250 bp and 500 bp paired-end reads to the mitogenome using bowtie2
v2.2.3 (Langmead & Salzberg, 2012) and processed the results with SAMtools (Li et al.,
2009). Coverage depth at each position was calculated based on this mapping result.
As the sequencing reads that could map partly to the 5′-terminus and partly to the 3′-
terminus would map only to one terminus or fail to map, the coverage at the termini
could be under-estimated. Therefore, we recalculated the coverage for the 1,000 bp
segments in the 5′- and 3′-termini based on the mapping result to another linear repre-
sentation of the circular mitogenome that was obtained by connecting the 5′-terminal half
to the end of 3′-terminal half.

Only two regions of themitogenome showed coverage below 1,000 fold. One of themwas
a low complexity region that contained mostly (85%) T and another was a 46 bp fragment
of AT repeats. Such AT-rich regions tend to be underrepresented in the sequencing
libraries as they break easier during the library preparation (Benjamini & Speed, 2012).
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Table 1 List of taxa analyzed in present paper.

Species Length Identitya Accession References

Ampittia dioscorides 15,313 91.2% KM102732.1 XW Yang et al., 2014, unpublished data
Apocheima cinerarium 15,722 n.a. NC_024824.1 Liu et al. (2014)
Biston suppressaria 15,628 99.7% NC_027111.1 Chen et al. (2015)
Carterocephalus silvicola 15,765 99.0% NC_024646.1 Kim et al. (2014)
Celaenorrhinus maculosa 15,282 n.a. NC_022853.1 Wang, Hao & Zhao (2013)
Choaspes benjaminii 15,300 85.9% NC_024647.1 Kim et al. (2014)
Ctenoptilum vasava 15,468 n.a. NC_016704.1 Hao et al. (2012)
Daimio tethys 15,350 96.8% NC_024648.1 Kim et al. (2014)
Erynnis montanus 15,530 99.8% NC_021427.1 Wang et al. (2014)
Graphium timur 15,226 97.9% NC_024098.1 Chen et al., (2014)
Hasora anura 15,290 n.a. NC_027263.1 Wang et al. (2015)
Lobocla bifasciata 15,366 95.9% NC_024649.1 Kim et al. (2014)
Ochlodes venata 15,622 78.5% NC_018048.1 C Xu et al., 2012, unpublished data
Papilio glaucus 15,306 99.5% NC_027252.1 Shen, Cong & Grishin (2015) and Cong et al., (2015)
Parnassius apollo 15,404 98.6% NC_024727.1 Kim et al. (2009)
Phthonandria atrilineata 15,499 99.9% NC_010522.1 Yang et al. (2009)
Polytremis jigongi 15,353 99.6% NC_026990.1 Jiang et al. (2015)
Polytremis nascens 15,392 83.6% NC_026228.1 Jiang et al. (2015)
Potanthus flavus 15,267 99.3% NC_024650.1 Kim et al., (2014)

Notes.
aIdentity: the lowest sequence identity to independently sequenced mitochondrial DNA of the same species in the Non-redundant database identified by BLAST.
n.a.: there is no other mitochondrial sequences of the same species in the Genbank for cross-validation.

Manual inspection by searching the flanking regions of these poorly covered fragments in
the sequencing reads revealed variation in the length of the poly-T sequence in the first
fragment and the number AT-repeats in the second fragment, respectively. The variation
might correspond to the heterogeneity in different copies of mitochondrial DNA in the
specimen. We confirmed that the mitogenome produced by the de novo assembler did
represent the dominant form of the possible variations.

We further assessed the quality of our assembly by its consistency with other published
skipper mitogenomes in the protein-, rRNA- and tRNA-coding regions. We aligned the
rRNA- and tRNA-coding sequences directly and aligned translated sequences for PCGs.
Alignments confirmed that our sequences were consistent with the majority of available
mitogenomes, and gaps were only in regions that are poorly conserved among other skipper
species. In addition, the COI barcode (5′-terminal region of cytochrome oxidase subunit 1
coding gene) of Lerema accius was reported previously (Genbank accession: GU088418.1)
and this sequence agreed 100% with the corresponding region in our mitogenome.

Phylogenetic analysis
The mitogenomes of 13 other skipper species that were available (up to June, 2015) were
downloaded from NCBI (Table 1). Three moths from the Geometridae family and three
species of the Papilionidae family were used as outgroups. A blast search against all the
available sequences of the same species in the non-redundant database was used to validate
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Figure 1 Coverage and annotation of Lerema acciusmitogenome. The same base positions are aligned between (A) and (B). (A) Coverage by se-
quencing reads at each base position. (B) Map of genes in the Lerema acciusmitogenome. PCGs are colored in red, tRNA-coding genes are in blue,
rrnL and rrnS are in green. Each gene is shown as an arrow indicating the transcription direction. The arrows on top of the black line correspond to
genes coded on the majority strand, and those below show genes on the minority strand.

each mitogenome sequence. For most species, some individual genes in the mitogenome
were sequenced independently and the mitogenome sequence was consistent with these
gene sequences (sequence identity >95%). However, four skippers were excluded from
downstream analyses (Ampittia dioscorides, Choaspes benjaminii, Ochlodes venata and
Polytremis nascens, three of which are unpublished but available from GenBank) due to
poor agreement for at least one gene sequence found in GenBank.

Protein sequences of the 13 protein-coding genes were aligned by MAFFT. We manually
checked the alignments, corrected annotation errors based on consensus and removed
positions with long gaps and their surrounding regions with uncertain alignment. The
processed alignments were concatenated and analyzed with Bayesian Inference and
Maximum likelihood methods using Phylobayes-MPI v1.5a (Lartillot, Lepage & Blanquart,
2009) (model: CATGTR (Lartillot & Philippe, 2004)) and RaxML v8.1.17 (Stamatakis,
2014) (model: PROTGAMMAAUTO), respectively. The resulting phylogenetic trees were
visualized in FigTree v1.4.2.

RESULTS AND DISCUSSION
Annotation of the mitogenome
The complete mitogenome of Lerema accius is deposited in GenBank of NCBI under
accession number KT598278. The length of this mitogenome is 15,338 bp and it retains
the typical insect mitogenome gene set and gene order, including 13 PCGs (nd1-6, nd4l,
cox1-3, atp8, atp6, and cytb), 22 tRNA genes (two for Serine and Leucine and one for
each of the rest of the amino acids), 2 ribosomal RNAs (rrnL and rrnS), and an A + T
rich D-loop control region. The annotation of the mitogenome is illustrated in Fig. 1. The
cox1 gene uses start codon CGA, which is consistent with many other insect mitogenomes
(Kim et al., 2009). All the rest of the genes start with the typical ATN. cox1, cox2 and nd4
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Figure 2 Secondary structure of 22 tRNAs encoded by the Lerema acciusmitogenome. The tRNAs are
labeled by the abbreviations of their corresponding amino acids.

use an incomplete stop codon T (Ojala, Montoya and Attardi, 1981), and a complete TAA
codon will likely be formed during mRNA maturation (Ojala, Montoya and Attardi, 1981;
Boore, 1999).

The lengths of tRNA-coding genes range from 60 bp to 70 bp. Secondary structures
predicted by MITOS suggest that all tRNAs adopt a typical cloverleaf structure except for
trnS1(gcu) (Fig. 2). The dihydrouridine (DHU) arm of trnS1(gcu) does not form a stable
stem-loop structure, which is very common in butterfly mitogenomes (Lu et al., 2013;
Kim et al., 2014). A 488 bp A + T rich region (A + T content: 94.7%) connects rrnS and
trnM(cau). This region contains an ‘‘ATAGA’’ motif located 22 bp downstream from rrnS
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Figure 3 Phylogeny of skippers based on the concatenated alignment of the mitochondrial protein se-
quences. (A) Consensus of phylogenetic trees by RAxML (MTZOA model) based on bootstrap samples
of the alignment. (B) Consensus of phylogenetic trees sampled by Phylobayes-MPI (v1.5a) with CATGTR
model.

and is followed by 15 bp of poly-T stretch that is a gene regulation element commonly
found in Lepidoptera (Lu et al., 2013; Salvato et al., 2008).

Phylogenetic analysis
We built a phylogenetic tree of the 10 skipper species with published mitogenomes, based
on the concatenated alignment of the mitochondrial protein sequences. Three Papilionidae
and threeGeometridaemitogenomeswere used as outgroups.Maximum likelihoodmethod
RAxML automatically selected MTZOA, a general mitochondrial amino acid substitution
model, as the most appropriate, and placed Lerema accius among other grass-skippers
(Subfamily Hesperiinae). A Bayesian analysis with the CATGTR model supported a
tree with exactly the same topology. This topology is largely consistent with previously
reported phylogenetic studies on the basis of standard gene markers and morphology
(Warren, Ogawa and Brower, 2008; Warren, Ogawa and Brower, 2009; Yuan et al., 2015).
Notably, the subfamily Coeliadinae (represented by Hasora anura) is a sister to all other
Hesperiidae. Topology between the subfamilies Eudaminae (Lobocla bifasiatus), Pyrginae
(other branches shown in green in Fig. 3) and remaining Skippers is unresolved. The tribes
Celaenorrhini (Celaenorrhinus maculosa) and Tagiadini (Daimio and Ctenoptilum) group
together (in the absence of Pyrrhopygini). The subfamily Heteropterinae (represented by
Carterocephalus silvicola) is a sister to grass skippers (Hesperiinae).

Interestingly, based on the mitochondrial genome, the two Asian grass skippers
(Potanthus from the tribe Taractrocerini and Polytremis from the tribe Baorini) are
grouped together, and Lerema (from the tribe Moncini) is their sister. The sequences of
two nuclear markers, EF1a and wingless, are available from these species in the database;
however, they support different topologies at low confidence.While themaximal likelihood
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tree based on EF1a favors (bootstrap: 52%) the same topology as the mitogenome, the tree
based on wingless groups Potanthus with Lerema with a 63% bootstrap support and places
Polytremis as their sister. The phylogeny between these tribes could become clear when
more sequences from more taxa become available.
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