Prediction models of macro-nutrient content in plant
organs of Cucumis melo in response to soil elements
using support vector regression (#77486)

First submission

Guidance from your Editor

Please submit by 30 Nov 2022 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files 7 Figure file(s)
Download and review all files 10 Table file(s)
from the materials page. 1 Raw data file(s)

1 Other file(s)


https://peerj.com/submissions/77486/reviews/1232974/materials/

For assistance email peer.review@peerj.com

Structure and 2
Criteria

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING EXPERIMENTAL DESIGN
Clear, unambiguous, professional English Original primary research within Scope of
language used throughout. the journal.
Intro & background to show context. Research question well defined, relevant
Literature well referenced & relevant. & meaningful. It is stated how the

Structure conforms to Peer] standards, research fills an identified knowledge gap.

discipline norm, or improved for clarity. Rigorous investigation performed to a
high technical & ethical standard.

Figures are relevant, high quality, well
labelled & described. Methods described with sufficient detail &

Raw data supplied (see Peer] policy). information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Conclusions are well stated, linked to
Meaningful replication encouraged where original research question & limited to
rationale & benefit to literature is clearly supporting results.

stated.

All underlying data have been provided;
they are robust, statistically sound, &
controlled.


mailto:peer.review@peerj.com
https://peerj.com/submissions/77486/reviews/1232974/
https://peerj.com/submissions/77486/reviews/1232974/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

Standout
reviewing tips

P

The best reviewers use these techniques
Tip

Support criticisms with
evidence from the text or from
other sources

Give specific suggestions on
how to improve the manuscript

Comment on language and
grammar issues

Organize by importance of the
issues, and number your points

Please provide constructive
criticism, and avoid personal
opinions

Comment on strengths (as well
as weaknesses) of the
manuscript

Example

Smith et al (] of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Your introduction needs more detail. | suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 - the current phrasing makes
comprehension difficult. | suggest you have a colleague
who is proficient in English and familiar with the subject
matter review your manuscript, or contact a professional
editing service.

1. Your most important issue

2. The next most important item
3.

4. The least important points

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as | have noted above) which should be
improved upon before Acceptance.



Peer]

Prediction models of macro-nutrient content in plant organs
of Cucumis melo in response to soil elements using support
vector regression

Abbas Keshtehgar ', Mahdi Dahmardeh ™', Ahmad Ghanbari ', Issa Khammari '

1 ) . .
Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran

Corresponding Author: Mahdi Dahmardeh
Email address: dr.dahmardeh@uoz.ac.ir

Background. Undoubtedly, the importance of food and food security as one of the
present and future challenges are not invisible to anyone. Nowadays, development
methods for monitoring the nutrient content and their status in crop products is a
ministerial issue for implementing reasonable and logical soil properties management.
Modeling as a new method has the capability of evaluating the soil properties of fields so
could study the subject of crop yield through soil management. Methodology. In the
spring of 2020, this study was down as a factorial test in the form of a randomized
complete block design with three replications. The first factor was the use of fertilizers in

six levels: no fertilizer (control), cow manure (30 t ha™), sheep manure (30 t ha),

nanobiomic foliar application (2 | ha™), silicone foliar application (3 | ha™), and chemical
fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and

150 kg ha™). In addition, four levels of vermicompost were considered as the second

factor: no vermicompost (control), 5, 10, and 15 t ha™. Input data sets such as nitrogen,
phosphorus, and potassium levels in seeds, fruits, leaves, and roots were calibrated using
the SVR structure. Results. According to the results, when the data sets of nitrogen,
phosphorus, and potassium in fruit, were used as input, the accuracy of these models was

higher than 80.0% (R*= 0.807 for predicting fruit nitrogen; R*= 0.999 for fruit phosphorus;

R’= 0.968 for fruit potassium). Likewise, the ratio of prediction performance to deviation
(RPD) obtained from the models ranged from 2.017 for predicting fruit nitrogen and 5.17
for fruit potassium to 27.95 for fruit phosphorus content. According to the results of the
prediction models in response to soil elements, the best soil nitrogen content ranged from

0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg™, and soil potassium from 180 to 320

mg kg™, which offers a better content in the prediction models. Likewise, the best fruit
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nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 to 26.19%, and

fruit potassium from 15.19 to 19.67% obtained by 15 t ha™ of vermicompost using NPK
chemical fertilizers. Conclusions. Because the macro-nutrient content in fruit had the
highest contribution in prediction than actual values, thus identified as the best model
compared to other models in response to soil elements. Based on our findings, the
importance of fruit phosphorus was identified as a determinant that strongly influenced
melon prediction models. More significant values of soil elements do not affect increasing
macro-nutrient content in plant organs, and excessive application may not be economical.
Therefore, our studies provide an efficient approach with potentially high accuracy to
estimate macro-nutrient content in fruits of Cucumis melo in response to soil elements and
hence caused a saving in the amount of fertilizer during the growing season.
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Abstract

Background. Undoubtedly, the importance of food and food security as one of the present and
future challenges are not invisible to anyone. Nowadays, development methods for monitoring
the nutrient content and their status in crop products is a ministerial issue for implementing
reasonable and logical soil properties management. Modeling as a new method has the capability
of evaluating the soil properties of fields so could study the subject of crop yield through soil
management.

Methodology. In the spring of 2020, this study was down as a factorial test in the form of a
randomized complete block design with three replications. The first factor was the use of
fertilizers in six levels: no fertilizer (control), cow manure (30 t ha'!), sheep manure (30 t ha'!),
nanobiomic foliar application (2 1 ha'!), silicone foliar application (3 1 ha'!), and chemical
fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg
ha-!). In addition, four levels of vermicompost were considered as the second factor: no
vermicompost (control), 5, 10, and 15 t ha-!. Input data sets such as nitrogen, phosphorus, and
potassium levels in seeds, fruits, leaves, and roots were calibrated using the SVR structure.

Results. According to the results, when the data sets of nitrogen, phosphorus, and potassium in
fruit, were used as input, the accuracy of these models was higher than 80.0% (R>= 0.807 for
predicting fruit nitrogen; R>= 0.999 for fruit phosphorus; R?= 0.968 for fruit potassium).
Likewise, the ratio of prediction performance to deviation (RPD) obtained from the models
ranged from 2.017 for predicting fruit nitrogen and 5.17 for fruit potassium to 27.95 for fruit
phosphorus content. According to the results of the prediction models in response to soil
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elements, the best soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59
mg kg!, and soil potassium from 180 to 320 mg kg!, which offers a better content in the
prediction models. Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit
phosphorus from 15.74 to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t
ha'! of vermicompost using NPK chemical fertilizers.

Conclusions. Because the macro-nutrient content in fruit had the highest contribution in
prediction than actual values, thus identified as the best model compared to other models in
response to soil elements. Based on our findings, the importance of fruit phosphorus was
identified as a determinant that strongly influenced melon prediction models. More significant
values of soil elements do not affect increasing macro-nutrient content in plant organs, and
excessive application may not be economical. Therefore, our studies provide an efficient
approach with potentially high accuracy to estimate macro-nutrient content in fruits of Cucumis
melo in response to soil elements and hence caused a saving in the amount of fertilizer during the
growing season.

Key words Macro-nutrients, Melon, Prediction model, Soil elements, Support vector regression

Introduction

Melon (Cucumis melo L.), a member of the Cucurbitaceae family, is one of the most important
vegetable crops worldwide. The major melon producers are China, Turkey, Iran, India,
Kazakhstan, and the United States (FAO, 2018). Cucumis melo L. (2n=2x=24) has grown in
various geographical areas of Iran from historical times (Munger & Robinson, 1991). Based on
archaeological evidence, Iran has been an important center of domestication since 5000 years
ago (Bisognin, 2002). It is a common crop consumed by many Iranians, especially during the hot
summer. Melon is the most polymorphic species of the cucurbit family, which is particularly true
for fruit-related traits (Luan et al., 2010).

In most melons that belong to the Cucurbitaceae family, nutrient requirements and NPK ratio
vary significantly, depending on the melon type and cultivar, soil mineral status, and the crop
developmental stage (Deus ef al., 2015; Chen et al., 2019). Nitrogen is the most needed mineral
nutrient in all cropping systems due to its ministerial role in the biochemical and physiological
processes of the plant (Pourranjbari Saghaiesh, Souri & Moghaddam, 2019). Nitrogen is
essential during the vegetative phase for the buildup of the adequate canopy and leaf area to
ensure yield capacity. However, excess nitrogen availability during the reproductive phase
promotes undesired competition between fruit and vegetation that might reduce produce quality
(Ferrante et al., 2008). Likewise, phosphorus is another ministerial mineral nutrient that has
different roles in plant functional metabolism (Pourranjbari Saghaiesh, Souri & Moghaddam,
2019). Thus, phosphorus is mainly required for seedling establishment (root growth) and then at
early reproductive steps (bloom and seed development) (Martuscelli ef al., 2016; Chen et al.,
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2019). It is a fact that under poor soil conditions, nitrogen and phosphorus fertilizers at low rates
can develop plant root growth and BNF efficiency (Pourranjbari Saghaiesh, Souri &
Moghaddam, 2019). Also, potassium is most efficient during the later stages of fruit
development, supporting sugar translocation and accumulation (Deus ef al., 2015; Trankner,
Tavakol & Jakli, 2018).

Pourranjbari Saghaiesh, Souri & Moghaddam (2019) investigated the effects of nitrogen (N),
phosphorus (P), and potassium (K) levels in the nutrient solution on leaf mineral content and
enzyme activity in Khatouni melon (Cucumis melo var. inodorus) seedlings. According to the
findings, the leaf's highest N, P, and K were found at the highest levels in the nutrient solution.

Modeling as a new strategy in farm management can improve performance and economic returns
by optimizing crop inputs (fertilizers and chemicals) and preserving the environment and energy
resources (water resources, etc.). The modeling technique has many benefits, including the
capacity to predict numerous soil parameters and perform measurements in labs (Viscarra Rossel
et al., 2006) and farms, as well as the absence of chemicals needed (Stenberg et al., 2007).
Farming product monitoring also allows farmers to carry out proper farming operations
throughout the growing season.

Accordingly, data-driven models are needed to efficiently link input data to the desired output
(Adeyemi et al., 2018). The benefits of the support vector machine identified over artificial
neural networks in many types of research, which has attracted much research attention (Jiang et
al., 2019). The structure and performance of support vector machines have been the main target
of many studies (Roodposhti, Safarrad & Shahabi, 2017).

Some researchers have used models such as support vector regression to estimate crop yield in
response to soil properties. Zhang et al. (2021) suggested a method for organ classification and
fruit counting on pomegranate trees based on multi-features fusion and support vector machine.
Their experiment results showed that the support vector machine classifier based on color and
shape features had an accuracy of 0.75 for fruit and 0.99 for non-fruit.

The study of Esfandiarpour-Boroujeni et al. (2019) aimed to evaluate the performance of a
hybrid particle swarm optimization-imperialist competitive algorithm-support vector regression
(PSO-ICA-SVR) method to predict apricot yield and identify important factors in the Abarkuh,
Yazd, Iran. The validation results showed that the hybrid algorithm estimated apricot yield with
relatively high accuracy (RMSE= 1.737 for training data and RMSE= 2.329 for testing

data). Likewise, Jeong et al. (2017) estimated the amount of organic matter, available potassium,
and soil available phosphorus using support vector machine models. They found that the
predicted and actual parameters had a strong correlation.

In the investigation of the data mining approach based on the chemical composition of grape skin
for quality evaluation and traceability prediction of grapes, a data mining algorithms comparison
study of grape-skin samples from five regions of Mendoza, Argentina, and builds classification

Peer] reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)



PeerJ

107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128

129
130
131
132
133
134
135

136
137
138
139
140
141
142
143

models capable of predicting provenance based on multi-elemental composition, were
developed. Support vector machines (SVM) and random forests (RF) were classifier techniques.
The best results were achieved for SVM and RF models, with 84% and 88.9% prediction
accuracy, respectively, on the 10-fold cross-validation. The RF variable importance showed that
Rb (rubidium) was the most relevant component for prediction (Canizo et al., 2019).

Tu et al. (2018) investigated tea cultivar classification and biochemical parameter estimation
from hyperspectral imagery obtained by UAV. Tea cultivars were classified according to the
spectral characteristics of the tea canopies. Furthermore, two major components influencing the
taste of tea, tea polyphenols (TP) and amino acids (AA), were predicted. The results showed that
the overall accuracy of tea cultivar classification achieved by the support vector machine is
higher than 95% with the proper spectral pre-processing method. The best results to predict the
TP and AA were achieved by partial least squares regression with standard normal variant
normalized spectra, and the ratio of TP to AA-which is one proven index for tea taste-achieved
the highest accuracy (Rcy= 0.66, RMSEy= 13.27) followed by AA (Rcy= 0.62, RMSEy=1.16)
and TP (Rcy= 0.58, RMSEcy=10.01).

Prediction of active ingredients in Salvia miltiorrhiza Bunge. based on soil elements and
artificial neural network was performed by Liu ef al. (2022). This study measured the active
ingredients in the roots of S. miltiorrhiza and the contents of rhizosphere soil elements from 25
production areas in eight provinces in China and used the data to develop a prediction model
based on BP (back propagation) neural network. The results showed that the active ingredients
had different degrees of correlation with soil macronutrients and trace elements, and the
prediction model had the best performance (MSE= 0.0203, 0.0164; R?>= 0.93, 0.94).

Mohamed ef al. (2021) performed a field experiment to investigate the use of phosphorus
fertilizer source in common bean (Phaseolus vulgaris L.) cultivated under salinity stress. The
response curve of total dry weight to different rates of phosphorus proved that the quadratic
model fit better than the linear model for phosphorus sources. The total dry weight was predicted
at 1.675 t ha! for superphosphate and 1.875 t ha! for urea phosphate when phosphorus using at
51.5 kg ha'!, and 42.5 kg ha“!, respectively. In conclusion, the 35.0 kg ha™! phosphorus could be
considered the most efficient phosphorus level.

According to the studies accomplished is recognized small information on support vector
regression models to predict macro-nutrient content in Cucumis melo plant organs in response to
soil elements. Therefore, the present study aimed to determine: 1) regression models to predict
macro-nutrient content in Cucumis melo plant organs in response to soil elements;

ii) determinants of macro-nutrient prediction; iii) the effect of soil elements on macro-

nutrient content in plant organs, and 1v) optimization of the fertilizer used in a

cropping system, taking into account the levels of macro-nutrients in the plant organs and soil
elements.
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Materials and methods

Geographical location and meteorological information of the test site. In the spring of 2020,
this study was conducted in two Fariman and Zahak counties. Fariman county is situated in
Northeastern Iran at 35°70'N and 59°85'E, at an altitude of 1403 meters above sea level, in the
hot and dry Mediterranean climates based on the K&ppen classification (www.razavimet.ir).
Zahak County, too, is situated in Southeastern Iran at 30°89'N and 61°70'E, at an altitude of 483
meters above sea level in the hot and dry climates based on the Koppen classification

(WWW.irimo.ir).

Preparation of soil samples. Before starting the experiment, ten samples were randomly
collected from 0 to 30 centimeters in depth to explore the chemical characteristics and
composition of the soil components. Table 1 shows the results of the soil sample test.

Experimental design. This study used the support vector regression (SVR) to predict models of
macro-nutrient content in Cucumis melo plant organs in response to soil elements affected by
different fertilizers as a factorial test in the form of a randomized complete block design with
three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control),
cow manure (30 t ha'!), sheep manure (30 t ha''), nanobiomic foliar application (2 | ha''), silicone
foliar application (3 1 ha!), and chemical fertilizer from urea, triple superphosphate, and
potassium sulfate sources (200, 100, and 150 kg ha'!). In addition, four levels of vermicompost
were considered as the second factor: no vermicompost (control), 5, 10, and 15 t ha™!.

Cultivation operation. Before cultivation and in the fall, 30 t ha! cow manure and 30 t ha"!
rotted sheep manure were distributed on the field and mixed with soil via disk. To accelerate and
complete the decay process portion of 100 kg ha! urea was added to livestock manure. Then,
vermicompost was distributed and mixed with soil. Vermicompost was prepared using livestock
manure and earthworm species in Zahak (Southeastern Iran) from the research farm of Zabol
University, Iran, and in Fariman (Northeastern Iran) from the Kaveh Support Services Company
in Mashhad, Iran. Table 1 shows the chemical properties and composition of elements in the
vermicompost fertilizer and livestock manure samples.

Field preparation and sowing occurred in the second half of February when the soil temperature
was sufficient (over 20 °C at both locations). The field was immediately laid out as a lister
planting so that the depth and width of the furrows were 50 and 60

centimeters. Planting was done on both sides of the ridges. The width of the ridges was 3 meters,
and the distance between the rows was 70 centimeters. Then, a portion of 100 kg ha! urea, 100
kg ha'! triple superphosphate, and 150 kg ha! potassium sulfate were distributed and mixed with
soil. Native melon seeds of the Khatouni variety were used for sowing. 3 kg ha'! seed was
required.
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The first irrigation was carried out before seed sowing. The irrigation was gravity-leaky. The

seeds germinated using soil moisture and turned green within one week. At this time, the soil

was dried, and the second irrigation was carried out. The irrigation was done every five days,

except under certain conditions such as high temperatures for several days, which reduced the
irrigation distance every three days.

In the four-leaf stage, nanobiomic and silicone foliar applications were performed. Acetobacter,
bacillus, pseudomonas, azosprolium, 32% humic acid, 2% folic acid, 0.1% molybdenum, 12%
potassium, 0.36% magnesium, 4.3% manganese, 0.36% calcium, 10% zinc, 5.9% iron, and a
variety of acids were included in the nanobiomic biofertilizer. The silicon oxide formula is
employed as silica acid (H4S104) in a 30% weight and 36% by volume silicon foliar treatment.

Harvesting operation. On June 26 in Southeastern Iran (Zahak county) and August 7 in
Northeastern Iran (Fariman county), fruit harvesting operations were conducted for one week
following physiological ripening and detecting changes in color or latticing on fruits. The
samples were put in an Avon Digital (PTN 55, manufactured by Pars Teb Novin, Iran) at 70°C
for 48 hours to determine nitrogen, phosphorus, and potassium content, and their dry ash was
provided. In the laboratory, nitrogen was investigated using Kjeldahl's (1883) method,
phosphorus using Olsen ef al. (1954) method via spectrophotometer (UV-2100S
spectrophotometer, manufactured by Unico Company of America), and potassium using a flame
detector (PFP7 spectrophotometer, manufactured by Geno Company of United Kingdom).

Modeling methods

Support vector machine (SVM). Boser, Guyon & Vapnik (1992) presented the support vector
machine as a learning tool for both regression and classification. Over the next few years, they
offered an optimum superficial theory as a linear classifier and used kernel functions to develop
non-linear classifiers. Boser, Guyon & Vapnik (1992) developed the fundamental ideas that are
now known as the SVM. Finally, in 1995, Vapnik enhanced regression (Vapnik, 1995). The SVR
derives from statistical training theory for minimizing the risk structure (Vapnik, 1998). Data
classification issues are solved using the SVM classification model, while prediction problems
are solved using the SVR model.

Support vector regression (SVR). The accuracy of the performance function is a ministerial
issue in probabilistic modeling approaches-based reliability analysis. The SVR is applied
successfully in structural reliability analysis (Dai et al., 2012) using the simulation reliability
approaches (Sun et al., 2017) and impotence sampling due to their efficiency and accuracy.
Consequently, the hybrid SVR and conjugate form can provide efficient and accurate results of
reliability analysis-based spermophagy, thus, the SVR modeling approach to build the structure
of the nonlinear relation may be improved the accuracy in predicting the probabilistic model by
the input random variables X. The SVR is structured as the below model in equation 1:
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N
SP = b-l-z w.K (x,x;)
= (Eq. )

Where b is bias and K(x,x;) represents the kernel function for transferring the input variables

from real- space into N-dimensional feature space. Generally, the Gaussian kernel function uses
for transferring the input data as follows in equation 2 (Brereton & Lloyd, 2010):

K(x,x;) = exp(—O.S"x —X; ||2 /o2 ) (Eq. 2)

Where o is the kernel parameter that provides the smoothness of the kernel function, given as o

=0.5. w; is the weight to connect the input random data points in feature space and spermophagy

for computing by use of two slack variables &,& by the following optimization problem in
equation 3 (Lu, 2014):

Minimise " ” +CZ(§Z+§Z

y;—< w.K(x,xl-) >-b<e+¢;
Subjected to{<w.K(x,x;)>+b—y; < 5+§l~*

éiagi* 20 (Eq 3)

In which factor C > 0 is the regularization coefficient given as C=500 and ¢ is the insensitive loss
function given as ¢ =0.01 in this study. The ¢- insensitive loss function uses to neglect the
calibrating process-based SVR when differences between the predicted and observed
spermophagy are less than & schematically shown in Fig. 1-A. The structure of SVR is
presented in Fig. 1-B that the input data set (x) such as nitrogen, phosphorus, and potassium in
seeds, fruits, leaves, and roots are uses to calibrate the probabilistic model of spermophagy (SP)
using SVR.

Identification accuracy. The means of standard deviation (SD), coefficient of variation (CV),
the root of mean square error (RMSE), mean absolute percentage error (MAPE), the ratio of
prediction performance to deviation (RPD), Pearson correlation coefficient (R), and coefficient
of determination (R?) used to determine the accuracy of prediction models in this study.

Used software. Matlab V7.1 software (The Mathworks Inc., Natick, Massachusetts, USA) was
used for regression analysis and prediction models of macro-nutrient content in Cucumis melo
plant organs in response to soil elements. Also, excel software was used for drawing figures of
the above-described parameters.
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Results and discussion

Investigation of the model predicting plant nitrogen values. Based on the results, the
statistical parameters of actual values input to the model are described in Table 2, and the
predicted values obtained from the model are presented in Table 3. In Table 4, the results of
fitting the predicted values of nitrogen in seed, fruit, leaf, and the root of the melon compared to
actual values in response to soil nitrogen are presented based on the SVR model.

According to the estimated parameters, the predicted fruit nitrogen values have the highest
accuracy (RMSE= 0.122; MAPE= 7.01) in the model fitting, while the predicted leaf nitrogen
values have the lowest accuracy (RMSE= 1.061; MAPE= 31.85). The RPD statistic evaluates the
model's performance. Values less than 1.4, between 1.4 and 2, and greater than 2, respectively,
show weak, acceptable, and excellent modeling performance (Chang et al., 2001). Accordingly,
the fruit nitrogen had an excellent performance (RPD= 2.017) in the model prediction, and the
leaf nitrogen had a weak performance (RPD=0.710). However, it is observed that the regression
model obtained from leaf nitrogen values (R?>= 0.832; Adjusted R>= 0.831; Beta= 0.912) was the
most suitable prediction model followed by fruit nitrogen values (R?>= 0.807; Adjusted R*>=
0.805; Beta= 0.898). In contrast, the model obtained from root nitrogen (R?>= 0.542; Adjusted
R?=0.539; Beta= 0.736) had the weakest performance in prediction. The closer these values are
to number one, the model indicates the stronger correlation between the predicted values and the
actual values. In other words, the regression model obtained from the prediction of leaf and fruit
nitrogen can cover or express a higher percentage of actual values. It is also known that the
coefficients of each variable are positive, and due to the significant value of each variable being
smaller than 0.05 (Sig= 0.000 < 0.05), this is proof of the appropriateness of the obtained
models. Any variable with a larger Beta is more important in the regression model. In this way, it
is found that leaf nitrogen (Beta= 0.912) followed by fruit nitrogen (Beta= 0.898) will be the best
variables for predicting plant nitrogen changes in response to soil nitrogen (Table 4). Seidel et al.
(2019) used spectrometry to evaluate organic carbon and nitrogen of whole rangeland soils in
Germany; these researchers used a simple regression model to estimate these soil properties and
assessed organic carbon and total nitrogen with acceptable accuracy (R?= 0.65 and RPD= 2.7)
and excellent accuracy (R?>= 0.87 and RPD= 2.7), respectively.

Table 4 presents the correlation between the actual values in plant organs and their predicted
values using the support vector regression method. The results show the high potential of the
support vector regression algorithm in predicting the actual values in plant organs. The predictive
performance of the support vector regression algorithm for leaf and fruit nitrogen values is better
than seed and root nitrogen values.

Fitting diagrams for predicted seed, fruit, leaf, and root nitrogen values compared to actual
values in response to soil nitrogen are presented in Fig. 2, respectively. The regression line slope
of diagrams for investigated plant nitrogen values in the SVR model is presented in these figures.
The predicted nitrogen values in leaf and fruit had the lowest distance from the 1:1 line and the
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best fitting based on these results. The predicted nitrogen values in seed and root had the highest
relative distance from the 1:1 line and the lowest accuracy. The scatter of dots in the figures
indicates the models' accuracy in predicting the values of nitrogen output. Consequently, it can
be found that there is a positive correlation between the data and the model having acceptable
accuracy (Fig. 2).

Figure 3 presents the diagrams for plant nitrogen changes in response to soil nitrogen values. In
general, by increasing soil nitrogen, the nitrogen content of different organs increases to
maximize plants' growth. According to the results, the best soil nitrogen ranged between 0.05
and 1.1% to obtain the most accurate predictions of the crop's nitrogen content. According to the
results of the predictions, the highest increase in crop nitrogen content in response to soil
nitrogen content ranged from 3.04 to 9.18% for leaf nitrogen and from 1.27 to 4.33% for fruit
nitrogen under NPK chemical fertilizers by using 15 t ha'! of vermicompost. Then, changes in
root nitrogen content were predicted in the range of 1.017 to 2.90 % under NPK chemical
fertilizers by 5 t ha'! of vermicompost. Also, changes in seed nitrogen content ranged from 1.93
to 7.39% under cow manure using 15 t ha'! of vermicompost (Fig. 3).

According to the performance evaluation of predicted models, the nitrogen content in leaves and
fruits is better than that in seeds and roots, so they were found to be more suitable for crop
monitoring. The predictions show that despite the error in soil measurements and the
effectiveness of nitrogen values from a combination of different parameters related to the crop,
there is a high linear correlation between the crop's nitrogen content and the soil nitrogen values.
According to the diagrams, there was a slight difference between the predicted and the actual
values. Since the crop's nitrogen content is closely related to soil nitrogen values, the actual
values are approximately equal to the estimated nitrogen values. The observed incremental
relationship between the crop's nitrogen content and soil nitrogen values is calculated by
regression equations as shown in Fig. 3. The results of this study are consistent with those of
Dotto et al. (2018).

Nitrogen is one of the macro-nutrients for plant growth, so determining its amount and changes
in organic compounds is critical for evaluating the final fertilizer's value. Fertilization seems to
have increased the nitrogen content in seeds, fruits, leaves, and roots. Due to the similar trend of
leaf and fruit nitrogen changes, this result indicates that under NPK chemical fertilizers by using
15 t ha'! of vermicompost, followed decomposition process of organic matter by microorganisms
and earthworms, thus the nitrogen content of the plant vegetative body has increased, which by
improving photosynthesis and retransfer of photosynthetic materials, more nitrogenous
compounds have been transferred to the fruit and has increased the percentage of fruit nitrogen.

This result is consistent with other research findings. Tang ef al. (2013) reported that the amount
of nitrogen in citrus leaves was significantly related to the amount in the soil. In addition,
increasing the yield of bitter cucumber with the application of nitrogen, phosphorus, and
potassium fertilizers by Baset Mia et al. (2014) has been reported. The findings of other
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researchers also show the positive effect of vermicompost fertilizer on plant characteristics
(Simon & Bababbo, 2015).

Investigation of the model predicting plant phosphorus values. The statistical parameters of
the actual values input to the model are reported in Table 5 and the predicted values obtained
from the model as reported in Table 6. Table 7 shows the results of fitting the predicted values of
phosphorus in seed, fruit, leaf, and the root of the melon compared to actual values in response to
soil phosphorus presented based on the SVR model.

The term "regression" refers to obtaining a hyperplane that fits the data. The distance of each dot
from this hyperplane indicates the error of that particular dot. According to the predicted results,
fruit phosphorus had the lowest error (RMSE= 0.228; MAPE= 0.38%); and leaf phosphorus the
highest error values (RMSE= 22.98; MAPE= 90.57%) in the model's fitting. Based on the ratio
of performance to deviation results, fruit phosphorous had excellent performance (RPD= 27.95),
and leaf phosphorus had weak performance (RPD= 0.208) in model prediction.

As can be seen, the regression coefficients calculated for the models obtained from phosphorous
in seed, fruit, leaf, and root were 0.997, 0.999, 0.981, and 0.995, respectively. According to the
obtained regression coefficients, fruit phosphorous (R?= 0.999) had the highest contribution in
prediction than actual values, thus identified as the best model compared to other models. Also,
based on the regression coefficients obtained from seed, fruit, leaf, and root phosphorous (0.998,
0.999, 0.991, 0.997, respectively), observed that there is a positive and significant linear
correlation between the predicted and the actual values, indicating the success of the SVR model
in predicting the changes in plant phosphorus compared to the actual values in response to soil
phosphorus (Table 7).

After investigating the SVR models' accuracy and determining the general correlations between
the data, the diagrams for the actual and predicted values of plant organs' phosphorus values
were drawn (Fig. 4). The results show reliable modeling for support vector regression in
predicting the content of the measured crop elements. The predicting models' performance of the
fruit phosphorus is better than leaf, root, and seed phosphorus. The results of the scatter diagram
for each feature are presented in Fig. 4. Depending on the figures, actual and predicted values are
scattered close to the 1:1 line. Consequently, it found a positive and strong correlation between
the data by the high models' accuracy.

Figure 5 presents the diagram for changes in plant organs' phosphorus values in response to soil
phosphorus. To achieve the optimum results in predicting the crop phosphorus, the most suitable
soil phosphorus content was estimated between 10 to 59 mg kg-!. According to the results
obtained from the model's prediction, at first, the rate of the release of phosphorus from different
fertilizer treatments was slow. However, gradually, after the decomposition of fertilizers used in
the experiment by releasing nutrients and increasing the soil phosphorus content up to 38 mg kg-
I, the plant organs' phosphorus values increased to their maximum, then slightly decreased and
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followed at a constant rate. This pattern of changes is almost the same in all fertilizer and
vermicompost treatments. Soil phosphorus content of up to 38 mg kg! will be suitable and
sufficient to supply the plant's agronomic needs. More soil phosphorus values do not affect
increasing phosphorus content in plant organs, and more applications may not be economical.

According to the results, the highest increase in crop phosphorus content in response to soil
phosphorus was predicted in the range of 15.74 to 26.19% for fruit phosphorus and 19.44 to
27.97% for leaf phosphorus under NPK chemical fertilizers by using 15 t ha-! of vermicompost.
After that, changes in root phosphorus were predicted in the range of 15.47 to 25.67% under
NPK chemical fertilizers by using 5 t ha'! of vermicompost. Also, changes related to the seed
phosphorus were predicted in the range of 18.80 to 28.04% underuse of cow manure by use of 15
t ha'! of vermicompost (Fig. 5).

It can be found that the amount of soil phosphorus has caused the adjustment and reduction of
the error in estimating the predicted values of phosphorus in the model compared to the actual
values of plant organs.

Phosphorus is also another macro-nutrient that has different roles in plant metabolism
(Pourranjbari Saghaiesh, Souri & Moghaddam, 2019). Thus, phosphorus is especially required
for seedling establishment (root growth) and later on at early reproductive steps (bloom and seed
development) (Martuscelli et al., 2016; Chen et al., 2019).

It seems that chemical fertilizers have increased the storage of phosphorus in the soil by
providing soil phosphorus. Also, the use of 15 t ha™! of vermicompost in the field has increased
the availability of phosphorus in the plant by increasing the decomposition of organic matter and
mineralization of phosphorus in organic matter and their conversion into plant usable form.
Vermicompost increases phosphorus uptake by increasing phosphorus solubility by activating
microorganisms by secreting organic acids or stimulating phosphatase activity (Busato ef al.,
2012). Kakraliya et al. (2017), in the study of the nutritional and biological effects of
vermicompost on rice, stated that vermicompost increased the availability of nitrogen,
phosphorus, and potassium. Vermicompost can also increase the amount of absorbed phosphorus
(Jumadi et al., 2014).

Investigation of the model predicting plant potassium values. The statistical parameters of the
actual values input to the model are presented in Table 8, and the predicted values obtained from
the model as reported in Table 9. In Table 10, the results of fitting the predicted values of
potassium in seed, fruit, leaf, and the root of the melon compared to actual values in response to
soil potassium are presented based on the SVR model.

The results obtained from the output of the regression models showed that leaf potassium with a
coefficient of 0.984 and fruit potassium with a coefficient of 0.968 had the highest coefficient of
determination (R?), respectively, more accurately than other coefficients of determination. The
coefficients of determination in root and seed potassium were 0.952 and 0.940, respectively.
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Accordingly, fruit potassium with the highest ratio of prediction performance to deviation
(RPD= 5.174) showed better performance than other potassium values in the root (RPD= 4.420),
seed (RPD=3.577), and leaf (RPD= 0.148), respectively. In addition, in the model fitting, the
root of mean square error and the mean absolute percentage error in fruit potassium (RMSE=
0.465; MAPE= 1.77%) are less than the leaf potassium (RMSE= 12.148; MAPE= 132.11%)).
Based on these results, the regression model obtained from fruit potassium compared to leaf
potassium minimized the error coefficients and performed better in estimating the coefficient of
determination. It leads to more accuracy of the output models obtained from actual values in the
plant organs in response to soil potassium (Table 10).

Figure 6 shows the actual values compared to the predicted values around the 1:1 line using the
SVR model. As shown in Fig. 6, the data around the 1:1 line are well placed. The significance of
the coefficient of determination for the regression line between actual and predicted values in
leaf, fruit, root, and seed potassium with coefficients of 0.984, 0.968, 0.952, and 0.940 indicates
the appropriate efficiency of this model to describe the trend of crop potassium changes in
response to soil potassium (Fig. 6).

Figure 7 shows the diagram for changes in crop potassium values in response to soil potassium.
To achieve the optimum results in predicting the crop potassium, the most suitable soil
potassium ranged from 180 to 320 mg kg'!. According to the obtained results, at the beginning of
growth, because of potassium uptake by the plant, soil potassium decreased and showed a
downward trend. However, gradually, after the decomposition of fertilizers used in the
experiment by releasing nutrients and increasing the soil potassium up to 260-280 mg kg™!, the
plant organs' potassium values increased to their maximum, then slightly decreased due to the
consumption by plant organs. The potassium increased again and reached its maximum in
response to 320 mg kg™! of soil potassium. Only the amount of leaf potassium continued to
decrease, which was probably due to the transfer of nutrients to the fruits and seeds (Fig. 7).

Because the potassium in leaf and fruit plays a ministerial role in estimating the crop's potassium
content, they identified as the best features in the final prediction of crop potassium values in
response to soil potassium. According to the prediction results, the highest increase in crop
potassium in response to soil potassium ranged from 15.19 to 19.67% for fruit potassium and
1.18 to 11.60% for leaf potassium under the NPK chemical fertilizer and the use of 15 t ha'!
vermicompost. After that, changes related to the root potassium values ranged from 9.37 to
15.78% under NPK chemical fertilizers and using 5 t ha™! of vermicompost. Also, the changes
related to the seed potassium can be predicted in the range of 14.09 to 18.22% under cow manure
and using 15 t ha'! of vermicompost (Fig. 7).

In a study by Xu et al. (2016) on the response of rice yield to potassium uptake, these researchers
attributed the high yield changes to differences in climatic conditions and soil nutrient supply.
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One of the main functions of potassium is to activate certain enzymes. Potassium acts more as a
soluble ion to maintain cell turgescence in guard cells (Obreza & Morgan, 2011). The use of
NPK chemical fertilizer by 15 t ha"! vermicompost improved the physical and chemical soil
properties, improved plant nutritional status, and increased the amount of absorbable potassium
in soil and plants. In this regard, researchers such as Sabir ef al. (2013), as well as Aruda et al.
(2013), reported that inoculation of corn seeds with growth-promoting bacteria (Aztobacter,
Azpirillium, and Pseudomonas) increased phosphorus, nitrogen, and potassium content in roots
and shoots of the plant.

Researchers have stated that available potassium is one of the most important soil factors
affecting the yield and quality of Novell orange fruit (Cheng et al., 2016). In this regard, some
researchers reported that the use of organic and integrated fertilizers, due to improving the
physical and chemical properties of soil and availability and simultaneous release of essential
elements with plant needs leads to improved vegetative and reproductive features, which
ultimately enhances the crop yield (Fallah, Ghalavand & Raisi, 2013).

Conclusions

This study investigates the prediction models of macro-nutrient content in plant organs of
Cucumis melo in response to soil elements affected by different fertilizers using support vector
regression (SVR). Support vector regression can effectively calibrate input data sets such as
nitrogen, phosphorus, and potassium in seeds, fruits, leaves, and roots to model (Fig. 1). The
results show reliable modeling for support vector regression in predicting the macro-nutrient
content in plant organs.

According to the results, when the data sets of nitrogen, phosphorus, and potassium in fruit, were
used as input, the accuracy of these models was higher than 80.0% (R?= 0.807 for predicting
fruit nitrogen; R>= 0.999 for fruit phosphorus; R?= 0.968 for fruit potassium) (Tables 4, 7, 10,
respectively). Likewise, the ratio of prediction performance to deviation (RPD) obtained from
the models ranged from 2.017 for predicting fruit nitrogen (Table 4) and 5.17 for fruit potassium
(Table 10) to 27.95 for fruit phosphorus (Table 7) content. Because the macro-nutrient content in
fruit had the highest contribution in prediction than actual values, thus identified as the best
model compared to other models in response to soil elements. Based on our findings, the
importance of fruit phosphorus was identified as a determinant that strongly influenced melon
prediction models.

According to the results of the prediction models in response to soil elements, the best soil
nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg™!, and soil
potassium from 180 to 320 mg kg-!, which offers a better content in the prediction models.
Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74
to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t ha! of vermicompost
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using NPK chemical fertilizers. More significant values of soil elements do not affect increasing
macro-nutrient content in plant organs, and excessive application may not be economical.
Therefore, the prediction of macro-nutrient content in fruits of Cucumis melo in response to soil
elements could have caused a saving in the amount of fertilizer utilized and provided for the
possibility of proper farming activities during the growing season.
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Table 1l(on next page)

Chemical properties and composition of elements in the soil, vermicompost fertilizer
and livestock manure samples used in the study.

* The values of phosphorus and potassium in the soil are expressed in mg kg™.

Peer] reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)



PeerJ

Chemical properties and composition of elements in the soil, vermicompost fertilizer and livestock manure samples used in the study
were presented according to the methodology described in Methods. The final data is presented in Table 1.

Table 1:

Chemical properties and composition of elements in the soil, vermicompost fertilizer and livestock manure samples used in the

study.

Southeastern Iran Northeastern Iran

(Zahak county) (Fariman county)

N P K pH EC N P K pH EC
Features

(%) (%) (o) - (dS m) (%) (%) (o) - (dS m)
Soil 0.03 16.6* 170* 8.12 32 0.058 39.5% 193* 7.62 5.02
Cow manure 1.14 0.71 1.10 8.02 3.50 1.33 0.65 1.01 7.50 3.26
Sheep manure 0.94 0.48 0.98 8.05 3.47 1.09 0.79 1.33 7.90 3.20
Vermicompost 1.40 1.02 1.10 8.25 7.5 1.50 1.30 1.20 7.30 6.40

*The values of phosphorus and potassium in the soil are expressed in mg kg™'.
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Table 2(on next page)

The statistical description of observed values of nitrogen in seeds, fruits, leaves, and
roots.
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The statistical description of observed values of nitrogen in seeds, fruits, leaves, and roots in the study were presented according to the
methodology described in Methods. The final data is presented in Table 2.

Table 2:

The statistical description of observed values of nitrogen in seeds, fruits, leaves, and roots.

Minimum Maximum Mean
Observed N NO. S.D C.V
(%) (%) (%)
Seed 144 1.44 2.94 2.151 0.407 0.1893
Fruit 144 0.79 1.99 1.233 0.278 0.2258
Leaf 144 2.17 5.48 3.182 0.799 0.2512
Root 144 0.71 1.88 1.043 0.315 0.3023
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Table 3(on next page)

The statistical description of the predicted values of nitrogen in seeds, fruits, leaves,
and roots.
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The statistical description of the predicted values of nitrogen in seeds, fruits, leaves, and roots in the study were presented according to
the methodology described in Methods. The final data is presented in Table 3.

Table 3:

The statistical description of the predicted values of nitrogen in seeds, fruits, leaves, and roots.

Minimum Maximum Mean
Predicted N NO. S.D CV
(%) (%) (%)
Seed 144 1.39 2.83 2.136 0.337 0.1576
Fruit 144 0.68 1.94 1.228 0.247 0.2008
Leaf 144 2.13 5.50 3.215 0.753 0.2343
Root 144 0.66 1.85 1.025 0.268 0.2612
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Table 4(on next page)

Evaluating the performance function in predicting nitrogen content in seeds, fruits,
leaves, and roots.
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Evaluating the performance function in predicting nitrogen content in seeds, fruits, leaves, and roots in the study were presented

according to the methodology described in Methods. The final data is presented in Table 4.

Table 4:

Evaluating the performance function in predicting nitrogen content in seeds, fruits, leaves, and roots.

8

O

m

o <

m

Z. =] o)

— Sa) 5 2 3
3 2 < a 3 S ,
S 5 o N 5 g &b
Seed 0.224 6.73% 1.504 0.835™ 0.697 0.695 0.835 18.060 0.000
Fruit 0.122 7.01% 2.017 0.898™ 0.807 0.805 0.898 24.345 0.000
Leaf 1.061 31.85% 0.710 0.912* 0.832 0.831 0.912 26.519 0.000
Root 0.216 14.02% 1.239 0.736™ 0.542 0.539 0.736 12.970 0.000
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Table 5(on next page)

The statistical description of the observed values of phosphorus in seeds, fruits, leaves,
and roots.
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The statistical description of the observed values of phosphorus in seeds, fruits, leaves, and roots in the study were presented
according to the methodology described in Methods. The final data is presented in Table 5.

Table 5:

The statistical description of the observed values of phosphorus in seeds, fruits, leaves, and roots.

Minimum Maximum Mean
Observed P N S.D C.V
(%) (%) (%)
Seed 144 15.21 46.80 23.916 5.875 0.2456
Fruit 144 10.29 40.88 22.968 6.382 0.2778
Leaf 144 14.60 34.39 24.004 4.818 0.2007
Root 144 9.72 56.55 21.684 7.890 0.3638
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Table 6(on next page)

The statistical description of the predicted values of phosphorus in seeds, fruits, leaves,
and roots.
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The statistical description of the predicted values of phosphorus in seeds, fruits, leaves, and roots in the study were presented
according to the methodology described in Methods. The final data is presented in Table 6.

Table 6:

The statistical description of the predicted values of phosphorus in seeds, fruits, leaves, and roots.

Minimum Maximum Mean
Predicted P N S.D C.VvV
(%) (%) (%)
Seed 144 15.18 44.55 23.915 5.822 0.2434
Fruit 144 10.34 40.83 22.955 6.375 0.2777
Leaf 144 14.55 32.85 23.966 4.782 0.1995

Root 144 9.77 55.49 21.705 7.816 0.3601
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Table 7(on next page)

Evaluating the performance function in predicting phosphorus content in seeds, fruits,
leaves, and roots.
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Evaluating the performance function in predicting phosphorus content in seeds, fruits, leaves,
and roots in the study were presented according to the methodology described in Methods. The
3 final data is presented in Table 7.

5 Table 7:

Evaluating the performance function in predicting phosphorus content in seeds, fruits,

7 leaves, and roots.

s
O
m
i ho]
rz i
= o
s 8 E 3
TS < 5 ) 2, g o
= =~ = [~ ~ . < & - A
Seed 0.334 0.46% 17.455 0.998** 0.997 0.997 0.998 210.486 0.000
Fruit 0.228 0.38% 27957 0.999** 0.999 0.999 0.999 333.189 0.000
Leaf 2298 90.57% 0.208 0.991** 0.981 0.981 0.991 86.679 0.000
Root 0.579 0.82% 13.493 0.997* 0.995 0.995 0.997 162.203 0.000
8
9
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Table 8(on next page)

The statistical description of the observed values of potassium in seeds, fruits, leaves,
and roots.
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The statistical description of the observed values of potassium in seeds, fruits, leaves, and roots in the study were presented according
to the methodology described in Methods. The final data is presented in Table 8.

Table 8:

The statistical description of the observed values of potassium in seeds, fruits, leaves, and roots.

Minimum Maximum Mean
Observed K N S.D C.V
(%) (%) (%)
Seed 144 9.62 22.93 14.345 2.686 0.1872
Fruit 144 12.23 22.84 16.831 2.540 0.1509
Leaf 144 5.75 13.80 9.099 1.833 0.2014
Root 144 5.42 19.02 11916 3.182 0.2670
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Table 9(on next page)

The statistical description of the predicted values of potassium in seeds, fruits, leaves,
and roots.
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The statistical description of the predicted values of potassium in seeds, fruits, leaves, and roots in the study were presented according
to the methodology described in Methods. The final data is presented in Table 9.

Table 9:

The statistical description of the predicted values of potassium in seeds, fruits, leaves, and roots.

Minimum Maximum Mean
Predicted K N S.D C.V
(%) (%) (%)
Seed 144 9.82 22.73 14.274 2.434 0.1705
Fruit 144 12.43 22.62 16.784 2.406 0.1433
Leaf 144 5.80 13.75 9.096 1.792 0.1970
Root 144 5.47 18.89 11.806 3.106 0.2630
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Table 10(on next page)

Evaluating the performance function in predicting potassium content in seeds, fruits,
leaves, and roots.
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Evaluating the performance function in predicting potassium content in seeds, fruits, leaves, and roots in the study were presented
according to the methodology described in Methods. The final data is presented in Table 10.

Table 10:

Evaluating the performance function in predicting potassium content in seeds, fruits, leaves, and roots.

3

[

2]

« o)

- 3

o) o)

T 8 > E Z
2 5 < 2 = 5 o
= = = = ¥ < & - %
Seed 0.681 2.39% 3.577 0.970™ 0.940 0.940 0.970 47.209 0.000
Fruit 0.465 1.77% 5.174 0.984™ 0.968 0.968 0.984 65.425 0.000
Leaf 12.148 132.11% 0.148 0.992* 0.984 0.984 0.992 94.761 0.000

Root 0.703 1.97% 4.420 0.976™ 0.952 0.952 0.976 53.122 0.000
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Figure 1

Schematic view of probabilistic model-based SVR. A) Calibrating data with the ¢-
insensitive loss function. B) Structure of SVR for predictions of spermophagy.

SVR for evaluating the performance function uses to calibrate the probabilistic model of
spermophagy (SP) according to the methodology described in Methods. The ¢- insensitive
loss function uses to neglect the calibrating process-based SVR when differences between
the predicted and observed spermophagy are less than <!--[if lvml]--> <!--[endif]-->
schematically shown in Fig. 1-A. The structure of SVR is presented in Fig. 1-B that the input
data set (x) such as nitrogen, phosphorus, and potassium in roots, leaves, seeds, and fruits

are used to calibrate the probabilistic model of spermophagy (SP) using SVR.
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SVR for evaluating the performance function uses to calibrate the probabilistic model of spermophagy (SP) according to the
methodology described in Methods. The &- insensitive loss function uses to neglect the calibrating process-based SVR when
differences between the predicted and observed spermophagy are less than & schematically shown in Fig. 1-A. The structure of SVR
is presented in Fig. 1-B that the input data set (x) such as nitrogen, phosphorus, and potassium in roots, leaves, seeds, and fruits are
used to calibrate the probabilistic model of spermophagy (SP) using SVR.

&-insensitive
loss function

Figure 1: Schematic view of probabilistic model-based SVR.

A) Calibrating data with the e-insensitive loss function. B) Structure of SVR for predictions of spermophagy.
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Figure 2 (on next page)

Scatter diagrams of observed and predicted values of nitrogen in response to soil
nitrogen.
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Figure 2: Scatter diagrams of observed and predicted values of nitrogen in response to soil nitrogen.
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Fitting diagrams for predicted nitrogen content in plant organs of Cucumis melo in response to soil nitrogen using support vector
regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 2, respectively. The
regression line slope of diagrams for investigated plant nitrogen values in the SVR model is presented in these figures.
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Figure 3(on next page)

Patterns of changes in the predicted nitrogen values of plant organs in response to soil
nitrogen under different fertilizer and vermicompost levels according to the SVR model.
The use of cow manure + 5 t ha™ of vermicompost (F VC= 2,2); cow manure + 15t ha™ of

vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha™ of vermicompost (F VC=
4.2); Nanobiomic foliar application + 15 t ha™ of vermicompost (F_ VC= 4.4); use of chemical

fertilizer + 5 t ha™ of vermicompost (F_ VC= 6,2); the use of chemical fertilizer + 15 t ha™ of

vermicompost (F_ VC= 6,4).
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Figure 3: Patterns of changes in the predicted nitrogen values of plant organs in response to soil nitrogen under different
fertilizer and vermicompost levels according to the SVR model.
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The use of cow manure + 5 t ha' of vermicompost (F_VC=2,2); cow manure + 15 t ha of vermicompost (F_VC= 2.,4); Nanobiomic
foliar application + 5 t ha™ of vermicompost (F_VC= 4.2); Nanobiomic foliar application + 15 t ha™ of vermicompost (F_VC= 4.4);
use of chemical fertilizer + 5 t ha of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha! of vermicompost (F_VC=
6,4).

Changes of nitrogen content in plant organs of Cucumis melo in response to soil nitrogen using support vector regression investigated

according to the methodology described in Methods. Figure 3 presents the diagrams for plant nitrogen changes in response to soil
nitrogen values.
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Figure 4 (on next page)

Scatter diagrams of observed and predicted values of phosphorus in response to soil
phosphorus.
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Scatter diagrams of observed and predicted values of phosphorus in response to soil phosphorus.

Figure 4

Peer] reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)



PeerJ

Fitting diagrams for predicted phosphorus content in plant organs of Cucumis melo in response to soil phosphorus using support
vector regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 4,
respectively. The regression line slope of diagrams for investigated plant phosphorus values in the SVR model is presented in these
figures.
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Figure 5(on next page)

Patterns of changes in the predicted phosphorus values of plant organs in response to
soil phosphorus under different fertilizer and vermicompost levels according to the SVR
model.

The use of cow manure + 5 t ha™ of vermicompost (F_VC= 2,2); cow manure + 15 t ha™ of
vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha™ of vermicompost (F_VC=

4.2); Nanobiomic foliar application + 15 t ha™ of vermicompost (F_VC= 4.4); use of chemical

fertilizer + 5 t ha™ of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha™ of

vermicompost (F_ VC= 6,4).
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The use of cow manure + 5 t ha' of vermicompost (F_VC=2,2); cow manure + 15 t ha of vermicompost (F_VC= 2.,4); Nanobiomic
foliar application + 5 t ha™ of vermicompost (F_VC= 4.2); Nanobiomic foliar application + 15 t ha™ of vermicompost (F_VC= 4.4);
use of chemical fertilizer + 5 t ha of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha! of vermicompost (F_VC=
6,4).

Changes of phosphorus content in plant organs of Cucumis melo in response to soil phosphorus using support vector regression
investigated according to the methodology described in Methods. Figure 5 presents the diagrams for plant phosphorus changes in
response to soil phosphorus values.
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Figure 6(on next page)

Scatter diagrams of observed and predicted values of potassium in response to soil
potassium.
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Scatter diagrams of observed and predicted values of potassium in response to soil potassium.
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Peer] reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)



PeerJ

Fitting diagrams for predicted potassium content in plant organs of Cucumis melo in response to soil potassium using support vector
regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 6, respectively. The
regression line slope of diagrams for investigated plant potassium values in the SVR model is presented in these figures.

Peer] reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)



PeerJ

Figure 7 (on next page)

Patterns of changes in the predicted potassium values of plant organs in response to
soil potassium under different fertilizer and vermicompost levels according to the SVR
model.

The use of cow manure + 5 t ha™ of vermicompost (F_VC= 2,2); cow manure + 15 t ha™ of
vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha™ of vermicompost (F_VC=

4.2); Nanobiomic foliar application + 15 t ha™ of vermicompost (F_VC= 4.4); use of chemical

fertilizer + 5 t ha™ of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha™ of

vermicompost (F_ VC= 6,4).
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Figure 7: Patterns of changes in the predicted potassium values of plant organs in response to soil potassium under different
fertilizer and vermicompost levels according to the SVR model.
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The use of cow manure + 5 t ha' of vermicompost (F_VC=2,2); cow manure + 15 t ha of vermicompost (F_VC= 2.,4); Nanobiomic
foliar application + 5 t ha™ of vermicompost (F_VC= 4.2); Nanobiomic foliar application + 15 t ha™ of vermicompost (F_VC= 4.4);
use of chemical fertilizer + 5 t ha of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha! of vermicompost (F_VC=
6,4).

Changes of potassium content in plant organs of Cucumis melo in response to soil potassium using support vector regression
investigated according to the methodology described in Methods. Figure 7 presents the diagrams for plant potassium changes in
response to soil potassium values.
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