

Prediction models of macro-nutrient content in plant organs of *Cucumis melo* in response to soil elements using support vector regression (#77486)

1

First submission

Guidance from your Editor

Please submit by **30 Nov 2022** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

7 Figure file(s)

10 Table file(s)

1 Raw data file(s)

1 Other file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Prediction models of macro-nutrient content in plant organs of *Cucumis melo* in response to soil elements using support vector regression

Abbas Keshtehgar¹, Mahdi Dahmardeh^{Corresp., 1}, Ahmad Ghanbari¹, Issa Khammari¹

¹ Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran

Corresponding Author: Mahdi Dahmardeh
Email address: dr.dahmardeh@uoz.ac.ir

Background. Undoubtedly, the importance of food and food security as one of the present and future challenges are not invisible to anyone. Nowadays, development methods for monitoring the nutrient content and their status in crop products is a ministerial issue for implementing reasonable and logical soil properties management. Modeling as a new method has the capability of evaluating the soil properties of fields so could study the subject of crop yield through soil management. **Methodology.** In the spring of 2020, this study was down as a factorial test in the form of a randomized complete block design with three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control), cow manure (30 t ha^{-1}), sheep manure (30 t ha^{-1}), nanobiomic foliar application (2 l ha^{-1}), silicone foliar application (3 l ha^{-1}), and chemical fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg ha^{-1}). In addition, four levels of vermicompost were considered as the second factor: no vermicompost (control), 5, 10, and 15 t ha^{-1} . Input data sets such as nitrogen, phosphorus, and potassium levels in seeds, fruits, leaves, and roots were calibrated using the SVR structure. **Results.** According to the results, when the data sets of nitrogen, phosphorus, and potassium in fruit, were used as input, the accuracy of these models was higher than 80.0% ($R^2 = 0.807$ for predicting fruit nitrogen; $R^2 = 0.999$ for fruit phosphorus; $R^2 = 0.968$ for fruit potassium). Likewise, the ratio of prediction performance to deviation (RPD) obtained from the models ranged from 2.017 for predicting fruit nitrogen and 5.17 for fruit potassium to 27.95 for fruit phosphorus content. According to the results of the prediction models in response to soil elements, the best soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg^{-1} , and soil potassium from 180 to 320 mg kg^{-1} , which offers a better content in the prediction models. Likewise, the best fruit

nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t ha^{-1} of vermicompost using NPK chemical fertilizers. **Conclusions.** Because the macro-nutrient content in fruit had the highest contribution in prediction than actual values, thus identified as the best model compared to other models in response to soil elements. Based on our findings, the importance of fruit phosphorus was identified as a determinant that strongly influenced melon prediction models. More significant values of soil elements do not affect increasing macro-nutrient content in plant organs, and excessive application may not be economical. Therefore, our studies provide an efficient approach with potentially high accuracy to estimate macro-nutrient content in fruits of *Cucumis melo* in response to soil elements and hence caused a saving in the amount of fertilizer during the growing season.

1 **Prediction models of macro-nutrient content in plant organs**
2 **of *Cucumis melo* in response to soil elements using support**
3 **vector regression**

4 Abbas Keshtehgar¹, Mahdi Dahmardeh¹, Ahmad Ghanbari¹, Issa Khammari¹

5 ¹ Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran

6

7 Corresponding Author:

8 Mahdi Dahmardeh¹

9 University Street, Zabol, Sistan and Baluchestan, 98613-35856, Iran

10 Email address: dr.dahmardeh@uoz.ac.ir

11

12 **Abstract**

13 **Background.** Undoubtedly, the importance of food and food security as one of the present and
14 future challenges are not invisible to anyone. Nowadays, development methods for monitoring
15 the nutrient content and their status in crop products is a ministerial issue for implementing
16 reasonable and logical soil properties management. Modeling as a new method has the capability
17 of evaluating the soil properties of fields so could study the subject of crop yield through soil
18 management.

19 **Methodology.** In the spring of 2020, this study was down as a factorial test in the form of a
20 randomized complete block design with three replications. The first factor was the use of
21 fertilizers in six levels: no fertilizer (control), cow manure (30 t ha^{-1}), sheep manure (30 t ha^{-1}),
22 nanobiomic foliar application (2 l ha^{-1}), silicone foliar application (3 l ha^{-1}), and chemical
23 fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg
24 ha^{-1}). In addition, four levels of vermicompost were considered as the second factor: no
25 vermicompost (control), 5, 10, and 15 t ha^{-1} . Input data sets such as nitrogen, phosphorus, and
26 potassium levels in seeds, fruits, leaves, and roots were calibrated using the SVR structure.

27 **Results.** According to the results, when the data sets of nitrogen, phosphorus, and potassium in
28 fruit, were used as input, the accuracy of these models was higher than 80.0% ($R^2=0.807$ for
29 predicting fruit nitrogen; $R^2=0.999$ for fruit phosphorus; $R^2=0.968$ for fruit potassium).
30 Likewise, the ratio of prediction performance to deviation (RPD) obtained from the models
31 ranged from 2.017 for predicting fruit nitrogen and 5.17 for fruit potassium to 27.95 for fruit
32 phosphorus content. According to the results of the prediction models in response to soil

33 elements, the best soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59
34 mg kg⁻¹, and soil potassium from 180 to 320 mg kg⁻¹, which offers a better content in the
35 prediction models. Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit
36 phosphorus from 15.74 to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t
37 ha⁻¹ of vermicompost using NPK chemical fertilizers.

38 **Conclusions.** Because the macro-nutrient content in fruit had the highest contribution in
39 prediction than actual values, thus identified as the best model compared to other models in
40 response to soil elements. Based on our findings, the importance of fruit phosphorus was
41 identified as a determinant that strongly influenced melon prediction models. More significant
42 values of soil elements do not affect increasing macro-nutrient content in plant organs, and
43 excessive application may not be economical. Therefore, our studies provide an efficient
44 approach with potentially high accuracy to estimate macro-nutrient content in fruits of *Cucumis*
45 *melo* in response to soil elements and hence caused a saving in the amount of fertilizer during the
46 growing season.

47 **Key words** Macro-nutrients, Melon, Prediction model, Soil elements, Support vector regression

48

49 **Introduction**

50 Melon (*Cucumis melo* L.), a member of the *Cucurbitaceae* family, is one of the most important
51 vegetable crops worldwide. The major melon producers are China, Turkey, Iran, India,
52 Kazakhstan, and the United States (FAO, 2018). *Cucumis melo* L. (2n=2x=24) has grown in
53 various geographical areas of Iran from historical times (Munger & Robinson, 1991). Based on
54 archaeological evidence, Iran has been an important center of domestication since 5000 years
55 ago (Bisognin, 2002). It is a common crop consumed by many Iranians, especially during the hot
56 summer. Melon is the most polymorphic species of the cucurbit family, which is particularly true
57 for fruit-related traits (Luan *et al.*, 2010).

58 In most melons that belong to the *Cucurbitaceae* family, nutrient requirements and NPK ratio
59 vary significantly, depending on the melon type and cultivar, soil mineral status, and the crop
60 developmental stage (Deus *et al.*, 2015; Chen *et al.*, 2019). Nitrogen is the most needed mineral
61 nutrient in all cropping systems due to its ministerial role in the biochemical and physiological
62 processes of the plant (Pourranjbari Saghaiesh, Souri & Moghaddam, 2019). Nitrogen is
63 essential during the vegetative phase for the buildup of the adequate canopy and leaf area to
64 ensure yield capacity. However, excess nitrogen availability during the reproductive phase
65 promotes undesired competition between fruit and vegetation that might reduce produce quality
66 (Ferrante *et al.*, 2008). Likewise, phosphorus is another ministerial mineral nutrient that has
67 different roles in plant functional metabolism (Pourranjbari Saghaiesh, Souri & Moghaddam,
68 2019). Thus, phosphorus is mainly required for seedling establishment (root growth) and then at
69 early reproductive steps (bloom and seed development) (Martuscelli *et al.*, 2016; Chen *et al.*,

70 2019). It is a fact that under poor soil conditions, nitrogen and phosphorus fertilizers at low rates
71 can develop plant root growth and BNF efficiency (Pourranjbari Saghaiesh, Souri &
72 Moghaddam, 2019). Also, potassium is most efficient during the later stages of fruit
73 development, supporting sugar translocation and accumulation (Deus *et al.*, 2015; Tränkner,
74 Tavakol & Jákli, 2018).

75 Pourranjbari Saghaiesh, Souri & Moghaddam (2019) investigated the effects of nitrogen (N),
76 phosphorus (P), and potassium (K) levels in the nutrient solution on leaf mineral content and
77 enzyme activity in Khatouni melon (*Cucumis melo* var. *inodorus*) seedlings. According to the
78 findings, the leaf's highest N, P, and K were found at the highest levels in the nutrient solution.

79 Modeling as a new strategy in farm management can improve performance and economic returns
80 by optimizing crop inputs (fertilizers and chemicals) and preserving the environment and energy
81 resources (water resources, etc.). The modeling technique has many benefits, including the
82 capacity to predict numerous soil parameters and perform measurements in labs (Viscarra Rossel
83 *et al.*, 2006) and farms, as well as the absence of chemicals needed (Stenberg *et al.*, 2007).
84 Farming product monitoring also allows farmers to carry out proper farming operations
85 throughout the growing season.

86 Accordingly, data-driven models are needed to efficiently link input data to the desired output
87 (Adeyemi *et al.*, 2018). The benefits of the support vector machine identified over artificial
88 neural networks in many types of research, which has attracted much research attention (Jiang *et*
89 *al.*, 2019). The structure and performance of support vector machines have been the main target
90 of many studies (Roodposhti, Safarrad & Shahabi, 2017).

91 Some researchers have used models such as support vector regression to estimate crop yield in
92 response to soil properties. Zhang *et al.* (2021) suggested a method for organ classification and
93 fruit counting on pomegranate trees based on multi-features fusion and support vector machine.
94 Their experiment results showed that the support vector machine classifier based on color and
95 shape features had an accuracy of 0.75 for fruit and 0.99 for non-fruit.

96 The study of Esfandiarpour-Boroujeni *et al.* (2019) aimed to evaluate the performance of a
97 hybrid particle swarm optimization-imperialist competitive algorithm-support vector regression
98 (PSO-ICA-SVR) method to predict apricot yield and identify important factors in the Abarkuh,
99 Yazd, Iran. The validation results showed that the hybrid algorithm estimated apricot yield with
100 relatively high accuracy (RMSE= 1.737 for training data and RMSE= 2.329 for testing
101 data). Likewise, Jeong *et al.* (2017) estimated the amount of organic matter, available potassium,
102 and soil available phosphorus using support vector machine models. They found that the
103 predicted and actual parameters had a strong correlation.

104 In the investigation of the data mining approach based on the chemical composition of grape skin
105 for quality evaluation and traceability prediction of grapes, a data mining algorithms comparison
106 study of grape-skin samples from five regions of Mendoza, Argentina, and builds classification

107 models capable of predicting provenance based on multi-elemental composition, were
108 developed. Support vector machines (SVM) and random forests (RF) were classifier techniques.
109 The best results were achieved for SVM and RF models, with 84% and 88.9% prediction
110 accuracy, respectively, on the 10-fold cross-validation. The RF variable importance showed that
111 Rb (rubidium) was the most relevant component for prediction (Canizo *et al.*, 2019).

112 Tu *et al.* (2018) investigated tea cultivar classification and biochemical parameter estimation
113 from hyperspectral imagery obtained by UAV. Tea cultivars were classified according to the
114 spectral characteristics of the tea canopies. Furthermore, two major components influencing the
115 taste of tea, tea polyphenols (TP) and amino acids (AA), were predicted. The results showed that
116 the overall accuracy of tea cultivar classification achieved by the support vector machine is
117 higher than 95% with the proper spectral pre-processing method. The best results to predict the
118 TP and AA were achieved by partial least squares regression with standard normal variant
119 normalized spectra, and the ratio of TP to AA—which is one proven index for tea taste—achieved
120 the highest accuracy ($R_{CV}= 0.66$, $RMSE_{CV}= 13.27$) followed by AA ($R_{CV}= 0.62$, $RMSE_{CV}= 1.16$)
121 and TP ($R_{CV}= 0.58$, $RMSE_{CV}= 10.01$).

122 Prediction of active ingredients in *Salvia miltiorrhiza* Bunge. based on soil elements and
123 artificial neural network was performed by Liu *et al.* (2022). This study measured the active
124 ingredients in the roots of *S. miltiorrhiza* and the contents of rhizosphere soil elements from 25
125 production areas in eight provinces in China and used the data to develop a prediction model
126 based on BP (back propagation) neural network. The results showed that the active ingredients
127 had different degrees of correlation with soil macronutrients and trace elements, and the
128 prediction model had the best performance ($MSE= 0.0203, 0.0164$; $R^2= 0.93, 0.94$).

129 Mohamed *et al.* (2021) performed a field experiment to investigate the use of phosphorus
130 fertilizer source in common bean (*Phaseolus vulgaris* L.) cultivated under salinity stress. The
131 response curve of total dry weight to different rates of phosphorus proved that the quadratic
132 model fit better than the linear model for phosphorus sources. The total dry weight was predicted
133 at 1.675 t ha^{-1} for superphosphate and 1.875 t ha^{-1} for urea phosphate when phosphorus using at
134 51.5 kg ha^{-1} , and 42.5 kg ha^{-1} , respectively. In conclusion, the 35.0 kg ha^{-1} phosphorus could be
135 considered the most efficient phosphorus level.

136 According to the studies accomplished is recognized small information on support vector
137 regression models to predict macro-nutrient content in *Cucumis melo* plant organs in response to
138 soil elements. Therefore, the present study aimed to determine: i) regression models to predict
139 macro-nutrient content in *Cucumis melo* plant organs in response to soil elements;
140 ii) determinants of macro-nutrient prediction; iii) the effect of soil elements on macro-
141 nutrient content in plant organs, and iv) optimization of the fertilizer used in a
142 cropping system, taking into account the levels of macro-nutrients in the plant organs and soil
143 elements.

144

145 **Materials and methods**

146 **Geographical location and meteorological information of the test site.** In the spring of 2020,
147 this study was conducted in two Fariman and Zahak counties. Fariman county is situated in
148 Northeastern Iran at 35°70'N and 59°85'E, at an altitude of 1403 meters above sea level, in the
149 hot and dry Mediterranean climates based on the Köppen classification (www.razavimet.ir).
150 Zahak County, too, is situated in Southeastern Iran at 30°89'N and 61°70'E, at an altitude of 483
151 meters above sea level in the hot and dry climates based on the Köppen classification
152 (www.irimo.ir).

153 **Preparation of soil samples.** Before starting the experiment, ten samples were randomly
154 collected from 0 to 30 centimeters in depth to explore the chemical characteristics and
155 composition of the soil components. Table 1 shows the results of the soil sample test.

156 **Experimental design.** This study used the support vector regression (SVR) to predict models of
157 macro-nutrient content in *Cucumis melo* plant organs in response to soil elements affected by
158 different fertilizers as a factorial test in the form of a randomized complete block design with
159 three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control),
160 cow manure (30 t ha⁻¹), sheep manure (30 t ha⁻¹), nanobionic foliar application (2 l ha⁻¹), silicone
161 foliar application (3 l ha⁻¹), and chemical fertilizer from urea, triple superphosphate, and
162 potassium sulfate sources (200, 100, and 150 kg ha⁻¹). In addition, four levels of vermicompost
163 were considered as the second factor: no vermicompost (control), 5, 10, and 15 t ha⁻¹.

164 **Cultivation operation.** Before cultivation and in the fall, 30 t ha⁻¹ cow manure and 30 t ha⁻¹
165 rotted sheep manure were distributed on the field and mixed with soil via disk. To accelerate and
166 complete the decay process portion of 100 kg ha⁻¹ urea was added to livestock manure. Then,
167 vermicompost was distributed and mixed with soil. Vermicompost was prepared using livestock
168 manure and earthworm species in Zahak (Southeastern Iran) from the research farm of Zabol
169 University, Iran, and in Fariman (Northeastern Iran) from the Kaveh Support Services Company
170 in Mashhad, Iran. Table 1 shows the chemical properties and composition of elements in the
171 vermicompost fertilizer and livestock manure samples.

172 Field preparation and sowing occurred in the second half of February when the soil temperature
173 was sufficient (over 20 °C at both locations). The field was immediately laid out as a lister
174 planting so that the depth and width of the furrows were 50 and 60
175 centimeters. Planting was done on both sides of the ridges. The width of the ridges was 3 meters,
176 and the distance between the rows was 70 centimeters. Then, a portion of 100 kg ha⁻¹ urea, 100
177 kg ha⁻¹ triple superphosphate, and 150 kg ha⁻¹ potassium sulfate were distributed and mixed with
178 soil. Native melon seeds of the Khatouni variety were used for sowing. 3 kg ha⁻¹ seed was
179 required.

180 The first irrigation was carried out before seed sowing. The irrigation was gravity-leaky. The
181 seeds germinated using soil moisture and turned green within one week. At this time, the soil
182 was dried, and the second irrigation was carried out. The irrigation was done every five days,
183 except under certain conditions such as high temperatures for several days, which reduced the
184 irrigation distance every three days.

185 In the four-leaf stage, nanobiomic and silicone foliar applications were performed. *Acetobacter*,
186 *bacillus*, *pseudomonas*, *azosporium*, 32% humic acid, 2% folic acid, 0.1% molybdenum, 12%
187 potassium, 0.36% magnesium, 4.3% manganese, 0.36% calcium, 10% zinc, 5.9% iron, and a
188 variety of acids were included in the nanobiomic biofertilizer. The silicon oxide formula is
189 employed as silica acid (H_4SiO_4) in a 30% weight and 36% by volume silicon foliar treatment.

190 **Harvesting operation.** On June 26 in Southeastern Iran (Zahak county) and August 7 in
191 Northeastern Iran (Fariman county), fruit harvesting operations were conducted for one week
192 following physiological ripening and detecting changes in color or latticing on fruits. The
193 samples were put in an Avon Digital (PTN 55, manufactured by Pars Teb Novin, Iran) at 70°C
194 for 48 hours to determine nitrogen, phosphorus, and potassium content, and their dry ash was
195 provided. In the laboratory, nitrogen was investigated using Kjeldahl's (1883) method,
196 phosphorus using Olsen *et al.* (1954) method via spectrophotometer (UV-2100S
197 spectrophotometer, manufactured by Unico Company of America), and potassium using a flame
198 detector (PFP7 spectrophotometer, manufactured by Geno Company of United Kingdom).

199 **Modeling methods**

200 **Support vector machine (SVM).** Boser, Guyon & Vapnik (1992) presented the support vector
201 machine as a learning tool for both regression and classification. Over the next few years, they
202 offered an optimum superficial theory as a linear classifier and used kernel functions to develop
203 non-linear classifiers. Boser, Guyon & Vapnik (1992) developed the fundamental ideas that are
204 now known as the SVM. Finally, in 1995, Vapnik enhanced regression (Vapnik, 1995). The SVR
205 derives from statistical training theory for minimizing the risk structure (Vapnik, 1998). Data
206 classification issues are solved using the SVM classification model, while prediction problems
207 are solved using the SVR model.

208 **Support vector regression (SVR).** The accuracy of the performance function is a ministerial
209 issue in probabilistic modeling approaches-based reliability analysis. The SVR is applied
210 successfully in structural reliability analysis (Dai *et al.*, 2012) using the simulation reliability
211 approaches (Sun *et al.*, 2017) and impotence sampling due to their efficiency and accuracy.
212 Consequently, the hybrid SVR and conjugate form can provide efficient and accurate results of
213 reliability analysis-based spermophagy, thus, the SVR modeling approach to build the structure
214 of the nonlinear relation may be improved the accuracy in predicting the probabilistic model by
215 the input random variables X . The SVR is structured as the below model in equation 1:

216
$$SP = b + \sum_{i=1}^N w_i K(x, x_i) \quad (\text{Eq. 1})$$

217 Where b is bias and $K(x, x_i)$ represents the kernel function for transferring the input variables
218 from real- space into N -dimensional feature space. Generally, the Gaussian kernel function uses
219 for transferring the input data as follows in equation 2 (Brereton & Lloyd, 2010):

220
$$K(x, x_i) = \exp(-0.5\|x - x_i\|^2 / \sigma^2) \quad (\text{Eq. 2})$$

221 Where σ is the kernel parameter that provides the smoothness of the kernel function, given as σ
222 $=0.5$. w_i is the weight to connect the input random data points in feature space and spermophagy
223 for computing by use of two slack variables ξ_i, ξ_i^* by the following optimization problem in
224 equation 3 (Lu, 2014):

$$\begin{aligned} \text{Minimise} \quad & \frac{\|\mathbf{w}\|^2}{2} + C \sum_{i=1}^N (\xi_i + \xi_i^*) \\ \text{Subjected to} \quad & \begin{cases} y_i - \langle \mathbf{w} \cdot \mathbf{K}(\mathbf{x}, \mathbf{x}_i) \rangle - b \leq \varepsilon + \xi_i \\ \langle \mathbf{w} \cdot \mathbf{K}(\mathbf{x}, \mathbf{x}_i) \rangle + b - y_i \leq \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* \geq 0 \end{cases} \end{aligned} \quad (\text{Eq. 3})$$

225 In which factor $C \geq 0$ is the regularization coefficient given as $C=500$ and ε is the insensitive loss
226 function given as $\varepsilon = 0.01$ in this study. The ε - insensitive loss function uses to neglect the
227 calibrating process-based SVR when differences between the predicted and observed
228 spermophagy are less than ε schematically shown in Fig. 1-A. The structure of SVR is
229 presented in Fig. 1-B that the input data set (x) such as nitrogen, phosphorus, and potassium in
230 seeds, fruits, leaves, and roots are uses to calibrate the probabilistic model of spermophagy (SP)
231 using SVR.

232 **Identification accuracy.** The means of standard deviation (SD), coefficient of variation (CV),
233 the root of mean square error (RMSE), mean absolute percentage error (MAPE), the ratio of
234 prediction performance to deviation (RPD), Pearson correlation coefficient (R), and coefficient
235 of determination (R^2) used to determine the accuracy of prediction models in this study.

236 **Used software.** Matlab V7.1 software (The Mathworks Inc., Natick, Massachusetts, USA) was
237 used for regression analysis and prediction models of macro-nutrient content in *Cucumis melo*
238 plant organs in response to soil elements. Also, excel software was used for drawing figures of
239 the above-described parameters.

241

242 **Results and discussion**

243 **Investigation of the model predicting plant nitrogen values.** Based on the results, the
244 statistical parameters of actual values input to the model are described in Table 2, and the
245 predicted values obtained from the model are presented in Table 3. In Table 4, the results of
246 fitting the predicted values of nitrogen in seed, fruit, leaf, and the root of the melon compared to
247 actual values in response to soil nitrogen are presented based on the SVR model.

248 According to the estimated parameters, the predicted fruit nitrogen values have the highest
249 accuracy (RMSE= 0.122; MAPE= 7.01) in the model fitting, while the predicted leaf nitrogen
250 values have the lowest accuracy (RMSE= 1.061; MAPE= 31.85). The RPD statistic evaluates the
251 model's performance. Values less than 1.4, between 1.4 and 2, and greater than 2, respectively,
252 show weak, acceptable, and excellent modeling performance (Chang *et al.*, 2001). Accordingly,
253 the fruit nitrogen had an excellent performance (RPD= 2.017) in the model prediction, and the
254 leaf nitrogen had a weak performance (RPD= 0.710). However, it is observed that the regression
255 model obtained from leaf nitrogen values ($R^2= 0.832$; Adjusted $R^2= 0.831$; Beta= 0.912) was the
256 most suitable prediction model followed by fruit nitrogen values ($R^2= 0.807$; Adjusted $R^2=$
257 0.805; Beta= 0.898). In contrast, the model obtained from root nitrogen ($R^2= 0.542$; Adjusted
258 $R^2= 0.539$; Beta= 0.736) had the weakest performance in prediction. The closer these values are
259 to number one, the model indicates the stronger correlation between the predicted values and the
260 actual values. In other words, the regression model obtained from the prediction of leaf and fruit
261 nitrogen can cover or express a higher percentage of actual values. It is also known that the
262 coefficients of each variable are positive, and due to the significant value of each variable being
263 smaller than 0.05 (Sig= 0.000 < 0.05), this is proof of the appropriateness of the obtained
264 models. Any variable with a larger Beta is more important in the regression model. In this way, it
265 is found that leaf nitrogen (Beta= 0.912) followed by fruit nitrogen (Beta= 0.898) will be the best
266 variables for predicting plant nitrogen changes in response to soil nitrogen (Table 4). Seidel *et al.*
267 (2019) used spectrometry to evaluate organic carbon and nitrogen of whole rangeland soils in
268 Germany; these researchers used a simple regression model to estimate these soil properties and
269 assessed organic carbon and total nitrogen with acceptable accuracy ($R^2= 0.65$ and RPD= 2.7)
270 and excellent accuracy ($R^2= 0.87$ and RPD= 2.7), respectively.

271 Table 4 presents the correlation between the actual values in plant organs and their predicted
272 values using the support vector regression method. The results show the high potential of the
273 support vector regression algorithm in predicting the actual values in plant organs. The predictive
274 performance of the support vector regression algorithm for leaf and fruit nitrogen values is better
275 than seed and root nitrogen values.

276 Fitting diagrams for predicted seed, fruit, leaf, and root nitrogen values compared to actual
277 values in response to soil nitrogen are presented in Fig. 2, respectively. The regression line slope
278 of diagrams for investigated plant nitrogen values in the SVR model is presented in these figures.
279 The predicted nitrogen values in leaf and fruit had the lowest distance from the 1:1 line and the

280 best fitting based on these results. The predicted nitrogen values in seed and root had the highest
281 relative distance from the 1:1 line and the lowest accuracy. The scatter of dots in the figures
282 indicates the models' accuracy in predicting the values of nitrogen output. Consequently, it can
283 be found that there is a positive correlation between the data and the model having acceptable
284 accuracy (Fig. 2).

285 Figure 3 presents the diagrams for plant nitrogen changes in response to soil nitrogen values. In
286 general, by increasing soil nitrogen, the nitrogen content of different organs increases to
287 maximize plants' growth. According to the results, the best soil nitrogen ranged between 0.05
288 and 1.1% to obtain the most accurate predictions of the crop's nitrogen content. According to the
289 results of the predictions, the highest increase in crop nitrogen content in response to soil
290 nitrogen content ranged from 3.04 to 9.18% for leaf nitrogen and from 1.27 to 4.33% for fruit
291 nitrogen under NPK chemical fertilizers by using 15 t ha⁻¹ of vermicompost. Then, changes in
292 root nitrogen content were predicted in the range of 1.017 to 2.90 % under NPK chemical
293 fertilizers by 5 t ha⁻¹ of vermicompost. Also, changes in seed nitrogen content ranged from 1.93
294 to 7.39% under cow manure using 15 t ha⁻¹ of vermicompost (Fig. 3).

295 According to the performance evaluation of predicted models, the nitrogen content in leaves and
296 fruits is better than that in seeds and roots, so they were found to be more suitable for crop
297 monitoring. The predictions show that despite the error in soil measurements and the
298 effectiveness of nitrogen values from a combination of different parameters related to the crop,
299 there is a high linear correlation between the crop's nitrogen content and the soil nitrogen values.
300 According to the diagrams, there was a slight difference between the predicted and the actual
301 values. Since the crop's nitrogen content is closely related to soil nitrogen values, the actual
302 values are approximately equal to the estimated nitrogen values. The observed incremental
303 relationship between the crop's nitrogen content and soil nitrogen values is calculated by
304 regression equations as shown in Fig. 3. The results of this study are consistent with those of
305 Dotto *et al.* (2018).

306 Nitrogen is one of the macro-nutrients for plant growth, so determining its amount and changes
307 in organic compounds is critical for evaluating the final fertilizer's value. Fertilization seems to
308 have increased the nitrogen content in seeds, fruits, leaves, and roots. Due to the similar trend of
309 leaf and fruit nitrogen changes, this result indicates that under NPK chemical fertilizers by using
310 15 t ha⁻¹ of vermicompost, followed decomposition process of organic matter by microorganisms
311 and earthworms, thus the nitrogen content of the plant vegetative body has increased, which by
312 improving photosynthesis and retransfer of photosynthetic materials, more nitrogenous
313 compounds have been transferred to the fruit and has increased the percentage of fruit nitrogen.

314 This result is consistent with other research findings. Tang *et al.* (2013) reported that the amount
315 of nitrogen in citrus leaves was significantly related to the amount in the soil. In addition,
316 increasing the yield of bitter cucumber with the application of nitrogen, phosphorus, and
317 potassium fertilizers by Baset Mia *et al.* (2014) has been reported. The findings of other

318 researchers also show the positive effect of vermicompost fertilizer on plant characteristics
319 (Simon & Bababbo, 2015).

320 **Investigation of the model predicting plant phosphorus values.** The statistical parameters of
321 the actual values input to the model are reported in Table 5 and the predicted values obtained
322 from the model as reported in Table 6. Table 7 shows the results of fitting the predicted values of
323 phosphorus in seed, fruit, leaf, and the root of the melon compared to actual values in response to
324 soil phosphorus presented based on the SVR model.

325 The term "regression" refers to obtaining a hyperplane that fits the data. The distance of each dot
326 from this hyperplane indicates the error of that particular dot. According to the predicted results,
327 fruit phosphorus had the lowest error (RMSE= 0.228; MAPE= 0.38%); and leaf phosphorus the
328 highest error values (RMSE= 22.98; MAPE= 90.57%) in the model's fitting. Based on the ratio
329 of performance to deviation results, fruit phosphorous had excellent performance (RPD= 27.95),
330 and leaf phosphorus had weak performance (RPD= 0.208) in model prediction.

331 As can be seen, the regression coefficients calculated for the models obtained from phosphorous
332 in seed, fruit, leaf, and root were 0.997, 0.999, 0.981, and 0.995, respectively. According to the
333 obtained regression coefficients, fruit phosphorous ($R^2= 0.999$) had the highest contribution in
334 prediction than actual values, thus identified as the best model compared to other models. Also,
335 based on the regression coefficients obtained from seed, fruit, leaf, and root phosphorous (0.998,
336 0.999, 0.991, 0.997, respectively), observed that there is a positive and significant linear
337 correlation between the predicted and the actual values, indicating the success of the SVR model
338 in predicting the changes in plant phosphorus compared to the actual values in response to soil
339 phosphorus (Table 7).

340 After investigating the SVR models' accuracy and determining the general correlations between
341 the data, the diagrams for the actual and predicted values of plant organs' phosphorus values
342 were drawn (Fig. 4). The results show reliable modeling for support vector regression in
343 predicting the content of the measured crop elements. The predicting models' performance of the
344 fruit phosphorus is better than leaf, root, and seed phosphorus. The results of the scatter diagram
345 for each feature are presented in Fig. 4. Depending on the figures, actual and predicted values are
346 scattered close to the 1:1 line. Consequently, it found a positive and strong correlation between
347 the data by the high models' accuracy.

348 Figure 5 presents the diagram for changes in plant organs' phosphorus values in response to soil
349 phosphorus. To achieve the optimum results in predicting the crop phosphorus, the most suitable
350 soil phosphorus content was estimated between 10 to 59 mg kg⁻¹. According to the results
351 obtained from the model's prediction, at first, the rate of the release of phosphorus from different
352 fertilizer treatments was slow. However, gradually, after the decomposition of fertilizers used in
353 the experiment by releasing nutrients and increasing the soil phosphorus content up to 38 mg kg⁻¹,
354 the plant organs' phosphorus values increased to their maximum, then slightly decreased and

355 followed at a constant rate. This pattern of changes is almost the same in all fertilizer and
356 vermicompost treatments. Soil phosphorus content of up to 38 mg kg^{-1} will be suitable and
357 sufficient to supply the plant's agronomic needs. More soil phosphorus values do not affect
358 increasing phosphorus content in plant organs, and more applications may not be economical.

359 According to the results, the highest increase in crop phosphorus content in response to soil
360 phosphorus was predicted in the range of 15.74 to 26.19% for fruit phosphorus and 19.44 to
361 27.97% for leaf phosphorus under NPK chemical fertilizers by using 15 t ha^{-1} of vermicompost.
362 After that, changes in root phosphorus were predicted in the range of 15.47 to 25.67% under
363 NPK chemical fertilizers by using 5 t ha^{-1} of vermicompost. Also, changes related to the seed
364 phosphorus were predicted in the range of 18.80 to 28.04% underuse of cow manure by use of 15
365 t ha^{-1} of vermicompost (Fig. 5).

366 It can be found that the amount of soil phosphorus has caused the adjustment and reduction of
367 the error in estimating the predicted values of phosphorus in the model compared to the actual
368 values of plant organs.

369 Phosphorus is also another macro-nutrient that has different roles in plant metabolism
370 (Pourranjbari Saghaiesh, Souri & Moghaddam, 2019). Thus, phosphorus is especially required
371 for seedling establishment (root growth) and later on at early reproductive steps (bloom and seed
372 development) (Martuscelli *et al.*, 2016; Chen *et al.*, 2019).

373 It seems that chemical fertilizers have increased the storage of phosphorus in the soil by
374 providing soil phosphorus. Also, the use of 15 t ha^{-1} of vermicompost in the field has increased
375 the availability of phosphorus in the plant by increasing the decomposition of organic matter and
376 mineralization of phosphorus in organic matter and their conversion into plant usable form.
377 Vermicompost increases phosphorus uptake by increasing phosphorus solubility by activating
378 microorganisms by secreting organic acids or stimulating phosphatase activity (Busato *et al.*,
379 2012). Kakraliya *et al.* (2017), in the study of the nutritional and biological effects of
380 vermicompost on rice, stated that vermicompost increased the availability of nitrogen,
381 phosphorus, and potassium. Vermicompost can also increase the amount of absorbed phosphorus
382 (Jumadi *et al.*, 2014).

383 **Investigation of the model predicting plant potassium values.** The statistical parameters of the
384 actual values input to the model are presented in Table 8, and the predicted values obtained from
385 the model as reported in Table 9. In Table 10, the results of fitting the predicted values of
386 potassium in seed, fruit, leaf, and the root of the melon compared to actual values in response to
387 soil potassium are presented based on the SVR model.

388 The results obtained from the output of the regression models showed that leaf potassium with a
389 coefficient of 0.984 and fruit potassium with a coefficient of 0.968 had the highest coefficient of
390 determination (R^2), respectively, more accurately than other coefficients of determination. The
391 coefficients of determination in root and seed potassium were 0.952 and 0.940, respectively.

392 Accordingly, fruit potassium with the highest ratio of prediction performance to deviation
393 (RPD= 5.174) showed better performance than other potassium values in the root (RPD= 4.420),
394 seed (RPD= 3.577), and leaf (RPD= 0.148), respectively. In addition, in the model fitting, the
395 root of mean square error and the mean absolute percentage error in fruit potassium (RMSE= 0.465; MAPE= 1.77%) are less than the leaf potassium (RMSE= 12.148; MAPE= 132.11%).
396 Based on these results, the regression model obtained from fruit potassium compared to leaf
397 potassium minimized the error coefficients and performed better in estimating the coefficient of
398 determination. It leads to more accuracy of the output models obtained from actual values in the
399 plant organs in response to soil potassium (Table 10).

401 Figure 6 shows the actual values compared to the predicted values around the 1:1 line using the
402 SVR model. As shown in Fig. 6, the data around the 1:1 line are well placed. The significance of
403 the coefficient of determination for the regression line between actual and predicted values in
404 leaf, fruit, root, and seed potassium with coefficients of 0.984, 0.968, 0.952, and 0.940 indicates
405 the appropriate efficiency of this model to describe the trend of crop potassium changes in
406 response to soil potassium (Fig. 6).

407 Figure 7 shows the diagram for changes in crop potassium values in response to soil potassium.
408 To achieve the optimum results in predicting the crop potassium, the most suitable soil
409 potassium ranged from 180 to 320 mg kg⁻¹. According to the obtained results, at the beginning of
410 growth, because of potassium uptake by the plant, soil potassium decreased and showed a
411 downward trend. However, gradually, after the decomposition of fertilizers used in the
412 experiment by releasing nutrients and increasing the soil potassium up to 260-280 mg kg⁻¹, the
413 plant organs' potassium values increased to their maximum, then slightly decreased due to the
414 consumption by plant organs. The potassium increased again and reached its maximum in
415 response to 320 mg kg⁻¹ of soil potassium. Only the amount of leaf potassium continued to
416 decrease, which was probably due to the transfer of nutrients to the fruits and seeds (Fig. 7).

417 Because the potassium in leaf and fruit plays a ministerial role in estimating the crop's potassium
418 content, they identified as the best features in the final prediction of crop potassium values in
419 response to soil potassium. According to the prediction results, the highest increase in crop
420 potassium in response to soil potassium ranged from 15.19 to 19.67% for fruit potassium and
421 1.18 to 11.60% for leaf potassium under the NPK chemical fertilizer and the use of 15 t ha⁻¹
422 vermicompost. After that, changes related to the root potassium values ranged from 9.37 to
423 15.78% under NPK chemical fertilizers and using 5 t ha⁻¹ of vermicompost. Also, the changes
424 related to the seed potassium can be predicted in the range of 14.09 to 18.22% under cow manure
425 and using 15 t ha⁻¹ of vermicompost (Fig. 7).

426 In a study by Xu *et al.* (2016) on the response of rice yield to potassium uptake, these researchers
427 attributed the high yield changes to differences in climatic conditions and soil nutrient supply.

428 One of the main functions of potassium is to activate certain enzymes. Potassium acts more as a
429 soluble ion to maintain cell turgescence in guard cells (Obreza & Morgan, 2011). The use of
430 NPK chemical fertilizer by 15 t ha⁻¹ vermicompost improved the physical and chemical soil
431 properties, improved plant nutritional status, and increased the amount of absorbable potassium
432 in soil and plants. In this regard, researchers such as Sabir *et al.* (2013), as well as Aruda *et al.*
433 (2013), reported that inoculation of corn seeds with growth-promoting bacteria (*Azobacter*,
434 *Azpirillum*, and *Pseudomonas*) increased phosphorus, nitrogen, and potassium content in roots
435 and shoots of the plant.

436 Researchers have stated that available potassium is one of the most important soil factors
437 affecting the yield and quality of Novell orange fruit (Cheng *et al.*, 2016). In this regard, some
438 researchers reported that the use of organic and integrated fertilizers, due to improving the
439 physical and chemical properties of soil and availability and simultaneous release of essential
440 elements with plant needs leads to improved vegetative and reproductive features, which
441 ultimately enhances the crop yield (Fallah, Ghalavand & Raisi, 2013).

442

443 **Conclusions**

444 This study investigates the prediction models of macro-nutrient content in plant organs of
445 *Cucumis melo* in response to soil elements affected by different fertilizers using support vector
446 regression (SVR). Support vector regression can effectively calibrate input data sets such as
447 nitrogen, phosphorus, and potassium in seeds, fruits, leaves, and roots to model (Fig. 1). The
448 results show reliable modeling for support vector regression in predicting the macro-nutrient
449 content in plant organs.

450 According to the results, when the data sets of nitrogen, phosphorus, and potassium in fruit, were
451 used as input, the accuracy of these models was higher than 80.0% ($R^2=0.807$ for predicting
452 fruit nitrogen; $R^2=0.999$ for fruit phosphorus; $R^2=0.968$ for fruit potassium) (Tables 4, 7, 10,
453 respectively). Likewise, the ratio of prediction performance to deviation (RPD) obtained from
454 the models ranged from 2.017 for predicting fruit nitrogen (Table 4) and 5.17 for fruit potassium
455 (Table 10) to 27.95 for fruit phosphorus (Table 7) content. Because the macro-nutrient content in
456 fruit had the highest contribution in prediction than actual values, thus identified as the best
457 model compared to other models in response to soil elements. Based on our findings, the
458 importance of fruit phosphorus was identified as a determinant that strongly influenced melon
459 prediction models.

460 According to the results of the prediction models in response to soil elements, the best soil
461 nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg⁻¹, and soil
462 potassium from 180 to 320 mg kg⁻¹, which offers a better content in the prediction models.
463 Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74
464 to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t ha⁻¹ of vermicompost

465 using NPK chemical fertilizers. More significant values of soil elements do not affect increasing
466 macro-nutrient content in plant organs, and excessive application may not be economical.
467 Therefore, the prediction of macro-nutrient content in fruits of *Cucumis melo* in response to soil
468 elements could have caused a saving in the amount of fertilizer utilized and provided for the
469 possibility of proper farming activities during the growing season.

470

471 Acknowledgements

472 We are grateful to the field technicians at the research farm of Baqiyat-Allah-ul-Azam
473 Agricultural Research Institute of Zabol University, Zahak, Iran, and the faculty members of
474 Zabol University, Zabol, Iran, as well as the field technicians at Fariman, Iran, and the faculty
475 members of Ferdowsi University, Mashhad, Iran, who helped in the fieldwork.

476

477 References

478 **Adeyemi O, Grove I, Peets S, Domun Y, Norton T. 2018.** Dynamic neural network modeling
479 of soil moisture content for predictive irrigation scheduling. *Sensors* **18**:3408

480 <https://doi.org/10.3390/s18103408>

481 **Aruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Maria L, Pasaglia P,
482 Vargas L. 2013.** Screening of rhizobacteria isolated from maize (*Zea mays* L.) in Rio Grande do
483 Sul State (South Brazil) and analysis of their potential to improve plant growth. *Applied Soil
484 Ecology* **63**:15-22 <https://doi.org/10.1016/j.apsoil.2012.09.001>

485 **Baset Mia MA, Serajul Islam Md, Yunus Miah Md, Das MR. 2014.** Flower synchrony,
486 growth and yield enhancement of small type Bitter Gourd (*Momordica charantia*) through plant
487 growth regulators and NPK fertilization. *Pakistan Journal of Biological Sciences* **17(3)**:408-413
488 <https://doi.org/10.3923/pjbs.2014.408.413>

489 **Bisognin DA. 2002.** Origin and evolution of cultivated cucurbits. *Ciência Rural* **32**:715-723
490 <https://doi.org/10.1590/S0103-84782002000400028>

491 **Boser BE, Guyon IM, Vapnik VN. 1992.** A training algorithm for optimal margin classifiers. In:
492 Haussler D, ed. *Proceedings of the 5th Annual ACM Workshop on Computational Learning
493 Theory*. Pittsburgh: ACM Press, 144-152.
494 <https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3818>

495 **Brereton RG, Lloyd GR. 2010.** Support vector machines for classification and regression.
496 *Analyst* **135**:230-267 <https://doi.org/10.1039/B918972F>

497 **Busato JG, Lima LS, Aguiar NO, Canellas LP, Olivares FL. 2012.** Changes in labile
498 phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing
499 and diazotrophic bacteria. *Bioresource Technology* **110**:390-395
500 <https://doi.org/10.1016/j.biortech.2012.01.126>

501 **Canizo Brenda V, Escudero Leticia B, Pellerano Roberto G, Wuilloud Rodolfo G. 2019.**
502 Data mining approach based on chemical composition of grape skin for quality evaluation and
503 traceability prediction of grapes. *Computers and Electronics in Agriculture* **162**:514-522
504 <https://doi.org/10.1016/j.compag.2019.04.043>

505 **Chang CW, Laird DA, Mausbach MJ, Hurburgh CR. 2001.** Near-infrared reflectance
506 spectroscopy-principal components regression analyses of soil properties. *Soil Science Society of
507 America Journal* **65**:480-490 <http://dx.doi.org/10.2136/sssaj2001.652480x>

508 **Chen Y, Zhou X, Lin Y, Ma L. 2019.** Pumpkin yield affected by soil nutrients and the
509 interactions of nitrogen, phosphorus, and potassium fertilizers. *American Society for
510 Horticultural Science* **54**:1831-1835 <https://doi.org/10.21273/HORTSCI14152-19>

511 **Cheng J, Ding C, Li X, Zhang T, Wang X. 2016.** Soil quality evaluation for navel orange
512 production systems in central subtropical China. *Soil and Tillage Research* **155**:225-232
513 <https://doi.org/10.1016/j.still.2015.08.015>

514 **Dai H, Zhang H, Wang W, Xue G. 2012.** Structural reliability assessment by local
515 approximation of limit state functions using adaptive markov chain simulation and support
516 vector regression. *Computer-Aided Civil and Infrastructure Engineering* **27**(9):676-686
517 <http://dx.doi.org/10.1111/j.1467-8667.2012.00767.x>

518 **Deus JALD, Soares I, Neves, JCL, Medeiros JFD, Miranda FRD. 2015.** Fertilizer
519 recommendation system for melon based on nutritional balance. *Revista Brasileira de Ciência do
520 Solo* **39**:498-511 <https://doi.org/10.1590/01000683rbcs20140172>

521 **Dotto AC, Dalmolin RSD, Ten Caten A, Grunwald S. 2018.** A systematic study on the
522 application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction
523 of soil organic carbon by Vis-NIR spectra. *Geoderma* **314**:262-274
524 <http://dx.doi.org/10.1016/j.geoderma.2017.11.006>

525 **Esfandiarpour-Boroujeni I, Karimi E, Shirani H, Esmaeilizadeh M, Mosleh Z. 2019.** Yield
526 prediction of apricot using a hybrid particle swarm optimization-imperialist competitive
527 algorithm- support vector regression (PSO-ICA-SVR) method. *Scientia Horticulturae*
528 **257**:108756 <https://doi.org/10.1016/j.scienta.2019.108756>

529 **Fallah S, Ghalavand A, Raisi F. 2013.** Soil chemical properties and growth and nutrient uptake
530 of maize grown with different combinations of broiler litter and chemical fertilizer in a

531 calcareous soil. *Communications in Soil Science and Plant Analysis* **44**(21):3120-3136
532 <https://doi.org/10.1080/00103624.2013.832284>

533 **Ferrante A, Spinardi A, Maggiore T, Testoni A, Gallina PM. 2008.** Effect of nitrogen
534 fertilization levels on melon fruit quality at the harvest time and during storage. *Journal of the*
535 *Science of Food and Agriculture* **88**:707-713 <https://doi.org/10.1002/jsfa.3139>

536 **Food and Agriculture Organization. 2018.** FAOSTAT agricultural database.
537 <http://faostat.fao.org/site/339/default.aspx>

538 **Jeong G, Oeverdieck H, Park SJ, Huwe B, Lie M. 2017.** Spatial soil nutrients prediction using
539 three supervised learning methods for assessment of land potentials in complex terrain. *Catena*
540 **154**:73-84 <https://doi.org/10.1016/j.catena.2017.02.006>

541 **Jiang H, Rusuli Y, Amuti T, He Q. 2019.** Quantitative assessment of soil salinity using multi-
542 source remote sensing data based on the support vector machine and artificial neural network.
543 *International Journal of Remote Sensing* **40**:284-306
544 <https://doi.org/10.1080/01431161.2018.1513180>

545 **Jumadi O, Hiola SF, Hala Y, Norton J, Inubushi K. 2014.** Influence of Azolla (*Azolla*
546 *microphylla* Kaulf.) compost on biogenic gas production, inorganic nitrogen and growth of
547 upland kangkong (*Ipomoea aquatica* Forsk.) in a silt loam soil. *Soil Science and Plant Nutrition*
548 **60**(5):722-730 <https://doi.org/10.1080/00380768.2014.942879>

549 **Kakraliya SK, Jat RD, Kumar S, Choudhary KK, Prakash J, Singh LK. 2017.** Integrated
550 nutrient management for improving, fertilizer use efficiency, soil biodiversity and productivity of
551 wheat in irrigated rice wheat cropping system in indo-gangatic plains of India. *International*
552 *Journal of Current Microbiology and Applied Sciences* **6**(3):152-163
553 <http://dx.doi.org/10.20546/ijcmas.2017.603.017>

554 **Kjeldahl J. 1883.** Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New
555 method for the determination of nitrogen in organic substances). *Zeitschrift für analytische*
556 *Chemie* **22**(1):366-383 <https://doi.org/10.1007/BF01338151>

557 **Liu Y, Wang K, Yan Z, Shen X, Yang X. 2022.** Prediction of active ingredients in *Salvia*
558 *miltiorrhiza* Bunge. based on soil elements and artificial neural network. *PeerJ* **10**:e12726
559 <https://doi.org/10.7717/peerj.12726>

560 **Lu CJ. 2014.** Sales forecasting of computer products based on variable selection scheme and
561 support vector regression. *Neurocomputing* **128**:491-499
562 <http://dx.doi.org/10.1016/j.neucom.2013.08.012>

563 **Luan F, Sheng Y, Wang Y, Staub JE. 2010.** Performance of melon hybrids derived from
564 parents of diverse geographic origins. *Euphytica* **173**:1-16 <http://dx.doi.org/10.1007/s10681-009-0110-6>

566 **Martuscelli M, Di Mattia C, Stagnari F, Speca S, Pisante M, Mastrocola D. 2016.** Influence
567 of phosphorus management on melon (*Cucumis melo* L.) fruit quality. *Journal of the Science of
568 Food and Agriculture* **96**:2715-2722 <https://doi.org/10.1002/jsfa.7390>

569 **Mohamed HI, El-Sayed AA, Rady MM, Caruso G, Sekara A, Abdelhamid MT. 2021.**
570 Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of
571 common bean under salinity stress. *PeerJ* **9**:e11463 <https://doi.org/10.7717/peerj.11463>

572 **Munger HM, Robinson RW. 1991.** Nomenclature of *Cucumis melo* L. *Cucurbit Genetics
573 Cooperative Report* **14**:43-44 <https://cucurbit.info/1991/07/nomenclature-of-cucumis-melo-l/>

574 **Obreza TA, Morgan KT. 2011.** *Nutrition of Florida Citrus Trees*. Gainesville: Florida
575 University Press. <http://edis.ifas.ufl.edu/>

576 **Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954.** *Estimation of Available Phosphorous in
577 Soils by Extraction with Sodium Bicarbonate*. Washington D.C: American Department of
578 Agriculture Press.
579 <https://www.worldcat.org/search?q=ti=Estimation%20of%20available%20phosphorus%20in%20soils%20by%20extraction%20with%20sodium%20bicarbonate>.

581 **Pourranjbari Saghaiesh S, Souri MK, Moghaddam M. 2019.** Characterization of nutrients
582 uptake and enzymes activity in Khatouni melon (*Cucumis melo* var. *inodorus*) seedlings under
583 different concentrations of nitrogen, potassium and phosphorus of nutrient solution. *Journal of
584 Plant Nutrition* **42**(2):178-185 <https://doi.org/10.1080/01904167.2018.1551491>

585 **Roodposhti MS, Safarrad T, Shahabi H. 2017.** Drought sensitivity mapping using two one-
586 class support vector machine algorithms. *Atmospheric Research* **193**:73-82
587 <http://dx.doi.org/10.1016/j.atmosres.2017.04.017>

588 **Sabir S, Asghar HN, Kashif SUR, Khan MY, Akhtar MJ. 2013.** Synergistic effect of plant
589 growth promoting rhizobacteria and kinetin on maize. *Journal of Animal and Plant Sciences*
590 **23**(6):1750-1755
591 https://www.researchgate.net/publication/258225454_SYNERGISTIC_EFFECT_OF_PLANT_GROWTH_PROMOTING_RHIZOBACTERIA_AND_KINETIN_ON_MAIZE

593 **Seidel M, Hutengs C, Ludwig B, Thiele-Bruhn S, Vohland M. 2019.** Strategies for the
594 efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral
595 libraries and spiking vs. local calibrations. *Geoderma* **354**:113856
596 <http://dx.doi.org/10.1016/j.geoderma.2019.07.014>

597 **Simon F, Bababbo P. 2015.** Yield performance of sweet corn (*Zea mays*) using vermicompost
598 as a component of balanced fertilization strategy. *International Journal of Chemical,*
599 *Environmental and Biological Sciences* **3**(3):224-227
600 <https://scholar.google.com/scholar?oi=bibs&cluster=16935203685290788510&btnI=1&hl=en>

601 **Stenberg B, Rogstrand G, Bolenius E, Arvidsson J. 2007.** On-line soil NIR spectroscopy:
602 identification and treatment of spectra influenced by variable probe distance and residue
603 contamination. In: Stafford JV, ed. *Precision agriculture '07*. Wageningen: Academic Press,
604 125-131. https://www.researchgate.net/publication/290839132_On-line_soil_NIR_spectroscopy_Identification_and_treatment_of_spectra_influenced_by_variable_probe_distance_and_residue_contamination

607 **Sun ZL, Wang J, Li R. 2017.** LIF: a new kriging based learning function and its application to
608 structural reliability analysis. *Reliability Engineering and System Safety* **157**:152-165
609 <https://doi.org/10.1016/j.ress.2016.09.003>

610 **Tang Y, Peng L, Chun C, Ling L, Fang Y, Yan X. 2013.** Correlation analysis on nutrient
611 element contents in orchard soils and sweet orange leaves in southern Jiangxi province of China.
612 *Acta Horticulturae Sinica* **40**:623-632 <https://www.ahs.ac.cn/EN/Y2013/V40/I4/623>

613 **Tränkner M, Tavakol E, Jákli B. 2018.** Functioning of potassium and magnesium in
614 photosynthesis, photosynthate translocation and photoprotection. *Physiologia Plantarum*
615 **163**:414-431 <https://doi.org/10.1111/ppl.12747>

616 **Tu Y, Bian M, Wan Y, Fei T. 2018.** Tea cultivar classification and biochemical parameter
617 estimation from hyperspectral imagery obtained by UAV. *PeerJ* **6**:e4858
618 <https://doi.org/10.7717/peerj.4858>

619 **Vapnik VN. 1995.** *The Nature of Statistical Learning Theory*. New York, Springer Press.
620 <https://doi.org/10.1007/978-1-4757-2440-0>

621 **Vapnik VN. 1998.** *Statistical Learning Theory*. New York, Wiley Press.
622 <https://www.wiley.com/en-us/Statistical+Learning+Theory-p-9780471030034>

623 **Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad, JO. 2006.**
624 Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for
625 simultaneous assessment of various soil properties. *Geoderma* **131**:59-75
626 <https://doi.org/10.1016/j.geoderma.2005.03.007>

627 **Xu X, He P, Zhao S, Qiu S, Johnstond AM, Zhou W. 2016.** Quantification of yield gap and
628 nutrient use efficiency of irrigated ricein China. *Field Crops Research* **186**:58-65
629 <http://dx.doi.org/10.1016/j.fcr.2015.11.011>

630 **Zhang Ch, Zhang K, Ge L, Zou K, Wang S, Zhang J, Li W. 2021.** A method for organs
631 classification and fruit counting on pomegranate trees based on multi-features fusion and support
632 vector machine by 3D point cloud. *Scientia Horticulturae* **278**:109791
633 <https://doi.org/10.1016/j.scienta.2020.109791>

634

Table 1(on next page)

Chemical properties and composition of elements in the soil, vermicompost fertilizer and livestock manure samples used in the study.

* The values of phosphorus and potassium in the soil are expressed in mg kg^{-1} .

1 Chemical properties and composition of elements in the soil, vermicompost fertilizer and livestock manure samples used in the study
2 were presented according to the methodology described in Methods. The final data is presented in Table 1.

3

4 **Table 1:**

5 **Chemical properties and composition of elements in the soil, vermicompost fertilizer and livestock manure samples used in the**
6 **study.**

Features	Southeastern Iran					Northeastern Iran				
	(Zahak county)					(Fariman county)				
	N (%)	P (%)	K (%)	pH	EC (dS m ⁻¹)	N (%)	P (%)	K (%)	pH	EC (dS m ⁻¹)
Soil	0.03	16.6*	170*	8.12	3.2	0.058	39.5*	193*	7.62	5.02
Cow manure	1.14	0.71	1.10	8.02	3.50	1.33	0.65	1.01	7.50	3.26
Sheep manure	0.94	0.48	0.98	8.05	3.47	1.09	0.79	1.33	7.90	3.20
Vermicompost	1.40	1.02	1.10	8.25	7.5	1.50	1.30	1.20	7.30	6.40

*The values of phosphorus and potassium in the soil are expressed in mg kg⁻¹.

7

Table 2(on next page)

The statistical description of observed values of nitrogen in seeds, fruits, leaves, and roots.

1 The statistical description of observed values of nitrogen in seeds, fruits, leaves, and roots in the study were presented according to the
2 methodology described in Methods. The final data is presented in Table 2.

3

4 **Table 2:**

5 **The statistical description of observed values of nitrogen in seeds, fruits, leaves, and roots.**

Observed N	NO.	Minimum (%)	Maximum (%)	Mean (%)	S.D	C.V
Seed	144	1.44	2.94	2.151	0.407	0.1893
Fruit	144	0.79	1.99	1.233	0.278	0.2258
Leaf	144	2.17	5.48	3.182	0.799	0.2512
Root	144	0.71	1.88	1.043	0.315	0.3023

6

7

Table 3(on next page)

The statistical description of the predicted values of nitrogen in seeds, fruits, leaves, and roots.

1 The statistical description of the predicted values of nitrogen in seeds, fruits, leaves, and roots in the study were presented according to
2 the methodology described in Methods. The final data is presented in Table 3.

3

4 **Table 3:**

5 **The statistical description of the predicted values of nitrogen in seeds, fruits, leaves, and roots.**

Predicted N	NO.	Minimum (%)	Maximum (%)	Mean (%)	S.D	C.V
Seed	144	1.39	2.83	2.136	0.337	0.1576
Fruit	144	0.68	1.94	1.228	0.247	0.2008
Leaf	144	2.13	5.50	3.215	0.753	0.2343
Root	144	0.66	1.85	1.025	0.268	0.2612

6

7

Table 4(on next page)

Evaluating the performance function in predicting nitrogen content in seeds, fruits, leaves, and roots.

1 Evaluating the performance function in predicting nitrogen content in seeds, fruits, leaves, and roots in the study were presented
2 according to the methodology described in Methods. The final data is presented in Table 4.

3

4 **Table 4:**

5 **Evaluating the performance function in predicting nitrogen content in seeds, fruits, leaves, and roots.**

Model N	RMSE	MAPE	RPD	R	R ²	Adjusted R ²	Standardized Beta	t	Sig.
Seed	0.224	6.73%	1.504	0.835**	0.697	0.695	0.835	18.060	0.000
Fruit	0.122	7.01%	2.017	0.898**	0.807	0.805	0.898	24.345	0.000
Leaf	1.061	31.85%	0.710	0.912**	0.832	0.831	0.912	26.519	0.000
Root	0.216	14.02%	1.239	0.736**	0.542	0.539	0.736	12.970	0.000

6

7

Table 5(on next page)

The statistical description of the observed values of phosphorus in seeds, fruits, leaves, and roots.

1 The statistical description of the observed values of phosphorus in seeds, fruits, leaves, and roots in the study were presented
2 according to the methodology described in Methods. The final data is presented in Table 5.

3

4 **Table 5:**

5 **The statistical description of the observed values of phosphorus in seeds, fruits, leaves, and roots.**

Observed P	N	Minimum (%)	Maximum (%)	Mean (%)	S.D	C.V
Seed	144	15.21	46.80	23.916	5.875	0.2456
Fruit	144	10.29	40.88	22.968	6.382	0.2778
Leaf	144	14.60	34.39	24.004	4.818	0.2007
Root	144	9.72	56.55	21.684	7.890	0.3638

6

7

Table 6(on next page)

The statistical description of the predicted values of phosphorus in seeds, fruits, leaves, and roots.

1 The statistical description of the predicted values of phosphorus in seeds, fruits, leaves, and roots in the study were presented
2 according to the methodology described in Methods. The final data is presented in Table 6.

3

4 **Table 6:**

5 **The statistical description of the predicted values of phosphorus in seeds, fruits, leaves, and roots.**

Predicted P	N	Minimum (%)	Maximum (%)	Mean (%)	S.D	C.V
Seed	144	15.18	44.55	23.915	5.822	0.2434
Fruit	144	10.34	40.83	22.955	6.375	0.2777
Leaf	144	14.55	32.85	23.966	4.782	0.1995
Root	144	9.77	55.49	21.705	7.816	0.3601

6

7

Table 7(on next page)

Evaluating the performance function in predicting phosphorus content in seeds, fruits, leaves, and roots.

1 Evaluating the performance function in predicting phosphorus content in seeds, fruits, leaves,
2 and roots in the study were presented according to the methodology described in Methods. The
3 final data is presented in Table 7.

4

5 **Table 7:**

6 **Evaluating the performance function in predicting phosphorus content in seeds, fruits,
7 leaves, and roots.**

Model P	RMSE	MAPE	RPD	R	R ²	Adjusted R ²	Standardized Beta	t	Sig.
Seed	0.334	0.46%	17.455	0.998**	0.997	0.997	0.998	210.486	0.000
Fruit	0.228	0.38%	27.957	0.999**	0.999	0.999	0.999	333.189	0.000
Leaf	22.98	90.57%	0.208	0.991**	0.981	0.981	0.991	86.679	0.000
Root	0.579	0.82%	13.493	0.997**	0.995	0.995	0.997	162.203	0.000

8

9

Table 8(on next page)

The statistical description of the observed values of potassium in seeds, fruits, leaves, and roots.

1 The statistical description of the observed values of potassium in seeds, fruits, leaves, and roots in the study were presented according
2 to the methodology described in Methods. The final data is presented in Table 8.

3

4 **Table 8:**

5 **The statistical description of the observed values of potassium in seeds, fruits, leaves, and roots.**

Observed K	N	Minimum (%)	Maximum (%)	Mean (%)	S.D	C.V
Seed	144	9.62	22.93	14.345	2.686	0.1872
Fruit	144	12.23	22.84	16.831	2.540	0.1509
Leaf	144	5.75	13.80	9.099	1.833	0.2014
Root	144	5.42	19.02	11.916	3.182	0.2670

6

7

Table 9(on next page)

The statistical description of the predicted values of potassium in seeds, fruits, leaves, and roots.

1 The statistical description of the predicted values of potassium in seeds, fruits, leaves, and roots in the study were presented according
2 to the methodology described in Methods. The final data is presented in Table 9.

3

4 **Table 9:**

5 **The statistical description of the predicted values of potassium in seeds, fruits, leaves, and roots.**

Predicted K	N	Minimum (%)	Maximum (%)	Mean (%)	S.D	C.V
Seed	144	9.82	22.73	14.274	2.434	0.1705
Fruit	144	12.43	22.62	16.784	2.406	0.1433
Leaf	144	5.80	13.75	9.096	1.792	0.1970
Root	144	5.47	18.89	11.806	3.106	0.2630

6

7

Table 10(on next page)

Evaluating the performance function in predicting potassium content in seeds, fruits, leaves, and roots.

1 Evaluating the performance function in predicting potassium content in seeds, fruits, leaves, and roots in the study were presented
2 according to the methodology described in Methods. The final data is presented in Table 10.

3

4 **Table 10:**

5 **Evaluating the performance function in predicting potassium content in seeds, fruits, leaves, and roots.**

Model K	RMSE	MAPE	RPD	R	R ²	Adjusted R ²	Standardized Beta	t	Sig.
Seed	0.681	2.39%	3.577	0.970**	0.940	0.940	0.970	47.209	0.000
Fruit	0.465	1.77%	5.174	0.984**	0.968	0.968	0.984	65.425	0.000
Leaf	12.148	132.11%	0.148	0.992**	0.984	0.984	0.992	94.761	0.000
Root	0.703	1.97%	4.420	0.976**	0.952	0.952	0.976	53.122	0.000

6

7

Figure 1

Schematic view of probabilistic model-based SVR. A) Calibrating data with the ε -insensitive loss function. B) Structure of SVR for predictions of spermophagy.

SVR for evaluating the performance function uses to calibrate the probabilistic model of spermophagy (SP) according to the methodology described in Methods. The ε -insensitive loss function uses to neglect the calibrating process-based SVR when differences between the predicted and observed spermophagy are less than `<!--[if !vml]--> <!--[endif]-->` schematically shown in Fig. 1-A. The structure of SVR is presented in Fig. 1-B that the input data set (x) such as nitrogen, phosphorus, and potassium in roots, leaves, seeds, and fruits are used to calibrate the probabilistic model of spermophagy (SP) using SVR.

SVR for evaluating the performance function uses to calibrate the probabilistic model of spermophagy (SP) according to the methodology described in Methods. The ε -insensitive loss function uses to neglect the calibrating process-based SVR when differences between the predicted and observed spermophagy are less than ε schematically shown in Fig. 1-A. The structure of SVR is presented in Fig. 1-B that the input data set (x) such as nitrogen, phosphorus, and potassium in roots, leaves, seeds, and fruits are used to calibrate the probabilistic model of spermophagy (SP) using SVR.

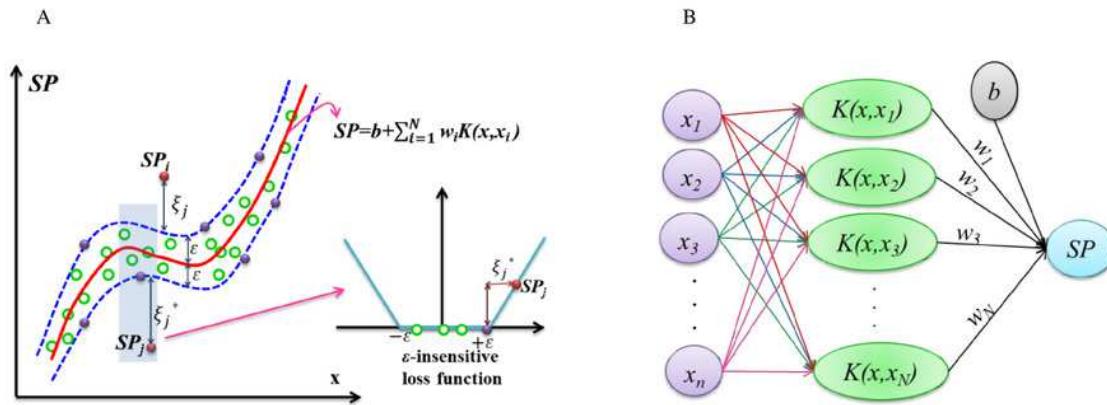


Figure 1: Schematic view of probabilistic model-based SVR.

A) Calibrating data with the ε -insensitive loss function. B) Structure of SVR for predictions of spermophagy.

Figure 2(on next page)

Scatter diagrams of observed and predicted values of nitrogen in response to soil nitrogen.

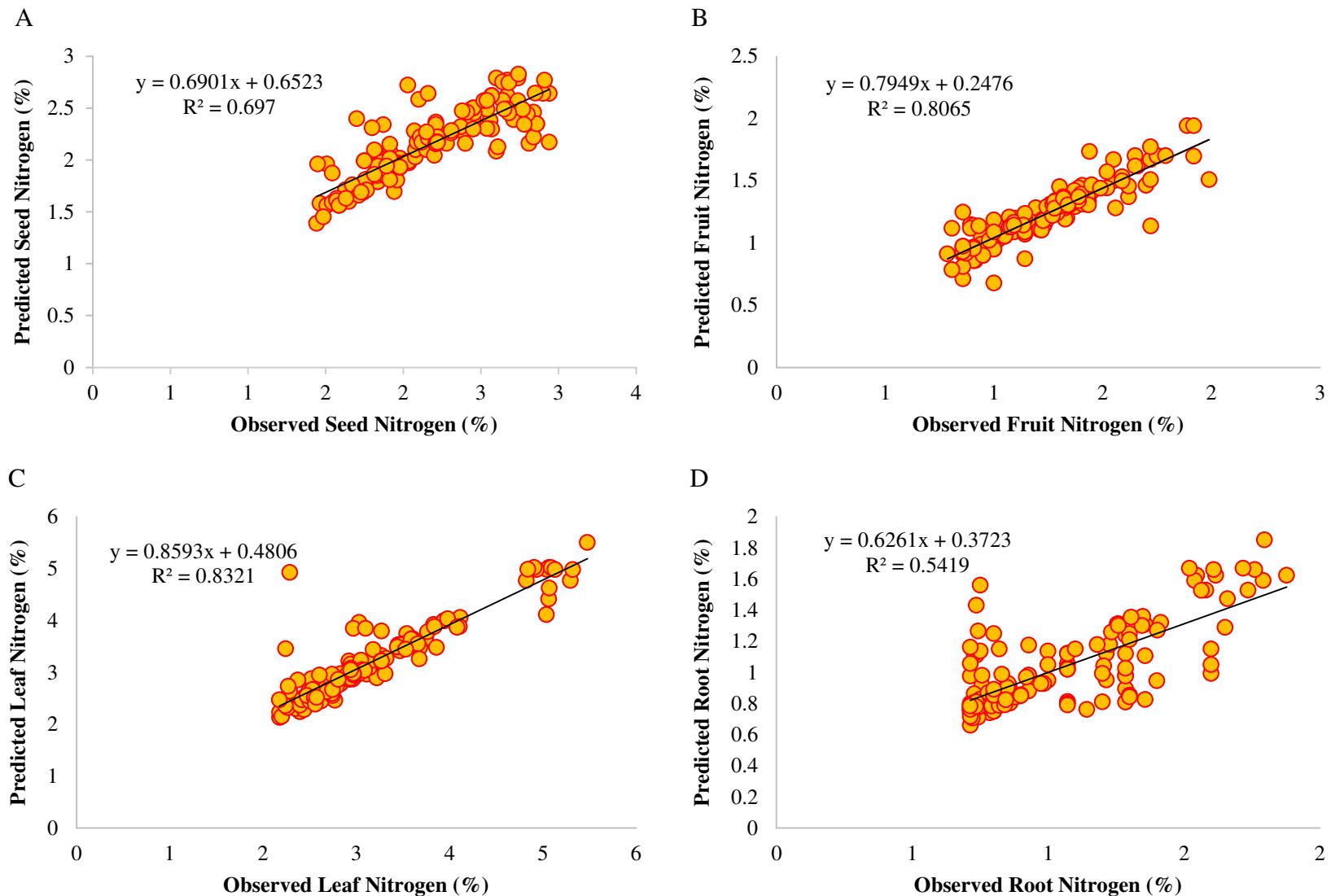


Figure 2: Scatter diagrams of observed and predicted values of nitrogen in response to soil nitrogen.

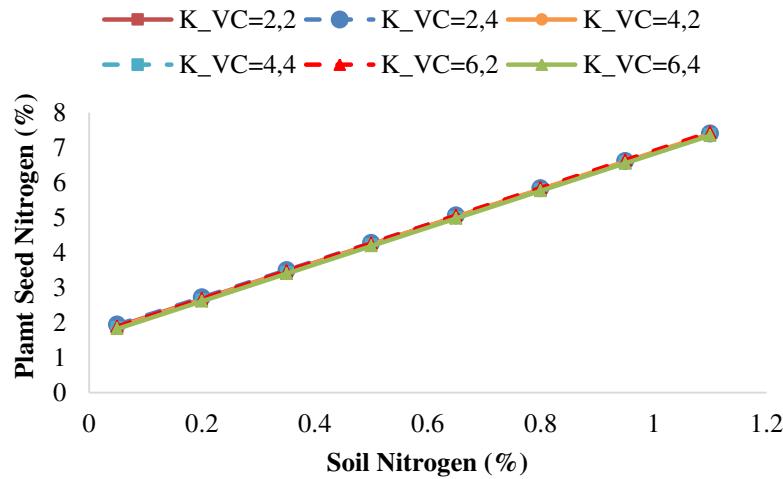
Fitting diagrams for predicted nitrogen content in plant organs of *Cucumis melo* in response to soil nitrogen using support vector regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 2, respectively. The regression line slope of diagrams for investigated plant nitrogen values in the SVR model is presented in these figures.

Figure 3(on next page)

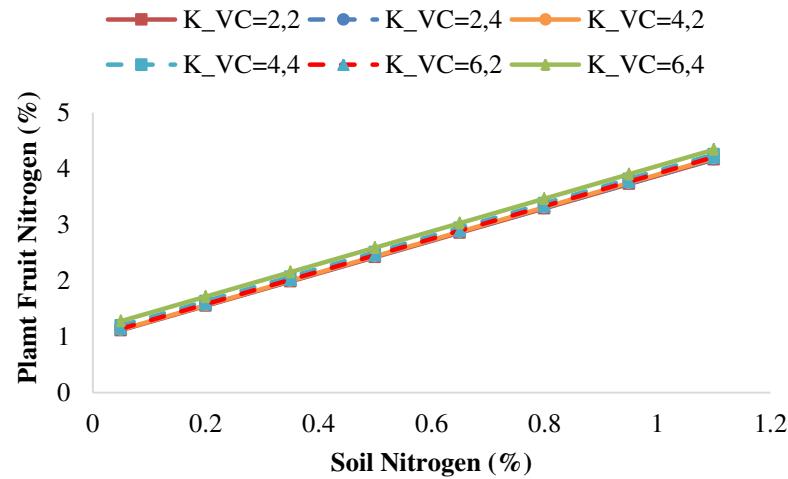
Patterns of changes in the predicted nitrogen values of plant organs in response to soil nitrogen under different fertilizer and vermicompost levels according to the SVR model.

The use of cow manure + 5 t ha^{-1} of vermicompost ($F_{VC} = 2,2$); cow manure + 15 t ha^{-1} of vermicompost ($F_{VC} = 2,4$); Nanobiomic foliar application + 5 t ha^{-1} of vermicompost ($F_{VC} = 4,2$); Nanobiomic foliar application + 15 t ha^{-1} of vermicompost ($F_{VC} = 4,4$); use of chemical fertilizer + 5 t ha^{-1} of vermicompost ($F_{VC} = 6,2$); the use of chemical fertilizer + 15 t ha^{-1} of vermicompost ($F_{VC} = 6,4$).

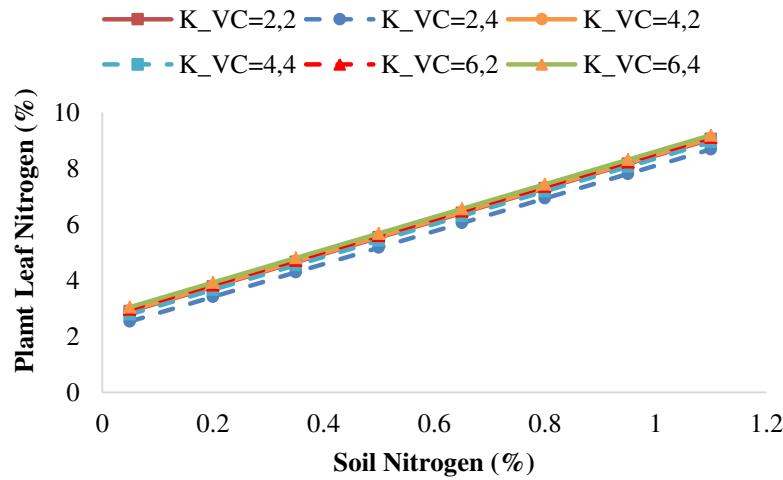
A



B



C



D

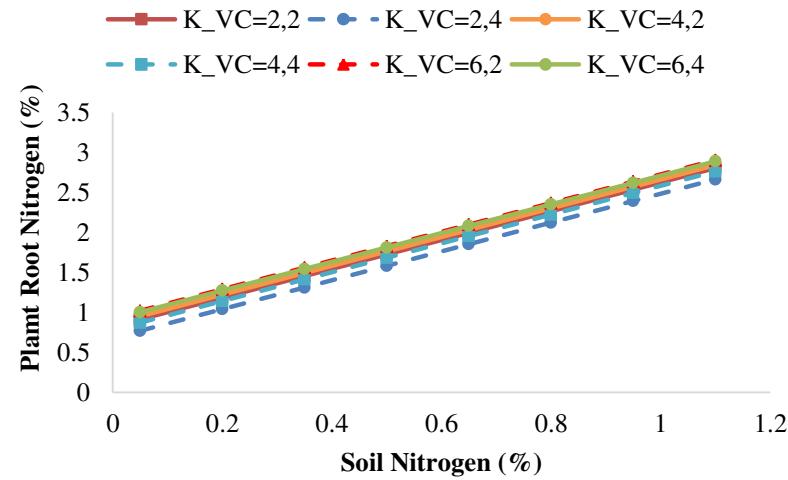


Figure 3: Patterns of changes in the predicted nitrogen values of plant organs in response to soil nitrogen under different fertilizer and vermicompost levels according to the SVR model.

The use of cow manure + 5 t ha⁻¹ of vermicompost (F_VC= 2,2); cow manure + 15 t ha⁻¹ of vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha⁻¹ of vermicompost (F_VC= 4,2); Nanobiomic foliar application + 15 t ha⁻¹ of vermicompost (F_VC= 4,4); use of chemical fertilizer + 5 t ha⁻¹ of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha⁻¹ of vermicompost (F_VC= 6,4).

Changes of nitrogen content in plant organs of *Cucumis melo* in response to soil nitrogen using support vector regression investigated according to the methodology described in Methods. Figure 3 presents the diagrams for plant nitrogen changes in response to soil nitrogen values.

Figure 4(on next page)

Scatter diagrams of observed and predicted values of phosphorus in response to soil phosphorus.

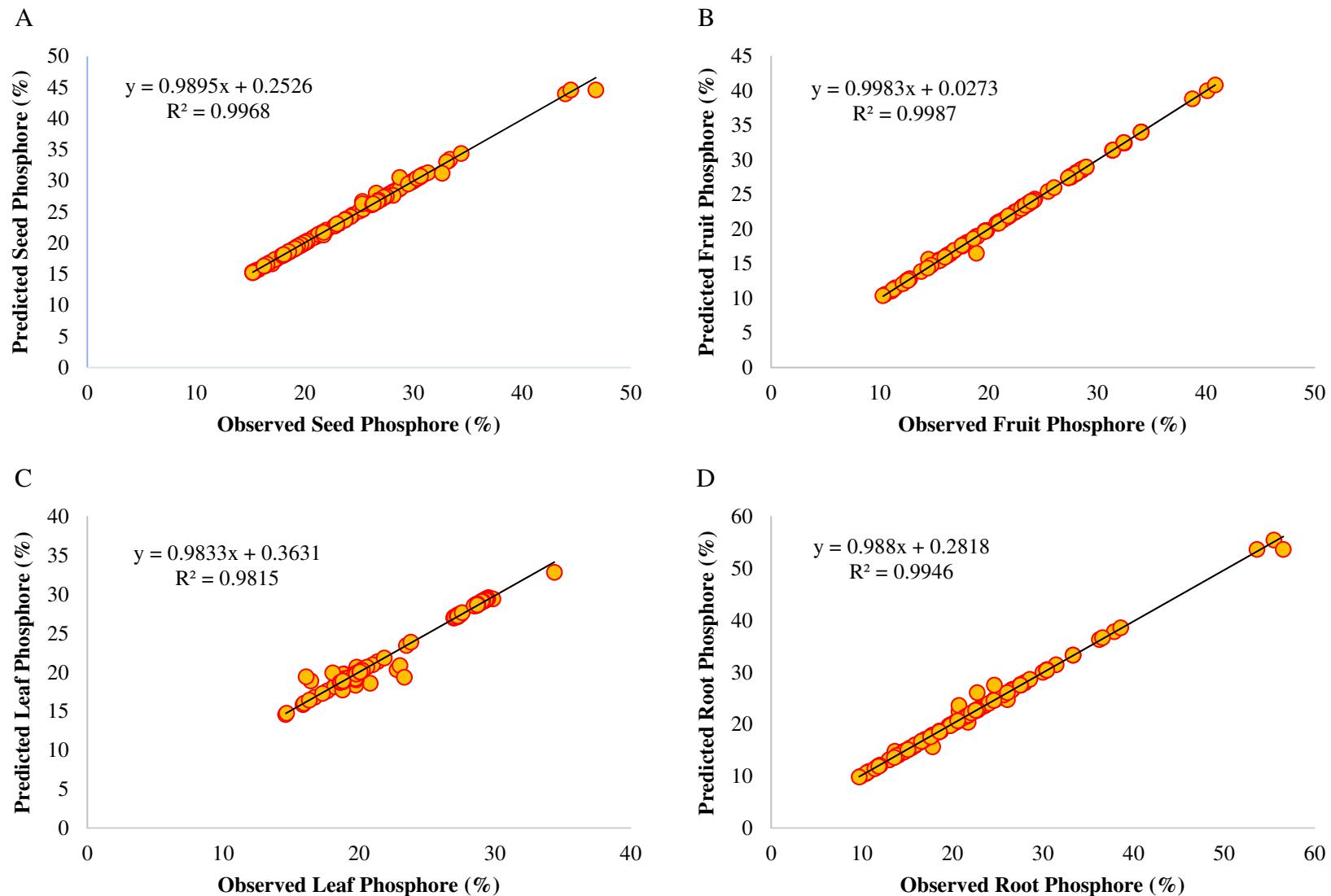


Figure 4: Scatter diagrams of observed and predicted values of phosphorus in response to soil phosphorus.

Fitting diagrams for predicted phosphorus content in plant organs of *Cucumis melo* in response to soil phosphorus using support vector regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 4, respectively. The regression line slope of diagrams for investigated plant phosphorus values in the SVR model is presented in these figures.

Figure 5(on next page)

Patterns of changes in the predicted phosphorus values of plant organs in response to soil phosphorus under different fertilizer and vermicompost levels according to the SVR model.

The use of cow manure + 5 t ha^{-1} of vermicompost ($F_{VC} = 2,2$); cow manure + 15 t ha^{-1} of vermicompost ($F_{VC} = 2,4$); Nanobiomic foliar application + 5 t ha^{-1} of vermicompost ($F_{VC} = 4,2$); Nanobiomic foliar application + 15 t ha^{-1} of vermicompost ($F_{VC} = 4,4$); use of chemical fertilizer + 5 t ha^{-1} of vermicompost ($F_{VC} = 6,2$); the use of chemical fertilizer + 15 t ha^{-1} of vermicompost ($F_{VC} = 6,4$).

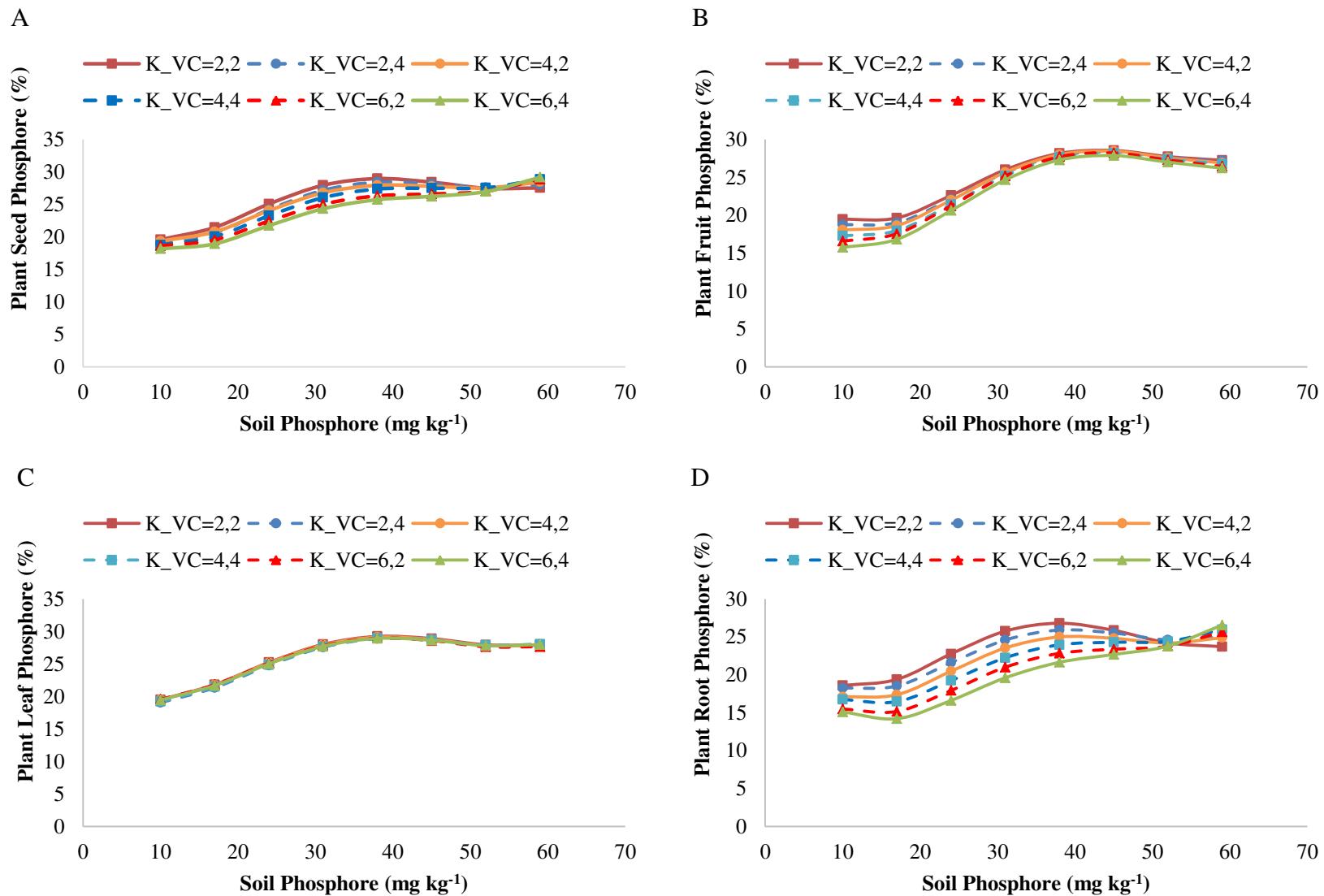


Figure 5: Patterns of changes in the predicted phosphorus values of plant organs in response to soil phosphorus under different fertilizer and vermicompost levels according to the SVR model.

The use of cow manure + 5 t ha⁻¹ of vermicompost (F_VC= 2,2); cow manure + 15 t ha⁻¹ of vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha⁻¹ of vermicompost (F_VC= 4,2); Nanobiomic foliar application + 15 t ha⁻¹ of vermicompost (F_VC= 4,4); use of chemical fertilizer + 5 t ha⁻¹ of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha⁻¹ of vermicompost (F_VC= 6,4).

Changes of phosphorus content in plant organs of *Cucumis melo* in response to soil phosphorus using support vector regression investigated according to the methodology described in Methods. Figure 5 presents the diagrams for plant phosphorus changes in response to soil phosphorus values.

Figure 6(on next page)

Scatter diagrams of observed and predicted values of potassium in response to soil potassium.

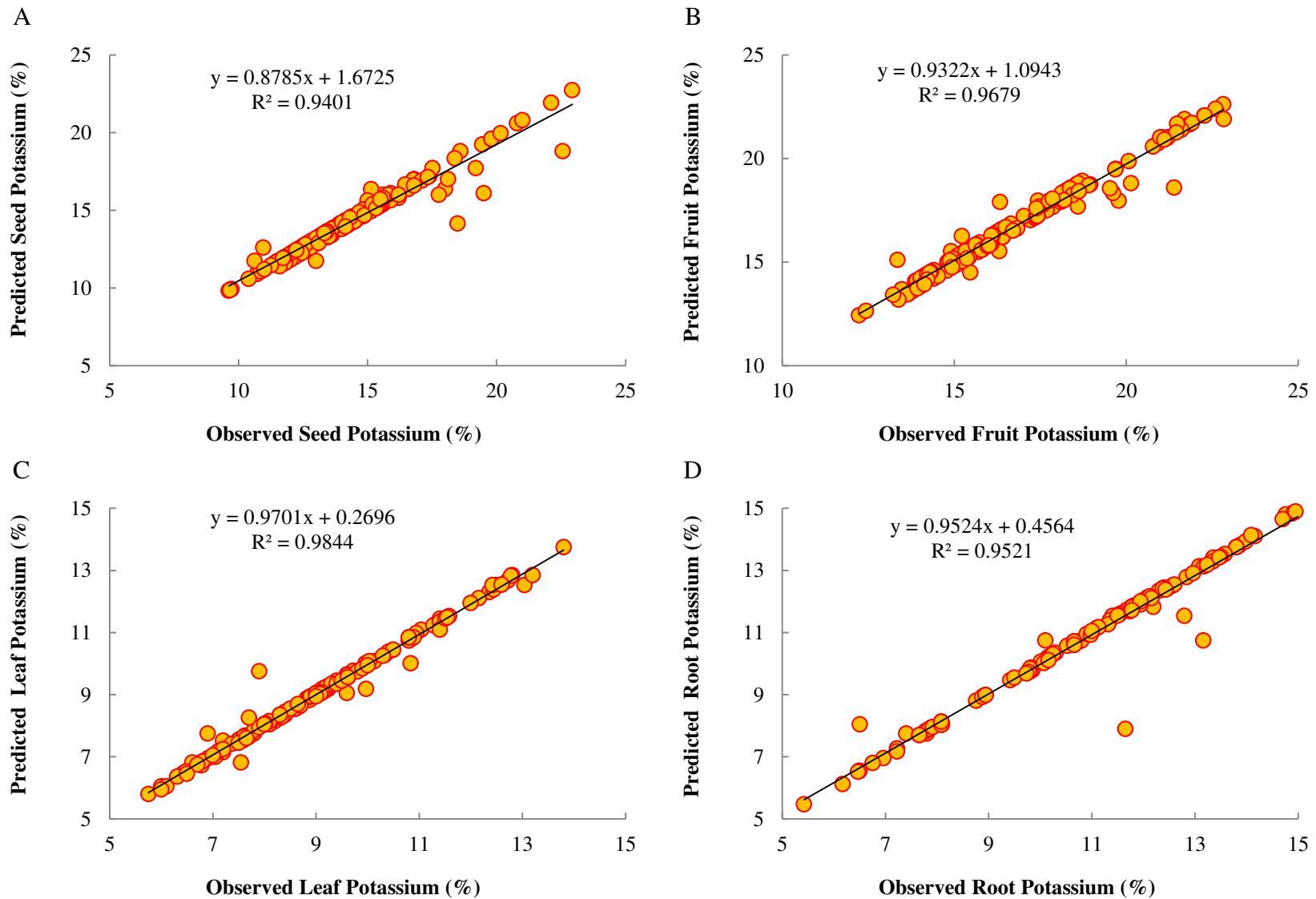


Figure 6: Scatter diagrams of observed and predicted values of potassium in response to soil potassium.

Fitting diagrams for predicted potassium content in plant organs of *Cucumis melo* in response to soil potassium using support vector regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 6, respectively. The regression line slope of diagrams for investigated plant potassium values in the SVR model is presented in these figures.

Figure 7(on next page)

Patterns of changes in the predicted potassium values of plant organs in response to soil potassium under different fertilizer and vermicompost levels according to the SVR model.

The use of cow manure + 5 t ha^{-1} of vermicompost ($F_{VC} = 2,2$); cow manure + 15 t ha^{-1} of vermicompost ($F_{VC} = 2,4$); Nanobiomic foliar application + 5 t ha^{-1} of vermicompost ($F_{VC} = 4,2$); Nanobiomic foliar application + 15 t ha^{-1} of vermicompost ($F_{VC} = 4,4$); use of chemical fertilizer + 5 t ha^{-1} of vermicompost ($F_{VC} = 6,2$); the use of chemical fertilizer + 15 t ha^{-1} of vermicompost ($F_{VC} = 6,4$).

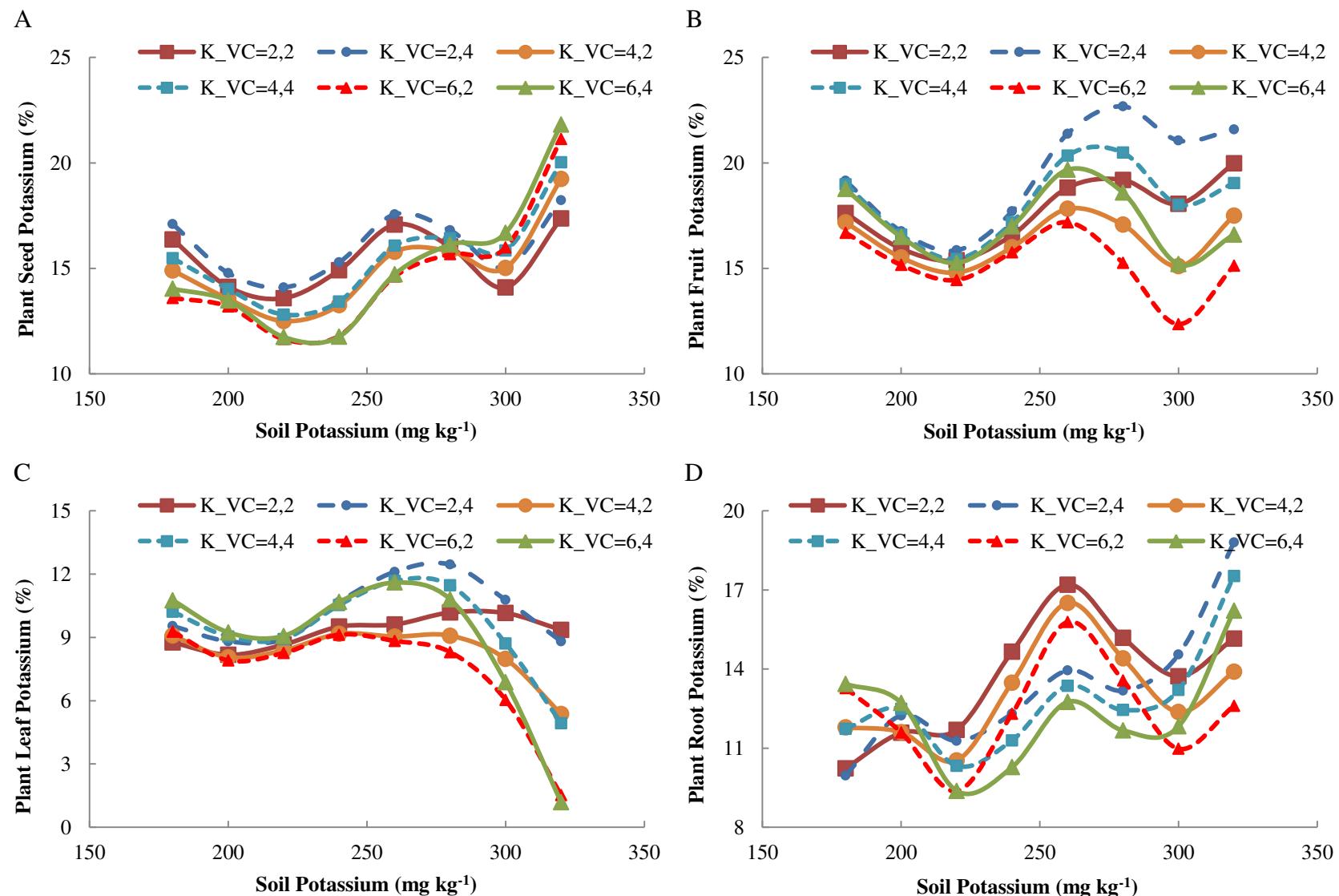


Figure 7: Patterns of changes in the predicted potassium values of plant organs in response to soil potassium under different fertilizer and vermicompost levels according to the SVR model.

The use of cow manure + 5 t ha^{-1} of vermicompost ($F_{VC} = 2,2$); cow manure + 15 t ha^{-1} of vermicompost ($F_{VC} = 2,4$); Nanobiomic foliar application + 5 t ha^{-1} of vermicompost ($F_{VC} = 4,2$); Nanobiomic foliar application + 15 t ha^{-1} of vermicompost ($F_{VC} = 4,4$); use of chemical fertilizer + 5 t ha^{-1} of vermicompost ($F_{VC} = 6,2$); the use of chemical fertilizer + 15 t ha^{-1} of vermicompost ($F_{VC} = 6,4$).

Changes of potassium content in plant organs of *Cucumis melo* in response to soil potassium using support vector regression investigated according to the methodology described in Methods. Figure 7 presents the diagrams for plant potassium changes in response to soil potassium values.