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ABSTRACT
A diet that is high in sugar and fat is a precursor to various chronic diseases, especially
hyperlipidemia. Patients with hyperlipidemia have increased levels of plasma free fatty
acids and an ectopic accumulation of lipids. The kidney is one of the main organs
affected by this disease and, recently, there have been more studies conducted on renal
injury caused by hyperlipidemia. Themain pathological mechanism is closely related to
renal lipotoxicity. However, in different kidney cells, the reactionmechanism varies due
to the different affinities of the lipid receptors. At present, it is believed that in addition
to lipotoxicity, hyperlipidemia induced-renal injury is also closely related to oxidative
stress, endoplasmic reticulum stress, and inflammatory reactions, which are the result
ofmultiple factors. Exercise plays an important role in the prevention of various chronic
diseases and recently emerging researches indicated its positive effects to renal injury
caused by hyperlipidemia. However, there are few studies summarizing the effects
of exercise on this disease and the specific mechanisms need to be further explored.
This article summarizes the mechanisms of hyperlipidemia induced-renal injury at the
cellular level anddiscusses theways inwhich exercisemay regulate it. The results provide
theoretical support and novel approaches for identifying the intervention target to treat
hyperlipidemia induced-renal injury.

Subjects Nephrology, Nursing, Nutrition, Obesity, Sports Medicine
Keywords High fat diet, Hyperlipidemia-renal injury, Exercise, Lipotoxicity, Oxidative stress,
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INTRODUCTION
Improved living standards have caused dramatic changes in the diet and lifestyle of modern
populations (An et al., 2020). As a result, hyperlipidemia is becoming more and more
common due to the excessive intake of sugar and fat, combined with a sedentary lifestyle
(Berberich & Hegele, 2022). Hyperlipidemia is a chronic disease marked by abnormal
cholesterol and/or triglycerides (Nelson, 2013). As the disease progresses, hyperlipidemia
can become secondary to atherosclerosis, obesity, coronary heart disease, fatty liver,
stroke, diabetes, hypertension, sudden cardiac death, and other diseases (Afshin et al.,
2017; Barrios et al., 2017). In 2017, approximately 3.9 million people died with high levels
of non-high-density lipoprotein cholesterol, half of which lived in East Asia, Southeast Asia,
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and South Asia (Collaboration, 2020). Approximately 93 million people (≥ 20 years old) in
the United States had abnormal cholesterol in 2021 (Virani et al., 2021). The prevalence of
dyslipidemia among young adults (18–45 years old) is increasing by the year, and abnormal
levels of high-density lipoproteins in the southeast coast of China was 22.9% in 2020 (Zhang
et al., 2020).

Hyperlipidemia damages the internal organs, especially the kidneys. Many studies
have shown that patients with chronic kidney disease often have dyslipidemia, as well
(Attman, Samuelsson & Alaupovic, 1993; Majumdar & Wheeler, 2000). Nearly half of these
patients have abnormally high triglycerides (TG), and about a third have abnormally high
levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (Burst &
Benzing, 2011). In addition, research has shown that TC and LDL-C levels are positively
correlated with proteinuria levels, and negatively correlated with plasma osmotic pressure
in patients with chronic kidney disease (Joven et al., 1996). Hyperalbuminuria and low
plasma osmotic pressure are related to apolipoprotein β (the main protein in LDL-C). The
mechanism of hyperlipidemia-renal injury has become a recent topic of interest to many
researchers. SinceMoorhead et al. (1982) put forward the ‘‘lipid nephrotoxicity hypothesis’’
in 1982, increasing evidence has supported the idea that lipid abnormalities can lead to
glomerulosclerosis and renal interstitial related diseases (Liu, 2011; Tomiyama-Hanayama
et al., 2009). However, the mechanism by which hyperlipidemia causes proteinuria
(Gutwein et al., 2009; Mallela et al., 2019; Zhao et al., 2019), glomerulosclerosis (Hara et
al., 2015), or interstitial disease (Khan et al., 2018; Li et al., 2018) in the kidney is still
contested. At present, it is believed that it may be closely related to endoplasmic reticulum
stress, inflammatory stress, or oxidative stress (Ruan, 2018).

Exercise has been recommended as an auxiliary treatment for many modern chronic
diseases, and may improve the lifestyle of chronic kidney disease patients. Exercise may
regulate blood lipidmetabolism and significantly decrease TG, TC, and LDL-C values (Banz
et al., 2003; Hui et al., 2015). Recently, Qian et al. (2021) found that exercise also protects
against renal damage caused by hyperlipidemia. The effects of exercise on hyperlipidemia-
renal injury have gradually emerged, but the specific mechanism remains to be explored
(Qian et al., 2021; Wang et al., 2021).

Few studies have examined the mechanisms of hyperlipidemia-renal injury in terms of
different kidney cells, which have different functions, and the injury mechanism in the
disease (Kang & Zhang, 2022; Ruan, 2018). Additionally, the role of exercise is not clear
and the regulatory mechanism has only been partially studied (Qian et al., 2021; Wang et
al., 2021). As more patients are afflicted by this disease, it is important to understand the
pathogenesis and pathomechanism of hyperlipidemia-renal injury from the perspective of
different cells in order to find appropriate therapeutic targets. Additionally, the exercise’s
regulatory mechanisms should be fully understood for disease prevention and treatment
purposes in the future.

Therefore, this article summarizes our understanding of hyperlipidemia-renal injury and
the possible regulation mechanism of exercise. The etiology of lipid disorders from macro
lipid deposition to micro renal cells, as well as the impact of the endoplasmic reticulum,
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inflammation, and oxidative stress mechanisms, are described to provide support and new
ideas for researchers, doctors, and caregivers in treating this disease.

SURVEY METHODOLOGY
We searched PubMed, the Web of Science, Embase, Cochrane, the China National
Knowledge Infrastructure, WangFang database, CQVIP and Chinese biomedical literature
in English or Chinese by three searching strategies in the following: 1. ‘‘exercise’’ as subject
heading or its free terms in combinationwith ‘‘hyperlipidemia-renal injury’’ or its free terms
2. ‘‘exercise’’ or its free terms in combination with ‘‘high fat diet/ hyperlipidemia’’ or their
free terms 3. Keywords and subject headings related to ‘‘exercise’’, ‘‘kidney/renal/mesangial
cell/endothelial cell/podocyte/renal tubular epithelial cell’’ and ‘‘lipotoxicity/oxidative
stress/endoplasmic reticulum stress/inflammatory’’ were used (the specific searching
strategies can be found in the supplemental searching strategies). In addition, I would
refer to these references of primary articles. Earlier literature reviews on the mechanisms
of hyperlipidemia-renal injury were not miss either (Gyebi, Soltani & Reisin, 2012; Ruan,
Varghese & Moorhead, 2009).

A high fat diet induces lipid deposition in the kidney
A number of animal experiments have shown that a high fat diet (HFD) can cause renal
lipid deposition, and subsequently, glomerulosclerosis, tubular fibrosis, and other damage
(Szeto et al., 2016; Weihong, Bin & Jianfeng, 2019; Zhou et al., 2022). The study of a HFD
is conducted in two ways in animal models: one way is to add an extra proportion
of cholesterol to the normal feed (Ding et al., 2022), and the other is to increase the
proportion of the energy supply from fat (Jiang et al., 2020). A diet that provides energy
by increasing the percentage of fat is also called a high calorie diet. In the normal diet
group, lipids, proteins and carbohydrates account for 10%, 20%, and 70% of the total
calories, respectively (Jiang et al., 2020). In a high-fat diet, fat, protein and carbohydrate
account for 60%, 15%, and 25% respectively (Li et al., 2022b). In animal models, even a
diet containing 1% cholesterol has been shown to induce kidney damage (Ding et al., 2022).
A low cholesterol concentration is commonly seen in mouse models. Wang et al. (2018)
fed mice a 2.5% cholesterol diet, which resulted in hypercholesterolemia, the proliferation
of renal mesangial cells, vacuolar injury of renal tubules, and peripheral inflammatory
infiltration. However, it is common to add 3%–4% cholesterol to a diet to demonstrate
high-fat kidney injuries in the rat model. Kasiske et al. (1990) added 4% cholesterol to the
diet of rats and fed them for 14 weeks; their results showed that the renal cortex contained
cholesterol esters. Correlation analysis showed that these results were closely related to the
development of glomerulosclerosis (r = 0.90, P < 0.01) and renal tubulointerstitial damage
(r = 0.64, P < 0.05) (Kasiske et al., 1990). In addition, if diet-induced hyperlipidemia is
accompanied by the loss of renal function, which is common in nephrectomy models, it
leads to a significant increase in the severity of glomerular damage. Kim et al. (2009) found
that the rats with HFD containing 4% cholesterol received a unilateral nephrectomy one
month later; the rats in the nephrectomy group had more severe glomerular injuries than
those in the simple high cholesterol diet group. In animal models, a high fat diet also causes
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lipid deposition in kidney tissues in a short period of time. Li et al. (2022b) studied mice
with a high fat diet for 21 weeks, and selected four-time nodes at nine, 13, 17 and 21 weeks.
Their results showed that, compared with the normal diet group, the plasma TC and TG in
the HFD group had significantly increased on the ninth week. The renal histology results
of HE staining showed that lipid droplets in the renal tubulointerstitium also appeared
following the ninth week.

Effect of lipid accumulation on different cells and its transport
mechanism in kidney
There are too many free fatty acids (FFAs) in the plasma of patients with hyperlipidemia
caused by a high-fat diet, leading to the ectopic accumulation of lipids in the kidney
(Bobulescu et al., 2008). When the levels of FFAs are too high in the kidney, its metabolites,
such as fatty acyl coenzyme A and ceramide, will accumulate and lead to renal lipotoxicity
(Kang & Zhang, 2022; Ruan, 2018). Renal lipotoxicity and the local hypoxia of renal tissue
caused by renal extrusion affect renal function (Chade & Hall, 2016). Oxidized low density
lipoprotein (ox-LDL) can also cause a renal lipotoxic reaction (Armesilla & Vega, 1994).
However, the transport mechanism of excessive FFA and ox-LDL is diverse as is their effect
on different kidney cells. The following section introduces the lipotoxic reaction and its
mechanism of different cells in terms of four aspects (four kinds of cells). The lipotoxic
reaction of different cells can be seen in Fig. 1.

Mesangial cells
In 1933, German anatomist Zimmerman (1933) proposed a third kind of cell in the kidney,
after epithelial cells and endothelial cells. He named the cell the mesangial cell, which
means ‘‘container in the middle’’. Mesangial cells not only form capillary walls in the
glomerulus, but also extend to areas outside the glomerulus to form the ‘‘stem’’ of the
glomerulus, which is called extraglomerular mesangium (Lemley & Kriz, 1991). Mesangial
cells and the surrounding matrix form the mesangium, which is an important part of the
glomerulus. Mesangial cells can regulate the circulation of capillaries and affect glomerular
hemodynamics due to their contractile properties similar to smooth muscle cells and a
variety of vasoactive substance receptors (Kurihara & Sakai, 2017; Schlöndorff & Banas,
2009). Mesangial cells also perform endocytosis to remove the protein retained in the
glomerular filter and promote the renewal of glomerular basement membrane (Baud et al.,
1983). With HFD-feeding, mesangial cells will continue to proliferate, causing the secretion
of inflammatory factors and the production of the glomerular matrix (including type IV
collagen, fibronectin, laminin, and other extracellular matrix components) (Chaudhari et
al., 2020; Shotorbani et al., 2020). He et al. (2017) showed that rats fed with a high-fat diet
for 22 weeks showed proteinuria, glomerular hypertrophy, and mesangial cell proliferation
compared with those fed a normal diet. In addition, the expression of interleukin 6 (IL-6)
and tumor necrosis factor α (TNF-α) increased at both the mRNA and protein levels in
the high-fat diet group. A large number of low-density lipoprotein receptors (LDLr) was
also expressed in glomerular mesangial cells (Chen et al., 2007), which can mediate the
endocytosis of low-density lipoproteins (LDL). Several studies have shown that IL-1β can
promote the uptake of ox-LDL in mesangial cells, which causes the excessive synthesis of
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Figure 1 Schematic representation of the lipotoxic reaction of four types of cells in hyperlipidemia-
renal injury.Mesangial cells have inflammatory reaction and foam cells formation. The glycocalyx of en-
dothelial cells was destroyed. The slit diaphragm of podocytes was damaged, and podocytes disappear-
ance, shedding, density decreasing and basement membrane abnormality occur. At the same time, albu-
min cross the damaged glomerular filtration barrier (endothelial cells, basement membrane, podocytes)
and proteinuria is produced. Tubular cells loss their brushes and the cross-sectional area of them enlarge.

Full-size DOI: 10.7717/peerj.15435/fig-1

cell cholesterol and decreased outflow, resulting in an imbalance of cholesterol metabolism
(Liu et al., 2020; Yang et al., 2017a). Therefore, in a high-fat environment, inflammatory
factors also promote the uptake of lipids in mesangial cells, resulting in lipid deposition
and the formation of foam cells, which ultimately lead to glomerulosclerosis (Erbay et al.,
2009).

Bruneval et al. (2002), however, found mesangial dilation in his HFD ApoE-/- rat
model, showing that some glomeruli had obvious diffuse or focal mesangial dilation. Even
if mesangial expansion was found, there was no significant change in the proliferation
of glomerular cells compared with the normal diet group, indicating that there was no
proliferation of glomerular mesangial cells. Moreover, recognizedmarkers of mesangial cell
activation in the HFD group, α-smooth muscle actin, did not change significantly either.
This effect may be due to the difference between mesangial expansion and mesangial
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cell activation (Joles et al., 2000). Mesangial expansion is not only a case of mesangial
proliferation, but may also be the recruitment and activation of macrophages in the
mesangial area (Li et al., 2022a). Bruneval et al. (2002) believed that endothelial cells,
not mesangial cells, in the renal mesangial area were closely related to the recruitment
of macrophages. Macrophage mediated glycolipid toxicity is achieved through the
combination of highly-expressed myeloid related protein-8 (MRP8) and toll-like receptor
4 (TLR4) in target cells. TLR4 is expressed when mesangial cells, endothelial cells, and
podocytes are damaged (Brown et al., 2007; Pawar et al., 2009). Kuwabara et al. (2014)
found that mesangial cells, endothelial cells, and podocytes are involved in the recruitment
of macrophages.

Endothelial cells
Located in the inner wall of blood vessels is a separate layer of cells called endothelium,
which form a barrier between blood and surrounding tissues. The surface area of the human
endothelium is approximately 4,000–7,000 m2, and different endothelium can be divided
into 1–6× 1,013 endothelial cells (Jaffe, 1987). Endothelial cells have different appearances
and functions as a result of their different positions. The glomerular endothelium in the
kidney, like other endothelia, can regulate vascular tension, blood coagulation, and blood
cell transport. In addition, the glomerular endothelial cells are arranged in a continuous
manner and there are many special windows on the surface, with the aperture of 60–80 nm.
The endothelial surface is coveredwith a negatively charged polysaccharide protein complex
gel-like layer, called glycocalyx (Dane et al., 2013). The existence of these special structures is
the reason endothelial cells constitute the first filtration barrier of the glomerulus, with high
permeability to water molecules and selective filtration of other solute molecules (Deen,
Lazzara & Myers, 2001). As cells directly exposed to the blood circulation, glomerular
endothelial cells are vulnerable to pathogenic factors in the blood. This exposure causes
the destruction of the window structure and sugar calyx, reduces the cell’s defenses, and
results in proteinuria. Eventually this leads to primary or secondary glomerular diseases
(Jeansson & Haraldsson, 2006). Hypercholesterolemia can induce or enhance the activation
of endothelial cells, indicating that endothelial cells express cell surface adhesionmolecules,
including VCAM-1 and ICAM-1 (Kułdo et al., 2013). The activation of endothelial cells
induces the proliferation of smooth muscle cells, platelet aggregation, oxidation of low-
density lipoprotein, and atherosclerosis-like changes in the blood vessels (Liao, 2013). Yin
et al. (2016) found that lipids accumulated in the kidney in HFD-mice and believed that
it was related to the disorder in lipid metabolism of glomerular endothelial cells. The
accumulation of lipids may include an increase in the synthesis of cholesterol and fatty
acids and/or a decrease in the outflow of cholesterol. ATP-binding cassette transporter
A1 (ABCA1), known as the gatekeeper of cholesterol reversal, promotes the outflow of
intracellular cholesterol and phospholipids, and plays an important role in the initiation of
HDL production (Attie, 2007;Wang et al., 2001). Previous studies have shown that ABCA1
expression contributes significantly to maintaining cholesterol homeostasis in endothelial
cells. It has atherosclerotic protection in the cholesterol efflux pathway (Vaisman et al.,
2012; Westerterp et al., 2016). Yin et al. (2016) believed that the decreased expression of
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ABCA1 fed with a HFD may be the key factor to link lipid accumulation with renal injury
in the glomerular endothelial cells of mice. Bruneval et al. (2002) believed that a HFD
could cause severe hyperlipidemia and activate glomerular endothelial cells. The activation
of endothelial cells may be involved in the recruitment of monocytes into the mesangial
region and their transformation intomacrophages (Sassy-Prigent et al., 2000). The constant
stimulation of lipid accumulation and foam cell formation may lead to inflammation and
the development of glomerulosclerosis (Bruneval et al., 2002).

Podocytes
Podocytes are regarded as the last gatekeeper of the glomerular filtration barrier. They are
highly differentiated epithelial cells located outside the glomerular basement membrane.
Podocytes are composed of a cell body and many processes that protrude from the cell
body (also known as foot processes (FPs)) (Mundel & Shankland, 2002). The FPs contain a
complicated actin cytoskeleton structure. One part of the FP supports podocytes attached
to the outside of the basement membrane (Kreidberg et al., 1996), and the other part
forms a slit diaphragm (SD) complex, which is considered to be the main limiting site of
plasma protein filtration in the podocytes (Yu et al., 2018). The SD is the smallest and most
vulnerable part of the three glomerular filtration barriers, so it is necessary to maintain
the integrity of podocyte structure and function to prevent glomerular albumin leakage.
Podocytes also secrete type IV collagen and fibronectin, the main components of basement
membrane, as well as matrix metalloproteinases (MMPs) related to extracellular matrix
remodeling (Naylor, Morais & Lennon, 2021). Damage to the podocytes may have the
following results: podocyte disappearance, podocyte shedding, a decrease in podocyte
density, and basement membrane abnormality (Barutta, Bellini & Gruden, 2022).

Podocytes are extremely sensitive to lipid metabolism disorders. Excessive lipid
accumulation in podocytes lead them to express a variety of lipid-related genes as well
as to improve the homeostasis of intracellular lipid metabolism by interfering with the
process of lipid synthesis and decomposition, and uptake and outflow (Wahl, Ducasa &
Fornoni, 2016). Excessive FFA and ox-LDL will affect the lipid metabolism of podocytes.
CD36 is a multifunctional transmembrane glycoprotein that can mediate the uptake
of FFA and ox-LDL (Armesilla & Vega, 1994). It is highly expressed in podocytes, renal
tubular epithelial cells, mesangial cells, endothelial cells, and interstitial macrophages
(Hua et al., 2015; Kennedy et al., 2013; Yang et al., 2017b). CD36 increases the absorption
rate of FFA by promoting intracellular metabolism in podocytes (Xu et al., 2013). When
FFA accumulates in podocytes, the accumulated FFA is trapped in the mitochondrial
matrix, causing increased ROS production and lipid peroxidation, ultimately resulting in
mitochondrial damage and dysfunction (Schrauwen & Hesselink, 2004). At the same time,
the functional marker of the podocytes, called nephrin, decreases. The structure of SD is
damaged and the destruction of the barrier increases the permeability of the podocytes.
The albumin filtration increases, eventually leading to albuminuria (Cui et al., 2015). Sun
et al. (2015) also showed that under a HFD, the abnormal FFA metabolism in podocytes
led to the up-regulation of Smad related pathways, contributing to renal fibrosis and
glomerulosclerosis. In human podocytes, the chemokine CXCL-16 is the main scavenger
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Figure 2 Schematic representation of the mainly mechanism of podocytes in hyperlipidemia-renal in-
jury.Ox-LDL and fatty acids can be captured by CD36 and CXCL-16 separately. Ox-LDL will cause the
expression of nephrin decreased, which leads to the destruction of slit diaphragm and albumin leakage.
Excessive fatty acids will not only destroy slit diaphragm but also cause activation of Smad pathway, ROS
and mis-folded proteins production.

Full-size DOI: 10.7717/peerj.15435/fig-2

receptor of ox-LDL (Gutwein et al., 2009). The accumulation of ox-LDL is captured by
CXCL-16, absorbed in the podocytes, and downregulates the protein expression of nephrin,
thus affecting the rearrangement of the podocyte skeleton structure and increasing the
excretion of albumin (Bussolati et al., 2005). In addition to endothelial cells, ABCA1 also
affects cholesterol efflux in podocytes. Studies have shown that the occurrence of ABCA1
deficiency in podocytes also leads to an increase in the content of cardiolipin (CL),
further resulting in mitochondrial dysfunction (Brooks-Wilson et al., 1999). Therefore,
the down-regulation of ABCA1 expression can be seen in human podocytes with lipid
deposition (Herman-Edelstein et al., 2014). This results in the accumulation of cholesterol
and cardiolipin in mitochondria of podocytes, leading to mitochondrial dysfunction, and
ultimately, to cell apoptosis (Ducasa, Mitrofanova & Fornoni, 2019). Figure 2 shows the
main mechanism of the podocytes.

Renal tubular epithelial cells
Renal tubular epithelial cells (rRTECs) are located in the outer layer of the renal tubules,
and can selectively reabsorb various substances in the tubule fluid through active, passive,
or swallowing functions. In addition, epithelial cells are able to secrete and excrete, playing
a key role in regulating the balance of water, electrolytes, and acid–base, and maintaining
the homeostasis of the internal environment (Kato et al., 2022). The epithelial cells can
obtain lipids from blood circulation and glomerular filtrate simultaneously, is sensitive to
changes in lipid metabolism, and is prone to damage (De Vries et al., 2014). The excessive
accumulation of lipids may cause the flattening of rRTECs, the loss of the brush border,
and tubulointerstitial fibrosis (Sun et al., 2020). Similar to podocytes, CD36 plays an
important role in the lipid metabolism of rRTECs (Okamura et al., 2007). CD36 affects
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lipid metabolism by acting as an ox-LDL receptor. When ox-LDL enters into rRTECs,
it induces the up-regulation of heme oxygenase (an enzyme that is sensitive to oxygen
consumption and reduction in proteinuria nephropathy), causing abnormal intracellular
iron metabolism and cell dysfunction.

Research has focused on the uptake of FFA in rRTECs. Bobulescu et al. (2008) found
that plasma FFA was significantly higher than that of a normal diet group by feeding
two different species of mice with a high-fat diet for 12 weeks. The accumulated fat was
detected in the renal cortex. The cell experiment showed that the higher the concentration
of FFA, the higher the percentage of apoptosis. To further prove the direct effect of fat,
they found that the intracellular lipid deposition was reduced and the cell function was
partially restored by removing FFA from the culture medium (Bobulescu et al., 2009).
rRTECs, a kind of cell with a high energy demand, rely heavily on FFA oxidation for
energy supply (Kang et al., 2015). Research shows that the number of mitochondria in
rRTECs is higher than that in other types of kidney cells (Bhargava & Schnellmann, 2017),
which undoubtedly provides a good structural basis for the biological oxidation of FFA in
mitochondria. The vast majority of plasma FFA is carried by albumin and the unbound
FFA is less than 0.01% (Frayn, Summers & Fielding, 1997). The proximal tubule recycles
albumin bound FFA from the filtrate through macroglobulin- and cubilin-mediated
albumin endocytosis (Birn & Christensen, 2006; Pollock & Poronnik, 2007). Under normal
physiological conditions, FFA carried by recycled albumin contributes to the overall energy
balance of the proximal tubules. When the intake of FFA exceeds the demand for energy
metabolism, FFA is esterified with glycerol and deposited in lipid droplets in the form of
triglycerides. Recent studies have shown that CD36 -/- mice had abnormal blood lipid
and proteinuria, and the expression of macroglobulin did not change (Baines et al., 2012).
Li et al. (2018) also found that the expression levels of CD36 and NLRP3 in the proximal
tubule cells of mice fed with HFD were significantly higher than those in the normal diet
group. In experiments, the activation of NLRP3 inflammatory bodies and cell death were
induced by palmitate (a saturated fatty acid) by blocking CD36, which suggested that
the FFA-induced renal tubulointerstitial damage might be caused by the CD36-NLRP3
inflammatory body pathway. In addition, SLC27 A2 (FATP) also mediates FFA uptake.
FATPs (SLC27) is a transmembrane protein family that includes six family members.
FATP2 was only expressed in the kidney and liver. Its high expression was also detected in
the proximal tubules (Johnson, Stahl & Zager, 2005). Khan et al. (2018) found that FATP2
was located in the apical plasma membrane and cytoplasm of the proximal tubules. When
the proximal tubule cells of Slc27a2 -/- were exposed to albumin-bound palmitate, most
cells were protected from palmitic acid-induced apoptosis. When compared with the wild
type, the daily injection of albumin containing palmitate in Slc27a2 -/- mice showed more
renal tubular epithelial cells and less interstitial fibrosis. Figure 3 shows the mechanism of
rRTECs.

Other mechanisms of renal injury in hyperlipidemia
Since Moorhead et al. (1982) put forward the hypothesis of lipid nephrotoxicity in 1982,
more experimental research has supported this hypothesis. Lipid abnormalities have been
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Figure 3 Schematic representation of the mainly mechanism of rRTECs in hyperlipidemia-renal in-
jury.Ox-LDL can be captured by CD36 and absorbed in the cells, which will cause iron chaos and ROS
production. Fatty acids will transport by FATP and endocytosis. The excess fatty acids in the rRTECs will
finally lead to ER stress and oxidative stress.

Full-size DOI: 10.7717/peerj.15435/fig-3

shown to lead to renal atherosclerosis-like changes such as those in glomerulosclerosis and
tubulointerstitial diseases. A series of reactions secondary to dyslipidemia trigger multiple
mechanisms in the kidney to amplify the damage effect, which includes the activation of
oxidative stress, endoplasmic reticulum stress, and inflammatory stress.

Oxidative stress
Oxidative stress is a state of imbalance between oxidation and antioxidation; the
oxidation reaction is predominant (Qiao, Chen & Zhang, 2023). The mechanism by
which hypercholesterolemia and hyperlipidemia promote systemic oxidative stress is
unclear. Oxidative stress appears in the early stages of renal injury, which is significantly
important for the occurrence and development of high-fat induced renal injury (Scheuer
et al., 2000). Research shows that in the rabbit model of hypercholesterolemia induced
by a high cholesterol diet, the number of polymorphonuclear leucocytes in the plasma,
representing the activity of oxygen free radicals and the malondialdehyde (MDA), a lipid
peroxide product, are significantly higher than those in the normal diet group (Prasad
& Kalra, 1993). These results suggest that more oxygen free radicals are produced in
hypercholesterolemia, resulting in lipid peroxidation damage (Prasad & Kalra, 1993).
Scheuer et al. (2000) also showed that xanthine oxidoreductase (XO) activity in the plasma
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of rats with kidney damage induced by HFD increased compared with the normal diet
group, which indicated that the production of oxygen free radicals increased.

The main source of ROS in cells is the NADPH oxidase protein family. This family
contains seven members. Four of the members (NOX1, NOX2, NADPH oxidase 4, and
NADPH oxidase 5) are considered to be related to renal oxidative stress (Sedeek et al.,
2009). NOX4 may be closely related to ROS production with a HFD (Ruggiero et al., 2011).
The production of excessive ROS may cause kidney damage in terms of three aspects: (1)
it directly acts on DNA, proteins, and lipids to cause damage; (2) it changes the original
LDL into ox-LDL, which is absorbed by various types of cells in the kidney. Ox-LDL
not only induces apoptosis in the kidney through cytotoxicity, but also stimulates the
secretion of a variety of inflammatory factors, leading to the recruitment and activation
of macrophages. In addition, ox-LDL, as an activator of NADPH oxidase, promotes ROS
production and accelerates LDL oxidation to ox-LDL; (3) it attacks the mitochondria and
causes dysfunction.

Some ROS may attack mitochondrial cardiolipin, resulting in the loss of the
mitochondrial cristae structure (Szeto et al., 2016). In addition, in vitro and in vivo evidence
shows that damagedmitochondria leak a large amount of cytochrome c into the cytoplasm.
The reduction of cytochrome c can disrupt the electron transfer from complex III to
complex IV, resulting in increased reverse electron flow and superoxide anion release (Bin
et al., 2017; Kartha et al., 2008).

Mitochondria are vulnerable to ROS attack, as are the sites where ROS is generated.
HFD can cause excessive production of mitochondrial ROS, leading to an increase in
the number of mitochondria splitting into small, fine parts, a decrease in mitochondrial
membrane potential, and the induction of apoptosis (Sun et al., 2020).

Current research shows that the kidney, as a high-energy metabolic organ, is rich
in mitochondria, which normally rely on fatty acid oxidation for their energy supply.
With excessive lipids flowing into the kidney to increase the metabolic load, metabolic
reorganization will occur. In other words, the fatty acid oxidative metabolism is reduced
or impaired, and glycolysis metabolism increases (Cai et al., 2020). This may increase the
aggregation of mitochondrial lipid droplets, promote the destruction of the mitochondrial
cristae structure, and cause mitochondrial swelling (Afshinnia et al., 2019).

Endoplasmic reticulum stress
The endoplasmic reticulum (ER) is involved in protein folding and post-translational
modification. Under normal circumstances, the protein is correctly folded and leaves the
endoplasmic reticulum to travel to the Golgi apparatus and other destinations in the cell.
Under some internal and external factors, proteins are misfolded or not folded in the
endoplasmic reticulum and these proteins accumulate in the endoplasmic reticulum to
produce endoplasmic reticulum stress (Rasheva & Domingos, 2009). The unfolded protein
response (UPR) is a signal and a protective mechanism of ER stress, which can help the ER
process the accumulated misfolded or unfolded proteins to maintain the ER function. In
renal diseases, UPR can maintain the homeostasis of the ER by dynamically increasing the
ER size and volume (Cybulsky, 2017). The role of UPR mainly depends on the synergism
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of three effector proteins-mediated signal pathways, namely inositol-requiring enzyme
1 α (IRE1 α), activating transcription factor 6 (ATF6), and protein kinase RNA like ER
kinase 2 α kinase (PERK). Under normal physiological conditions, these effector proteins
bind to the binding immune protein (BiP) on the ER in an inactive form. Once ER stress
occurs, effector proteins separate from the BiP, prompting these effectors to send signals
to mediate the relevant signal pathways and rebuild ER homeostasis (Cnop, Foufelle &
Velloso, 2012). Hyperlipidemia-related diseases are closely related to the ER stress response.
HK-2 cells represent an ER stress reaction which is manifested as the up-regulation of
the BiP, IRE1 α and PERK-mediated pathway-related proteins when incubated with the
saturated free fatty acid palmitic acid or cholesterol (Qiu et al., 2018). The ER stress caused
by similar lipotoxicity was also verified in the ER of podocytes (Park, Han & Kim, 2017;
Sieber et al., 2010). When severe ER stress occurs and the unfolded protein defense reaction
cannot balance, it will trigger the apoptosis signal pathway. The C/EBP homologous protein
(CHOP) is a specific branch of UPR, which is regulated by a variety of transcription factors
and triggers apoptosis (Zinszner et al., 1998). Compared with the normal group, HK-2 cells
exposed to high concentrations of palmitic acid have increased CHOP expression and ROS
production, decreased cell activity, and an increased percentage of apoptotic cells (Li et
al., 2019). However, research has shown that pro-apoptosis signals were activated in the
renal cortex of HFD mice, and TUNEL positive cells in the kidney were increased (Li et al.,
2019).

Inflammatory stress
Inflammatory factors may participate with lipids to promote the development of renal
injury. Some inflammatorymarkers, such as C-reactive protein (CRP), interleukin-6 (IL-6),
and tumor necrosis factor-α (TNF-α) can be used as a prognostic indicator for patients with
chronic kidney disease (Cachofeiro et al., 2008). Cachofeiro et al. (2008) found that there
were higher levels of plasma CRP, IL-6, and TNF-α in patients with chronic kidney disease
than those with the same age control group, and there was a linear correlation between ox-
LDL and CRP. Carvalho et al. (2012) found that the CRP levels of renal dialysis patients
were higher than in those who were not on dialysis (10.5 ± 6.3 mg/L). These variations
indicate that there is a close relationship between kidney disease and inflammation.
Inflammation may aggravate the severity of hyperlipidemia-induced renal injury by
affecting cholesterol homeostasis, especially LDL-c homeostasis. A retrospective study on
patients with kidney disease showed that with the development of chronic kidney disease,
plasma LDL-c gradually declines to a nearly normal level (Moorhead et al., 1993). Similar
research results were also found in dialysis patients (Liu et al., 2004). The phenomenon
of decreasing plasma LDL-c with increasing disease severity is commonly attributed by
most experts and scholars as inflammation leading to cholesterol redistribution. Cells
maintain the dynamic balance of cholesterol through its synthesis and excretion under
normal physiological conditions. HMGCoA reductase (HMGCoA-R) is a rate-limiting
enzyme for cholesterol synthesis (Sever et al., 2003). Stimulated by inflammatory factors
such as IL-6, IL-1β, and TNF-α, HMGCoA-R activity increases, promotes the mediated
intracellular synthesis of cholesterol, and induces intracellular lipid accumulation and

Chen et al. (2023), PeerJ, DOI 10.7717/peerj.15435 12/32

https://peerj.com
http://dx.doi.org/10.7717/peerj.15435


foam cell formation (Chen et al., 2007; Chen et al., 2014b). Many studies have confirmed
that the mRNA and protein expression of HMGCoA-R in the kidneys of mice increase
in an inflammatory environment (Chen et al., 2014a; Ma et al., 2008; Xu et al., 2011). The
ABCA1 protein plays an important role in cholesterol efflux. Inflammation can promote
the outflow of cholesterol by upregulating the expression of the ABCA1 protein in the
kidney (Liu et al., 2020). Inflammatory stress promotes the increase of cholesterol synthesis
and the decrease of cholesterol efflux, leading to the accumulation of cholesterol from the
blood in the kidney tissue, and finally a decreased level of plasma LDL-c. Therefore, under
the condition of high fat-induced renal injury accompanied by inflammation, cholesterol
is transferred from the circulating plasma to renal tissue by regulating the distribution of
cholesterol.

Regulation mechanism of exercise on hyperlipidemia-renal injury
Exercise training is currently promoted as being safe and feasible for developing a healthier
lifestyle. The 2020 WHO Guide on Physical Activity and Sitting Behavior recommends
that all adults (including people with chronic diseases and disabilities) increase physical
activity and reduce sedentary behavior. The recommendation calls for engaging in no less
than 150 to 300 min of moderate-intensity physical activity per week, or no less than 75
to 150 min of high-intensity physical activity, or a combination of moderate-intensity and
high-intensity aerobic physical activity of the same intensity (Jing et al., 2021).

Exercise therapy is often used as a safe and effective method to improve the lifestyle
of people with hyperlipidemia. In this article we review the four possible mechanisms by
which exercise may address high-fat induced-renal injuries (Fig. 4).

Regulation on energy metabolism
Energy intake typically exceeds the energy expenditure in a high energy diet, resulting in
an energy imbalance. Excess energy is stored in the body as fat. Exercise has been shown
to increase energy expenditure by increasing exercise duration or intensity, leading to a
reduction in excess adiposity. Exercise can change body composition especially in terms
of reducing fat mass. Donnelly et al. (2013) conducted a study of aerobic exercise on
overweight patients for 10 months. The subjects in the exercise group expended 400 kcal
to 600 kcal every week without limiting energy intake. The results showed that overweight
patients in the exercise group lost weight, and their body fat percentage and fat mass
significantly decreased. In addition to aerobic exercise, the meta-analysis of Wewege et al.
(2017) also showed that high-intensity intermittent exercise promoted the reduction of
body fat mass and waist circumference. For people with hypercholesterolemia, exercise
can have a similar effect. Santosa et al. (2007) conducted weight loss training over 24 weeks
for patients with high cholesterol and their visceral fat and subcutaneous fat decreased
significantly. Hawley & Yeo (2013) hypothesized that regular exercise could lead to skeletal
muscle adaptation and promote fat oxidation in the entire body. This increased adaptability
of the skeletal muscle is the ability of muscle tissue to oxidize fat. It is specifically manifested
in the increased oxidation of fat fuel (TG in fat and muscle, and FFAs in the blood), thus
reducing glycogen decomposition. The increased adaptability of skeletal muscle may be
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Figure 4 Schematic representation of regulation mechanism of exercise in hyperlipidemia-renal in-
jury. Exercise will improve hyperlipidemia-renal injury possibly mainly by four aspects: increasing energy
metabolism, alleviating the abnormalities of blood lipid metabolism and reducing the production of ox-
idative stress and inflammatory reaction.

Full-size DOI: 10.7717/peerj.15435/fig-4

due to the effect of regular exercise on mitochondria: exercise increases the volume of the
mitochondria and the activity of enzymes related to fat transport and oxidation (Holloszy
& Coyle, 1984). As a fatty acid transposase, CD36 is also expressed on the mitochondrial
membrane and is closely related to the utilization of fatty acids under endurance exercise
(Smith et al., 2011). McFarlan et al. (2012) found that the respiratory exchange rate (RER)
of skeletal muscle of CD36 -/-mice was higher than that of wild type mice, and the fatty
acid transport rate was lower than that of wild type mice. Holloway et al. (2009) also found
similar findings that the mitochondrial fatty acid oxidation rate was significantly lower in
the CD36 deletion group than in the wild type exercise group. Although its mechanism
is not completely clear, it has been shown that the increase of the mitochondrial CD36
protein is related to an increase of the mitochondrial fatty acid oxidation rate.

Regulation on blood lipid metabolism
Hyperlipidemia is the driving factor of renal injury. However, its abnormal lipidmetabolites
may be improved through exercise training. Many studies have shown that aerobic exercise
can affect lipids metabolism (Banz et al., 2003; Hui et al., 2015; Leon & Sanchez, 2001),
as well as various indicators related to lipid metabolism. Aerobic exercise is a kind of
exercise to train cardiorespiratory endurance by means of fast walking, jogging, cycling,
etc., (Mann, Beedie & Jimenez, 2014). Aerobic exercise can improve the blood lipids values
in patients with hyperlipidemia by reducing the levels of serum TG, TC, and LDL-c, and
increasing the HDL-c levels. HDL-c may be the most easily improved lipid component as
a result of increased physical activity. Banz et al. (2003) used an aerobic training program
(3 times/week on ski style fitness equipment, 85% HRmax, 40 minutes/session) for 10
weeks, and found that HDL-c increased by 13% (from 29.8 to 33.7 mg/dL, p< 0.05). Leon
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& Sanchez (2001) conducted a meta-analysis of aerobic exercise with durations of no less
than 12 weeks (n= 4,700). On average, HDL-c increased by 4.6%. Hui et al. (2015) found
that the level of lipoprotein lipase increased after aerobic exercise, thus contributing to
the synthesis of HDL-c. Moderate intensity aerobic exercise may be effective in increasing
HDL-c to promote the removal of LDL-c. However, in order to directly reduce LDL-c and
TG, exercise intensity needs to be increased. O’Donovan et al. (2005) directly evaluated the
impact of training intensity by controlling the amount of training. A total of 64 previously
sedentary men were randomly assigned to the control group, medium intensity exercise
group (60% VO2max), or high intensity exercise group (80% VO2max). The two exercise
groups completed 400 kcal training three times-a-week for 24 weeks. Significant lipid
improvement for TC (from 6.02 to 5.48 mmol/L), LDL-c (from 4.04 to 3.52 mmol/L),
and non-HDL-c (from 4.58 to 4.04 mmol/L) only occurred in the high-intensity exercise
group.

The regulation mechanism of exercise-related lipoproteins, especially the regulation of
cholesterol, is closely related to the receptors in the reverse cholesterol transport (RCT)
mechanism (Marques et al., 2018). Butcher et al. (2008) showed that aerobic exercise can
change the lipid characteristics of long-term sedentary individuals by increasing their
HDL-c concentrations. This effect may be due to the activation of the PPAR-γ/LXRα
pathway and the positive regulation result from the increased expression of ABCA1 and
ABCG1 proteins. Similar findings were also found in animal experiments. After six weeks
of aerobic training at 65% VO2max, the expression of ABCA1 in the liver of Wistar rats
increased by about 30%, and the concentration of HDL-c, β- HDL and lecithin cholesterol
acyltransferase (LCAT) also increased by about 30% (Ghanbari-Niaki et al., 2007). LCAT
is a vital enzyme in the synthetic process of HDL-c. As a result of the increasement, excess
cholesterol could be removed more effectively via RCT. In summary, various evidence
support that physical activity possible affects the level of HDL-c easily. Perhaps the core
mechanism of the alternation owing to RCT mechanism. As to other lipid components
such as LDL-c and TG, high intensity of exercise may be needed and the evidence is limited.

Regulation on oxidative stress
An increase in oxidative stress is one of the key characteristics of renal injury in
hyperlipidemia. Under normal physiological conditions, the balance between oxidative
stress and antioxidant defense maintains organisms’ stability (Blokhina, Virolainen &
Fagerstedt, 2003). In hyperlipidemic-kidney injury, this increase in oxidative stress is
mainly manifested in the increase of free radicals, which is related to the accumulation
of cholesterol in serum and tissues (Napoli & Lerman, 2001). In addition, the increase of
oxidative stress is also reflected in the upregulation of key regulatory factors of the oxidative
stress response (Loboda et al., 2016).Qian et al. (2021) used ApoE-/-mice to study the effect
of 12 weeks of swimming exercise on high-fat induced renal injury. The results showed
that the expression of NRF2 in renal tissue was significantly higher in the HFD than that of
the normal diet group. After training, the expression of NRF2 decreased, suggesting that
NRF2, as a key regulator of the oxidative stress response, increased the level and expression
of oxidative stress in the HFD group. Exercise can protect against hyperlipidemia-induced
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kidney damage by reducing oxidative stress, which, in turn, reduces the concentration of
plasma superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX). However,
one of the key case mechanisms of hyperlipidemia-renal injury is the excessive production
of ROS. Many studies have shown that exercise can reduce ROS production. Ji et al.
(2018) found that the ROS level in the kidney tissue of SD rats after aerobic training was
significantly lower than that of the control non-exercise group. Similar results were found
by Morris et al. (2009), who showed that the ROS levels in the kidney tissue of rats in the
high aerobic group was significantly lower than those in the low aerobic group. Besides,
Cao et al. (2016) found oxidative stress were attenuated in moderate exercise group, which
may attribute to enhance the level of nitric oxide and offer a protective adaptation by
affecting antioxidant enzyme gene expression in hypertriglyceridemia kidney damage.
Therefore, exercise may play a regulatory role by influencing the production of ROS and
NO production and attenuating the oxidative stress reaction.

Regulation on inflammatory reaction
The above discussion has shown that high fat diet-induced renal injury is accompanied by
inflammation, and that inflammation promotes the transfer of cholesterol from plasma to
tissue. A large number of studies have shown that exercise can improve the inflammatory
reaction and, in turn, the quality of life of patients with chronic kidney disease or those on
renal dialysis (Machado et al., 2017). The results of Ishikawa et al. (2012) suggest that low-
intensity exercise can slow the development of diabetic nephropathy by reducing the level
of urinary albumin, maintaining the number of podocytes, and reducing inflammation.
Liu, Kao & Wu (2019) also found that exercise can alleviate inflammation and improve
metabolic dysfunction. In the hyperlipidemia-renal injury model of Qian et al. (2021),
the renal tissue showed obvious inflammatory infiltration, collagen deposition, and
activation of the fibrosis pathway. However, these effects were significantly alleviated in
the exercise group. Exercise may alleviate inflammation by altering the concentration
of pro-inflammatory (such as TNF-α, IL-6) and anti-inflammatory cytokines (such as
IL-10). The study of Wang et al. (2021) indicated that aerobic exercise may inhibit M1
macrophages (classically activated pathogenic macrophages that can secrete TNF-α,
IL-1β and IL-6, promoting an inflammatory response). In addition to aerobic exercise,
resistance exercise can also inhibit inflammation. Saud et al. (2021) showed that the level
of IL-10 in the renal tissue of rats with chronic kidney disease decreased, while the level
of TNF-α and TGB-β increased after eight weeks of exercise. When compared with the
non-exercise group, all indicators improved and the inflammatory reactionwas alleviated in
the exercise group. Except for regulating these inflammatory cytokines, exercise-associated
changes in anti-inflammatory immune cells had been proved. The proportion of pro-
inflammatory intermediate monocytes decreased in the regular exercise group compared
to non-exercising group (Dungey et al., 2017).Wang et al. (2021) observed a similar change.
They found that in the HFD group, the expression of monocyte chemoattractant protein-1
(MCP-1) increased in the kidney, thus promoting the expression of adhesion molecules
and other inflammatory factors. In addition, NRF2 has a different role in inflammation
from its role in oxidative stress. In the previous literatures about resistance exercise
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(Abreu et al., 2017), the expression of NRF2 mRNA increased after three months’ exercise.
Bishop et al. (2023) thought it was a promising observation for following reasons: (1) NRF2
pathway are usually impaired in those patients with chronic kidney disease or kidney
failure (Kim & Vaziri, 2010). (2) Nuclear-factor Kappa B would be blocked and reducing
the synthesis of inflammatory cytokines such as IL-6 through NRF2 pathway (Ahmed et al.,
2017). Therefore, a variety of exercise patterns may alleviate the inflammatory response by
regulating the inflammatory factors, immune cells and NRF2 pathway.

CONCLUSIONS
The consumption of a high-fat diet is known to cause hyperlipidemia. The excessive
accumulation of plasma lipids eventually leads to the ectopic accumulation of lipids and
damage to the kidney. The mechanism of injury is different in each type of kidney cell due
to the various affinities of their lipid receptors to different lipids. Current research shows
that in addition to the mechanism of lipid toxicity, the hyperlipidemia-renal damage is a
compounded result of oxidative stress, endoplasmic reticulum stress, and an inflammatory
reaction. The research on hyperlipidemia-renal injury has gained momentum since 1982,
however, the related research content is not sufficient. Topics including the signal pathway
and related gene expression of various cellular lipotoxicity mechanisms need to be further
explored. Exercise has played a vital role in treating various chronic diseases as a non-drug
intervention. For patients with hyperlipidemia-renal injury, exercise can not only regulate
the inducing factor of hyperlipidemia, it may also improve the symptoms by regulating
energy metabolism, oxidative stress, and the inflammatory reaction. At present, there
are few studies on improving hyperlipidemia-renal injury by exercise, especially for
lipid metabolism and oxidative stress-related signal pathways in the kidney. Therefore,
we discussed the mechanisms involved in hyperlipidemia-renal injury and the possible
regulatory mechanisms of exercise. These results may provide theoretical support and new
targets for preventing hyperlipidemia-renal injury in the future.
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