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Background. Undoubtedly, the importance of food and food security as one of the
present and future challenges are not invisible to anyone. Nowadays, development
methods for monitoring the nutrient content and their status in crop products is a
ministerial issue for implementing reasonable and logical soil properties management.
Modeling as a new method has the capability of evaluating the soil properties of ûelds so
could study the subject of crop yield through soil management. Methodology. In the
spring of 2020, this study was down as a factorial test in the form of a randomized
complete block design with three replications. The ûrst factor was the use of fertilizers in
six levels: no fertilizer (control), cow manure (30 t ha-1), sheep manure (30 t ha-1),
nanobiomic foliar application (2 l ha-1), silicone foliar application (3 l ha-1), and chemical
fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and
150 kg ha-1). In addition, four levels of vermicompost were considered as the second
factor: no vermicompost (control), 5, 10, and 15 t ha-1. Input data sets such as nitrogen,
phosphorus, and potassium levels in seeds, fruits, leaves, and roots were calibrated using
the SVR structure. Results. According to the results, when the data sets of nitrogen,
phosphorus, and potassium in fruit, were used as input, the accuracy of these models was
higher than 80.0% (R2= 0.807 for predicting fruit nitrogen; R2= 0.999 for fruit phosphorus;
R2= 0.968 for fruit potassium). Likewise, the ratio of prediction performance to deviation
(RPD) obtained from the models ranged from 2.017 for predicting fruit nitrogen and 5.17
for fruit potassium to 27.95 for fruit phosphorus content. According to the results of the
prediction models in response to soil elements, the best soil nitrogen content ranged from
0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg-1, and soil potassium from 180 to 320
mg kg-1, which oûers a better content in the prediction models. Likewise, the best fruit
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nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 to 26.19%, and
fruit potassium from 15.19 to 19.67% obtained by 15 t ha-1 of vermicompost using NPK
chemical fertilizers. Conclusions. Because the macro-nutrient content in fruit had the
highest contribution in prediction than actual values, thus identiûed as the best model
compared to other models in response to soil elements. Based on our ûndings, the
importance of fruit phosphorus was identiûed as a determinant that strongly inûuenced
melon prediction models. More signiûcant values of soil elements do not aûect increasing
macro-nutrient content in plant organs, and excessive application may not be economical.
Therefore, our studies provide an eûcient approach with potentially high accuracy to
estimate macro-nutrient content in fruits of Cucumis melo in response to soil elements and
hence caused a saving in the amount of fertilizer during the growing season.
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12 Abstract 

13 Background. Undoubtedly, the importance of food and food security as one of the present and 

14 future challenges are not invisible to anyone. Nowadays, development methods for monitoring 

15 the nutrient content and their status in crop products is a ministerial issue for implementing 

16 reasonable and logical soil properties management. Modeling as a new method has the capability 

17 of evaluating the soil properties of fields so could study the subject of crop yield through soil 

18 management. 

19 Methodology. In the spring of 2020, this study was down as a factorial test in the form of a 

20 randomized complete block design with three replications. The first factor was the use of 

21 fertilizers in six levels: no fertilizer (control), cow manure (30 t ha-1), sheep manure (30 t ha-1), 

22 nanobiomic foliar application (2 l ha-1), silicone foliar application (3 l ha-1), and chemical 

23 fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg 

24 ha-1). In addition, four levels of vermicompost were considered as the second factor: no 

25 vermicompost (control), 5, 10, and 15 t ha-1. Input data sets such as nitrogen, phosphorus, and 

26 potassium levels in seeds, fruits, leaves, and roots were calibrated using the SVR structure. 

27 Results. According to the results, when the data sets of nitrogen, phosphorus, and potassium in 

28 fruit, were used as input, the accuracy of these models was higher than 80.0% (R2= 0.807 for 

29 predicting fruit nitrogen; R2= 0.999 for fruit phosphorus; R2= 0.968 for fruit potassium). 

30 Likewise, the ratio of prediction performance to deviation (RPD) obtained from the models 

31 ranged from 2.017 for predicting fruit nitrogen and 5.17 for fruit potassium to 27.95 for fruit 

32 phosphorus content. According to the results of the prediction models in response to soil 
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33 elements, the best soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 

34 mg kg-1, and soil potassium from 180 to 320 mg kg-1, which offers a better content in the 

35 prediction models. Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit 

36 phosphorus from 15.74 to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t 

37 ha-1 of vermicompost using NPK chemical fertilizers. 

38 Conclusions. Because the macro-nutrient content in fruit had the highest contribution in 

39 prediction than actual values, thus identified as the best model compared to other models in 

40 response to soil elements. Based on our findings, the importance of fruit phosphorus was 

41 identified as a determinant that strongly influenced melon prediction models. More significant 

42 values of soil elements do not affect increasing macro-nutrient content in plant organs, and 

43 excessive application may not be economical. Therefore, our studies provide an efficient 

44 approach with potentially high accuracy to estimate macro-nutrient content in fruits of Cucumis 

45 melo in response to soil elements and hence caused a saving in the amount of fertilizer during the 

46 growing season.

47 Key words Macro-nutrients, Melon, Prediction model, Soil elements, Support vector regression 

48

49 Introduction 

50 Melon (Cucumis melo L.), a member of the Cucurbitaceae family, is one of the most important 

51 vegetable crops worldwide. The major melon producers are China, Turkey, Iran, India, 

52 Kazakhstan, and the United States (FAO, 2018). Cucumis melo L. (2n=2x=24) has grown in 

53 various geographical areas of Iran from historical times (Munger & Robinson, 1991). Based on 

54 archaeological evidence, Iran has been an important center of domestication since 5000 years 

55 ago (Bisognin, 2002). It is a common crop consumed by many Iranians, especially during the hot 

56 summer. Melon is the most polymorphic species of the cucurbit family, which is particularly true 

57 for fruit-related traits (Luan et al., 2010). 

58 In most melons that belong to the Cucurbitaceae family, nutrient requirements and NPK ratio 

59 vary significantly, depending on the melon type and cultivar, soil mineral status, and the crop 

60 developmental stage (Deus et al., 2015; Chen et al., 2019). Nitrogen is the most needed mineral 

61 nutrient in all cropping systems due to its ministerial role in the biochemical and physiological 

62 processes of the plant (Pourranjbari Saghaiesh, Souri & Moghaddam, 2019). Nitrogen is 

63 essential during the vegetative phase for the buildup of the adequate canopy and leaf area to 

64 ensure yield capacity. However, excess nitrogen availability during the reproductive phase 

65 promotes undesired competition between fruit and vegetation that might reduce produce quality 

66 (Ferrante et al., 2008). Likewise, phosphorus is another ministerial mineral nutrient that has 

67 different roles in plant functional metabolism (Pourranjbari Saghaiesh, Souri & Moghaddam, 

68 2019). Thus, phosphorus is mainly required for seedling establishment (root growth) and then at 

69 early reproductive steps (bloom and seed development) (Martuscelli et al., 2016; Chen et al., 
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70 2019). It is a fact that under poor soil conditions, nitrogen and phosphorus fertilizers at low rates 

71 can develop plant root growth and BNF efficiency (Pourranjbari Saghaiesh, Souri & 

72 Moghaddam, 2019). Also, potassium is most efficient during the later stages of fruit 

73 development, supporting sugar translocation and accumulation (Deus et al., 2015; Tränkner, 

74 Tavakol & Jákli, 2018). 

75 Pourranjbari Saghaiesh, Souri & Moghaddam (2019) investigated the effects of nitrogen (N), 

76 phosphorus (P), and potassium (K) levels in the nutrient solution on leaf mineral content and 

77 enzyme activity in Khatouni melon (Cucumis melo var. inodorus) seedlings. According to the 

78 findings, the leaf's highest N, P, and K were found at the highest levels in the nutrient solution. 

79 Modeling as a new strategy in farm management can improve performance and economic returns 

80 by optimizing crop inputs (fertilizers and chemicals) and preserving the environment and energy 

81 resources (water resources, etc.). The modeling technique has many benefits, including the 

82 capacity to predict numerous soil parameters and perform measurements in labs (Viscarra Rossel 

83 et al., 2006) and farms, as well as the absence of chemicals needed (Stenberg et al., 2007). 

84 Farming product monitoring also allows farmers to carry out proper farming operations 

85 throughout the growing season. 

86 Accordingly, data-driven models are needed to efficiently link input data to the desired output 

87 (Adeyemi et al., 2018). The benefits of the support vector machine identified over artificial 

88 neural networks in many types of research, which has attracted much research attention (Jiang et 

89 al., 2019). The structure and performance of support vector machines have been the main target 

90 of many studies (Roodposhti, Safarrad & Shahabi, 2017). 

91 Some researchers have used models such as support vector regression to estimate crop yield in 

92 response to soil properties. Zhang et al. (2021) suggested a method for organ classification and 

93 fruit counting on pomegranate trees based on multi-features fusion and support vector machine. 

94 Their experiment results showed that the support vector machine classifier based on color and 

95 shape features had an accuracy of 0.75 for fruit and 0.99 for non-fruit. 

96 The study of Esfandiarpour-Boroujeni et al. (2019) aimed to evaluate the performance of a 

97 hybrid particle swarm optimization-imperialist competitive algorithm-support vector regression 

98 (PSO-ICA-SVR) method to predict apricot yield and identify important factors in the Abarkuh, 

99 Yazd, Iran. The validation results showed that the hybrid algorithm estimated apricot yield with 

100 relatively high accuracy (RMSE= 1.737 for training data and RMSE= 2.329 for testing 

101 data). Likewise, Jeong et al. (2017) estimated the amount of organic matter, available potassium, 

102 and soil available phosphorus using support vector machine models. They found that the 

103 predicted and actual parameters had a strong correlation. 

104 In the investigation of the data mining approach based on the chemical composition of grape skin 

105 for quality evaluation and traceability prediction of grapes, a data mining algorithms comparison 

106 study of grape-skin samples from five regions of Mendoza, Argentina, and builds classification 
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107 models capable of predicting provenance based on multi-elemental composition, were 

108 developed. Support vector machines (SVM) and random forests (RF) were classifier techniques. 

109 The best results were achieved for SVM and RF models, with 84% and 88.9% prediction 

110 accuracy, respectively, on the 10-fold cross-validation. The RF variable importance showed that 

111 Rb (rubidium) was the most relevant component for prediction (Canizo et al., 2019). 

112 Tu et al. (2018) investigated tea cultivar classification and biochemical parameter estimation 

113 from hyperspectral imagery obtained by UAV. Tea cultivars were classified according to the 

114 spectral characteristics of the tea canopies. Furthermore, two major components influencing the 

115 taste of tea, tea polyphenols (TP) and amino acids (AA), were predicted. The results showed that 

116 the overall accuracy of tea cultivar classification achieved by the support vector machine is 

117 higher than 95% with the proper spectral pre-processing method. The best results to predict the 

118 TP and AA were achieved by partial least squares regression with standard normal variant 

119 normalized spectra, and the ratio of TP to AA-which is one proven index for tea taste-achieved 

120 the highest accuracy (RCV= 0.66, RMSECV= 13.27) followed by AA (RCV= 0.62, RMSECV= 1.16) 

121 and TP (RCV= 0.58, RMSECV= 10.01). 

122 Prediction of active ingredients in Salvia miltiorrhiza Bunge. based on soil elements and 

123 artificial neural network was performed by Liu et al. (2022). This study measured the active 

124 ingredients in the roots of S. miltiorrhiza and the contents of rhizosphere soil elements from 25 

125 production areas in eight provinces in China and used the data to develop a prediction model 

126 based on BP (back propagation) neural network. The results showed that the active ingredients 

127 had different degrees of correlation with soil macronutrients and trace elements, and the 

128 prediction model had the best performance (MSE= 0.0203, 0.0164; R2= 0.93, 0.94). 

129 Mohamed et al. (2021) performed a field experiment to investigate the use of phosphorus 

130 fertilizer source in common bean (Phaseolus vulgaris L.) cultivated under salinity stress. The 

131 response curve of total dry weight to different rates of phosphorus proved that the quadratic 

132 model fit better than the linear model for phosphorus sources. The total dry weight was predicted 

133 at 1.675 t ha-1 for superphosphate and 1.875 t ha-1 for urea phosphate when phosphorus using at 

134 51.5 kg ha-1, and 42.5 kg ha-1, respectively. In conclusion, the 35.0 kg ha-1 phosphorus could be 

135 considered the most efficient phosphorus level. 

136 According to the studies accomplished is recognized small information on support vector 

137 regression models to predict macro-nutrient content in Cucumis melo plant organs in response to 

138 soil elements. Therefore, the present study aimed to determine: i) regression models to predict 

139 macro-nutrient content in Cucumis melo plant organs in response to soil elements; 

140 ii) determinants of macro-nutrient prediction; iii) the effect of soil elements on macro-

141 nutrient content in plant organs, and iv) optimization of the fertilizer used in a 

142 cropping system, taking into account the levels of macro-nutrients in the plant organs and soil 

143 elements. 
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144

145 Materials and methods

146 Geographical location and meteorological information of the test site. In the spring of 2020, 

147 this study was conducted in two Fariman and Zahak counties. Fariman county is situated in 

148 Northeastern Iran at 35°70'N and 59°85'E, at an altitude of 1403 meters above sea level, in the 

149 hot and dry Mediterranean climates based on the Köppen classification (www.razavimet.ir). 

150 Zahak County, too, is situated in Southeastern Iran at 30°89'N and 61°70'E, at an altitude of 483 

151 meters above sea level in the hot and dry climates based on the Köppen classification 

152 (www.irimo.ir). 

153 Preparation of soil samples. Before starting the experiment, ten samples were randomly 

154 collected from 0 to 30 centimeters in depth to explore the chemical characteristics and 

155 composition of the soil components. Table 1 shows the results of the soil sample test. 

156 Experimental design. This study used the support vector regression (SVR) to predict models of 

157 macro-nutrient content in Cucumis melo plant organs in response to soil elements affected by 

158 different fertilizers as a factorial test in the form of a randomized complete block design with 

159 three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control), 

160 cow manure (30 t ha-1), sheep manure (30 t ha-1), nanobiomic foliar application (2 l ha-1), silicone 

161 foliar application (3 l ha-1), and chemical fertilizer from urea, triple superphosphate, and 

162 potassium sulfate sources (200, 100, and 150 kg ha-1). In addition, four levels of vermicompost 

163 were considered as the second factor: no vermicompost (control), 5, 10, and 15 t ha-1.

164 Cultivation operation. Before cultivation and in the fall, 30 t ha-1 cow manure and 30 t ha-1 

165 rotted sheep manure were distributed on the field and mixed with soil via disk. To accelerate and 

166 complete the decay process portion of 100 kg ha-1 urea was added to livestock manure. Then, 

167 vermicompost was distributed and mixed with soil. Vermicompost was prepared using livestock 

168 manure and earthworm species in Zahak (Southeastern Iran) from the research farm of Zabol 

169 University, Iran, and in Fariman (Northeastern Iran) from the Kaveh Support Services Company 

170 in Mashhad, Iran. Table 1 shows the chemical properties and composition of elements in the 

171 vermicompost fertilizer and livestock manure samples. 

172 Field preparation and sowing occurred in the second half of February when the soil temperature 

173 was sufficient (over 20 °C at both locations). The field was immediately laid out as a lister 

174 planting so that the depth and width of the furrows were 50 and 60 

175 centimeters. Planting was done on both sides of the ridges. The width of the ridges was 3 meters, 

176 and the distance between the rows was 70 centimeters. Then, a portion of 100 kg ha-1 urea, 100 

177 kg ha-1 triple superphosphate, and 150 kg ha-1 potassium sulfate were distributed and mixed with 

178 soil. Native melon seeds of the Khatouni variety were used for sowing. 3 kg ha-1 seed was 

179 required. 
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180 The first irrigation was carried out before seed sowing. The irrigation was gravity-leaky. The 

181 seeds germinated using soil moisture and turned green within one week. At this time, the soil 

182 was dried, and the second irrigation was carried out. The irrigation was done every five days, 

183 except under certain conditions such as high temperatures for several days, which reduced the 

184 irrigation distance every three days. 

185 In the four-leaf stage, nanobiomic and silicone foliar applications were performed. Acetobacter, 

186 bacillus, pseudomonas, azosprolium, 32% humic acid, 2% folic acid, 0.1% molybdenum, 12% 

187 potassium, 0.36% magnesium, 4.3% manganese, 0.36% calcium, 10% zinc, 5.9% iron, and a 

188 variety of acids were included in the nanobiomic biofertilizer. The silicon oxide formula is 

189 employed as silica acid (H4SiO4) in a 30% weight and 36% by volume silicon foliar treatment. 

190 Harvesting operation. On June 26 in Southeastern Iran (Zahak county) and August 7 in 

191 Northeastern Iran (Fariman county), fruit harvesting operations were conducted for one week 

192 following physiological ripening and detecting changes in color or latticing on fruits. The 

193 samples were put in an Avon Digital (PTN 55, manufactured by Pars Teb Novin, Iran) at 70°C 

194 for 48 hours to determine nitrogen, phosphorus, and potassium content, and their dry ash was 

195 provided. In the laboratory, nitrogen was investigated using Kjeldahl's (1883) method, 

196 phosphorus using Olsen et al. (1954) method via spectrophotometer (UV-2100S 

197 spectrophotometer, manufactured by Unico Company of America), and potassium using a flame 

198 detector (PFP7 spectrophotometer, manufactured by Geno Company of United Kingdom). 

199 Modeling methods 

200 Support vector machine (SVM). Boser, Guyon & Vapnik (1992) presented the support vector 

201 machine as a learning tool for both regression and classification. Over the next few years, they 

202 offered an optimum superficial theory as a linear classifier and used kernel functions to develop 

203 non-linear classifiers. Boser, Guyon & Vapnik (1992) developed the fundamental ideas that are 

204 now known as the SVM. Finally, in 1995, Vapnik enhanced regression (Vapnik, 1995). The SVR 

205 derives from statistical training theory for minimizing the risk structure (Vapnik, 1998). Data 

206 classification issues are solved using the SVM classification model, while prediction problems 

207 are solved using the SVR model. 

208 Support vector regression (SVR). The accuracy of the performance function is a ministerial 

209 issue in probabilistic modeling approaches-based reliability analysis. The SVR is applied 

210 successfully in structural reliability analysis (Dai et al., 2012) using the simulation reliability 

211 approaches (Sun et al., 2017) and impotence sampling due to their efficiency and accuracy. 

212 Consequently, the hybrid SVR and conjugate form can provide efficient and accurate results of 

213 reliability analysis-based spermophagy, thus, the SVR modeling approach to build the structure 

214 of the nonlinear relation may be improved the accuracy in predicting the probabilistic model by 

215 the input random variables X. The SVR is structured as the below model in equation 1: 
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216

(Eq. 1)
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218 from real- space into N-dimensional feature space. Generally, the Gaussian kernel function uses 

219 for transferring the input data as follows in equation 2 (Brereton & Lloyd, 2010): 

220
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226 In which factor C ó 0 is the regularization coefficient given as C=500 and · is the insensitive loss 

227 function given as  in this study. The ·- insensitive loss function uses to neglect the 01.0ýõ
228 calibrating process-based SVR when differences between the predicted and observed 

229 spermophagy are less than  schematically shown in Fig. 1-A. The structure of SVR is õ
230 presented in Fig. 1-B that the input data set (x) such as nitrogen, phosphorus, and potassium in 

231 seeds, fruits, leaves, and roots are uses to calibrate the probabilistic model of spermophagy (SP) 

232 using SVR. 

233 Identification accuracy. The means of standard deviation (SD), coefficient of variation (CV), 

234 the root of mean square error (RMSE), mean absolute percentage error (MAPE), the ratio of 

235 prediction performance to deviation (RPD), Pearson correlation coefficient (R), and coefficient 

236 of determination (R2) used to determine the accuracy of prediction models in this study. 

237 Used software. Matlab V7.1 software (The Mathworks Inc., Natick, Massachusetts, USA) was 

238 used for regression analysis and prediction models of macro-nutrient content in Cucumis melo 

239 plant organs in response to soil elements. Also, excel software was used for drawing figures of 

240 the above-described parameters. 

241
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242 Results and discussion 

243 Investigation of the model predicting plant nitrogen values. Based on the results, the 

244 statistical parameters of actual values input to the model are described in Table 2, and the 

245 predicted values obtained from the model are presented in Table 3. In Table 4, the results of 

246 fitting the predicted values of nitrogen in seed, fruit, leaf, and the root of the melon compared to 

247 actual values in response to soil nitrogen are presented based on the SVR model. 

248 According to the estimated parameters, the predicted fruit nitrogen values have the highest 

249 accuracy (RMSE= 0.122; MAPE= 7.01) in the model fitting, while the predicted leaf nitrogen 

250 values have the lowest accuracy (RMSE= 1.061; MAPE= 31.85). The RPD statistic evaluates the 

251 model's performance. Values less than 1.4, between 1.4 and 2, and greater than 2, respectively, 

252 show weak, acceptable, and excellent modeling performance (Chang et al., 2001). Accordingly, 

253 the fruit nitrogen had an excellent performance (RPD= 2.017) in the model prediction, and the 

254 leaf nitrogen had a weak performance (RPD= 0.710). However, it is observed that the regression 

255 model obtained from leaf nitrogen values (R2= 0.832; Adjusted R2= 0.831; Beta= 0.912) was the 

256 most suitable prediction model followed by fruit nitrogen values (R2= 0.807; Adjusted R2= 

257 0.805; Beta= 0.898). In contrast, the model obtained from root nitrogen (R2= 0.542; Adjusted 

258 R2= 0.539; Beta= 0.736) had the weakest performance in prediction. The closer these values are 

259 to number one, the model indicates the stronger correlation between the predicted values and the 

260 actual values. In other words, the regression model obtained from the prediction of leaf and fruit 

261 nitrogen can cover or express a higher percentage of actual values. It is also known that the 

262 coefficients of each variable are positive, and due to the significant value of each variable being 

263 smaller than 0.05 (Sig= 0.000 < 0.05), this is proof of the appropriateness of the obtained 

264 models. Any variable with a larger Beta is more important in the regression model. In this way, it 

265 is found that leaf nitrogen (Beta= 0.912) followed by fruit nitrogen (Beta= 0.898) will be the best 

266 variables for predicting plant nitrogen changes in response to soil nitrogen (Table 4). Seidel et al. 

267 (2019) used spectrometry to evaluate organic carbon and nitrogen of whole rangeland soils in 

268 Germany; these researchers used a simple regression model to estimate these soil properties and 

269 assessed organic carbon and total nitrogen with acceptable accuracy (R2= 0.65 and RPD= 2.7) 

270 and excellent accuracy (R2= 0.87 and RPD= 2.7), respectively. 

271 Table 4 presents the correlation between the actual values in plant organs and their predicted 

272 values using the support vector regression method. The results show the high potential of the 

273 support vector regression algorithm in predicting the actual values in plant organs. The predictive 

274 performance of the support vector regression algorithm for leaf and fruit nitrogen values is better 

275 than seed and root nitrogen values. 

276 Fitting diagrams for predicted seed, fruit, leaf, and root nitrogen values compared to actual 

277 values in response to soil nitrogen are presented in Fig. 2, respectively. The regression line slope 

278 of diagrams for investigated plant nitrogen values in the SVR model is presented in these figures. 

279 The predicted nitrogen values in leaf and fruit had the lowest distance from the 1:1 line and the 
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280 best fitting based on these results. The predicted nitrogen values in seed and root had the highest 

281 relative distance from the 1:1 line and the lowest accuracy. The scatter of dots in the figures 

282 indicates the models' accuracy in predicting the values of nitrogen output. Consequently, it can 

283 be found that there is a positive correlation between the data and the model having acceptable 

284 accuracy (Fig. 2). 

285 Figure 3 presents the diagrams for plant nitrogen changes in response to soil nitrogen values. In 

286 general, by increasing soil nitrogen, the nitrogen content of different organs increases to 

287 maximize plants' growth. According to the results, the best soil nitrogen ranged between 0.05 

288 and 1.1% to obtain the most accurate predictions of the crop's nitrogen content. According to the 

289 results of the predictions, the highest increase in crop nitrogen content in response to soil 

290 nitrogen content ranged from 3.04 to 9.18% for leaf nitrogen and from 1.27 to 4.33% for fruit 

291 nitrogen under NPK chemical fertilizers by using 15 t ha-1 of vermicompost. Then, changes in 

292 root nitrogen content were predicted in the range of 1.017 to 2.90 % under NPK chemical 

293 fertilizers by 5 t ha-1 of vermicompost. Also, changes in seed nitrogen content ranged from 1.93 

294 to 7.39% under cow manure using 15 t ha-1 of vermicompost (Fig. 3). 

295 According to the performance evaluation of predicted models, the nitrogen content in leaves and 

296 fruits is better than that in seeds and roots, so they were found to be more suitable for crop 

297 monitoring. The predictions show that despite the error in soil measurements and the 

298 effectiveness of nitrogen values from a combination of different parameters related to the crop, 

299 there is a high linear correlation between the crop's nitrogen content and the soil nitrogen values. 

300 According to the diagrams, there was a slight difference between the predicted and the actual 

301 values. Since the crop's nitrogen content is closely related to soil nitrogen values, the actual 

302 values are approximately equal to the estimated nitrogen values. The observed incremental 

303 relationship between the crop's nitrogen content and soil nitrogen values is calculated by 

304 regression equations as shown in Fig. 3. The results of this study are consistent with those of 

305 Dotto et al. (2018). 

306 Nitrogen is one of the macro-nutrients for plant growth, so determining its amount and changes 

307 in organic compounds is critical for evaluating the final fertilizer's value. Fertilization seems to 

308 have increased the nitrogen content in seeds, fruits, leaves, and roots. Due to the similar trend of 

309 leaf and fruit nitrogen changes, this result indicates that under NPK chemical fertilizers by using 

310 15 t ha-1 of vermicompost, followed decomposition process of organic matter by microorganisms 

311 and earthworms, thus the nitrogen content of the plant vegetative body has increased, which by 

312 improving photosynthesis and retransfer of photosynthetic materials, more nitrogenous 

313 compounds have been transferred to the fruit and has increased the percentage of fruit nitrogen. 

314 This result is consistent with other research findings. Tang et al. (2013) reported that the amount 

315 of nitrogen in citrus leaves was significantly related to the amount in the soil. In addition, 

316 increasing the yield of bitter cucumber with the application of nitrogen, phosphorus, and 

317 potassium fertilizers by Baset Mia et al. (2014) has been reported. The findings of other 
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318 researchers also show the positive effect of vermicompost fertilizer on plant characteristics 

319 (Simon & Bababbo, 2015). 

320 Investigation of the model predicting plant phosphorus values. The statistical parameters of 

321 the actual values input to the model are reported in Table 5 and the predicted values obtained 

322 from the model as reported in Table 6. Table 7 shows the results of fitting the predicted values of 

323 phosphorus in seed, fruit, leaf, and the root of the melon compared to actual values in response to 

324 soil phosphorus presented based on the SVR model. 

325 The term "regression" refers to obtaining a hyperplane that fits the data. The distance of each dot 

326 from this hyperplane indicates the error of that particular dot. According to the predicted results, 

327 fruit phosphorus had the lowest error (RMSE= 0.228; MAPE= 0.38%); and leaf phosphorus the 

328 highest error values (RMSE= 22.98; MAPE= 90.57%) in the model's fitting. Based on the ratio 

329 of performance to deviation results, fruit phosphorous had excellent performance (RPD= 27.95), 

330 and leaf phosphorus had weak performance (RPD= 0.208) in model prediction. 

331 As can be seen, the regression coefficients calculated for the models obtained from phosphorous 

332 in seed, fruit, leaf, and root were 0.997, 0.999, 0.981, and 0.995, respectively. According to the 

333 obtained regression coefficients, fruit phosphorous (R2= 0.999) had the highest contribution in 

334 prediction than actual values, thus identified as the best model compared to other models. Also, 

335 based on the regression coefficients obtained from seed, fruit, leaf, and root phosphorous (0.998, 

336 0.999, 0.991, 0.997, respectively), observed that there is a positive and significant linear 

337 correlation between the predicted and the actual values, indicating the success of the SVR model 

338 in predicting the changes in plant phosphorus compared to the actual values in response to soil 

339 phosphorus (Table 7). 

340 After investigating the SVR models' accuracy and determining the general correlations between 

341 the data, the diagrams for the actual and predicted values of plant organs' phosphorus values 

342 were drawn (Fig. 4). The results show reliable modeling for support vector regression in 

343 predicting the content of the measured crop elements. The predicting models' performance of the 

344 fruit phosphorus is better than leaf, root, and seed phosphorus. The results of the scatter diagram 

345 for each feature are presented in Fig. 4. Depending on the figures, actual and predicted values are 

346 scattered close to the 1:1 line. Consequently, it found a positive and strong correlation between 

347 the data by the high models' accuracy. 

348 Figure 5 presents the diagram for changes in plant organs' phosphorus values in response to soil 

349 phosphorus. To achieve the optimum results in predicting the crop phosphorus, the most suitable 

350 soil phosphorus content was estimated between 10 to 59 mg kg-1. According to the results 

351 obtained from the model's prediction, at first, the rate of the release of phosphorus from different 

352 fertilizer treatments was slow. However, gradually, after the decomposition of fertilizers used in 

353 the experiment by releasing nutrients and increasing the soil phosphorus content up to 38 mg kg-

354
1, the plant organs' phosphorus values increased to their maximum, then slightly decreased and 
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355 followed at a constant rate. This pattern of changes is almost the same in all fertilizer and 

356 vermicompost treatments. Soil phosphorus content of up to 38 mg kg-1 will be suitable and 

357 sufficient to supply the plant's agronomic needs. More soil phosphorus values do not affect 

358 increasing phosphorus content in plant organs, and more applications may not be economical. 

359 According to the results, the highest increase in crop phosphorus content in response to soil 

360 phosphorus was predicted in the range of 15.74 to 26.19% for fruit phosphorus and 19.44 to 

361 27.97% for leaf phosphorus under NPK chemical fertilizers by using 15 t ha-1 of vermicompost. 

362 After that, changes in root phosphorus were predicted in the range of 15.47 to 25.67% under 

363 NPK chemical fertilizers by using 5 t ha-1 of vermicompost. Also, changes related to the seed 

364 phosphorus were predicted in the range of 18.80 to 28.04% underuse of cow manure by use of 15 

365 t ha-1 of vermicompost (Fig. 5). 

366 It can be found that the amount of soil phosphorus has caused the adjustment and reduction of 

367 the error in estimating the predicted values of phosphorus in the model compared to the actual 

368 values of plant organs. 

369 Phosphorus is also another macro-nutrient that has different roles in plant metabolism 

370 (Pourranjbari Saghaiesh, Souri & Moghaddam, 2019).  Thus, phosphorus is especially required 

371 for seedling establishment (root growth) and later on at early reproductive steps (bloom and seed 

372 development) (Martuscelli et al., 2016; Chen et al., 2019). 

373 It seems that chemical fertilizers have increased the storage of phosphorus in the soil by 

374 providing soil phosphorus. Also, the use of 15 t ha-1 of vermicompost in the field has increased 

375 the availability of phosphorus in the plant by increasing the decomposition of organic matter and 

376 mineralization of phosphorus in organic matter and their conversion into plant usable form. 

377 Vermicompost increases phosphorus uptake by increasing phosphorus solubility by activating 

378 microorganisms by secreting organic acids or stimulating phosphatase activity (Busato et al., 

379 2012). Kakraliya et al. (2017), in the study of the nutritional and biological effects of 

380 vermicompost on rice, stated that vermicompost increased the availability of nitrogen, 

381 phosphorus, and potassium. Vermicompost can also increase the amount of absorbed phosphorus 

382 (Jumadi et al., 2014). 

383 Investigation of the model predicting plant potassium values. The statistical parameters of the 

384 actual values input to the model are presented in Table 8, and the predicted values obtained from 

385 the model as reported in Table 9. In Table 10, the results of fitting the predicted values of 

386 potassium in seed, fruit, leaf, and the root of the melon compared to actual values in response to 

387 soil potassium are presented based on the SVR model. 

388 The results obtained from the output of the regression models showed that leaf potassium with a 

389 coefficient of 0.984 and fruit potassium with a coefficient of 0.968 had the highest coefficient of 

390 determination (R2), respectively, more accurately than other coefficients of determination. The 

391 coefficients of determination in root and seed potassium were 0.952 and 0.940, respectively. 
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392 Accordingly, fruit potassium with the highest ratio of prediction performance to deviation 

393 (RPD= 5.174) showed better performance than other potassium values in the root (RPD= 4.420), 

394 seed (RPD= 3.577), and leaf (RPD= 0.148), respectively. In addition, in the model fitting, the 

395 root of mean square error and the mean absolute percentage error in fruit potassium (RMSE= 

396 0.465; MAPE= 1.77%) are less than the leaf potassium (RMSE= 12.148; MAPE= 132.11%). 

397 Based on these results, the regression model obtained from fruit potassium compared to leaf 

398 potassium minimized the error coefficients and performed better in estimating the coefficient of 

399 determination. It leads to more accuracy of the output models obtained from actual values in the 

400 plant organs in response to soil potassium (Table 10). 

401 Figure 6 shows the actual values compared to the predicted values around the 1:1 line using the 

402 SVR model. As shown in Fig. 6, the data around the 1:1 line are well placed. The significance of 

403 the coefficient of determination for the regression line between actual and predicted values in 

404 leaf, fruit, root, and seed potassium with coefficients of 0.984, 0.968, 0.952, and 0.940 indicates 

405 the appropriate efficiency of this model to describe the trend of crop potassium changes in 

406 response to soil potassium (Fig. 6). 

407 Figure 7 shows the diagram for changes in crop potassium values in response to soil potassium. 

408 To achieve the optimum results in predicting the crop potassium, the most suitable soil 

409 potassium ranged from 180 to 320 mg kg-1. According to the obtained results, at the beginning of 

410 growth, because of potassium uptake by the plant, soil potassium decreased and showed a 

411 downward trend. However, gradually, after the decomposition of fertilizers used in the 

412 experiment by releasing nutrients and increasing the soil potassium up to 260-280 mg kg-1, the 

413 plant organs' potassium values increased to their maximum, then slightly decreased due to the 

414 consumption by plant organs. The potassium increased again and reached its maximum in 

415 response to 320 mg kg-1 of soil potassium. Only the amount of leaf potassium continued to 

416 decrease, which was probably due to the transfer of nutrients to the fruits and seeds (Fig. 7). 

417 Because the potassium in leaf and fruit plays a ministerial role in estimating the crop's potassium 

418 content, they identified as the best features in the final prediction of crop potassium values in 

419 response to soil potassium. According to the prediction results, the highest increase in crop 

420 potassium in response to soil potassium ranged from 15.19 to 19.67% for fruit potassium and 

421 1.18 to 11.60% for leaf potassium under the NPK chemical fertilizer and the use of 15 t ha-1 

422 vermicompost. After that, changes related to the root potassium values ranged from 9.37 to 

423 15.78% under NPK chemical fertilizers and using 5 t ha-1 of vermicompost. Also, the changes 

424 related to the seed potassium can be predicted in the range of 14.09 to 18.22% under cow manure 

425 and using 15 t ha-1 of vermicompost (Fig. 7). 

426 In a study by Xu et al. (2016) on the response of rice yield to potassium uptake, these researchers 

427 attributed the high yield changes to differences in climatic conditions and soil nutrient supply.
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428 One of the main functions of potassium is to activate certain enzymes. Potassium acts more as a 

429 soluble ion to maintain cell turgescence in guard cells (Obreza & Morgan, 2011). The use of 

430 NPK chemical fertilizer by 15 t ha-1 vermicompost improved the physical and chemical soil 

431 properties, improved plant nutritional status, and increased the amount of absorbable potassium 

432 in soil and plants. In this regard, researchers such as Sabir et al. (2013), as well as Aruda et al. 

433 (2013), reported that inoculation of corn seeds with growth-promoting bacteria (Aztobacter, 

434 Azpirillium, and Pseudomonas) increased phosphorus, nitrogen, and potassium content in roots 

435 and shoots of the plant. 

436 Researchers have stated that available potassium is one of the most important soil factors 

437 affecting the yield and quality of Novell orange fruit (Cheng et al., 2016). In this regard, some 

438 researchers reported that the use of organic and integrated fertilizers, due to improving the 

439 physical and chemical properties of soil and availability and simultaneous release of essential 

440 elements with plant needs leads to improved vegetative and reproductive features, which 

441 ultimately enhances the crop yield (Fallah, Ghalavand & Raisi, 2013). 

442

443 Conclusions 

444 This study investigates the prediction models of macro-nutrient content in plant organs of 

445 Cucumis melo in response to soil elements affected by different fertilizers using support vector 

446 regression (SVR). Support vector regression can effectively calibrate input data sets such as 

447 nitrogen, phosphorus, and potassium in seeds, fruits, leaves, and roots to model (Fig. 1). The 

448 results show reliable modeling for support vector regression in predicting the macro-nutrient 

449 content in plant organs. 

450 According to the results, when the data sets of nitrogen, phosphorus, and potassium in fruit, were 

451 used as input, the accuracy of these models was higher than 80.0% (R2= 0.807 for predicting 

452 fruit nitrogen; R2= 0.999 for fruit phosphorus; R2= 0.968 for fruit potassium) (Tables 4, 7, 10, 

453 respectively). Likewise, the ratio of prediction performance to deviation (RPD) obtained from 

454 the models ranged from 2.017 for predicting fruit nitrogen (Table 4) and 5.17 for fruit potassium 

455 (Table 10) to 27.95 for fruit phosphorus (Table 7) content. Because the macro-nutrient content in 

456 fruit had the highest contribution in prediction than actual values, thus identified as the best 

457 model compared to other models in response to soil elements. Based on our findings, the 

458 importance of fruit phosphorus was identified as a determinant that strongly influenced melon 

459 prediction models. 

460 According to the results of the prediction models in response to soil elements, the best soil 

461 nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg-1, and soil 

462 potassium from 180 to 320 mg kg-1, which offers a better content in the prediction models. 

463 Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 

464 to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t ha-1 of vermicompost 

PeerJ reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)

Manuscript to be reviewed



465 using NPK chemical fertilizers. More significant values of soil elements do not affect increasing 

466 macro-nutrient content in plant organs, and excessive application may not be economical. 

467 Therefore, the prediction of macro-nutrient content in fruits of Cucumis melo in response to soil 

468 elements could have caused a saving in the amount of fertilizer utilized and provided for the 

469 possibility of proper farming activities during the growing season. 

470
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Table 1(on next page)

Chemical properties and composition of elements in the soil, vermicompost fertilizer
and livestock manure samples used in the study.

* The values of phosphorus and potassium in the soil are expressed in mg kg-1.
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1 Chemical properties and composition of elements in the soil, vermicompost fertilizer and livestock manure samples used in the study 

2 were presented according to the methodology described in Methods. The final data is presented in Table 1. 

3

4 Table 1: 

5 Chemical properties and composition of elements in the soil, vermicompost fertilizer and livestock manure samples used in the 

6 study.

Southeastern Iran

(Zahak county)

Northeastern Iran

(Fariman county)

N P K pH EC N P K pH EC
Features

(%) (%) (%) - (dS m-1) (%) (%) (%) - (dS m-1)

Soil 0.03 16.6* 170* 8.12 3.2 0.058 39.5* 193* 7.62 5.02

Cow manure 1.14 0.71 1.10 8.02 3.50 1.33 0.65 1.01 7.50 3.26

Sheep manure 0.94 0.48 0.98 8.05 3.47 1.09 0.79 1.33 7.90 3.20

Vermicompost 1.40 1.02 1.10 8.25 7.5 1.50 1.30 1.20 7.30 6.40

 *The values of phosphorus and potassium in the soil are expressed in mg kg-1.
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Table 2(on next page)

The statistical description of observed values of nitrogen in seeds, fruits, leaves, and
roots.
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1 The statistical description of observed values of nitrogen in seeds, fruits, leaves, and roots in the study were presented according to the 

2 methodology described in Methods. The final data is presented in Table 2. 

3

4 Table 2� 

5 The statistical description of observed values of nitron�� in seeds, fruits, leaves, and roots.

O������� N NON
Minimum

(%)

Maximum

(%)

Mean

(%)

S.S C.V

Seed 144 1.44 2.94 2.151 0.407 0.1893

Fruit 144 0.79 1.99 1.233 0.278 0.2258

L�	
 144 2.17 5.48 3.182 0.799 0.2512

R��� 144 0.71 1.88 1.043 0.315 0.3023

6

7
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Table 3(on next page)

The statistical description of the predicted values of nitrogen in seeds, fruits, leaves,
and roots.

PeerJ reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)

Manuscript to be reviewed



1 The statistical description of the predicted values of nitrogen in seeds, fruits, leaves, and roots in the study were presented according to 

2 the methodology described in Methods. The final data is presented in Table 3. 

3

4 Table 3
 

5 The statistical description of the predicted values of nitro��� in seeds, fruits, leaves, and roots.

Predicted N N��
Minimum

(%)

Maximum

(%)

Mean

(%)

S.� C.V

Seed 144 1.39 2.83 2.136 0.337 0. 1576

Fruit 144 0.68 1.94 1.228 0.247 0.2008

���� 144 2.13 5.50 3.215 0.753 0.2343

���� 144 0.66 1.85 1.025 0.268 0.2612

6

7
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Table 4(on next page)

Evaluating the performance function in predicting nitrogen content in seeds, fruits,
leaves, and roots.
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1 Evaluating the performance function in predicting nitrogen content in seeds, fruits, leaves, and roots in the study were presented 

2 according to the methodology described in Methods. The final data is presented in Table 4. 

3

4 Table 4� 

5 Evaluating the performance function in predicting nitrogen content in seeds, fruits, leaves, and roots.

M
o
d
el

 N

�
�
�
�

M
A

P
E

R
P

D

R R
2

A
d
ju

st
ed

 R
2

S
ta

n
d
ar

d
iz

ed
 B

et
a

t S
ig

.

Seed 0.224 6.73% 1.504 0.835** 0.697 0.695 0.835 18.060 0.000

Fruit 0.122 7.01% 2.017 0.898** 0.807 0.805 0.898 24.345 0.000

Leaf 1.061 31.85% 0.710 0.912** 0.832 0.831 0.912 26.519 0.000

Root 0.216 14.02% 1.239 0.736** 0.542 0.539 0.736 12.970 0.000
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Table 5(on next page)

The statistical description of the observed values of phosphorus in seeds, fruits, leaves,
and roots.
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1 The statistis ! dessd"#$"%& of the observed va!v'( of phosphorus in seeds) fruits) !' l'() and roots in the study were presented 

2 ass%da"&* to the methodo!%*m dessd"+'a in Methods. The fina! data is presented in Tab!' 5. 

3

4 Table 5: 

5 The statistical description of the observed values of phosphorus in seeds, fruits, leaves, and roots.

,+('dl'a P -
Minimum

./0

MaM"1v1

./0

Mean

./0
S.D C56

Seed 144 15.21 46.80 23.916 5.875 0.2456

Fruit 144 10.29 40.88 22.968 6.382 0.2778

Leaf 144 14.60 34.39 24.004 4.818 0.2007

Root 144 9.72 56.55 21.684 7.890 0.3638

6
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Table 6(on next page)

The statistical description of the predicted values of phosphorus in seeds, fruits, leaves,
and roots.
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1 The statisti789 des7:;<=;>? of the predi7=p@ va9ApB of phosphorus in seedsD fruitsD 9p8EpBD and roots in the study were presented 

2 a77>:@;ng to the methodo9>FG des7:;Hp@ in Methods. The fina9 data is presented in Tab9p 6. 

3

4 Table IJ 

5 The statistical description of the predicted values of phosphorus in seeds, fruits, leaves, and roots.

Predi7=p@ P N
Minimum

KPQ

MaT;UAU

KPQ

Mean

KPQ
S.D VWX

Seed 144 15.18 44.55 23.915 5.822 0.2434

Fruit 144 10.34 40.83 22.955 6.375 0.2777

Leaf 144 14.55 32.85 23.966 4.782 0.1995

Root 144 9.77 55.49 21.705 7.816 0.3601

6

7
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Table 7(on next page)

Evaluating the performance function in predicting phosphorus content in seeds, fruits,
leaves, and roots.
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1 YZ[\][^_`b the performance func^_f` in predic^_`b phosphorus cf`^e`^ in seedsg fruitsg leavesg 

2 and roots in the study were presented accfhi_`b to the methodology desch_jei in Methods. The 

3 final data is presented in Table 7. 

4

5 Table ko 

6 Evaluating the performance function in predicting phosphorus content in seeds, fruits, 

7 leaves, and roots.

M
o
d
el

 P

R
M

S

q

M
A

P

q

R
P

D

R R
2

A
d
ju

st
ed

 R
2

S
ta

n
d
ar

d
iz

ed
 B

et
a

t S
ig

.

Seed 0.334 0.46% 17.455 0.998** 0.997 0.997 0.998 210.486 0.000

Fruit 0.228 0.38% 27.957 0.999** 0.999 0.999 0.999 333.189 0.000

Leaf 22.98 90.57% 0.208 0.991** 0.981 0.981 0.991 86.679 0.000

Root 0.579 0.82% 13.493 0.997** 0.995 0.995 0.997 162.203 0.000

8

9
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Table 8(on next page)

The statistical description of the observed values ++of potassium in seeds, fruits, leaves,
and roots.
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1 The statistirtu desrwxyzx{| of the observed values of potassium in seeds} fruits} leaves} and roots in the study were presented arr{w~x|� 

2 to the methodology desrwx��~ in Methods. The final data is presented in Table 8. 

3

4 Table �� 

5 The statistical description of the observed values of potassium in seeds, fruits, leaves, and roots.

����w��~ � N
Minimum

���

Ma�x���

���

Mean

���
S.D ���

Seed 144 9.62 22.93 14.345 2.686 0.1872

Fruit 144 12.23 22.84 16.831 2.540 0.1509

Leaf 144 5.75 13.80 9.099 1.833 0.2014

Root 144 5.42 19.02 11.916 3.182 0.2670
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Table 9(on next page)

The statistical description of the predicted values of potassium in seeds, fruits, leaves,
and roots.
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1 The statisti��� des�������� of the predi���� values of potassium in seeds� fruits� leaves� and roots in the study were presented a�������� 

2 to the methodology des������ in Methods. The final data is presented in Table 9. 

3

4 Table �  

5 The statistical description of the predicted values of potassium in seeds, fruits, leaves, and roots.

Predi���� ¡ N
Minimum

¢£¤

Ma¥�¦§¦

¢£¤

Mean

¢£¤
S.D ¨©ª

Seed 144 9.82 22.73 14.274 2.434 0.1705

Fruit 144 12.43 22.62 16.784 2.406 0.1433

Leaf 144 5.80 13.75 9.096 1.792 0.1970

Root 144 5.47 18.89 11.806 3.106 0.2630
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Table 10(on next page)

Evaluating the performance function in predicting potassium content in seeds, fruits,
leaves, and roots.
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1 «¬­®¯­°±²³ the performan´µ fun´°±¶² in predi´°±²³ potassium ´¶²°µ²° in seeds· fruits· leaves· and roots in the study were presented 

2 a´´¶¸¹±²³ to the methodology des´¸±ºµ¹ in Methods. The final data is presented in Table 10. 

3

4 Table 1»¼ 

5 Evaluating the performance function in predicting potassium content in seeds, fruits, leaves, and roots.

M
o
d
el

 ½

R
M

S

¾

M
A

P

¾

R
P

D

R R
2

A
d
ju

st
ed

 R
2

S
ta

n
d
ar

d
iz

ed
 B

et
a

t S
ig

.

Seed 0.681 2.39% 3.577 0.970** 0.940 0.940 0.970 47.209 0.000

Fruit 0.465 1.77% 5.174 0.984** 0.968 0.968 0.984 65.425 0.000

Leaf 12.148 132.11% 0.148 0.992** 0.984 0.984 0.992 94.761 0.000

Root 0.703 1.97% 4.420 0.976** 0.952 0.952 0.976 53.122 0.000

6

7

PeerJ reviewing PDF | (2022:09:77486:0:1:NEW 24 Sep 2022)

Manuscript to be reviewed



Figure 1
Schematic view of probabilistic model-based SVR. A) Calibrating data with the [-
insensitive loss function. B) Structure of SVR for predictions of spermophagy.

SVR for evaluating the performance function uses to calibrate the probabilistic model of
spermophagy (SP) according to the methodology described in Methods. The ·- insensitive
loss function uses to neglect the calibrating process-based SVR when diûerences between
the predicted and observed spermophagy are less than <!--[if !vml]--> <!--[endif]-->
schematically shown in Fig. 1-A. The structure of SVR is presented in Fig. 1-B that the input
data set (x) such as nitrogen, phosphorus, and potassium in roots, leaves, seeds, and fruits
are used to calibrate the probabilistic model of spermophagy (SP) using SVR.
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Figure 2(on next page)

Scatter diagrams of observed and predicted values of nitrogen in response to soil
nitrogen.
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Figure 2: Scatter diagrams of observed and predicted values of nitrogen in response to soil nitrogen. 
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Fitting diagrams for predicted nitrogen content in plant organs of Cucumis melo in response to soil nitrogen using support vector 

regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 2, respectively. The 

regression line slope of diagrams for investigated plant nitrogen values in the SVR model is presented in these figures.  
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Figure 3(on next page)

Patterns of changes in the predicted nitrogen values of plant organs in response to soil
nitrogen under diûerent fertilizer and vermicompost levels according to the SVR model.

The use of cow manure + 5 t ha-1 of vermicompost (F_VC= 2,2); cow manure + 15 t ha-1 of

vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha-1 of vermicompost (F_VC=

4.2); Nanobiomic foliar application + 15 t ha-1 of vermicompost (F_VC= 4.4); use of chemical

fertilizer + 5 t ha-1 of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha-1 of
vermicompost (F_VC= 6,4).
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Figure 3: Patterns of changes in the predicted nitrogen values of plant organs in response to soil nitrogen under different 

fertilizer and vermicompost levels according to the SVR model.  
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The use of cow manure + 5 t ha
-1

 of vermicompost (F_VC= 2,2); cow manure + 15 t ha
-1

 of vermicompost (F_VC= 2,4); Nanobiomic 

foliar application + 5 t ha
-1

 of vermicompost (F_VC= 4.2); Nanobiomic foliar application + 15 t ha
-1

 of vermicompost (F_VC= 4.4); 

use of chemical fertilizer + 5 t ha
-1

 of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha
-1

 of vermicompost (F_VC= 

6,4).  
 

Changes of nitrogen content in plant organs of Cucumis melo in response to soil nitrogen using support vector regression investigated 

according to the methodology described in Methods. Figure 3 presents the diagrams for plant nitrogen changes in response to soil 

nitrogen values. 
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Figure 4(on next page)

Scatter diagrams of observed and predicted values of phosphorus in response to soil
phosphorus.
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Figure 4: Scatter diagrams of observed and predicted values of phosphorus in response to soil phosphorus. 
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Fitting diagrams for predicted phosphorus content in plant organs of Cucumis melo in response to soil phosphorus using support 

vector regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 4, 

respectively. The regression line slope of diagrams for investigated plant phosphorus values in the SVR model is presented in these 

figures.  
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Figure 5(on next page)

Patterns of changes in the predicted phosphorus values of plant organs in response to
soil phosphorus under diûerent fertilizer and vermicompost levels according to the SVR
model.

The use of cow manure + 5 t ha-1 of vermicompost (F_VC= 2,2); cow manure + 15 t ha-1 of

vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha-1 of vermicompost (F_VC=

4.2); Nanobiomic foliar application + 15 t ha-1 of vermicompost (F_VC= 4.4); use of chemical

fertilizer + 5 t ha-1 of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha-1 of
vermicompost (F_VC= 6,4).
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Figure 5: Patterns of changes in the predicted phosphorus values of plant organs in response to soil phosphorus under 

different fertilizer and vermicompost levels according to the SVR model.  
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The use of cow manure + 5 t ha
-1

 of vermicompost (F_VC= 2,2); cow manure + 15 t ha
-1

 of vermicompost (F_VC= 2,4); Nanobiomic 

foliar application + 5 t ha
-1

 of vermicompost (F_VC= 4.2); Nanobiomic foliar application + 15 t ha
-1

 of vermicompost (F_VC= 4.4); 

use of chemical fertilizer + 5 t ha
-1

 of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha
-1

 of vermicompost (F_VC= 

6,4).  
 

Changes of phosphorus content in plant organs of Cucumis melo in response to soil phosphorus using support vector regression 

investigated according to the methodology described in Methods. Figure 5 presents the diagrams for plant phosphorus changes in 

response to soil phosphorus values. 
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Figure 6(on next page)

Scatter diagrams of observed and predicted values of potassium in response to soil
potassium.
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Figure 6: Scatter diagrams of observed and predicted values of potassium in response to soil potassium. 
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Fitting diagrams for predicted potassium content in plant organs of Cucumis melo in response to soil potassium using support vector 

regression investigated according to the methodology described in Methods. Fitting diagrams are presented in Fig. 6, respectively. The 

regression line slope of diagrams for investigated plant potassium values in the SVR model is presented in these figures.  
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Figure 7(on next page)

Patterns of changes in the predicted potassium values of plant organs in response to
soil potassium under diûerent fertilizer and vermicompost levels according to the SVR
model.

The use of cow manure + 5 t ha-1 of vermicompost (F_VC= 2,2); cow manure + 15 t ha-1 of

vermicompost (F_VC= 2,4); Nanobiomic foliar application + 5 t ha-1 of vermicompost (F_VC=

4.2); Nanobiomic foliar application + 15 t ha-1 of vermicompost (F_VC= 4.4); use of chemical

fertilizer + 5 t ha-1 of vermicompost (F_VC= 6,2); the use of chemical fertilizer + 15 t ha-1 of
vermicompost (F_VC= 6,4).
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Figure 7: Patterns of changes in the predicted potassium values of plant organs in response to soil potassium under different 

fertilizer and vermicompost levels according to the SVR model.  
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The use of cow manure + 5 t ha
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Changes of potassium content in plant organs of Cucumis melo in response to soil potassium using support vector regression 

investigated according to the methodology described in Methods. Figure 7 presents the diagrams for plant potassium changes in 

response to soil potassium values. 
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