- 1 Prediction models of macro-nutrient content in plant organs
- of Cucumis melo in response to soil elements using support
- **yector regression**
- 4 Abbas Keshtehgar¹, Mahdi Dahmardeh¹, Ahmad Ghanbari¹, Issa Khammari¹
- ¹ Department of Agronomy, University of Zabol, Zabol, Sistan and Baluchestan, Iran
- 7 Corresponding Author:
- 8 Mahdi Dahmardeh¹

6

11

- 9 University Street, Zabol, Sistan and Baluchestan, 98613-35856, Iran
- 10 Email address: <u>dr.dahmardeh@uoz.ac.ir</u>

12 Abstract

- 13 **Background.** Undoubtedly, the importance of food and food security as one of the present and
- 14 future challenges are not invisible to anyone. Nowadays, development methods for monitoring
- the nutrient content and their status in crop products is a ministerial issue for implementing
- 16 reasonable and logical soil properties management. Modeling as a new method has the capability
- of evaluating the soil properties of fields so could study the subject of crop yield through soil
- 18 management.
- 19 **Methodology.** In the spring of 2020, this study was down as a factorial test in the form of a
- 20 randomized complete block design with three replications. The first factor was the use of
- 21 fertilizers in six levels; no fertilizer (control), cow manure (30 t ha⁻¹), sheep manure (30 t ha⁻¹),
- 22 nanobiomic foliar application (2 l ha⁻¹), silicone foliar application (3 l ha⁻¹), and chemical
- 23 fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg
- 24 ha⁻¹). In addition, four levels of vermicompost were considered as the second factor: no
- vermicompost (control), 5, 10, and 15 t ha⁻¹. Input data sets such as nitrogen, phosphorus, and
- potassium levels in seeds, fruits, leaves, and roots were calibrated using the SVR structure.
- 27 **Results.** According to the results, when the data sets of nitrogen, phosphorus, and potassium in
- fruit, were used as input, the accuracy of these models was higher than 80.0% ($R^2 = 0.807$ for
- predicting fruit nitrogen; $R^2 = 0.999$ for fruit phosphorus; $R^2 = 0.968$ for fruit potassium).
- 30 Likewise, the ratio of prediction performance to deviation (RPD) obtained from the models
- 31 ranged from 2.017 for predicting fruit nitrogen and 5.17 for fruit potassium to 27.95 for fruit

- 32 phosphorus content. According to the results of the prediction models in response to soil
- elements, the best soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59
- mg kg⁻¹, and soil potassium from 180 to 320 mg kg⁻¹, which offers a better content in the
- prediction models? Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit
- phosphorus from 15.74 to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t
- 37 ha⁻¹ of vermicompost using NPK chemical fertilizers.
- 38 Conclusions. Because the macro-nutrient content in fruit had the highest contribution in
- 39 prediction than actual values, thus identified as the best model compared to other models in
 - response to soil elements?. Based on our findings, the importance of fruit phosphorus was
- 41 identified as a determinant that strongly influenced melon prediction models. More significant
- 42 values of soil elements do not affect increasing macro-nutrient content in plant organs, and
- 43 excessive application may not be economical. Therefore, our studies provide an efficient
- 44 approach with potentially high accuracy to estimate macro-nutrient content in fruits of *Cucumis*
- 45 *melo* in response to soil elements and hence caused a saving in the amount of fertilizer during the
- 46 growing season.

Introduction

47 **Key words** Macro-nutrients, Melon, Prediction model, Soil elements, Support vector regression

40

48

49

- 50 Melon (Cucumis melo L.), a member of the Cucurbitaceae family, is one of the most important
- 51 vegetable crops worldwide. The major melon producers are China, Turkey, Iran, India,
- 52 Kazakhstan, and the United States of America (FAO, 2018). Cucumis melo L. (2n=2x=24) has
- grown in various geographical areas of Iran from historical times (Munger & Robinson, 1991).
- 54 Based on archaeological evidence, Iran has been an important center of domestication since 5000
- 55 years ago (Bisognin, 2002). It is a common crop consumed by many Iranians, especially during
- the hot summer. Melon is the most polymorphic species of the cucurbit family, which is
- 57 particularly true for fruit-related traits (Luan *et al.*, 2010).
- In most melons that belong to the *Cucurbitaceae* family, nutrient requirements and NPK ratio
- 59 vary significantly, depending on the melon type and cultivar, soil mineral status, and the crop
- developmental stage (Deus et al., 2015; Chen et al., 2019). Nitrogen is the most needed mineral
- 61 nutrient in all cropping systems due to its ministerial role in the biochemical and physiological
- 62 processes of the plant (Pourranjbari Saghaiesh, Souri & Moghaddam, 2019). Nitrogen is
- 63 essential during the vegetative phase for the buildupbuild-up of the adequate canopy and leaf
- area to ensure yield capacity. However, excess nitrogen availability during the reproductive
- phase promotes undesired competition between fruit and vegetation that which might reduce
- 66 produce quality (Ferrante et al., 2008). Likewise, phosphorus is another ministerial mineral
- 67 nutrient that has different roles in plant functional metabolism (Pourranjbari Saghaiesh, Souri &

Comentario [**RD1**]: Do macronutrients exist in the soil or models? What this means?

- 68 Moghaddam, 2019). Thus, phosphorus is mainly required for seedling establishment (root
- 69 growth) and then at early reproductive steps (bloom and seed development) (Martuscelli et al.,
- 70 2016; Chen et al., 2019). It is a fact that under poor soil conditions, nitrogen and phosphorus
- 71 fertilizers at low rates can develop plant root growth and BNF efficiency? (Pourranjbari
- 72 Saghaiesh, Souri & Moghaddam, 2019). Also, potassium is most efficient during the later stages
- 73 of fruit development, supporting sugar translocation and accumulation (Deus et al., 2015;
- 74 Tränkner, Tavakol & Jákli, 2018).
- 75 Pourranjbari Saghaiesh, Souri & Moghaddam (2019) investigated the effects of nitrogen (N),
- 76 phosphorus (P), and potassium (K) levels in the nutrient solution on leaf mineral content and
- 77 enzyme activity in Khatouni melon (*Cucumis melo* var. inodorus) seedlings. According to the
- 78 findings, the leaf's highest N, P, and K contents were found at the highest levels in the nutrient
- 79 solution.
- 80 Modeling as a new strategy in farm management can improve performance and economic returns
- 81 by optimizing crop inputs (fertilizers and chemicals) and preserving the environment and energy
- 82 resources (water resources, etc.). The modeling technique has many benefits, including the
- 83 capacity to predict numerous soil parameters and perform measurements in labs (Viscarra Rossel
- 84 et al., 2006) and farms, as well as the absence of chemicals needed (Stenberg et al., 2007).
- 85 Farming product monitoring also allows farmers to carry out proper farming operations
- 86 throughout the growing season.
- 87 Accordingly, data-driven models are needed to efficiently link input data to the desired output
- 88 (Adeyemi et al., 2018). The benefits of the support vector machine are identified over artificial
- 89 neural networks in many types of research, which has attracted much research attention (Jiang et
- 90 al., 2019). The structure and performance of support vector machines have been the main target
- 91 of many studies (Roodposhti, Safarrad & Shahabi, 2017).
- 92 Some researchers have used models such as support vector regression to estimate crop yield in
- 93 response to soil properties. Zhang et al. (2021) suggested a method for organ classification and
- 94 fruit counting on pomegranate trees based on multi-features fusion and support vector machine.
- 95 Their experiment results showed that the support vector machine classifier based on color and
- shape features had an accuracy of 0.75 for fruit and 0.99 for non-fruit.
- 97 The study of Esfandiarpour-Boroujeni et al. (2019) aimed to evaluate the performance of a
- 98 hybrid particle swarm optimization-imperialist competitive algorithm-support vector regression
- 99 (PSO-ICA-SVR) method to predict apricot yield and identify important factors in the Abarkuh,
- Yazd, Iran. The validation results showed that the hybrid algorithm estimated apricot yield with
- relatively high accuracy? (RMSE= 1.737 for training data and RMSE= 2.329 for testing
- data). Likewise, Jeong et al. (2017) estimated the amount of organic matter, available potassium,

Comentario [RD2]: Do it mean Biological Nitrogen Fixation?

Con formato: Resaltar

Con formato: Tachado

Comentario [RD3]: Is accuracy referred as RMSE here?

Con formato: Resaltar

Con formato: Resaltar

Comentario [RD4]: Root Mean Square

Con formato: Resaltar

and soil available phosphorus using support vector machine models. They found that the 103 104 predicted and actual parameters had a strong correlation. In the investigation of the data mining approach based on the chemical composition of grape skin 105 106 for quality evaluation and traceability prediction of grapes, a data mining algorithms comparison 107 study of grape-skin samples from five regions of Mendoza, Argentina, and builds classification models capable of predicting provenance based on multi-elemental composition, were 108 109 developed. Support vector machines (SVM) and random forests (RF) were classifier techniques. 110 The best results were achieved for SVM and RF models, with 84% and 88.9% prediction Con formato: Resaltar accuracy?, respectively, on the 10-fold cross-validation. The RF variable importance showed that Comentario [RD5]: Is accuracy 111 referred as RMSE here? 112 Rb (rubidium) was the most relevant component for prediction (Canizo et al., 2019). Tu et al. (2018) investigated tea cultivar classification and biochemical parameter estimation 113 from hyperspectral imagery obtained by UAV. Tea cultivars were classified according to the 114 spectral characteristics of the tea canopies. Furthermore, two major components influencing the 115 116 taste of tea, tea polyphenols (TP), and amino acids (AA), were predicted. The results showed that 117 the overall accuracy of tea cultivar classification achieved by the support vector machine is higher than 95% with the proper spectral pre-processing method. The best results to predict the 118 119 TP and AA were achieved by partial least squares regression with standard normal variant 120 normalized spectra, and the ratio of TP to AA-which is one proven index for tea taste-achieved 121 the highest accuracy? ($R_{CV} = 0.66$, RMSE_{CV}= 13.27) followed by AA ($R_{CV} = 0.62$, RMSE_{CV}= Con formato: Resaltar 122 1.16) and TP (R_{CV} = 0.58, RMSE_{CV}= 10.01). Con formato: Resaltar 123 Prediction of active ingredients in Salvia miltiorrhiza Bunge, based on soil elements and artificial neural network was performed by Liu et al. (2022). This study measured the active 124 ingredients in the roots of S. miltiorrhiza and the contents of rhizosphere soil elements from 25 125 126 production areas in eight provinces in China and used the data to develop a prediction model 127 based on BP (back-propagation) neural network. The results showed that the active ingredients had different degrees of correlation with soil macronutrients and trace elements, and the 128 prediction model had the best performance (MSE= 0.0203, 0.0164; R^2 = 0.93, 0.94). 129 Con formato: Resaltar Mohamed et al. (2021) performed a field experiment to investigate the use of phosphorus 130 131 fertilizer source in common bean (*Phaseolus vulgaris* L.) cultivated under salinity stress. The 132 response curve of total dry weight to different rates of phosphorus proved that the quadratic model fit better than the linear model for phosphorus sources. The total dry weight was predicted 133 at 1.675 t ha⁻¹ for superphosphate and 1.875 t ha⁻¹ for urea phosphate when phosphorus using at 134 51.5 kg ha⁻¹, and 42.5 kg ha⁻¹, respectively. In conclusion, the 35.0 kg ha⁻¹ phosphorus could be 135 considered the most efficient phosphorus level. 136 137 According to tThe studies accomplished is recognized small information on support vector

regression models to predict macro-nutrient content in Cucumis melo plant organs in response to

soil elements. Therefore, the present study aimed to determine: i) regression models to predict macro-nutrient content in *Cucumis melo* plant organs in response to soil elements;

ii) determinants of macro-nutrient prediction; iii) the effect of soil elements on macro-nutrient content in plant organs, and iv) optimization of the fertilizer used in a

cropping system, taking into account the levels of macro-nutrients in the plant organs and soil

144 elements.

145

146

143

Materials and methods

- 147 Geographical location and meteorological information of the test site. In the spring of 2020,
- 148 this study was conducted in two Fariman and Zahak counties. Fariman county is situated in
- Northeastern Iran at 35°70'N and 59°85'E, at an altitude of 1403 meters above sea level, in the
- hot and dry Mediterranean climates based on the Köppen classification (www.razavimet.ir).
- 23 Zahak County, too, is situated in Southeastern Iran at 30°89'N and 61°70'E, at an altitude of 483
- meters above sea level in the hot and dry climates based on the Köppen classification
- 153 (www.irimo.ir).
- 154 **Preparation of soil samples.** Before starting the experiment, ten samples were randomly
- collected from 0 to 30 centimeterscentimetres in depth to explore the chemical characteristics
- and composition of the soil components. Table 1 shows the results of the soil sample test.
- 157 **Experimental design.** This study used the support vector regression (SVR) to predict models of
- macro-nutrient content in *Cucumis melo* plant organs in response to soil elements affected by
- 159 different fertilizers as a factorial test in the form of a randomized complete block design with
- three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control),
- 161 cow manure (30 t ha⁻¹), sheep manure (30 t ha⁻¹), nanobiomic foliar application (2 l ha⁻¹), silicone
- foliar application (3 l ha⁻¹), and chemical fertilizer from urea, triple superphosphate, and
- potassium sulfate sources (200, 100, and 150 kg ha⁻¹). In addition, four levels of vermicompost
- were considered as the second factor: no vermicompost (control), 5, 10, and 15 t ha⁻¹.
- 165 **Cultivation operation.** Before cultivation and in the fall, 30 t ha⁻¹ cow manure and 30 t ha⁻¹
- 166 rotted sheep manure were distributed on the field and mixed with soil via disk. To accelerate and
- 167 complete the decay process portion of 100 kg ha⁻¹ urea was added to livestock manure. Then,
- vermicompost was distributed and mixed with soil. Vermicompost was prepared using livestock
- manure and earthworm species in Zahak (Southeastern Iran) from the research farm of Zabol
- 170 University, Iran, and in Fariman (Northeastern Iran) from the Kaveh Support Services Company
- in Mashhad, Iran. Table 1 shows the chemical properties and composition of elements in the
- vermicompost fertilizer and livestock manure samples.

Comentario [RD6]: Which is the idea on to determinate determinants of macronutrient prediction?

Con formato: Resaltar

- 173 Field preparation and sowing occurred in the second half of February when the soil temperature
- was sufficient (over 20 °C at both locations). The field was immediately laid out as a lister
- planting so that the depth and width of the furrows were 50 and 60
- 176 centimeterscentimetres. Planting was done on both sides of the ridges. The width of the ridges
- was 3 meters, and the distance between the rows was 70 centimeters centimeters. Then, a portion
- of 100 kg ha⁻¹ urea, 100 kg ha⁻¹ triple superphosphate, and 150 kg ha⁻¹ potassium sulfatesulphate
- were distributed and mixed with soil. Native melon seeds of the Khatouni variety were used
- 180 for sowing. 3 kg ha⁻¹ seed was required.
- 181 The first irrigation was carried out before seed sowing. The irrigation was gravity-leaky. The
- seeds germinated using soil moisture and turned green within one week. At this time, the soil
- was dried, and the second irrigation was carried out. The irrigation was done every five days,
- 184 except under certain conditions such as high temperatures for several days, which reduced the
- irrigation distance every three days.
- 186 In the four-leaf stage, nanobiomic and silicone foliar applications were performed. Acetobacter,
- bacillus, pseudomonas, azosprolium, 32% humic acid, 2% folic acid, 0.1% molybdenum, 12%
- potassium, 0.36% magnesium, 4.3% manganese, 0.36% calcium, 10% zinc, 5.9% iron, and a
- variety of acids were included in the nanobiomic biofertilizer. The silicon oxide formula is
- employed as silica acid (H₄SiO₄) in a 30% weight and 36% by volume silicon foliar treatment.
- 191 | Harvesting operation. On June 26 in Southeastern South-eastern Iran (Zahak county) and
- 192 August 7 in Northeastern North-eastern Iran (Fariman county), fruit harvesting operations were
- 193 conducted for one week following physiological ripening and detecting changes in color or
- 194 latticing on fruits. The samples were put in an Avon Digital (PTN 55, manufactured by Pars Teb
- Novin, Iran) at 70°C for 48 hours to determine nitrogen, phosphorus, and potassium content, and
- their dry ash was provided. In the laboratory, nitrogen was investigated using Kjeldahl's (1883)
- method, phosphorus using Olsen et al. (1954) method via spectrophotometer (UV-2100S
- 198 spectrophotometer, manufactured by Unico Company of America), and potassium using a flame
- 199 detector (PFP7 spectrophotometer, manufactured by Geno Company of United Kingdom).

Modeling methods

- 201 Support vector machine (SVM). Boser, Guyon & Vapnik (1992) presented the support vector
- 202 machine as a learning tool for both regression and classification. Over the next few years, they
- 203 offered an optimum superficial theory as a linear classifier and used kernel functions to develop
- 204 non-linear classifiers. Boser, Guyon & Vapnik (1992) developed the fundamental ideas that are
- 205 now known as the SVM. Finally, in 1995, Vapnik enhanced regression (Vapnik, 1995). The SVR
- 206 derives from statistical training theory for minimizing the risk structure (Vapnik, 1998). Data
- 207 classification issues are solved using the SVM classification model, while prediction problems
- are solved using the SVR model.

- 209 Support vector regression (SVR). The accuracy of the performance function is a ministerial
- 210 issue in probabilistic modeling approaches-based reliability analysis. The SVR is applied
- 211 successfully in structural reliability analysis (Dai et al., 2012) using the simulation reliability
- approaches (Sun et al., 2017) and impotence sampling due to their efficiency and accuracy.
- 213 Consequently, the hybrid SVR and conjugate form can provide efficient and accurate results of
- 214 reliability analysis-based spermophagy, thus, the SVR modeling approach to build the structure
- 215 of the nonlinear relation may be improved the accuracy in predicting the probabilistic model by
- 216 the input random variables X. The SVR is structured as the below model in equation 1:

217
$$SP = b + \sum_{i=1}^{N} w_i K(x, x_i)$$
 (Eq. 1)

- Where b is bias, and $K(x, x_i)$ represents the kernel function for transferring the input variables
- 219 from real- space into N-dimensional feature space. Generally, the Gaussian kernel function uses
- for transferring the input data as follows in equation 2 (Brereton & Lloyd, 2010):

221
$$K(x, x_i) = \exp(-0.5||x - x_i||^2 / \sigma^2)$$
 (Eq. 2)

- Where σ is the kernel parameter that provides the smoothness of the kernel function, given as σ
- =0.5. w_i -is the weight to connect the input random data points in feature space and spermophagy
- 224 (SP) for computing by use of two slack variables ξ_i, ξ_i^* by the following optimization problem in
- 225 equation 3 (Lu, 2014):

$$Minimise \frac{\|\mathbf{w}\|^{2}}{2} + C \sum_{i=1}^{N} (\xi_{i} + \xi_{i}^{*})$$

$$226 \qquad Subjected to \begin{cases} y_{i} - \langle \mathbf{w}.K(\mathbf{x}, \mathbf{x}_{i}) \rangle - b \leq \varepsilon + \xi_{i} \\ \langle \mathbf{w}.K(\mathbf{x}, \mathbf{x}_{i}) \rangle + b - y_{i} \leq \varepsilon + \xi_{i}^{*} \\ \xi_{i}, \xi_{i}^{*} \geq 0 \end{cases}$$
(Eq. 3)

- 227 In which factor $C \ge 0$ is the regularization coefficient given as C=500 and ε is the insensitive loss
- 228 function given as ε = 0.01 in this study. The ε- insensitive loss function uses to neglect the
- 229 calibrating process-based SVR when differences between the predicted and observed SP
- 230 spermophagy are less than ε schematically shown in Fig. 1-A. The structure of SVR is
- presented in Fig. 1-B, and that the input data set (x) such as nitrogen, phosphorus, and potassium
- 232 in seeds, fruits, leaves, and roots are useds to calibrate the probabilistic model of spermophagy
- 233 (SP) using SVR.
- 234 **Identification accuracy.** The means of standard deviation (SD), coefficient of variation (CV),
- 235 the root of mean square error (RMSE), mean absolute percentage error (MAPE), the ratio of

prediction performance to deviation (RPD), Pearson correlation coefficient (\underline{rR}), and coefficient of determination (R^2) were used to determine the accuracy of prediction models in this study.

Used software. Matlab V7.1 software (The Mathworks Inc., Natick, Massachusetts, USA) was used for regression analysis and prediction models of macro-nutrient content in *Cucumis melo* plant organs in response to soil elements. Also, excel software was used for drawing figures of the above-described parameters.

Comentario [RD7]: Some of them are used as accuracy measures and others as goodness of fit criteria. I suggest this issue be clarified.

Results and discussion

236

237

238

239

240

241

242

243

244245

246

247

248

249

250251

252

253

254255

256

257

258

259260

261

262

263

264

265

266267

268269

270

271

Investigation of the model predicting plant nitrogen values. Based on the results, the statistical parameters of actual values input to the model are described in Table 2, and the predicted values obtained from the model are presented in Table 3. In Table 4, the results of fitting the predicted values of nitrogen in the seed, fruit, leaf, and the root of the melon compared to actual values in response to soil nitrogen are presented based on the SVR model.

According to the estimated parameters, the predicted fruit nitrogen values have the highest accuracy (RMSE= 0.122; MAPE= 7.01) in the model fitting, while the predicted leaf nitrogen values have the lowest accuracy (RMSE= 1.061; MAPE= 31.85). The RPD statistic evaluates the model's performance. Values less than 1.4, between 1.4 and 2, and greater than 2, respectively, show weak, acceptable, and excellent modeling performance (Chang et al., 2001). Accordingly, the fruit nitrogen had an excellent performance (RPD= 2.017) in the model prediction, and the leaf nitrogen had a weak performance (RPD= 0.710). However, it is observed that the regression model obtained from leaf nitrogen values ($R^2 = 0.832$; Adjusted $R^2 = 0.831$; Beta= 0.912) was the most suitable prediction model followed by fruit nitrogen values ($R^2 = 0.807$; Adjusted $R^2 = 0.807$); Adjusted $R^2 = 0.807$ 0.805; Beta= 0.898). In contrast, the model obtained from root nitrogen ($R^2 = 0.542$; Adjusted $R^2 = 0.539$; Beta= 0.736) had the weakest performance in prediction. The closer these values are to number one, the model indicates the stronger correlation between the predicted values and the actual values. In other words, the regression model obtained from the prediction of leaf and fruit nitrogen can cover or express a higher percentage of actual values. It is also known that the coefficients of each variable are positive, and due to the significant value of each variable being smaller than 0.05 (Sig= 0.000 < 0.05), this is proof of the appropriateness of the obtained models. Any variable with a larger Beta is more important in the regression model. In this way, it is found that leaf nitrogen (Beta= 0.912) followed by fruit nitrogen (Beta= 0.898) will be the best variables for predicting plant nitrogen changes in response to soil nitrogen (Table 4). Seidel et al. (2019) used spectrometry to evaluate organic carbon and nitrogen of whole rangeland soils in Germany; these researchers used a simple regression model to estimate these soil properties and assessed organic carbon and total nitrogen with acceptable accuracy (R²= 0.65 and RPD= 2.7)

and excellent accuracy ($R^2 = 0.87$ and RPD= 2.7), respectively.

- Table 4 presents the correlation between the actual values in plant organs and their predicted
- values using the support vector regression method. The results show the high potential of the
- 274 support vector regression algorithm in predicting the actual values in plant organs. The predictive
- 275 performance of the support vector regression algorithm for leaf and fruit nitrogen values is better
- than seed and root nitrogen values.
- 277 Fitting diagrams for predicted seed, fruit, leaf, and root nitrogen values compared to actual
- 278 values in response to soil nitrogen are presented in Fig. 2, respectively. The regression line slope
- 279 of diagrams for investigated plant nitrogen values in the SVR model is presented in these figures.
- 280 The predicted nitrogen values in leaf and fruit had the lowest distance from the 1:1 line and the
- 281 best fitting based on these results. The predicted nitrogen values in seed and root had the highest
- 282 relative distance from the 1:1 line and the lowest accuracy. The scatter of dots in the figures
- 283 indicates the models' accuracy in predicting the values of nitrogen output. Consequently, it can
- 284 be found that there is a positive correlation between the data and the model having acceptable
- accuracy (Fig. 2).
- Figure 3 presents the diagrams for plant nitrogen changes in response to soil nitrogen values. In
- 287 general, by increasing soil nitrogen, the nitrogen content of different organs increases to
- 288 maximize plants' growth. According to the results, the best soil nitrogen ranged between 0.05
- and 1.1% to obtain the most accurate predictions of the crop's nitrogen content. According to the
- 290 results of the predictions, the highest increase in crop nitrogen content in response to soil
- 291 nitrogen content ranged from 3.04 to 9.18% for leaf nitrogen and from 1.27 to 4.33% for fruit
- 292 nitrogen under NPK chemical fertilizers by using 15 t ha⁻¹ of vermicompost. Then, changes in
- 293 root nitrogen content were predicted in the range of 1.017 to 2.90 % under NPK chemical
- fertilizers by 5 t ha⁻¹ of vermicompost. Also, changes in seed nitrogen content ranged from 1.93
- to 7.39% under cow manure using 15 t ha⁻¹ of vermicompost (Fig. 3).
- 296 According to the performance evaluation of predicted models, the nitrogen content in leaves and
- 297 fruits is better than that in seeds and roots, so they were found to be more suitable for crop
- 298 monitoring. The predictions show that despite the error in soil measurements and the
- 299 effectiveness of nitrogen values from a combination of different parameters related to the crop,
- 300 there is a high linear correlation between the crop's nitrogen content and the soil nitrogen values.
- 301 According to the diagrams, there was a slight difference between the predicted and the actual
- values. Since the crop's nitrogen content is closely related to soil nitrogen values, the actual
- 303 values are approximately equal to the estimated nitrogen values. The observed incremental
- 304 relationship between the crop's nitrogen content and soil nitrogen values is calculated by
- regression equations as shown in Fig. 3. The results of this study are consistent with those of
- 306 Dotto et al. (2018).
- 307 Nitrogen is one of the macro-nutrients for plant growth, so determining its amount and changes
- 308 in organic compounds is critical for evaluating the final fertilizer's value. Fertilization seems to

- 309 have increased the nitrogen content in seeds, fruits, leaves, and roots. Due to the similar trend of
- 310 leaf and fruit nitrogen changes, this result indicates that under NPK chemical fertilizers by using
- 311 15 t ha⁻¹ of vermicompost, followed decomposition process of organic matter by microorganisms
- and earthworms, thus the nitrogen content of the plant vegetative body has increased, which by
- 313 improving photosynthesis and retransfer of photosynthetic materials, more nitrogenous
- 314 compounds have been transferred to the fruit and has increased the percentage of fruit nitrogen.
- 315 This result is consistent with other research findings. Tang et al. (2013) reported that the amount
- of nitrogen in citrus leaves was significantly related to the amount in the soil. In addition,
- 317 increasing the yield of bitter cucumber with the application of nitrogen, phosphorus, and
- 318 potassium fertilizers by Baset Mia et al. (2014) has been reported. The findings of other
- 319 researchers also show the positive effect of vermicompost fertilizer on plant characteristics
- 320 (Simon & Bababbo, 2015).
- 321 **Investigation of the model predicting plant phosphorus values.** The statistical parameters of
- 322 the actual values input to the model are reported in Table 5 and the predicted values obtained
- from the model as reported in Table 6. Table 7 shows the results of fitting the predicted values of
- 324 phosphorus in seed, fruit, leaf, and the root of the melon compared to actual values in response to
- soil phosphorus presented based on the SVR model.
- 326 The term "regression" refers to obtaining a hyperplane that fits the data. The distance of each dot
- 327 from this hyperplane indicates the error of that particular dot. According to the predicted results,
- fruit phosphorus had the lowest error (RMSE= 0.228; MAPE= 0.38%); and leaf phosphorus had
- 329 the highest error values (RMSE= 22.98; MAPE= 90.57%) in the model's fitting. Based on the
- ratio of performance to deviation results, fruit phosphorous had excellent performance (RPD=
- 331 27.95), and leaf phosphorus had weak performance (RPD= 0.208) in model prediction.
- 332 As can be seen, the regression coefficients calculated for the models obtained from phosphorous
- in seed, fruit, leaf, and root were 0.997, 0.999, 0.981, and 0.995, respectively. According to the
- obtained regression coefficients, fruit phosphorous ($R^2 = 0.999$) had the highest contribution in
- 335 prediction than actual values, thus identified as the best model compared to other models. Also,
- based on the regression coefficients obtained from seed, fruit, leaf, and root phosphorous (0.998,
- 337 0.999, 0.991, 0.997, respectively), observed that there is a positive and significant linear
- 338 correlation between the predicted and the actual values, indicating the success of the SVR model
- in predicting the changes in plant phosphorus compared to the actual values in response to soil
- 340 phosphorus (Table 7).
- 341 After investigating the SVR models' accuracy and determining the general correlations between
- 342 the data, the diagrams for the actual and predicted values of plant organs' phosphorus values
- were drawn (Fig. 4). The results show reliable modeling for support vector regression in
- predicting the content of the measured crop elements. The predicting models' performance of the

- fruit phosphorus is better than leaf, root, and seed phosphorus. The results of the scatter diagram
- 346 for each feature are presented in Fig. 4. Depending on the figures, actual and predicted values are
- scattered close to the 1:1 line. Consequently, it found a positive and strong correlation between
- 348 the data by the high models' accuracy.
- Figure 5 presents the diagram for changes in plant organs' phosphorus values in response to soil
- 350 phosphorus. To achieve the optimum results in predicting the crop phosphorus, the most suitable
- soil phosphorus content was estimated between 10 to 59 mg kg⁻¹. According to the results
- obtained from the model's prediction, at first, the rate of the release of phosphorus from different
- fertilizer treatments was slow. However, gradually, after the decomposition of fertilizers used in
- 354 the experiment by releasing nutrients and increasing the soil phosphorus content up to 38 mg kg
- 355 ¹, the plant organs' phosphorus values increased to their maximum, then slightly decreased and
- 356 followed at a constant rate. This pattern of changes is almost the same in all fertilizer and
- vermicompost treatments. Soil phosphorus content of up to 38 mg kg⁻¹ will be suitable and
- sufficient to supply the plant's agronomic needs. More soil phosphorus values do not affect
- increasing phosphorus content in plant organs, and more applications may not be economical.
- According to the results, the highest increase in crop phosphorus content in response to soil
- 361 phosphorus was predicted in the range of 15.74 to 26.19% for fruit phosphorus and 19.44 to
- 362 27.97% for leaf phosphorus under NPK chemical fertilizers by using 15 t ha⁻¹ of vermicompost.
- After that, changes in root phosphorus were predicted in the range of 15.47 to 25.67% under
- 364 NPK chemical fertilizers by using 5 t ha⁻¹ of vermicompost. Also, changes related to the seed
- phosphorus were predicted in the range of 18.80 to 28.04% underuse of cow manure by the use
- of 15 t ha⁻¹ of vermicompost (Fig. 5).
- 367 It can be found that the amount of soil phosphorus has caused the adjustment and reduction of
- 368 the error in estimating the predicted values of phosphorus in the model compared to the actual
- values of plant organs.
- 370 Phosphorus is also another macro-nutrient that has different roles in plant metabolism
- 371 (Pourranjbari Saghaiesh, Souri & Moghaddam, 2019). Thus, phosphorus is especially required
- 372 for seedling establishment (root growth) and later on at early reproductive steps (bloom and seed
- development) (Martuscelli et al., 2016; Chen et al., 2019).
- 374 It seems that chemical fertilizers have increased the storage of phosphorus in the soil by
- providing soil phosphorus. Also, the use of 15 t ha⁻¹ of vermicompost in the field has increased
- 376 the availability of phosphorus in the plant by increasing the decomposition of organic matter and
- mineralization of phosphorus in organic matter and their conversion into plant_usable form.
- 378 Vermicompost increases phosphorus uptake by increasing phosphorus solubility by activating
- 379 microorganisms by secreting organic acids or stimulating phosphatase activity (Busato et al.,
- 380 2012). Kakraliya et al. (2017), in the study of the nutritional and biological effects of

- 381 vermicompost on rice, stated that vermicompost increased the availability of nitrogen,
- 382 phosphorus, and potassium. Vermicompost can also increase the amount of absorbed phosphorus
- 383 (Jumadi et al., 2014).
- 384 **Investigation of the model predicting plant potassium values.** The statistical parameters of the
- actual values input to the model are presented in Table 8, and the predicted values obtained from
- the model as reported in Table 9. In Table 10, the results of fitting the predicted values of
- potassium in the seed, fruit, leaf, and the root of the melon compared to actual values in response
- to soil potassium are presented based on the SVR model.
- 389 The results obtained from the output of the regression models showed that leaf potassium with a
- coefficient of 0.984 and fruit potassium with a coefficient of 0.968 had the highest coefficient of
- determination (R²), respectively, more accurately than other coefficients of determination. The
- coefficients of determination in root and seed potassium were 0.952 and 0.940, respectively.
- 393 Accordingly, fruit potassium with the highest ratio of prediction performance to deviation
- 394 (RPD= 5.174) showed better performance than other potassium values in the root (RPD= 4.420),
- seed (RPD= 3.577), and leaf (RPD= 0.148), respectively. In addition, in the model fitting, the
- root of the mean square error and the mean absolute percentage error in fruit potassium (RMSE=
- 397 0.465; MAPE= 1.77%) are less than the leaf potassium (RMSE= 12.148; MAPE= 132.11%).
- 398 Based on these results, the regression model obtained from fruit potassium compared to leaf
- 399 potassium minimized the error coefficients and performed better in estimating the coefficient of
- 400 determination. It leads to more accuracy of the output models obtained from actual values in the
- 401 plant organs in response to soil potassium (Table 10).
- 402 Figure 6 shows the actual values compared to the predicted values around the 1:1 line using the
- 403 SVR model. As shown in Fig. 6, the data around the 1:1 line are well placed. The significance of
- 404 the coefficient of determination for the regression line between actual and predicted values in
- leaf, fruit, root, and seed potassium with coefficients of 0.984, 0.968, 0.952, and 0.940 indicates
- 406 the appropriate efficiency of this model to describe the trend of crop potassium changes in
- response to soil potassium (Fig. 6).
- 408 Figure 7 shows the diagram for changes in crop potassium values in response to soil potassium.
- 409 To achieve the optimum results in predicting the crop potassium, the most suitable soil
- 410 potassium ranged from 180 to 320 mg kg⁻¹. According to the obtained results, at the beginning of
- growth, because of potassium uptake by the plant, soil potassium decreased and showed a
- 412 downward trend. However, gradually, after the decomposition of fertilizers used in the
- 413 experiment by releasing nutrients and increasing the soil potassium up to 260-280 mg kg⁻¹, the
- 414 plant organs' potassium values increased to their maximum, then slightly decreased due to the
- consumption by plant organs. The potassium increased again and reached its maximum in
- 416 response to 320 mg kg⁻¹ of soil potassium. Only the amount of leaf potassium continued to
- decrease, which was probably due to the transfer of nutrients to the fruits and seeds (Fig. 7).

118 119 120 121 122 123 124 125 126	Because the potassium in leaf and fruit plays a ministerial role in estimating the crop's potassium content, they were identified as the best features in the final prediction of crop potassium values in response to soil potassium. According to the prediction results, the highest increase in crop potassium in response to soil potassium ranged from 15.19 to 19.67% for fruit potassium and 1.18 to 11.60% for leaf potassium under the NPK chemical fertilizer and the use of 15 t ha ⁻¹ vermicompost. After that, changes related to the root potassium values ranged from 9.37 to 15.78% under NPK chemical fertilizers and using 5 t ha ⁻¹ of vermicompost. Also, the changes related to the seed potassium can be predicted in the range of 14.09 to 18.22% under cow manure and using 15 t ha ⁻¹ of vermicompost (Fig. 7).
127 128	In a study by Xu <i>et al.</i> (2016) on the response of rice yield to potassium uptake, these researchers attributed the high yield changes to differences in climatic conditions and soil nutrient supply.
129 130 131 132 133 134 135	One of the main functions of potassium is to activate certain enzymes. Potassium acts more as a soluble ion to maintain cell turgescence in guard cells (Obreza & Morgan, 2011). The use of NPK chemical fertilizer by 15 t ha ⁻¹ vermicompost improved the physical and chemical soil properties, improved plant nutritional status, and increased the amount of absorbable potassium in soil and plants. In this regard, researchers such as Sabir <i>et al.</i> (2013), as well as Aruda <i>et al.</i> (2013), reported that inoculation of corn seeds with growth-promoting bacteria (<i>Aztobacter</i> , <i>Azpirillium</i> , and <i>Pseudomonas</i>) increased phosphorus, nitrogen, and potassium content in roots and shoots of the plant.
137 138 139 140 141 142	Researchers have stated that available potassium is one of the most important soil factors affecting the yield and quality of Novell orange fruit (Cheng <i>et al.</i> , 2016). In this regard, some researchers reported that the use of organic and integrated fertilizers, due to improving the physical and chemical properties of soil and availability and simultaneous release of essential elements with plant needs leads to improved vegetative and reproductive features, which ultimately enhances the crop yield (Fallah, Ghalavand & Raisi, 2013).
1/12	

43

444

Conclusions

- This study investigates the prediction models of macro-nutrient content in plant organs of
- 446 Cucumis melo in response to soil elements affected by different fertilizers using support vector
- regression (SVR). Support vector regression can effectively calibrate input data sets such as
- nitrogen, phosphorus, and potassium in seeds, fruits, leaves, and roots to model (Fig. 1). The
- results show reliable modeling for support vector regression in predicting the macro-nutrient
- 450 content in plant organs.
- 451 According to the results, when the data sets of nitrogen, phosphorus, and potassium in fruit, were
- used as input, the accuracy of these models was higher than 80.0% ($R^2 = 0.807$ for predicting

454	respectively). Likewise, the ratio of prediction performance to deviation (RPD) obtained from
455	the models ranged from 2.017 for predicting fruit nitrogen (Table 4) and 5.17 for fruit potassium
456	(Table 10) to 27.95 for fruit phosphorus (Table 7) content. Because the macro-nutrient content in
457	fruit had the highest contribution in prediction than actual values, thus identified as the best
458	model compared to other models in response to soil elements. Based on our findings, the
459	importance of fruit phosphorus was identified as a determinant that strongly influenced melon
460	prediction models.
461	According to the results of the prediction models in response to soil elements, the best soil
462	nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg ⁻¹ , and soil
463	potassium from 180 to 320 mg kg ⁻¹ , which offers a better content in the prediction models.
464	Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74
465	to 26.19%, and fruit potassium from 15.19 to 19.67% obtained by 15 t ha ⁻¹ of vermicompost
466	using NPK chemical fertilizers. More significant values of soil elements do not affect increasing
467	macro-nutrient content in plant organs, and excessive application may not be economical.
468	Therefore, the prediction of macro-nutrient content in fruits of Cucumis melo in response to soil
469	elements could have caused a saving in the amount of fertilizer utilized and provided for the
470	possibility of proper farming activities during the growing season.
471	
472	Acknowledgements
473	We are grateful to the field technicians at the research farm of Baqiyat-Allah-ul-Azam
474	Agricultural Research Institute of Zabol University, Zahak, Iran, and the faculty members of
475	Zabol University, Zabol, Iran, as well as the field technicians at Fariman, Iran, and the faculty
476	members of Ferdowsi University, Mashhad, Iran, who helped in the fieldwork.
477	
478	References
479	Adeyemi O, Grove I, Peets S, Domun Y, Norton T. 2018. Dynamic neural network
480	modelingmodelling of soil moisture content for predictive irrigation scheduling. Sensors 18:3408
481	https://doi.org/10.3390/s18103408
482	Aruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Maria L, Pasaglia P,
483	Vargas L. 2013. Screning of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do

Sul State (South Brazil) and analysis of their potential to improve plant growth. Applied Soil

Ecology 63:15-22 https://doi.org/10.1016/j.apsoil.2012.09.001

fruit nitrogen; R^2 = 0.999 for fruit phosphorus; R^2 = 0.968 for fruit potassium) (Tables 4, 7, 10,

- 486 Baset Mia MA, Serajul Islam Md, Yunus Miah Md, Das MR. 2014. Flower synchrony,
- 487 growth and yield enhancement of small type Bitter Gourd (Momordica charantia) through plant
- 488 growth regulators and NPK fertilization. Pakistan Journal of Biological Sciences 17(3):408-413
- 489 https://doi.org/10.3923/pjbs.2014.408.413
- 490 **Bisognin DA. 2002.** Origin and evolution of cultivated cucurbits. *Ciência Rural* **32**:715-723
- 491 https://doi.org/10.1590/S0103-84782002000400028
- 492 **Boser BE, Guyon IM, Vapnik VN. 1992.** A training algorithm for optimal margin classiers. In:
- 493 Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning
- 494 *Theory*. Pittsburgh: ACM Press, 144-152.
- 495 https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3818
- 496 **Brereton RG, Lloyd GR. 2010.** Support vector machines for classification and regression.
- 497 Analyst 135:230-267 https://doi.org/10.1039/B918972F
- 498 Busato JG, Lima LS, Aguiar NO, Canellas LP, Olivares FL. 2012. Changes in labile
- 499 phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing
- and diazotrophic bacteria. Bioresource Technology 110:390-395
- 501 https://doi.org/10.1016/j.biortech.2012.01.126
- 502 Canizo Brenda V, Escudero Leticia B, Pellerano Roberto G, Wuilloud Rodolfo G. 2019.
- 503 Data mining approach based on chemical composition of grape skin for quality evaluation and
- traceability prediction of grapes. Computers and Electronics in Agriculture 162:514-522
- 505 https://doi.org/10.1016/j.compag.2019.04.043
- 506 Chang CW, Laird DA, Mausbach MJ, Hurburgh CR. 2001. Near-infrared reflectance
- 507 spectroscopy-principal components regression analyses of soil properties. Soil Science Society of
- 508 *America Journal* **65**:480-490 http://dx.doi.org/10.2136/sssaj2001.652480x
- 509 Chen Y, Zhou X, Lin Y, Ma L. 2019. Pumpkin yield affected by soil nutrients and the
- 510 interactions of nitrogen, phosphorus, and potassium fertilizers. American Society for
- 511 *Horticultural Science* **54**:1831-1835 https://doi.org/10.21273/HORTSCI14152-19
- 512 Cheng J, Ding C, Li X, Zhang T, Wang X. 2016. Soil quality evaluation for navel orange
- 513 production systems in central subtropical China. Soil and Tillage Research 155:225-232
- 514 <u>https://doi.org/10.1016/j.still.2015.08.015</u>
- 515 Dai H, Zhang H, Wang W, Xue G. 2012. Structural reliability assessment by local
- 516 approximation of limit state functions using adaptive markov chain simulation and support
- vector regression. Computer Aided Civil and Infrastructure Engineering 27(9):676-686
- 518 <u>http://dx.doi.org/10.1111/j.1467-8667.2012.00767.x</u>

Código de campo cambiado

519	recommendation system for melon based on nutritional balance. Revista Brasileira de Ciência do
521	Solo 39:498-511 https://doi.org/10.1590/01000683rbcs20140172
522 523 524 525	Dotto AC, Dalmolin RSD, Ten Caten A, Grunwald S. 2018. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra. <i>Geoderma</i> 314 :262-274 http://dx.doi.org/10.1016/j.geoderma.2017.11.006
526 527 528 529	Esfandiarpour-Boroujeni I, Karimi E, Shirani H, Esmaeilizadeh M, Mosleh Z. 2019. Yield prediction of apricot using a hybrid particle swarm optimization-imperialist competitive algorithm- support vector regression (PSO-ICA-SVR) method. <i>Scientia Horticulturae</i> 257 :108756 https://doi.org/10.1016/j.scienta.2019.108756
530 531 532 533	Fallah S, Ghalavand A, Raisi F. 2013. Soil chemical properties and growth and nutrient uptake of maize grown with different combinations of broiler litter and chemical fertilizer in a calcareous soil. <i>Communications in Soil Science and Plant Analysis</i> 44(21) :3120-3136 https://doi.org/10.1080/00103624.2013.832284
534 535 536	Ferrante A, Spinardi A, Maggiore T, Testoni A, Gallina PM. 2008. Effect of nitrogen fertilization levels on melon fruit quality at the harvest time and during storage. <i>Journal of the Science of Food and Agriculture</i> 88 :707-713 https://doi.org/10.1002/jsfa.3139
537 538	Food and Agriculture Organization. 2018. FAOSTAT agricultural database. http://faostat.fao.org/site/339/default.aspx
539 540 541	Jeong G, Oeverdieck H, Park SJ, Huwe B, Lie M. 2017. Spatial soil nutrients prediction using three supervised learning methods for assessment of land potentials in complex terrain. <i>Catena</i> 154 :73-84 https://doi.org/10.1016/j.catena.2017.02.006
542 543 544 545	Jiang H, Rusuli Y, Amuti T, He Q. 2019. Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network. International Journal of Remote Sensing 40:284-306 https://doi.org/10.1080/01431161.2018.1513180
546 547 548 549	Jumadi O, Hiola SF, Hala Y, Norton J, Inubushi K. 2014. Influence of Azolla (<i>Azolla microphylla</i> Kaulf.) compost on biogenic gas production, inorganic nitrogen and growth of upland kangkong (<i>Ipomoea aquatica</i> Forsk.) in a silt loam soil. <i>Soil Science and Plant Nutrition</i> 60(5) :722-730 https://doi.org/10.1080/00380768.2014.942879
550 551 552	Kakraliya SK, Jat RD, Kumar S, Choudhary KK, Prakash J, Singh LK. 2017. Integrated nutrient management for improving, fertilizer use efficiency, soil biodiversity and productivity of wheat in irrigated rice wheat cropping system in indo-gangatic plains of India. <i>International</i>

Con formato: Inglés (Estados Unidos)
Con formato: Inglés (Estados Unidos)
Con formato: Inglés (Estados Unidos)

- Journal of Current Microbiology and Applied Sciences **6(3)**:152-163
- 554 http://dx.doi.org/10.20546/ijcmas.2017.603.017
- 555 Kjeldahl J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New
- 556 method for the determination of nitrogen in organic substances). Zeitschrift für analytische
- 557 *Chemie* **22(1)**:366-383 https://doi.org/10.1007/BF01338151
- Liu Y, Wang K, Yan Z, Shen X, Yang X. 2022. Prediction of active ingredients in Salvia
- 559 miltiorrhiza Bunge. based on soil elements and artificial neural network. PeerJ 10:e12726
- 560 <u>https://doi.org/10.7717/peerj.12726</u>
- 561 Lu CJ. 2014. Sales forecasting of computer products based on variable selection scheme and
- support vector regression. *Neurocomputing* **128**:491-499
- 563 <u>http://dx.doi.org/10.1016/j.neucom.2013.08.012</u>
- 564 Luan F, Sheng Y, Wang Y, Staub JE. 2010. Performance of melon hybrids derived from
- parents of diverse geographic origins. *Euphytica* 173:1-16 http://dx.doi.org/10.1007/s10681-009-04
- 566 <u>0110-6</u>
- Martuscelli M, Di Mattia C, Stagnari F, Speca S, Pisante M, Mastrocola D. 2016. Influence
- 568 of phosphorus management on melon (Cucumis melo L.) fruit quality. Journal of the Science of
- 569 Food and Agriculture **96**:2715-2722 https://doi.org/10.1002/jsfa.7390
- 570 Mohamed HI, El-Sayed AA, Rady MM, Caruso G, Sekara A, Abdelhamid MT. 2021.
- 571 Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of
- 572 common bean under salinity stress. *PeerJ* **9**:e11463 https://doi.org/10.7717/peerj.11463
- 573 Munger HM, Robinson RW. 1991. Nomenclature of Cucumis melo L. Cucurbit Genetics
- *Cooperative Report* **14**:43-44 https://cucurbit.info/1991/07/nomenclature-of-cucumis-melo-l/
- 575 Obreza TA, Morgan KT. 2011. Nutrition of Florida Citrus Trees. Gainesville: Florida
- 576 University Press. http://edis.ifas.ufl.edu/
- 577 Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of Available Phosphorous in
- 578 Soils by Extraction with Sodium Bicarbonate. Washington D.C: American Deptartment of
- 579 Agriculture Press.
- 580 https://www.worldcat.org/search?q=ti=Estimation%20of%20available%20phosphorus%20in%2
- $\underline{0soils\%20by\%20extraction\%20with\%20sodium\%20bicarbonate}.$
- 582 Pourranjbari Saghaiesh S, Souri MK, Moghaddam M. 2019. Characterization of nutrients
- 583 uptake and enzymes activity in Khatouni melon (Cucumis melo var. inodorus) seedlings under
- 584 different concentrations of nitrogen, potassium and phosphorus of nutrient solution. *Journal of*
- 585 Plant Nutrition 42(2):178-185 https://doi.org/10.1080/01904167.2018.1551491

- **Roodposhti MS, Safarrad T, Shahabi H. 2017.** Drought sensitivity mapping using two one-
- class support vector machine algorithms. *Atmospheric Research* **193**:73-82
- 588 <u>http://dx.doi.org/10.1016/j.atmosres.2017.</u>04.017
- 589 Sabir S, Asghar HN, Kashif SUR, Khan MY, Akhtar MJ. 2013. Synergistic effect of plant
- 590 growth promoting rhizobacteria and kinetin on maize. Journal of Animal and Plant Sciences
- **23(6)**:1750-1755
- 592 https://www.researchgate.net/publication/258225454 SYNERGISTIC EFFECT OF PLANT
- 593 GROWTH PROMOTING RHIZOBACTERIA AND KINETIN ON MAIZE
- 594 Seidel M, Hutengs C, Ludwig B, Thiele-Bruhn S, Vohland M. 2019. Strategies for the
- 595 efficient estimation of soil organic carbon at the field scale with vis-NIR spectroscopy: Spectral
- libraries and spiking vs. local calibrations. *Geoderma* **354**:113856
- 597 http://dx.doi.org/10.1016/j.geoderma.2019.07.014
- 598 Simon F, Bababbo P. 2015. Yield performance of sweet corn (Zea mays) using vermicompost
- 599 as a component of balanced fertilization strategy. *International Journal of Chemical*,
- 600 Environmental and Biological Sciences 3(3):224-227
- 601 https://scholar.google.com/scholar?oi=bibs&cluster=16935203685290788510&btnI=1&hl=en
- 602 Stenberg B, Rogstrand G, Bolenius E, Arvidsson J. 2007. On-line soil NIR spectroscopy:
- 603 identification and treatment of spectra influenced by variable probe distance and residue
- 604 contamination. In: Stafford JV, ed. *Precision agriculture '07*. Wageningen: Academic Press,
- 605 125-131. https://www.researchgate.net/publication/290839132_On-
- 606 line soil NIR spectroscopy Identification and treatment of spectra influenced by variable
- probe distance and residue contamination
- 608 Sun ZL, Wang J, Li R. 2017. LIF: a new kriging based learning function and its application to
- 609 structural reliability analysis. Reliability Engineering and System Safety 157:152-165
- 610 https://doi.org/10.1016/j.ress.2016.09.003
- 611 Tang Y, Peng L, Chun C, Ling L, Fang Y, Yan X. 2013. Correlation analysis on nutrient
- element contents in orchard soils and sweet orange leaves in southern Jiangxi province of China.
- 613 Acta Horticulturae Sinica 40:623-632 https://www.ahs.ac.cn/EN/Y2013/V40/I4/623
- 614 Tränkner M, Tavakol E, Jákli B. 2018. Functioning of potassium and magnesium in
- 615 photosynthesis, photosynthate translocation and photoprotection. *Physiologia Plantarum*
- 616 **163**:414-431 <u>https://doi.org/10.1111/ppl.12747</u>
- 617 Tu Y, Bian M, Wan Y, Fei T. 2018. Tea cultivar classification and biochemical parameter
- estimation from hyperspectral imagery obtained by UAV. *PeerJ* **6**:e4858
- 619 <u>https://doi.org/10.7717/peerj.4858</u>

Código de campo cambiado

Vapnik VN. 1995. The Nature of Statistical Learning Theory. New York, Springer Press. 620 https://doi.org/10.1007/978-1-4757-2440-0 621 622 Vapnik VN. 1998. Statistical Learning Theory. New York, Wiley Press. 623 https://www.wiley.com/en-us/Statistical+Learning+Theory-p-9780471030034 624 Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad, JO. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for 625 626 simultaneous assessment of various soil properties. Geoderma 131:59-75 https://doi.org/10.1016/j.geoderma.2005.03.007 627 Xu X, He P, Zhao S, Qiu S, Johnstond AM, Zhou W. 2016. Quantification of yield gap and 628 629 nutrient use efficiency of irrigated ricein China. Field Crops Research 186:58-65 http://dx.doi.org/10.1016/j.fcr.2015.11.011 630 631 Zhang Ch, Zhang K, Ge L, Zou K, Wang S, Zhang J, Li W. 2021. A method for organs classification and fruit counting on pomegranate trees based on multi-features fusion and support 632 vector machine by 3D point cloud. Scientia Horticulturae 278:109791 633 https://doi.org/10.1016/j.scienta.2020.109791 634