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ABSTRACT
Background. Diabetic nephropathy (DN), the most intractable complication in
diabetes patients, can lead to proteinuria and progressive reduction of glomerular
filtration rate (GFR), which seriously affects the quality of life of patients and is
associated with highmortality. However, the lack of accurate key candidate genesmakes
diagnosis of DN very difficult. This study aimed to identify new potential candidate
genes for DN using bioinformatics, and elucidated the mechanism of DN at the cellular
transcriptional level.
Methods. The microarray dataset GSE30529 was downloaded from the Gene Expres-
sion Omnibus Database (GEO), and the differentially expressed genes (DEGs) were
screened by R software. We used Gene Ontology (GO), gene set enrichment analysis
(GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis to identify the signal pathways and genes. Protein-protein interaction (PPI)
networks were constructed using the STRING database. The GSE30122 dataset was
selected as the validation set. Receiver operating characteristic (ROC) curves were
applied to evaluate the predictive value of genes. An area under curve (AUC) greater
than 0.85 was considered to be of high diagnostic value. Several online databases were
used to predict miRNAs and transcription factors (TFs) capable of binding hub genes.
Cytoscapewas used for constructing amiRNA-mRNA-TFnetwork. The online database
‘nephroseq’ predicted the correlation between genes and kidney function. The serum
level of creatinine, BUN, and albumin, and the urinary protein/creatinine ratio of the
DN rat model were detected. The expression of hub genes was further verified through
qPCR. Data were analyzed statistically using Student’s t-test by the ‘ggpubr’ package.
Results. A total of 463 DEGs were identified from GSE30529. According to enrichment
analysis, DEGs were mainly enriched in the immune response, coagulation cascades,
and cytokine signaling pathways. Twenty hub genes with the highest connectivity
and several gene cluster modules were ensured using Cytoscape. Five high diagnostic
hub genes were selected and verified by GSE30122. The MiRNA-mRNA-TF network
suggested a potential RNA regulatory relationship. Hub gene expression was positively
correlated with kidney injury. The level of serum creatinine and BUN in the DN group
was higher than in the control group (unpaired t test, t = 3.391, df = 4, p= 0.0275,
r = 0.861). Meanwhile, the DN group had a higher urinary protein/creatinine ratio
(unpaired t test, t = 17.23, df = 16, p< 0.001, r = 0.974). QPCR results showed that
the potential candidate genes for DN diagnosis included C1QB, ITGAM, and ITGB2.
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Conclusions. We identified C1QB, ITGAM and ITGB2 as potential candidate genes
for DN diagnosis and therapy and provided insight into the mechanisms of DN
development at transcriptome level.We further completed the construction ofmiRNA-
mRNA-TF network to propose potential RNA regulatory pathways adjusting disease
progression in DN.

Subjects Bioinformatics, Genomics, Nephrology, Medical Genetics
Keywords Diabetic nephropathy, Bioinformatics analysis, Microarray, RNA regulatory pathways,
qPCR, Key gene

INTRODUCTION
Diabetic nephropathy (DN) is a serious complication caused by diabetic microangiopathy,
which often progresses to end-stage renal disease (Singh, Winocour & Farrington, 2011).
The pathological changes in DN included glomerular vascular injury, glomerulosclerosis,
nodular lesion formation, renal function deterioration, and, ultimately, end-stage renal
disease (Qi et al., 2017). Globally, 30 to 40% of diabetes cases have been reported to
progress to DN. In spite of substantial advances in DN research in recent years, a large
proportion of patients still irreversibly suffer from end-stage renal disease. Compared to
other complications, metabolic disorders caused by DNmake it more difficult to treat end-
stage renal disease once they develop. Therefore, early diagnosis and timely intervention
in DN are becoming more and more important (Nakagawa et al., 2011; Ruiz-Ortega et al.,
2020).

The vast amounts of data generated by new technologies such as genome sequencing and
microarray chips have expanded the ways in which data can be analyzed and interpreted
for biological understanding and therapeutic advances (Bednar, 2000). However, most
resent studies on DN have focused on exploring the expression of differential genes that
affect glomerular pathological changes. These cannot fully reflect the pathogenesis of
DN, because in the context of diabetes, renal tubular function plays an important role in
regulating glomerular filtration (Vallon & Thomson, 2012). However, it is not appropriate
to focus on the single transcription level of mRNA (Gao et al., 2021; Chen et al., 2022), and
attention should be paid to other components in the transcriptional regulatory network.

MicroRNA (miRNA) are a class of endogenous small RNA with a length of about
20–24 nucleotides that play a variety of important regulatory roles in cells (Wang, Chen
& Sen, 2016). MiRNA regulate gene expression mostly by degrading mRNA (Etheridge et
al., 2011). In recent years, new progress has been made in the study of miRNA and human
diabetes (Vasu et al., 2019).

Transcription factors (TFs) can activate or suppress gene transcription by binding to
specific parts of chromatin. Previous studies mostly focused on the relationship between
lncRNA-miRNA-mRNA in ceRNA networks (Guo et al., 2022), but TFs are also involved
in complex transcriptional regulation. TF expression is closely related to the physiological
and pathological state of cells, and their expression levels in tissues are specific in time
and space. Therefore, changes in TF expression reflect changes in cell state and may
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lead to pathological processes (Lambert et al., 2018) such as diabetes (Polvani et al., 2016).
However, in-depth research has revealed that TFs function through complex regulatory
patterns, even though TFs in the same family may have a bidirectional effect on the
progression of the same disease (Song et al., 2016; Rad et al., 2016). Therefore, it is crucial
to accurately explore the role of both miRNA, and TFs in DN. Further understanding of the
direct regulatory relationship between mRNA, miRNA and TF can provide new insights
for personalized disease management, diagnosis and prognosis.

In this study, we selected the GSE30529 dataset containingDN renal tubule samples from
the GEO database, used the robust multiple array averaging (RMA) method in R language
to preprocess and normalize the data, and identified differentially expressed genes (DEGs)
according to screening criteria. After that, gene set enrichment analysis (GSEA), Gene
Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were
applied to identify the biological processes, cellular components andmolecular functions in
which the DEGs were involved. Subsequently, a relevant protein-protein interaction (PPI)
network was constructed, and the MCC algorithm of Cytohubba plug-in in Cytoscape
software was used to identify the top 20 genes with the highest interaction scores as hub
genes. Next, based on the GSE30122 dataset containing 69 samples, the ROC method was
used to verify those genes. Subsequently, five Hub-genes with the most potential diagnostic
values were selected. MiRNA and TF targets were predicted through four different online
prediction websites, and the ‘nephroseq’ database was used to predict the correlation
between genes and kidney function. The miRNA-mRNA-TF interaction was completed
to elucidate the mechanism by which these genes and expression elements interact and
cooperate to drive the occurrence and development of DN. Finally, the expression of
hub genes in DN rats was further verified using qPCR. Altogether, these results have the
potential to elucidate novel candidate genes associated with DN and provide a new insight
into its molecular basis.

MATERIALS & METHODS
Microarray data acquisition
The mRNA expression profile datasets were retrieved from the GEO database (https:
//www.ncbi.nlm.nih.gov/geo/). We uesd the keywords ‘‘Diabetic Nephropathy,’’ ‘‘Homo
sapiens,’’ and ‘‘High throughput gene expression profile’’ as search criteria, and the
datasets GSE30529 and GSE30122 fit the above screening conditions. Both GSE30529 and
GSE30122 were located on the GPL571 platform ((HG-U133A_2) Affymetrix Human
Genome U133A 2.0 Array). GSE30529 was used to screen for differential genes associated
with DN, while GSE30122 was used to verify and explore the predictive value of genes.
GSE30529 included 10 diabetic tubule samples and 12 control samples to investigate the
influence of diabetes mellitus on DEGs. GSE30122 contained nine glomeruli and 10 tubule
samples from kidneys with DN and 50 control glomeruli samples from the unaffected
portion of tumor nephrectomies. The Series Matrix files for two datasets including gene
expression counts were downloaded for downstream analysis. Gene ID conversion based
on the genome ‘‘hg38’’ was performed on the count matrix, the differential expression
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Figure 1 The workflow of the study.DEGs, differentially expressed genes; DN, diabetic nephropathy;
GSEA, gene set enrichment analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes. PPI, protein-protein interaction Networks; ROC, receiver operating characteristic curve; AUC,
area under curve; TF, transcription factors.

Full-size DOI: 10.7717/peerj.15437/fig-1

values of the same gene were averaged, and the original data were log2 transformed and
normalized. A workflow of our study is displayed in Fig. 1.

Analysis of differential gene expression
The ‘boxplot’ software package was used to draw the box diagram to evaluate the
distribution of the sample expression matrix, and the annotation file of the dataset was
used to complete the annotation of the probe. Principal component analysis (PCA) was
used to verify the reproducibility of the data. The ‘Limma’ package (version 3.42.2) in R
software was used to screen the differential genes. The criteria for DEGs were an adjusted P
value less than 0.05 and absolute fold change (FC) greater than 1.0. Heatmaps and volcano
plots were used to visualize these DEGs. Box line plots, PCA, heat map and volcano maps
were created using the ‘ComplexHeatmap’ (version 2.2.0) and ‘ggplot2’ packages (version
3.3.3) in R (version 3.6.3) (Gu, Eils & Schlesner, 2016).
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GSEA
GSEA was used to assess gene distribution trends and explore DEGs related phenotypes in
DN (Subramanian et al., 2005). The ‘clusterProfile’ package (Yu et al., 2012) in R and C2:
curated gene set (c2.cp.v7.2.symbols.gmt) were used for functional enrichment analyses.
An absolute net enrichment score (NES) > 1, false discovery rate (FDR) q< 0.25, and P
value < 0.05 were considered to represent significant enrichment.

GO and KEGG pathway enrichment analyzes of genes
The R software clusterProfler package was also used to analyze the GO enrichment and
for the KEGG pathway and Reactome enrichment analyses. The species was limited to
Homo sapiens. The GO terms covered three aspects: molecular function (MF), cellular
component (CC), and biological process (BP). Enrichment results were visualized using a
circle plot and a chord plot. The significant enriched functions and pathways were selected
with an adjusted p value < 0.05.

PPI analysis and correlation analysis of DEGs
The PPI network was completed using the online tool STRING (https://string-db.org/)
constructed on all DEGs, with filtering conditions (combined score > 0.4). Next, we
downloaded the interaction information and optimized PPI networks using Cytoscape
software (v3.9.1) to improve visualization. We used the Minimal Common Oncology
Data Elements (MCODE) to select crucial gene clusters and calculate cluster scores (filter
criteria: degree truncation = 2; node score cut-off = 0.2; k-core = 2; max depth = 100).
With the MCC algorithm of the Cytohubba plug-in used in Cytoscope, the top 20 genes
with the highest scores were labeled as hub genes (Chin et al., 2014).

Construction of the miRNA–mRNA–TF interaction network
Both miRNAs and TFs play independent or integrated roles in transcriptional regulation
(Zhao et al., 2016). We predicted target miRNAs of selected genes using four systematic
online miRNA databases: TargetScan, starBase, miRWalk, and miRDB. MiRNAs predicted
by at least three of the databases were considered reliable. Similarly, transcriptional
regulatory relationships unraveled by sentence-based text mining (TRRUST) (https:
//www.grnpedia.org/trrust/) was used to predict TF-mRNA interactions. Subsequently, the
miRNA–mRNA–TF network was constructed by Cytoscape software.

Clinical correlation with selected hub genes
Nephroseq (https://nephroseq.org/) is a free platform used by the academic and non-
profit community for integrative data mining of genotype/phenotype data. We used the
tool ‘Nephroseq V5’ to determine the correlation between selected hub genes and renal
function. The expression files of two datasets containing chronic kidney disease (CKD)
patients were downloaded. GraphPad Prism 9 (version 9.0.0) was used to replot the scatter
plots.

Animal models and sampling
Six male healthy Wistar rats (weighing 250–300 g) were obtained from Shandong Helix
Biotechnology Co., Ltd. The rats were housed in animal laboratory of affiliated hospital
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of Qingdao university at 24 ◦C on a 12-hour light/dark cycle and were given ad libitum
access to food for one week prior to the commencement of the experimental procedures.
The medical ethics committee of Affiliated Hospital of Qingdao University approved all
animal experiments (QYFY-WZLL-27726). A simple random sampling technique was
used to divide the rats into two groups. Three rats served as normal controls, while the
remaining rats (DN group, n= 3) were administered a single intraperitoneal injection
of streptozotocin (STZ) (55 mg/kg body weight, Sigma-Aldrich, St. Louis, MO, USA) in
sodium citrate buffer (pH 4.5) following a 12-hour fast. Administration of an equal volume
of sodium citrate buffer served as a vehicle control (control group, n= 3). Plasma glucose
concentrations were measured from blood collected from the tail vein on three consecutive
days using an AccuChek glucometer (Roche Diagnostics, Indianapolis, IN, USA) one
week post-injection. The diabetic rat model was established when plasma glucose levels
were ≥16.67 mmol/L. The early DN rat model was defined based on the urine protein
to creatinine ratio eight weeks after the injection.The urine was collected after 24 h with
a rat metabolic cage. After anesthesia with isoflurane, rats in each group were used for
blood collection via the orbital venous plexus. At the end of the experimental protocol,
all rats were sacrificed following anesthesia with isoflurane and samples (including blood
and kidney) were immediately collected for further analysis. In order to reduce individual
differences caused by the environment and other factors, each sample was sampled three
times.

Urine biochemical parameter analysis
The levels of urine microalbumin in each group were measured according to the
manufacturer’s protocol (E-EL-R0025c; Wuhan Elabscience, Wuhan, China). The
absorbance was measured at 450 nm using a Varioskan Flash™ multimode microplate
reader (ThermoFisher Scientific,Waltham,MA,USA). The relevant assay kitswere obtained
to determine the levels of creatinine via the sarcosine oxidase method (E-BC-K188-M;
Wuhan Elabscience, Wuhan, China), serum levels of BUN via the urease-glutamate
dehydrogenase method (S03036; Rayto, Shenzhen, China), and serum levels of albumin
via the Bromocresol green method (S03043; Rayto, Shenzhen, China).

RT-PCR validation of hub genes
Based on the results of the above analysis, the expression levels of the five key genes were
verified in blood samples and kidney samples. Each type of sample was composed of three
DN rats and three control rats. Kidney tissue samples were collected and immediately
snap-frozen in liquid nitrogen to preserve RNA integrity. The samples were then stored at
−80 ◦C until further processing. Total RNA was isolated using TRIzol reagent (CW0580S;
JiangSu CoWin Biotec, Beijing, China) in accordance with the manufacturer’s instructions.
The isolated RNAwas reverse transcribed into cDNAby EvoM-MLVRTPremix (AG11706;
Accurate Biology, China). The SYBR® Green Premix Pro Taq HS qPCR Kit (AG11701;
Accurate Biology, China) and an ABI 7500 PCR system (ABI, Waltham, MA, USA) were
used for quantitative real-time PCR analysis. The 2 −11Ct method was employed to
determine the relative expression of the hub gene, with normalization to the expression
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level of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The primer sequences
are provided below: C1QB (F: 5′-TCAACAGCGCCCTGCGACCAAACCA-3′, R: 5′-
TGAACTTGCCACTGCGCGGCTCGTA-3′), ITGAM (F: 5′-AAACCCGAGTGGTTGTT
GCAGCCCC-3′, R: 5′- ATGGGGTCGCACCGGTTTGTGCTGT-3′), ITGB2 (F: 5′-
AGCCTGCCAGCCTCCGTTTGCCTTT-3′, R: 5′- TGCATTATGGCATCCAGCCCGCCCT-
3′), HLA-DPA1 (F: 5′-TTTGTGCAGACGCAGCACCCGT-3′, R: 5′- AAGAGCCTC-
CTGGG CGTCAAACGCA-3′), and IRF8 (F: 5′- ACCTGCAGCAGTTCTACGCCACCCA-
3′, R: 5′- AGTTTGGAGCGCAAGGGCGCTGTGT-3′). All experiments were repeated
three times.

Statistics analysis
The R software ‘ggpubr’ package was used to perform statistical analyses. Unpaired
Student’s t -test was used to compare the mean differences in the PCR results and
biochemical indexes, while theMann–WhitneyU test used to compare themean differences
in GSE30122. Spearman correlation was used to determine the relationship between hub
genes expressions and eGFR (Nephroseq V5). A P-value less than 0.05 was statistically
significant. Receiver operating characteristic (ROC) curve analysis was performed using
the ‘pROC’ package of R software to determine the sensitivity and specificity of target
genes. Results were quantified by the area under the ROC curve (AUC), and genes with
AUC > 0.85 were considered diagnostic. The ‘ggplot2’ package was used to draw boxplots
and ROC curves.

Ethics and consent
This study was approved by the medical ethics committee of Affiliated Hospital of
Qingdao University (Approval Number. QYFY-WZLL-27726). All microarray datasets
were downloaded from the GEO database, and we confirmed that all necessary ethical
approvals for animal experimentation and consent were obtained.

RESULTS
Preprocessing analysis and identification of DEGs
DN and control samples from the GSE30529- GPL571 datasets consisted of 10 DN kidney
tubules and 12 control samples. After GSE30529 was normalized, the box plot showed that
samples had good distribution (Fig. S1A). We performed PCA to evaluate the repeatability
of the expression matrix within GSE30529, and the results showed satisfactory repeatability
based on the high proportion of variance explained by the first two principal components
(PC1 and PC2) and the tight clustering of replicates in the PCA plot (Fig.S1B). Initially, we
screened 19,820 genes in the microarray dataset GSE30529 after removing the duplicate
probe. After setting criteria with the threshold of an adjusted absolute value of log2 (FC)> 1
and adj. P value < 0.05, 463 DEGs (340 increased and 123 reduced) were identified as DEGs.
The DEGs are shown in Fig. 2A in volcano plots, and the top40 DEGs with the most distinct
expression differences between DN and control samples are shown on the heat map (Fig.
2B).
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Figure 2 Identification of DEGs. (A) DEGs Volcano plot between the control and DN samples. The red
dots represent up-regulated genes, the gray dots represent non-significant genes, and the blue dots repre-
sent down-regulated genes. (B) Heat-map of top 40 DEGs between the control and DN samples. Red rect-
angles represent up-regulated expression, and blue rectangles represent down-regulated expression.

Full-size DOI: 10.7717/peerj.15437/fig-2

Enrichment analysis
Functional and pathway enrichment analyzes were performed by the R software
‘clusterProfiler’ package. First, the expression profiles of all genes in the DN and control
samples were cleared and uploaded to GSEA, and the C2 sub-collection CP gene collection
was applied to conduct the GO enrichment analysis. Adj. p< 0.05 and Q< 0.25 were set as
the filtering criterion for significant gene sets. The most enriched gene sets were related to
mitosis (Fig. 3A; normalized enrichment score (NES) = 1.857, false discovery rate (FDR)
= 0.017), immune responses (Figs. 3B–3C; NES= 1.928, FDR= 0.017; NES= 2.317, FDR
= 0.017), angiogenesis (Fig. 3D; NES = 1.582, FDR = 0.017), and cytoskeletal dynamics
and morphology pathways (NES = 1.629, FDR = 0.017), as determined by the GSEA
results. At the same time, the gene sets related to immune responses were found to be
among the top-ranked pathways in terms of enrichment score, indicating their potential
importance in the context of diabetic nephropathy (Fig. 3F). Next, the results of GO,
KEGG pathway, GSEA, and Reactome enrichment analyses suggested that the immune
response, including the regulation of neutrophil activation, response to interferon-gamma,
neutrophil mediated immunity, and neutrophil degranulation, in DN samples was more
prominent than in the control samples (Fig. 4A). KEGG enrichment analysis revealed
a strong association between the identified DEGs and pathways related to neutrophil
functions, such as phagosome (KEGG ID: hsa04145, adjusted p-value < 0.01), complement
and coagulation cascades (KEGG ID: hsa04610, adjusted p-value < 0.01), and cell adhesion
molecules (KEGG ID: hsa04514, adjusted p-value < 0.01) (Fig. 4B). More details of
the enriched GO/KEGG pathway are included in Table 1. In addition, GO and KEGG
enrichment analyses of revealed that immune-related biological processes and pathways
were predominantly enriched. When looking at an immune-related nephropathic disease
like DN, it is crucial to understand its immune mechanisms.
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Figure 3 GSEA plots present most enriched gene sets between the control and DN groups. The C2 sub-
collection CP gene collection was applied to conduct the canonical pathway enrichment analysis of the ex-
pression profile as a whole. (A–E) The top five most significant enriched gene sets are shown. (F) The bar
plot shows the top enriched gene pathways. NES, normalized enrichment score; FDR, false discovery rates
or adjusted p-value; ES, enrichment score.

Full-size DOI: 10.7717/peerj.15437/fig-3

PPI network analysis, MCODE cluster modules and hub gene
identification
We used STRING to construct the interaction network between proteins coded by DEGs,
which consisted of 65 nodes and 183 edges, and the network was visualized by Cytoscape
(Fig. 5A). We used the cytoHubba plugin to identify hub genes. The MCC algorithms
identified 20 hub genes. Three gene cluster modules were identified with the MCODE
plugin (Figs. 5B–5D), according to the filter criteria. Details of these twenty hub genes
identified by cytoHubba are given in Table 2. These genes, including PSMB8, IRF8, IRF9,
MX1, BST2, GBP2, IFITM2, ISG20, IFITM3, HLA-B, HLA-G, HLA-DRA, HLA-DPA1,
ITGB2, ITGAM, HLA-DPB1, PTPRC, CCL2, HLA-DMA, and C1QB, were the most crucial
in the PPI network and played an important role in the pathogenesis of DN.

Verification of the 20 hub genes by the GSE30122 database
The 20 hub genes were verified using the GPL17586- GSE30122 dataset, which consisted
of 41 DN samples and 20 control samples. We used the R software ‘ggplot2’ package and
‘ggpubr’ package to construct box plots and perform Mann–Whitney U test statistical
analysis. In line with our predictions, we found that the expression levels of the 20 hub
genes in the DN group were different (Table 3), except for BST2 (Mann–Whitney U test,
p= 0.753), IFITM2 (Mann–Whitney U test, p= 0.145), IFITM3 (Mann–Whitney U test,

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.15437 9/28

https://peerj.com
https://doi.org/10.7717/peerj.15437/fig-3
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL17586
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30122
http://dx.doi.org/10.7717/peerj.15437


Figure 4 GO, KEGG pathway, and Reactome enrichment analyzes of DEGs. (A) The GO function anal-
ysis bubble chart shows the top three GO terms under each ontology including biological process (BP),
cellular component (CC), and molecular function (MF). Bubble size indicates the counts contained in
each term. (B) KEGG chord of the top five DEG-related pathways. The DEGs involved in the KEGG path-
ways are shown on the left.

Full-size DOI: 10.7717/peerj.15437/fig-4

p= 0.161), and MX1 (Mann–Whitney U test, p= 0.054), which were higher than those in
the control group (Fig. 6A). The expression levels of the hub genes in the control samples
were decreased compared with those in the DN samples (Figs. 6B–6N).

The ROC curves of the 20 hub genes in DN and control groups
The R package ‘pROC’ was used to analyze the 20 hub gene expression profiles between
the DN and control groups and paint the ROC curves. The AUC helped to evaluate
sensitivity and specificity, and describe the original effectiveness of the diagnostic tests.
Based on the statistical results, most of these hub genes had noteworthy diagnostic values
in the DN group. Of these, CIQB had the largest AUC (AUC: 0.911). The ROC curves of
genes with an AUC greater than 0.85 are shown in Fig. 7. We screened hub genes with
AUC>0.85 to identify better candidate genes based on their good diagnostic performance
in the DN group. C1QB, ITGB2, HLA-DPA1, ITGAM, and IRF8 levels were upregulated
in DN with statistical significance after filtering, as determined by a p-value < 0.05 for
upregulated genes. The specific p-values for each gene were: C1QB (Mann–Whitney U
test, p< 0.01), ITGB2 (Mann–Whitney U test, p< 0.01), HLA-DPA1 (unpaired t -test,
t = 6.375, p< 0.01), ITGAM (unpaired t -test, t = 4.841, p< 0.01), and IRF8 (unpaired
t -test, t = 6.141, p< 0.01) (Table 4). Accordingly, we speculate that C1QB, ITGB2,
HLA-DPA1, ITGAM, and IRF8 could be potential candidate genes for DN diagnosis based
on our current results.

The co-regulatory network of miRNA-mRNA-TF
After searching the databases (miRWalk3.0, TargetScan, MiRDB, and starBase) for scores
> 0.95, we identified 46 miRNAs acting on a 3′ UTR region of the genes as potential
biological prognostic predictor. Subsequently, 11 TFs (HIF1A, KLF5, MBD1, RFX5,
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Table 1 GO and KEGG pathways.

Ontology ID Description p.adjust

BP GO:0042119 neutrophil activation 2.48E−15
BP GO:0034341 response to interferon-gamma 1.36E−14
BP GO:0002446 neutrophil mediated immunity 2.42E−14
BP GO:0043312 neutrophil degranulation 2.90E−14
BP GO:0002283 neutrophil activation involved in immune response 2.97E−14
CC GO:0062023 collagen-containing extracellular matrix 2.30E−24
CC GO:0034774 secretory granule lumen 1.41E−14
CC GO:0060205 cytoplasmic vesicle lumen 4.40E−14
CC GO:0031983 vesicle lumen 4.40E−14
CC GO:0031091 platelet alpha granule 7.82E−14
MF GO:0005539 glycosaminoglycan binding 9.45E−13
MF GO:0008201 heparin binding 2.86E−12
MF GO:1901681 sulfur compound binding 8.54E−10
MF GO:0004866 endopeptidase inhibitor activity 8.95E−09
MF GO:0030414 peptidase inhibitor activity 1.33E−08
KEGG hsa04145 Phagosome 1.34E−12
KEGG hsa05150 Staphylococcus aureus infection 2.83E−10
KEGG hsa04610 Complement and coagulation cascades 1.33E−08
KEGG hsa05140 Leishmaniasis 1.63E−08
KEGG hsa04514 Cell adhesion molecules 1.08E−07
KEGG hsa05152 Tuberculosis 1.34E−07
KEGG hsa05323 Rheumatoid arthritis 1.40E−06
KEGG hsa05144 Malaria 1.40E−06

Notes.
Annotation: BP, Biological Process; CC, Cellular Component; MF, Molecular Function.

RFXANK, RFXAP, RUNX1, SP1, SPI1, STAT1, and WT1) were screened using the online
database TRRUST (Table 5). Finally, using the results of the screening, we predicted
46 miRNA–mRNA pairs and 13 TF-mRNA pairs and then integrated the predicted
pairs to describe a TF–miRNA–mRNA regulatory network constructed using Cytoscape
(Fig. 8). Among these regulatory networks, we noted that IRF8 had the highest number of
miRNA connections, which formed 25 miRNA-mRNA pairs in total. TFs with the highest
concentration were found on ITGB2 including HIF1A, KLF5, RUNX1, SP1, and SPI1. It is
noteworthy that of the five genes, only C1QB had no associated TFs based on the predicted
outcomes.

Hub gene expression was positively correlated with the degree of
kidney injury
In order to fully explore the clinical value of the selected five hub genes, we screened two
gene expression datasets containing 186 and 60 CKD patients, respectively (Saint-Mezard
et al., 2009; Ju et al., 2015). Correlation analysis between biological predictors and GFR
was carried out in the Nephroseq V5 database (Figs. 9A–9E). All five biological predictors
were negatively correlated with GFR, with the following Pearson correlation coefficients
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Figure 5 The protein–protein interaction network of DEGs and three cluster modules selected by
MCODE. (A) The PPI network consists of 65 nodes and 183 edges. Protein represented by node and
protein–protein association represented by edge. Non-blue nodes are the 20 hub genes screened by
cytoHubba plug-in. MCODE extracted three cluster modules. Cluster 1 (B) has the highest cluster score
(score: 10.8, 11 nodes and 54 edges), followed by cluster 2 (C) (score: 5, five nodes and 10 edges), and then
cluster 3 (D) (score: 5, five nodes and 10 edges).

Full-size DOI: 10.7717/peerj.15437/fig-5

and p-values: C1QB (r =−0.601, p-value < 0.01), ITGB2 (r =−0.506, p-value < 0.01),
HLA-DPA1 (r = −0.589, p-value < 0.01), ITGAM (r = −0.560, p-value < 0.01), and IRF8
(r=−0.501, p-value < 0.01). Thus, a higher expression of those hub genes indicated worse
renal function in patients with CKD, which may play a role in kidney deterioration and
damage in patients with CKD.

Validation of five hub genes’ expression with qRT-PCR
To further assess the expression of these hub genes, a total of three DN model rats and
three healthy controls were enrolled as a validation cohort. We first measured serum
creatinine, BUN, and albumin levels, and calculated the urinary protein/creatinine ratio
in the DN rat group and control group. We found that the level of kidney injury markers,
such as serum creatinine and BUN, in the DN group was higher than in the control group
(unpaired t -test, t = 3.391, df = 4, p= 0.0275, r = 0.861). Meanwhile, the DN group had
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Table 2 Twenty hub genes identifed by cytoHubba.

Gene symbol Description log2FC Q value Regulation

PSMB8 Proteasome subunit beta type-8 1.342044794 0.000164732 UP
IRF8 Interferon regulatory factor 8 1.543495504 0.00054193 UP
IRF9 Interferon regulatory factor 9 1.015989833 0.000995947 UP
MX1 Interferon-induced GTP-binding protein Mx1 1.194190613 0.004106856 UP
BST2 Bone marrow stromal antigen 2 1.16619317 0.037461717 UP
GBP2 Guanylate-binding protein 2 1.447589391 0.003980602 UP
IFITM2 Interferon-induced transmembrane protein 2 1.216171959 0.020762203 UP
ISG20 Interferon-stimulated gene 20 kDa protein 1.018021414 0.00758014 UP
IFITM3 Interferon-induced transmembrane protein 3 1.241954263 0.020591992 UP
HLA-B HLA class I histocompatibility antigen, B-7 alpha chain 1.499097739 0.000194636 UP
HLA-G HLA class I histocompatibility antigen, alpha chain G 1.118671026 0.000373508 UP
HLA-DRA Major histocompatibility complex, class ii, dr alpha 1.777805059 0.000258662 UP
HLA-DPA1 Major histocompatibility complex, class ii, dp alpha 1 2.468768075 0.000131723 UP
ITGB2 Integrin beta-2 1.538936861 0.000113105 UP
ITGAM Integrin alpha-M 1.308463099 0.0000864 UP
HLA-DPB1 HLA class II histocompatibility antigen, DP beta 1 chain 1.727551628 0.00104215 UP
PTPRC Receptor-type tyrosine-protein phosphatase C 2.737544685 0.0000112 UP
CCL2 C-C motif chemokine 2 1.772954596 0.000270229 UP
HLA-DMA Major histocompatibility complex, class ii, dm alpha 1.526072847 0.000553678 UP
C1QB Complement C1q subcomponent subunit B 2.021596465 0.001339804 UP

Notes.
Annotation: FC, fold change; Q value, adjust P-value.

a higher urinary protein/creatinine ratio (unpaired t -test, t = 17.23, df = 16, p< 0.001,
r = 0.974), suggesting more significant proteinuria (Fig. 10A). RT-PCR technology was
then used to confirm the differential expression levels from participant serum and kidney
samples. Consistent with the microarray data, ITGAM (unpaired t -test, t = 10.35, df = 4,
p< 0.001, r = 0.981) and C1QB (unpaired t -test, t = 13.60, df = 4, p< 0.001, r = 0.989)
expression were significantly upregulated in both serum and kidney samples (Figs. 10B
and 10C) between DN and control groups. At the same time, ITGB2 was highly expressed
in the kidney samples in the disease group (unpaired t -test, t = 5.512, df = 4, p= 0.0053,
r = 0.940). However, there was no difference in the levels of HLA-DPA1. Notably, the
expression level of IRF8 in the DN group was lower than in the control group, which was
contrary to our prediction.

DISCUSSION
DN is usually diagnosed on the basis of increased urine albumin-creatinine ratio (UACR)
or decreased estimated glomerular filtration rate (eGFR) when a patient has no other CKD.
However, DN diagnosis relies heavily on assumptions and updated specific DN markers
are urgently needed, especially for early-stage disease (Forbes & Cooper, 2013; Ioannou,
2017). Therefore, in this study, based on the GSE30529 microarray data taken from the
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Table 3 Statistical analysis of Hub-gene between control and DN groups. The t test was used when the
observed variables were close to normal distribution in each group. When samples did not meet the re-
quirements of normality test, Mann-Whitney U test (Wilcoxon Rank Sum test) was used.

GENE t/T 1 95% CI p

BST2 0.316 0.118 −0.627–0.863 0.753
C1QB 80 1.98 1.263–2.555 0.000
CCL2 5.128 1.075 0.657–1.494 0.000
GBP2 3.746 0.966 0.43–1.503 0.001
HLA-B 3.507 0.807 0.348–1.266 0.000
HLA-DMA 6.062 1.135 0.761–1.509 0.000
HLA-DPA1 6.375 1.408 0.967–1.849 0.000
HLA-DPB1 3.605 1.052 0.449–1.654 0.001
HLA-DRA 160 1.645 1.012–1.97 0.000
HLA-G 3.23 0.406 0.155–0.656 0.002
IFITM2 366 0.485 −0.203–1.174 0.145
IFITM3 1.418 0.388 −0.158–0.935 0.161
ISG20 211 0.686 0.324–1.175 0.000
IRF8 6.141 1.301 0.878–1.724 0.000
IRF9 4.487 0.462 0.257–0.668 0.000
ITGAM 4.841 1.038 0.592–1.485 0.000
ITGB2 5.155 1.296 0.773–1.819 0.000
MX1 331 0.459 −0.008–0.866 0.054
PSMB8 3.665 0.727 0.331–1.124 0.000
PTPRC 159 1.272 0.671–1.969 0.000

Notes.
The t test was used when the observed variables were close to normal distribution in each group. When samples did not meet
the requirements of normality test,Mann–Whitney U test (Wilcoxon Rank Sum test) was used.

GEO database, we screened DEGs between the DN and control group and identified 463
DEGs (340 increased genes and 123 decreased genes).

According to our GSEA, the expression levels of the immune inflammatory response
related signaling pathways, such as the interleukin and neutrophil degranulation pathways
were upregulated in the DN group. This may reveal the cause of glomerular vascular
injury, glomerulosclerosis, nodular lesions, and deterioration of renal function. The GO
analysis concluded that DEGs were involved in neutrophil activation, neutrophil-mediated
immunity, neutrophil degranulation, neutrophil activation, and response to interferon-
gamma, which indicates that the level of immune response and regulation in DN group
was more obvious than that in the control. In addition, the expression of DEGs may act on
the molecular functions of glycosaminoglycan binding, heparin binding, sulfur compound
binding, endopeptidase inhibitor activity, and peptidase inhibitor activity, indirectly
demonstrating the complexity of the DN’s pathogenesis. The enriched pathways identified
by KEGG analysis included phagosome, staphylococcus aureus infection, complement
and coagulation cascades, leishmaniasis, cell adhesion molecules, tuberculosis, rheumatoid
arthritis, and malaria. Thus, based on GSEA, GO, and KEGG enrichment analysis results,
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Figure 6 Verification of the 20 hub genes by the GEO database GSE30122. (A) Expression of 20 hub-
genes in GSE30122 dataset between control and DN groups. (B–N) The 13 genes with the most significant
statistical differences. ***: p< 0.001; **: p< 0.01; *: p< 0.05; ns: no significant difference.

Full-size DOI: 10.7717/peerj.15437/fig-6

DN showed strong immune activation and signal transduction, which is in agreement with
previous studies (Wada & Makino, 2013).

We used the GSE30122 microarray dataset, including 19 DN and 50 control samples for
verification after constructing a PPI network to identify 20 hub genes. Statistical analysis
of hub gene expression levels explained that the expression level of most hub genes in DN
was higher than in the control group, and there was a statistically significant difference
(P < 0.05). In the ROC curve analysis, the AUC of C1QB, HLA-DPA1, IRF8, ITGAM, and
ITGB genes were higher than 0.85, indicating a higher DN predictive value. Therefore,
based on the five genes screened above, we constructed a miRNA-mRNA-TF regulatory
network using the online database to try to interpret the pathogenesis of DN in the process
of gene expression. We then evaluated the association of selected genes with kidney injury
using the Nephroseq V5 database. At the same time, we further verified the expression
levels in both serum and kidney samples of these five genes using the qPCR test and a DN
rat model, and the results confirmed our previous prediction.

Complement C1q B chain (C1QB) is a protein coding gene. C1q associates with the
proenzymes C1r and C1s to yield C1, the first component of the serum complement system
(Reid, 2018). In the blood plasma, the complement system is a proteolytic cascade that
mediates innate immunity, a non-specific defense mechanism to pathogens (Daugan et al.,
2017). Themain consequences of complement activation are the opsonization of pathogens,
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Figure 7 ROC curve of the hub genes from the GEO database GSE30122. (A–E) ROC curve of the hub
genes with AUC> 0.85 in DN samples. CI, confidence interval; AUC, area under the ROC curve.

Full-size DOI: 10.7717/peerj.15437/fig-7

recruitment of inflammatory and immunocompetent cells, and direct killing of pathogens.
Although complement cascades are an important part of the innate immune system,
uncontrolled activation can lead to serious disease. One recent review found that excessive
complement activation in atypical hemolytic uremic syndrome resulted in renal failure if
not treated (Willows, Brown & Sheerin, 2020). Experimental and clinical evidence suggests
that several components of the complement system are involved in the pathogenesis of
DN (Flyvbjerg, 2017). The deposition of membrane attack complex formation (MAC) in
the complement system is believed to be closely related to the pathogenesis of advanced
DN (Fearn & Sheerin, 2015). Lu et al.’s (2022) study suggested that C1 and C2 could be
two distinct immune-associated genes in the pathogenesis of DN. Sun et al. (2019) found
an association between C1q and C3c complement deposition on renal histopathology and
more severe kidney damage in DN patients. Our results provide evidence that C1QB is
highly expressed in DN models and also emphasize the roles of C1 and local complement
activation in DN, while the expression of C2 and C3 related genes is worthy of further
investigation.

The ITGAM gene encodes the integrin alpha M chain, and ITGB2 encodes an integrin
beta chain that combines with multiple different alpha chains to form different integrin
heterodimers. Integrins are integral cell–surface proteins that participate in cell adhesion
as well as cell–surface mediated signaling (Siegers, 2018). Integrin ITGAM/ITGB2 is a
receptor for the iC3b fragment of the third complement component, which is involved in
the composition of the complement system that enhancesmacrophage apoptotic neutrophil
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Table 4 The evaluation of the hub-gene as prognostic predictor.

gene AUC 95%CI Optimal cut-off value sensitivity specificity

BST2 0.508 0.360–0.655 −0.801 0.38 0.778
C1QB 0.911 0.837–0.985 0.244 0.82 0.833
CCL2 0.838 0.731–0.945 0.163 0.72 0.833
GBP2 0.829 0.686–0.971 0.292 0.92 0.722
HLA-B 0.761 0.614–0.909 0.379 0.78 0.722
HLA-DMA 0.846 0.719–0.972 0.449 0.84 0.833
HLA-DPA1 0.884 0.795–0.974 0.388 0.84 0.833
HLA-DPB1 0.781 0.639–0.923 0.323 0.84 0.667
HLA-DRA 0.823 0.674–0.973 1.175 0.98 0.722
HLA-G 0.749 0.604–0.894 0.424 0.88 0.611
IFITM2 0.608 0.449–0.767 0.962 0.92 0.333
IFITM3 0.587 0.432–0.741 −1.27 0.22 1.000
ISG20 0.771 0.631–0.912 0.645 0.94 0.556
IRF8 0.852 0.749–0.955 0.149 0.72 0.833
IRF9 0.818 0.697–0.938 0.012 0.66 0.889
ITGAM 0.864 0.751–0.978 0.496 0.92 0.722
ITGB2 0.891 0.804–0.978 0.719 0.94 0.722
MX1 0.636 0.477–0.795 0.54 0.84 0.444
PSMB8 0.749 0.604–0.894 0.206 0.74 0.722
PTPRC 0.827 0.696–0.957 0.54 0.86 0.722

Notes.
AUC, area under the ROC curve; CI, confidence interval.

phagocytosis (Kristóf et al., 2013). ITGB2was identified as a central gene in the complement
cascade pathway that is negatively correlated with glomerular filtration rate (GFR; Xu et
al., 2021). Complement activation contributes to MAC formation, which drives neutrophil
activation and endothelial injury (Riedl et al., 2014). Meanwhile, integrin ITGAM/ITGB2
can recognize P1 and P2 peptides of fibrinogen gamma chain and is also a receptor for
coagulation factor Xa (FXa). Fibrinogen is a soluble glycoprotein that plays an important
role in the coagulation system (Mosesson, 2005) and inflammation (Davalos & Akassoglou,
2012). There is increasing evidence showing that serum fibrinogen, an acute phase marker
of inflammation, plays an important role in regulating the inflammatory response and
aggravating the progression of renal disease by binding to receptors expressed on the surface
of different cells (Wang et al., 2017). Elevated plasma fibrinogen levels have been shown to
be an indicator of a proinflammatory state and are closely associated with diabetes (Le et
al., 2008). In addition, FX is mainly synthesized in the liver (Borensztajn, Peppelenbosch &
Spek, 2008). However, there is evidence that FX extrahepatic expression by macrophages
contributes to the development of asthma (Shinagawa et al., 2007). FXa activates PAR-1
and PAR-2 to enhance inflammation (Jose & Manuel, 2020). DM directly increased FX
expression in macrophages (Oe et al., 2016). Local FX synthesis in macrophages infiltrating
the kidney may contribute to DN progression. In our study, although these two genes were
consistent as previously predicted and showed differences in expression between different
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Table 5 Target gene co-regulatory network.

Target gene TF miRNA

ITGB2 none hsa-mir-26b-5p hsa-mir-146a-5p hsa-mir-335-5p
hsa-mir-148b-5p hsa-mir-17-3p hsa-mir-22-5p
hsa-mir-3677-5p hsa-mir-182-5p hsa-mir-27a-3p

ITGAM ARID1B
POLR2A
IRF1

hsa-mir-191-5p hsa-mir-26a-5p hsa-mir-372-3p

IRF8 ZNF143
NFIC
TCF7
ZNF76
WRNIP1
MTA2
EBF1
CBFB
TBX21
EED
EZH2
POU2F2

hsa-mir-130a-3p hsa-mir-130b-3p hsa-mir-146a-3p
hsa-mir-181a-5p hsa-mir-181c-5p hsa-mir-186-5p
hsa-mir-218-5p hsa-mir-3605-3p hsa-mir-365a-3p
hsa-mir-365b-3p hsa-mir-664a-3p hsa-mir-101-3p
hsa-mir-146a-5p

HLA-DPA1 ATF1
WRNIP1
RFXANK
HDGF
CBFB
ZNF382
STAT1
MAZ
RFX5
PML
CEBPB

hsa-mir-1343-3p hsa-let-7a-5p hsa-let-7b-5p
hsa-let-7f-5p hsa-let-7g-5p hsa-let-7i-5p
hsa-mir-1179 hsa-mir-146a-5p hsa-mir-146b-5p
hsa-mir-148a-5p hsa-mir-148b-5p hsa-mir-21-3p
hsa-mir-320a hsa-mir-320b hsa-mir-320c
hsa-mir-320d hsa-mir-342-5p hsa-mir-3679-5p
hsa-mir-374a-5p hsa-mir-374b-5p hsa-mir-589-5p
hsa-mir-7-5p hsa-mir-98-5p hsa-mir-126-3p
hsa-mir-129-2-3p hsa-mir-200c-3p hsa-mir-214-3p
hsa-mir-26a-5p

C1QB NR2F1
YBX1
ADNP

hsa-mir-26b-5p hsa-mir-124-3p hsa-mir-129-2-3p
hsa-mir-146a-5p

Notes.
TF, Transcription factors; miRNA, MicroRNA.

groups of kidney tissue samples, we found that the level of differences in expression
between groups of ITGAM was more significant and statistically maintained in blood
samples. Previous studies did not examine the gene expression levels in specific samples
in order to focus on differences in expression between the two (Hu et al., 2021). Our
validation test results suggests that ITGAM can be a better predictor of DN than ITGB2.
Blood samples are more accessible to obtain than kidney samples in clinical practice, which
further increases the value of testing ITGAM to predict DN.

HLA-DPA1 is amember of the class II alpha chainHLAmimicry. Class II is a heterodimer
consisting of an α chain (DPA) and β chain (DPB), both anchored to the cell membrane.
It plays an important role in the immune system and manifests itself as peptides produced
by extracellular proteins. Class II molecules are expressed in antigen presenting cells (APC)
such as B lymphocytes, dendritic cells, and macrophages. Previous studies have shown that
HLA-DPA1, the closest centromere gene expressed in HLA-DO α, may increase the risk of
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Figure 8 MiRNA–mRNA–TF regulatory network of five selected hub genes. The green diamonds repre-
sent TFs, the blue Vs represent MiRNAs, and the orange triangles represent selected hub genes.

Full-size DOI: 10.7717/peerj.15437/fig-8

diabetes and diabetic kidney disease (DKD), which is a complication of diabetes (Varney et
al., 2010). This gene also plays a role in the rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE) related pathways (Ma et al., 2017). Consistent withMa et al.’s (2017)
research, the conclusion obtained from our preliminary analysis based on the microarray
suggested that HLA-DPA1 was highly expressed in the disease group, while our q PCR
verification results suggested that there was no statistical difference between the groups.
These results show that further research is needed to determine whether HLA-DPA1 in
DN can affect pathologic processes, similar to those in RA and SLE.

The interferon (IFN) regulatory factor (IRF) family specifically binds to the upstream
regulatory region of type I IFN and IFN-inducible MHC class I genes (Salem et al., 2014).
IRF family proteins bind to IFN-stimulated response elements (ISRE) and adjust the
expression of genes, namely IFN-α and IFN-β. In diabetic mice, the expression of IRF8
is closely related to the activation of microglia and the regulation of the inflammatory
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Figure 9 Relationship between five hub genes as biological predictors and renal function.Glomerular
filtration rate (GFR) was assessed by modification of diet in renal disease (MDRD) equation.

Full-size DOI: 10.7717/peerj.15437/fig-9

response, thereby influencing the occurrence of diabetic retinopathy (Liu, Xu & Gao,
2021). However, the role of IRF8 in DN, which is also a microvascular complication of
diabetes, still needs to be further investigated. As a TF, IRF8 has a complex regulatory
relationship with other TFs. STAT1 binds to the IRF promoter region in colon cancer
cells, while MBD1 inhibits IRF8 expression (McGough et al., 2008), which is another
indication evidence that WT1 in leukemia and IRF8 are anticorrelated (Vidovic et al.,
2010). Therefore, it is necessary to further explore the interaction between IRF8 and other
transcription related factors in DN. In addition, the results from the online database
indicated an inverse relationship between IRF8 and renal function, while qPCR indicated
a low expression level of IRF8 in the DN group. These differences may be caused by the
different regulatory effects of IRF8 as a TF in different species.

Notably, in the miRNA-mRNA-TF networks, all of the 11 predicted TFs have been
proven to be key modulators and potential therapeutic targets for various inflammatory
diseases. The TF SPI1 could regulate the expressions of both ITGAM and ITGB2.SPI1
encodes an ETS-domain TF that activates gene expression during myeloid and B-lymphoid
cell development (Wittwer, Marti-Jaun & Hersberger, 2006). This was consistent with our
analysis which showed that SPI1 expression was significantly increased in DN, suggesting
that DN progression may be related to bone marrow cell activation and B-lymphoid cell
development.

MicroRNA is one of the most important endogenous epigenetic factors that can inhibit
the post-transcriptional gene expression of target genes. Recent studies have revealed that
miRNAs may be regulators of immune and inflammatory responses and are potential
therapeutic targets in DN (Kato & Natarajan, 2015; Zhou et al., 2021). Among the miRNAs
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Figure 10 Evaluation of a diabetic renal rat model and RT-qPCR analysis of five Hub genes. (A) The
serum level of creatinine, BUN, albumin and urinary protein/creatinine ratio. (B) Validation of the ex-
pression level of hub genes in blood samples. (C) Validation of the expression level of hub genes in kidney
samples. ***: p< 0.001; **: p< 0.01; *: p< 0.05; ns, no significant difference; BUN, blood urea nitrogen;
DN, diabetic nephropathy.

Full-size DOI: 10.7717/peerj.15437/fig-10

predicted by the online databases, some have been shown to be closely related to the
occurrence and development of diabetes. For example, hsa-miR-424-5p binds to PD-1
signaling molecules, stimulates the immune response through the mTORC signaling
pathway, and is involved in the pathogenesis of type 1 diabetes (Wang et al., 2020). There
is evidence that these miRNAs also act as protective factors in other diseases. Mir-5581-3p
plays an inhibitory role in the progression of hepatocellular carcinoma (HCC) by regulating
the expression of cardiolipin synthase 1 (CRLS1; Yin et al., 2019). The lower expression
level of mir-8485 is associated with significantly lower overall survival rate of oral squamous
cell carcinoma (OSCC; Gholizadeh et al., 2020). Mir-8485 can also alleviate cardiomyocyte
injury in chronic heart failure (CHF) by targeting TP53INP1 (Luo et al., 2022). However,
whether the predicted miRNAs can participate in regulating cell viability, apoptosis,
inflammatory responses in DN, and disease progression still deserves further investigation.

Although this is the first study to construct a miRNA-mRNA-TF regulatory network to
explore potential predictors of DN through two microarray datasets, this study still had
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several limitations. First, due to the small number of data sets integrated, only data sets
related to DN genes were obtained from NCBI database, so other undiscovered DEGs still
need to be explored based on multiple databases. Second, although identified hub genes
have been reported to be closely related to the regulation of immune responses, there is still
little evidence that they can clearly regulate immune responses in the DN disease process
(Li et al., 2021). The observed high expression of immune-related genes in DN may be due
to the enrichment of immune cells in DN tissue. Thus, more precise and detailed studies at
the cell or animal level, such as single cell sequence studies, are needed to further validate
the potential factors identified in our bioinformatics findings. Third, our qPCR results were
based on rat models, but there are differences in gene expression between species. Lastly,
we recognize that the number of laboratory animals used in our study was limited. The
small sample size may have led to inconclusive results, and validation with larger cohorts
of animals is needed to strengthen the evidence supporting our bioinformatics findings.
Therefore, our prediction results need to be carried out across large clinical cohort studies
or randomized controlled studies to evaluate its actual clinical value.

CONCLUSION
In summary, we conducted comprehensive analysis and validation based on multiple
microarray datasets, and the results showed that C1QB, ITGAM, and ITGB may be
potential candidate genes that are upregulated in DN. These genes have remarkable
diagnostic properties. The predicted miRNA-mRNA-TF pathway network was built based
on online databases. Our results at the transcriptional level may operate as reference when
exploring the pathogenesis of DN in the future. It is important that these interactions be
treated with caution given the complexity of miRNA and TF crosstalk.
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