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ABSTRACT
Background. Soil microenvironmental variables showed an important key in α
and β-tree diversity in Neotropical montane oak forest. Thus, understanding the
microenvironment fluctuation at small-fragment effects on tree diversity is crucial in
maintaining the montane oak ecosystems. In this study, we hypothesized that within
a relatively small-fragment (151.63 ha), tree α and β-diversity fluctuate and specific
soil microenvironmental factors could influence tree species diversity to answer three
questions: Do tree α and β-diversity differ among transects, even in a short-distance
between them? Do microenvironmental variables influence tree diversity composition
that occurs within a relict Neotropical montane oak forest? Is there a particular
microenvironmental variable influencing tree species-specific?
Methods. We established four permanent transects during a year in a relict Neotropical
montane oak forest, we assessed tree diversity and specific microenvironmental
variables (soil moisture, soil temperature, pH, depth litterfall and light incidence). This
allowed us to evaluate how microenvironmental variables at small-fragment influence
α and β-tree diversity and tree species-specific.
Results. Our results showed that α-diversity was not different among transects;
however, β-diversity of tree species wasmostly explained by turnover and soil moisture,
soil temperature, and light incidence were the microenvironmental variables that
triggered the replacement (i.e., one species by another). Those variables also had
effect on tree species-specific: Mexican beech (Fagus mexicana), Quebracho (Quercus
delgadoana), Pezma (Cyathea fulva), Aguacatillo (Beilschmiedia mexicana), Pezma
(Dicksonia sellowiana var. arachneosa), andMountain magnolia (Magnolia schiedeana).
Discussion. Our results confirm our hypothesis related to β-diversity but not with
α-diversity; however, the tree community structure of the diversity was similar
among transects. Our study represents the first effort to evaluate and link the soil
microenvironmental effect on tree α and β-diversity, finding a high replacement in
a small-fragment of Neotropical montane oak forest from eastern Mexico.

Subjects Biodiversity, Ecology, Plant Science, Soil Science, Forestry
Keywords β-diversity, Cloud forest, Floristic structure, Microhabitat, Importance Value Index
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INTRODUCTION
Neotropical montane oak forests (NMoFs; Kappelle, Cleef & Chaverri, 1992) cover ∼75%
of tropical tree species and 18–25% temperate plant genera worldwide. These forests are
characterized by steep ravines (>45◦), topographically complex regions (from1,000 to 2,500
m.a.s.l.; Rahbek et al., 2019; Ampoorter et al., 2020), and the presence of specific floristic
dominant relict-tree composition (Fagus mexicanaMartínez,Magnolia schiedeana Schltdl.,
Meliosma alba (Schltdl.) Walp.,Tilia mexicana Schltdl., and several oaks), as well as specific
microenvironmental variables (i.e., high pH, high moisture, and low soil temperature) play
a key role in the mid-canopy structure (Rodríguez-Ramírez et al., 2021). Several studies
have reported those variables as an essential driver in determining future plant diversity
and health of forests (Tymen et al., 2017;Denney et al., 2020; Zou et al., 2021). For example,
the amount of litter falls or canopy cover, moisture, soil pH and soil temperature are linked
as components that influence the floristic structure, composition and diversity in forest
ecosystems (Barik et al., 1992; Francisco et al., 2021).

Local microenvironmental variables influence small-scale (<1 m) on tree α (richness
and ecological diversity) and β-diversity (turnover and nestedness) heterogeneity and
plant distribution patterns (Rodríguez-Ramírez, Sánchez-González & Ángeles Pérez, 2018;
Morandi et al., 2020). Specifically, turnover is a relevant component of β-diversity that
influences the tree species with restricted distribution, reflecting particular processes as an
adaptation to microenvironmental variation (Swenson, Anglada-Cordero & Barone, 2011;
Denney et al., 2020).

The Mexican NMoFs is characterized by isolate and archipelagic distribution, as well
as high tree diversity including ∼164 relict-endemic species (Valencia, 2017; Carrero et
al., 2020); nevertheless, NMoF microenvironmental variation is poorly understood, and
can influence tree-dominant species richness and diversity (Anderson et al., 2011; Fahey,
Sherman & Tanner, 2016). In this study, we hypothesized that within a relatively small-
fragment (151.63 ha), tree α and β-diversity fluctuate and specific soil microenvironmental
factors could influence tree species diversity to answer three questions: (1) Do tree α
and β-diversity differ among transects, even in a short-distance between them? (2) Do
microenvironmental variables influence tree diversity composition that occurs within
a relict Neotropical montane oak forest? (3) Is there a particular microenvironmental
variable influencing tree species-specific?

MATERIALS & METHODS
Sampling site
The study was performed in the Medio Monte Natural Protected Area (San Bartolo
Tutotepec, Hidalgo state, Mexico; 20◦24′51.50′′N, 98◦15′32.07′′W; 1,800–1,944 m.a.s.l.;
Fig. 1A). The study forest is the largest continuous relict-NMoF in eastern Mexico (ca.
151.63 ha; SEMARNAT & Secretaría del Medio Ambiente y Recursos Naturales, 2010) with
rugged terrain with steep slopes >40◦. The climate is temperate (Cwb sensu Peel, Finlayson
& Mcmahon (2007)) with three distinct seasons throughout the year: dry cool October-
January, dry warm early February-May, and humid June-September. Average annual

López-Calvillo et al. (2023), PeerJ, DOI 10.7717/peerj.15415 2/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.15415


Figure 1 Study area. (A) Distribution of Neotropical montane oak forest in Hidalgo state, Mexico. (B)
Geographical location of the study transects (white lines) in Medio Monte Natural Protected Area.

Full-size DOI: 10.7717/peerj.15415/fig-1

temperature 12.7−14 ◦C (Rodríguez-Ramírez et al., 2021), the total annual precipitation is
1,200–2,015 mm, and relative moisture is 60–85% (Miranda & Sharp, 1950). The buried
soil is covered by younger deposits (Andosol-Humic; IUSS Working Group, 2022). The
study forest displays pH values of 4–6 (Peters, 1995).

Study transects and tree inventory
During 2019 from January to December, we established and geo-referenced (with a GPS;
Garmin eTrex® 10; Garmin Ltd., Olathe, KS, USA) four permanent transects (as far
as possible from anthropic activities and roads) with a length of 100 m and ∼300 m
apart in the study forest (Fig. 1B). To identify the structural importance of tree species,
at each transect five sample plots (20× 20 m) were set up and 20 m apart to assure
data independence (Roberts-Pichette & Gillespie, 1999). Conspicuous tree species with a
diameter at breast height (DBH) ≥ 1.5 cm were collected, identified and quantified every
three months (Rodríguez-Ramírez, Sánchez-González & Ángeles Pérez, 2018). Tree species
were identified using specific taxonomic keys (Rzedowski, 2015) and the vascular plant
species nomenclature was updated at the Tropicos website (Missouri Botanical Garden;
http://www.tropicos.org). The specimens were deposited in the FES–Iztacala–UNAM
herbarium, Mexico (IZTA; https://www.zaragoza.unam.mx/herbario/).

Microenvironmental variables
Wemeasured five microenvironmental variables tri-monthly in each plot between 8:00 and
17:00 to normalize the daily fluctuation (Table 1): soil moisture, soil temperature, soil pH,
depth litterfall, and light incidence (see Rodríguez-Ramírez, Sánchez-González & Ángeles
Pérez, 2018 for more details). Four measurements were taken at the four cardinal points
(e.g., north, south, east, and west) of each plot. The values were averaged for statistical
analysis.
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Table 1 Overview of soil microenvironment variables and their measurement method (see Rodríguez-
Ramírez, Sánchez-González & Ángeles Pérez, 2018 for more details).

Microenvironmental
variables

Measurement

Soil moisture
(%) in volume

Recorded at a depth of 2–3 cm, with a hygrometer (VT–05) that includes a scale
from 1 to 8 (10% to 80% moisture).

Soil temperature
(◦C)

Measured with a soil thermometer (Taylor® Switchable Digital Pocket
Thermometer) at a depth 5 cm.

Depth litter fall
(cm)

Measured using a scaled metal ruler. It was drilled down to the humus of the soil
layer.

Soil pH
(0-14)

Recorded with a pH soil meter (ANGGREK®) at a depth 5 cm, with an accuracy
of± 0.2 pH.

Light incidence
(%)

Estimated using a concave mirror densitometer (Forestry Suppliers
Spherical Crown Densitometers, Model A).

Analyses vegetation
We assessed the Importance Value Index (IVI; express the dominance and biological
success of specific species; Susilowati et al., 2020) of each tree species and performed
rank-abundance curves to identify the structure roll of each tree species among transects,
estimated by summing relative frequency, density and dominance (Naidu & Kumar, 2016):

IVI = ( 12) relative BA + relative D.
We calculated basal area (BA) using the formula BA = πr2, where π = 3.1416 and r =

(0.5) (DBH) is the radius of the tree; and relative density (D) was determined using the
number of individuals of each species (Mostacedo & Fredericksen, 2000). To characterize
the tree structure and composition of each transect, we developed semi-realistic Richards
profile diagrams using the software Adobe Illustrator v. 23.0.5 (http://www.adobe.com).

Diversity analyses
To ensure that our tree survey effort was enough to record a significant sample for the
inventory, we used sample coverage estimates suggested by Chao & Jost (2012), ranging
from 0 (minimum) to 100% (maximum). Tree diversity was estimated using q= 0 (species
richness) and q = 1 (species diversity) (Hill, 1973). We performed this estimation among
transects. The α-diversity, for a given diversity order q, is given by:

qD=

( s∑
i=1

pqi

)
1/(1−q)

where S is the number of species, pi is the comparative abundance of species i, and q is
the order number of diversity. We performed rarefaction curves to standardize samples
that differ in terms of individual size or plot size (Chao, KH & Hsieh, 2016). They were
compared with 95% confidence intervals. We performed the analysis using the iNEXT
R-library (Chao et al., 2014; https://chao.shinyapps.io/iNEXTOnline/).

We partitioned β-diversity according to the procedure of Podani & Schmera (2011),
which is based on the approach of Baselga (2010). According to this method, total
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dissimilarity (βcc) is 1-minus Jaccard similarity coefficient. βcc is divided into two
components: turnover (β.3, replacement of one species by another or loss of species)
and nestedness (βrich, differences in species richness). The β-diversity was assessed using
the IVI of each tree species (Naidu & Kumar, 2016). These analyses were performed in
R-software v. 2.4.1 (R Core Team, 2018), using the R-script of Carvalho, Cardoso & Gomes
(2012).

Linking microenvironmental variables with turnover tree diversity
We performed a principal component analysis (PCA) using tree abundance data to identify
the most strongly discriminating soil microenvironmental variables (Anderson et al., 2011;
Kent, 2011). All microenvironmental variables were first transformed to log10 after adding
a constant because each variable showed different value types (Kindt & Coe, 2005). We
performed a redundancy analysis (RDA; Borcard, Gillet & Legendre, 2011) to analyze the
relationship between turnover tree diversity (IVI data) and microenvironmental variables
among four transects. We intend the technique to reveal major trends in the variation of a
multidimensional dataset in a reduced space of selected, linearly independent dimensions
(Legendre & Legendre, 1998). We achieved the analyses with the R-software and vegan
package (Oksanen et al., 2016).

Based on the IVI tree species rank-abundance curves results, we performed a quasi-
Poisson generalized linear model (GLM; Ver Hoef & Boveng, 2007) to determine specific
microenvironmental variables that could influence on turnover of tree species with high
IVI values; the tree species as dependent variables, and microenvironmental variables as
independent factors. Specific predictor microenvironmental variables were log or square
root transformed to address non-normality (Shapiro-Wilk test; Hanusz, Tarasinska &
Zielinski, 2014). In all cases, we selected the best model fitted for each microenvironmental
variable; we used the Adjusted Akaike’s information criteria (AICc) selecting the best model
with the minimum AICc value (Hurvich & Tsai, 1989). Statistically significant variables are
P < 0.05 and P < 0.01 (Borcard, Gillet & Legendre, 2011). We achieved all GLM analyses
through using R-software with the glm2-function in stats package. Besides, response curves
of six tree species with high IVI values against specific soil microenvironmental variables
were performed with CANOCO v. 5.0 (Šmilauer & Lepš, 2014).

RESULTS
Floristic composition
A total of 22 tree species were identified in the four transects (Table 2). The vegetation
profiles allowed to detect dissimilarity floristic species structure and composition among
transects (Fig. 2). The average tree diameter (DBH) in the transect T1 was 89.8 cm; T2
= 114.5 cm; T3 = 93.9 cm; and T4 = 97.9 cm (Fig. 2). Overall, the Importance Value
Index (IVI) showed ranges from 0.333 (Prunus serotina Ehrh.) to 0.005 (Conostegia arborea
Steud.) (Table 2, Fig. 3). By each transect the rank-curve showed different vegetation
composition and structure dominated by: T1, Mexican beech (IVI= 0.252); for T2 and T3,
MexicanClethra (IVI= 0.192, 0.313 respectively); and T4,Wild black cherry (IVI= 0.333),
(Fig. 3). The uncommon tree species were: for T1, Sweetgum (Liquidambar styraciflua L.;
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Table 2 Importance Value Index (IVI) of tree species among Neotropical montane oak forest tran-
sects. Bold numbers represent the highest IVI values in each transect.

Code Tree species Neotropical montane oak forest
transects

T1 T2 T3 T4

Aa Alnus acuminata Kunth 0.069 0.006 0 0
Af Alsophila firma (Baker) D.S. Conant 0 0.039 0.140 0.093
Bm Beilschmiedia mexicana (Mez) Kosterm. 0.026 0.164 0.032 0.114
Cm Clethra mexicana DC. 0.108 0.192 0.313 0.036
Ca Conostegia arborea Steud. 0 0.005 0.042 0.005
Cf Cyathea fulva (M. Martens & Galeotti) Fée 0 0.034 0 0
Ds Dicksonia sellowiana var. arachneosa Sodiro 0 0 0.188 0.009
Fm Fagus mexicanaMartínez 0.252 0 0 0
Ls Liquidambar styraciflua L. 0.018 0 0 0
Ms Magnolia schiedeana Schltdl. 0.118 0.074 0 0.099
Ox Oreopanax xalapensis (Kunth) Decne. & Planch. 0.084 0.011 0.037 0.012
Ov Ostrya virginiana (Mill.) K. Koch 0.070 0.021 0.028 0.170
Po Perrottetia ovataHemsl. 0 0 0 0.014
Pa Persea americanaMill. 0 0.142 0 0
Ps Prunus serotina Ehrh. 0.075 0.061 0.033 0.333
Qd Quercus delgadoana S. Valencia, Nixon & L.M. Kelly 0.060 0.019 0 0.056
Qi Quercus insignisM. Martens & Galeotti 0 0.020 0.017 0.006
Ql Quercus laurina Bonpl. 0 0.088 0 0
Qm Quercus meavei S. Valencia, Sabas & O.J. Soto 0 0 0 0.009
Qt Quercus trinitatis Trel. 0 0 0 0.007
Sg Styrax glabrescens Benth. 0 0 0.034 0.018
Ti Turpinia insignis (Kunth) Tul. 0 0 0 0.013

IVI = 0.018); for T2 and T4, Capulín (IVI = 0.005); and T3, Quebracho (Quercus insignis
M. Martens & Galeotti; IVI = 0.017), (Fig. 3).

Tree diversity
We obtained tree diversity completeness >90% in each transect (Table 3). The tree
α-diversity values (q = 0, tree species richness; and q = 1, ecological diversity) and
rarefaction curves were not significantly different among transects (Table 3, Fig. 4). The
T4 showed the highest richness (17 species) and the lowest richness values were registered
in T1 and T3 (12 species), (Fig. 4A). The highest tree ecological diversity was found in T2
(10.18) and the lowest value was detected in T4 (7.3), (Fig. 4B).

β-diversity
Overall, the total average tree β-diversity (βcc) among transects was ∼0.55; turnover (β.3)
∼0.36 and nestedness (βrich) ∼0.18. Considering all pairs of comparisons of all sampled
transects, partitioning total β-diversity, we found that between T1-T3 and T2-T4 were
explained by turnover (β.3= 0.70 and 0.54 respectively) and null nestedness value for both
pairs (βrich = 0.00). Similarly, the relationship between T1-T4 was explained by turnover
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Figure 2 Stand profile diagrams. Profile diagram illustration changes in tree species composition and
structure among Neotropical montane oak forest transects (T1, T2, T3 and T4).

Full-size DOI: 10.7717/peerj.15415/fig-2

(β.3 = 0.40) and low nestedness (βrich = 0.25). The pairs that showed similar values of
turnover and nestedness were between T1-T2 and T2-T3 (β.3 = 0.22; βrich = 0.27). The
lowest turnover and nestedness values were between T3-T4 (β.3 = 0.11; βrich = 0.29),
(Fig. 5). Each transect showed unique tree species composition such as Mexican beech
(Fagus mexicana, T1), Sweetgum (Liquidambar styraciflua, T1), Pezma (Cyathea fulva (M.
Martens & Galeotti) Fée, T2), Palo de agua (Perrottetia ovata Hemsl., T4), Wild avocado
(Persea americana, T2), Palo verde (Turpinia insignis (Kunth) Tul., T4) and Querbrachos
(Quercus delgadoana, T2; Q. meavei, T4; and Q, trinitatis, T4).

Local microenvironmental variables effect on tree diversity
Microenvironmental values were not differing significantly among transects (Fig. 6);
notwithstanding, we got the most contrasting light incidence values where T1 recorded
∼98% and T4∼77% (Fig. 6D); and we recorded the opposite tendency in pH values among
transects (from 6.3 to 7; Fig. 6E).

The first four PCA axes explained 80% of the microenvironmental variation. Moreover,
the global permutation test of redundancy analysis ordination (RDA) displayed that the
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Table 3 Hill’s numbers (q = 0, q = 1), Confidence Interval (CI), and sample coverage values (Sc) of
tree species among four Neotropical montane oak forest transects.

q= 0 CI q= 1 CI Sc

Transects
T1 12 1.34 9.71 1.89 0.99
T2 16 2.64 10.18 1.5 0.97
T3 12 2.34 8.67 02.03 0.97
T4 17 3.96 7.3 1.63 0.93

relationship between tree species and microenvironmental variables (i.e., soil moisture,
soil temperature, litterfall depth, light incidence, and pH) were significant (P < 0.01).
The first two axes explained 95% of the variance in tree species and between tree species
and soil microenvironmental relationship (Table 4; Fig. 7). Soil moisture influences tree
composition in the T1, soil temperature on tree composition in the T4, and light incidence
on tree composition in the T3 (Fig. 7). Quasi-Poisson generalized linear model analysis
(GLM) showed that soil microenvironmental variables significantly influenced specific
tree species; Mexican beech (Fagus mexicana), white Quebracho (Quercus delgadoana),
Pezma (Cyathea fulva) and Aguacatillo (Beilschmiedia mexicana) were influenced by
soil moisture and soil temperature; while Mountain magnolia (Magnolia schiedeana)
and Pezma (Dicksonia sellowiana var. arachneosa (Sodiro)) were influenced by the light
incidence (Table 4; Fig. 8).
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Figure 4 Rarefaction curves and Hill-number graphs. Rarefaction curves for the sampled Neotropical
montane oak forest transects. The inner graphs show the Hill-number with 95% confidence intervals. Tree
species richness (q= 0) and species diversity (q= 1) were calculated accounting for each transect. The er-
ror bars represent the standard deviation.

Full-size DOI: 10.7717/peerj.15415/fig-4

DISCUSSION
Our results confirm our hypothesis related to β-diversity but not with α-diversity;
nevertheless, tree community structure of the diversity was similar among transects in
terms of q = 0 and q = 1 values. Likewise, Monge-González et al. (2020), Morandi et al.
(2020), and Monarrez-González et al. (2020) found that α-diversity was not fluctuating in
Neotropical montane forests, possibly linked with particular microenvironmental variables
as temperature and moisture fluctuations through transects. Meanwhile, β-diversity results
were explained by turnover (β.3) overall and by pairs (T1-T3, T1-T4 and T2-T4) in a
small-fragment; previous studies have related turnover (β.3) tomicro-habitat heterogeneity
(Baldeck et al., 2016; Tymen et al., 2017; García-Hernández et al., 2019). Tree turnover may
reflect particular ecological processes, such as restricted species dispersion (large and
small-scales), adaptation to specific microenvironmental variation, delaying response to
climate and anthropic effect (Condit et al., 2002).

Even though nestedness (βrich) were not significantly different among transects because
any pair comparison showed high values (Fig. 5), the βrich showed a non-random process
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of species loss resulting as subsets of tree species at higher-richness transect (Baselga, 2010)
and in nature is driven by isolation, limiting dispersal, and availability of suitable habitat
at a small-scale influencing extinction-establishment dynamics by microenvironmental
tolerance (McAbendroth et al., 2005; Monge-González et al., 2020). We found that even
a small-fragment α and β-diversity showed robustness given the completeness of our
inventory (>90%).

The results related with the soil microenvironmental variables, overall; we found
that soil moisture, light incidence and soil temperature are an important driver on tree
turnover; these variables were reported as highly sensitive to abrupt floristic structure
turnover on specific forest communities (Williams-Linera et al., 1996; Fahey, Sherman &
Tanner, 2016). According to the IVI values and tree species life-traits and composition we
identified a pool of sensitive dominant tree species strongly influenced by soil moisture,
soil temperature and light incidence: Aguacatillo (Beilschmiedia mexicana), Mexican beech
(Fagus mexicana), Mountain magnolia (Magnolia schiedeana), Pezmas (Cyathea fulva and
Dicksonia sellowiana var. arachneosa) and Quebracho (Quercus delgadoana). These results
are congruent with those reported by Rodríguez-Ramírez, Sánchez-González & Ángeles
Pérez (2018), where Mexican beech and other Tropical Montane Cloud Forest Tree species
were associated with soil moisture, soil temperature, the quantity of litter, litter depth, soil
pH and canopy cover. Another study, Hammond et al. (2020) found that soil temperature
influenced the regeneration on European beech (Fagus sylvatica L.) and the moisture on
Norway spruce (Picea abies (L.) H. Karst.). Otherwise, the tree species mentioned above
have been reported as characteristics of preserved low disturbance environments (Williams-
Linera et al., 1996); hence, we could conclude that transect T1 was the site best preserved.
On the other hand, the transects T2, T3 and T4 were anthropic or naturally influenced
because of the presence of Mexican Clethra (Clethra mexicana) and Wild black cherry
(Prunus serotina). Mexican Clethra is a tree species much broader which makes it tolerant
to the microenvironmental variations (e.g., high light incidence, low soil moisture, and
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high soil temperature; Monterroso-Rivas, Gómez-Díaz & Tinoco-Rueda, 2012). Likewise,
Wild black berry is a key tree in oak forest dynamics because of accelerated growth and
sprouting capacity (Auclair & Cottam, 1971; Esch & Kobe, 2021). These tree species are
characteristics of secondary forest, influenced by light incidence (T3) and soil temperature
(T4). Monge-González et al. (2020) found similar results, where the light incidence and
soil temperature promoting fast-growing over shade-tolerant and slow-growing species,
which are well adapted to secondary forests; while Fisher et al. (2013) define these variables
as essential for several soil processes and reactions that may include water and nutrient
uptake, microbial activities, nutrient cycling, root growth and many other processes.

López-Calvillo et al. (2023), PeerJ, DOI 10.7717/peerj.15415 11/19

https://peerj.com
https://doi.org/10.7717/peerj.15415/fig-6
http://dx.doi.org/10.7717/peerj.15415


Table 4 Summary of quasi–Poisson generalized linear model (GLM), with soil microenvironmental variables effect on high IVI values of tree species. Bold values
represent significant differences.

Tree species with high IVI values

Fagus
mexicana
(Fm)

Quercus
laurina
(Ql)

Magnolia
schiedeana
(Ms)

Dicksonia
sellowiana var.
arachneosa (Ds)

Cyathea
fulva
(Cf)

Beilschmiedia
mexicana
(Bm)

Microenvironmental
variables

X 2 P X 2 P X 2 P X 2 P X 2 P X 2 P

Soil moisture 2.266 0.028* −1.943 0.058· 1.573 0.123 −0.44 0.662 −1.943 0.058· −1.87 0.068·
Soil temperature 1.75 0.087· −2.148 0.037* 0.717 0.477 0.063 0.95 −2.148 0.037* −2.04 0.047*

Litterfall depth −0.376 0.709 0.694 0.491 −0.503 0.617 −0.319 0.751 0.694 0.491 0.505 0.616
Light incidence −1.092 0.281 −0.488 0.628 −1.875 0.067· 1.695 0.097· −0.488 0.628 −0.971 0.337
pH 1.135 0.263 −0.116 0.908 1.37 0.178 −1.17 0.248 −0.116 0.908 0.008 0.993

Notes.
*P < 0.05,< 0.01· values.
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Even, our results are limited to one NMoF small-fragment, according to our diversity
results, IVI values, and microenvironment variables, we could suggest that not only
the species richness provide enough information to decide about protecting relevant
microrefugia as well as assess the quality and stability of the habitat when used small-scale
microenvironmental data. For example, α-diversity showed no difference among transects,
but T4 had the highest richness; while β-diversity components showed high turnover values
between T1-T3, T1-T4 and T2-T4 where real species replacement occurred. Therefore,
we cannot consider only as an important microrefugia the T4, otherwise, consider the
other transects too; then, with all these elements we can recommend areas with potential
conservation to local authorities by endangered relict communities as in T1.

CONCLUSIONS
This study represents the first effort to measure α and β-diversity, as well as linked to soil
microenvironmental effects on tree species diversity in a relict Neotropical montane oak
forest in eastern Mexico. We concluded that high IVI values and turnover tree diversity in
a small-scale is influenced by soil moisture, soil temperature and light incidence variation.
Therefore, microhabitats with specific environmental features in the NMoF could influence
the establishment of relict-tree species; however, the abiotic stresses imposed by rapid
anthropogenic influence and climate change in the long-term, could affect the ecosystem
stability. According to Kappelle (2006), the NMoF is an important ecosystem, recognized as
a multifunctional forest (e.g., timber source, water production, carbon sink and reservoir,
and landscape of great scenic beauty) and contains a highly endangered and endemic
species, so it is important to find a healthy balance between use and conservation. We
need additional research effort to understand the dynamic at regional-scale in the Mexican
Neotropical montane oak forests.
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