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ABSTRACT
The maize weevil, Sitophilus zeamais, is a worldwide pest that disproportionately
affects subsistence farmers in developing countries. Damage from this pest threatens
food security in these communities as widely available and effective control methods
are lacking. With advances over the last decade in the development of genetic pest
management techniques, addressing pest issues at the ecosystem level as opposed to
the farm level may be a possibility. However, pest species selected for genetic
management techniques require a well-characterized genome and few genomic tools
have been developed for S. zeamais. Here, we have measured the genome size and
developed the first genetic linkage map for this species. The genome size was
determined using flow cytometry as 682 Mb and 674 Mb for females and males,
respectively. The linkage map contains 11 linkage groups, which correspond to the 10
autosomes and 1 X-chromosome found in the species and it contains 1,121 SNPs.
This linkage map will be useful for assembling a complete genome for S. zeamais.
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INTRODUCTION
The maize weevil, Sitophilus zeamais Motschulsky, is a pest of maize and other cereal
crops. The exact origin of the species is unknown but is likely from Asia and its worldwide
distribution is thought to have been facilitated through grain trade (Corrêa et al., 2017).
Despite efforts to control S. zeamais, it remains an important economic pest in the
developing world. Subsistence farmers, who store grain for months after harvest, are
particularly vulnerable to damage from S. zeamais. In severe infestations, farmers can lose
the majority of their grain or be forced to sell in a less favorable market to prevent complete
loss of harvest (Stephens & Barrett, 2011). With advances over the last decade in the
development of advanced genetic pest management techniques using CRISPR/Cas9,
addressing pest issues at the ecosystem level as opposed to the farm level is a possibility
(Esvelt et al., 2014). Genetic pest management techniques such as male-selecting transgenic
lines or gene drives designed to suppress or replace damaging phenotypes in the
population could be used to mitigate pest damage. Some of these techniques are currently
being developed in several insect pest species, including Plutella xylostella, Anopheles
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gambiae, Aedes aegypti, Lucillia cuprina, and others (Harvey-Samuel et al., 2015; Kyrou
et al., 2018; Anderson et al., 2023; Yan et al., 2020). It is likely that if these techniques
succeed in the field, then they will also be considered for development in other pest species.
S. zeamaismay be a targeted species because of its widespread geographic distribution and
the threat to food security that it poses to subsistence farmers in developing nations
(Corrêa et al., 2017; García-Lara, García-Jaimes & Bergvinson, 2019; Baltzegar et al., 2023).
However, for genetic-based technologies to be a feasible option for controlling S. zeamais,
more species-specific genetic information and tools need to exist.

Few genomic tools are available for use with S. zeamais that would allow for quantitative
trait loci (QTL) analysis, genome-wide association studies (GWAS), or complex genomic
manipulation in the laboratory. The genomic tools that have been developed in this species
primarily consist of karyotypes, evolutionary and species-specific diagnostic markers,
microsatellite markers, and primer sequences for amplification of specific gene fragments.
Several karyotypes have been produced for the species with consensus that S. zeamais has
10 pairs of autosomes and a heterogametic sex chromosome with an Xyp
sex-determination mechanism (Smith & Brower, 1974; Zhi-Yua, Pei & Guo-Xiong, 1989;
da Silva et al., 2015, 2018). The genome size was reported as 713.5 Mb for females and
709.3 Mb for males with no B chromosomes (da Silva et al., 2018). Interestingly, the
occurrence of two types of supernumerary B chromosomes have been found in this species
and range from 0 to 6 in individuals (Smith & Brower, 1974; da Silva et al., 2015). The Type
I B chromosomes are found in both sexes while the Type II B chromosomes are only found
in males. Neither are inherited in a Mendelian fashion (da Silva et al., 2015). Random
amplification of polymorphic DNA (RAPD), restriction fragment length polymorphism
(RFLP), nuclear internal transcribed spacer region (ITS), cytochrome C oxidase subunit I
(COI), and cytochrome C oxidase subunit II (COII) PCR primers have been developed to
molecularly distinguish S. zeamais from S. oryzae as these two species are almost
morphometrically indistinguishable except for the genitalia and are challenging to identify
without a microscope (Hidayat, Phillips & Ffrench-Constant, 1996; Peng et al., 2003;
Corrêa et al., 2013, 2014). Recently, effort to elucidate the evolutionary history of these two
species has been conducted using mitochondrial COI and COII markers and the nuclear
ITS marker (Corrêa et al., 2017). The authors found that S. zeamais and S. oryzea diverged
approximately 8.7 million years before present.Ndiaye & Sembène (2018) used cytochrome
B and COI markers to assess the population genetic structure of S. zeamais populations in
West Africa. Although this study identified several common haplotypes, they were not able
to identify any phylogeographic patterns associated with their distribution. Similarly,
Corrêa et al. (2017) used nine polymorphic microsatellite markers and found very little
phylogeographic structure when comparing S. zeamais populations throughout the world.
This may indicate a recent geographic expansion of the species, possibly facilitated through
global grain trade.

Insecticide resistance is another important area of research for this species and
resistance to dichlorodiphenyltrichloroethane (DDT) has been reported since 1970
(Guedes et al., 1995). Resistance to DDT and cross-resistance to pyrethroids was confirmed
by Guedes et al. (1995) and although several studies have reported insecticide resistance in
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various strains of S. zeamais, few studies have investigated the molecular basis of
resistance. One study sequenced the region of the voltage-gated sodium channel (VGSC)
gene that encodes domain II of the protein (Araújo et al., 2011). They identified the single
nucleotide polymorphism (SNP) T929I that has been associated with phenotypic
resistance to pyrethroids in other arthropod species and developed a TaqMan Assay to
genotype individual weevils (Schuler et al., 1998; Lee et al., 2000). The T929I SNP was
identified in pyrethroid resistant lab populations, but it was not found at high frequencies
in field-collected samples (Araújo et al., 2011; Haddi et al., 2018). Additional PCR primer
sequences have been developed for genes of interest including the gene family encoding
cysteine proteinases, aldolase, prolactin receptor, and interleukin-1β (Matsumoto et al.,
1997; Peng et al., 2003).

Two recent sets of genomic studies have produced transcriptomes and followed up with
functional analyses. Huang et al. (2018) compared global transcriptomes of S. zeamais that
had either been exposed to Terpinen-4-ol, an active ingredient in tea tree essential oil used
as an insecticide, or those that had not been exposed. Then they conducted a functional
analysis to identify specific cytochrome p450s involved in the susceptibility of S. zeamais to
Terpinen-4-ol (Huang et al., 2020). Tang et al. (2019a) produced an antennal
transcriptome and identified 41 candidate odorant binding protein genes. They followed
up by utilizing quantitative real-time PCR to compare the expression of odorant receptors
in seven different tissues (Tang et al., 2019b). Cytochrome P450s play important roles in
insecticide resistance to chemicals, such as the Terpinen-4-ol, while odorant binding
proteins and odorant receptors are important because they are used by the insect to
identify food sources and potential mates.

Over the last two decades, researchers have put effort into developing basic molecular
tools for S. zeamais, but more genomic-level resources are needed if novel, genetic-based
pest management techniques are to be considered for mitigating damage from this pest.
In the age of next generation sequencing and bioinformatics, researchers are left at a
disadvantage if they do not possess basic genome-wide polymorphism data. Therefore, the
goals of this research are to (1) confirm the genome size of S. zeamais as this is a necessary
parameter required for next generation sequencing, and (2) develop the first genetic
linkage map for S. zeamais, which will provide a set of genome-wide SNPs.
The high-density radtag linkage map from an F2 population will also be useful during a
future genome assembly or quantitative and functional genetic studies that require
genome-wide sequence information.

MATERIALS AND METHODS
Laboratory colonies for genetic linkage map
Sitophilus zeamais colonies were acquired from USDA laboratories in Gainesville, Florida
and Manhattan, Kansas. The origin of the colony obtained from Florida is unknown.
The origin of the colony obtained from Kansas was the Stored Products Insects Lab, Tifton,
GA prior to 1961. An F2 population was generated by mating two siblings from an F1 cross
of a single male from the Kansas colony bred to a single female from the Florida colony.
Genomic DNA was isolated from the head and thorax of each F2 offspring and the parents
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and grandparents using the Qiagen DNeasy kit (Qiagen, Inc., Valencia, CA, USA) with an
RNase A treatment following an overnight tissue lysis incubation at 55 �C. The breeding
individuals and individuals from the F2 generation were used to generate restriction-site
associated DNA (RAD) loci following the double-digest restriction-site associated
sequencing (ddRadSeq) procedure outlined below.

Genome size estimation
The genome size of S. zeamais was confirmed following the protocol by Hare & Johnston
(2011). In brief, neural cells from the heads of one S. zeamais and one Drosophila
melanogaster were isolated together and stained with propidium iodide. Relative
fluorescence of the stained neural cells was measured on a Becton Dickinson LSRII (BD
Biosciences, San Jose, CA, USA) flow cytometer at the Flow Cytometry Core Facility, NC
State University. In total, five male S. zeamais and five female S. zeamais individuals were
used as biological replicates. Female and male genome sizes were estimated separately to
account for the differences expected from the heterogametic XY chromosomes in this
species. The following formula was used to determine the genome size of S. zeamais
samples, where Sz = S. zeamais and Dm = D. melanogaster and the genome size for
D. melanogaster is 175 Mb (Hare & Johnston, 2011; Bennett et al., 2003). Presence and
number of B chromosomes in these individuals was not assessed.

Genome Size Sz ¼ Genome Size Dm � FluorescenceSz
FluorescenceDm

Double-digest restriction-site associated sequencing (ddRadSeq)
Following procedures outlined in Fritz et al. (2016), genomic DNA from individual weevils
was digested with Msp1 and EcoRI-HF restriction enzymes and Cutsmart Buffer (New
England Biolabs, Inc., Ipswich, MA, USA) at 37 �C for 3 h. Adapters were ligated onto the
sticky ends of the digested material using T4 DNA Ligase (New England Biolabs, Inc.,
Ipswich, MA, USA) at 22 �C for 1 h, followed by 65 �C for 30 min. Proper ligation was
confirmed via PCR. 5 µl of each sample was pooled into one of five indexed libraries and
PCR purified using a QIAquick PCR Purification Kit (Qiagen, Inc., Valencia, CA, USA).
Prior to preparing individuals for next generation sequencing, we had to first determine
the best size selection window. Following the procedure outlined in Peterson et al. (2012),
restriction digests for each restriction enzyme used (MspI and EcoRI-HF) were performed
independently on gDNA isolated from an individual S. zeamais reared in the laboratory
colony. The digest products were then analyzed on a 2100 Bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA, USA) using a high sensitivity DNA assay and the
electropherograms were examined to determine the proportion of genome that would be
sampled in a given fragment size window. Based on these results, a size-selection window
of 400–800 bp was chosen with a target fragment size of 600 bp. Each library was then size
selected using these criteria on a Blue Pippin Prep (Sage Sciences, Inc., Beverly, MA, USA)
electrophoresis platform in the Genomic Sciences Laboratory at NC State University
(GSL). Following size-selection, libraries were PCR amplified using primers specific to the
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corresponding Illumina index. Then, PCR product was pooled and purified two times with
a QIAquick PCR Purification Kit (Qiagen, Inc., Valencia, CA, USA) and DNA quantity
was measured on an Agilent 2200 TapeStation (Agilent Technologies, Inc., Santa Clara,
CA, USA) using a Hi-Sensitivity D1000 tape in the GSL. Final library concentrations were
diluted to 4 nM and submitted for sequencing on the Illumina Hi-Seq 2500 (Illumina, San
Diego, CA, USA), 125 bp SE in the GSL. Two independent samples with separate barcodes
and indices were prepared and sequenced for each parent and grandparent to ensure
sufficient coverage for catalog development.

Initial bioinformatic analysis
Illumina sequences were demultiplexed by index and quality checked by FastQC prior to
filtering (Andrews, 2010). Sequences were then trimmed to remove over-represented
sequences by implementing Trimmomatic v 0.32 (Bolger, Lohse & Usadel, 2014).
Trimming was confirmed by FastQC and a MultiQC report containing FastQC data for all
indices was generated (Ewels et al., 2016). Then, individual components of the Stacks
program were run as follows (Catchen et al., 2013). Process_radtags was first implemented
to screen raw reads for quality, demultiplexed by barcode, and truncated to 115 bp. Then,
ustacks (−M = 5, −m = 3) was run to identify putative loci, or stacks, from the raw
processed radtags. Next, a catalog of loci was built from the concatenated files of the F1
parents using cstacks (−n = 5). The stacks of all individuals were then compared to the
catalog in sstacks. Finally, genotypes (−t = cp) was run to produce the output for OneMap.

Genetic linkage map construction
The initial output produced by Stacks for use in OneMap was further filtered by requiring
Mendelian inheritance and ~96% (100 out of 104) of individuals to be genotyped for each
marker. Mendelian inheritance was confirmed with a Chi-Square test. A genetic linkage
map was constructed in R (R Core Team, 2020) with the onemap package using the
Kosambi mapping function and the Record function to order the markers (Margarido,
Souza & Garcia, 2007). An SVG image file containing a visual representation of the linkage
map was initially produced with genetic_mapper.pl and edited for visual clarity in Adobe
Illustrator (Bekaert, 2016). The breeding cross implemented did not allow for mapping of
Y-chromosome markers because only one male was used to initiate the crosses.

RESULTS
Breeding results
One female from the Florida colony was crossed with one male from the Kansas colony.
Twelve sibling pairs from the F1 offspring were mated together and the pair that produced
the largest number of F2 progeny was chosen for sequencing. A total of 108 F2 individuals
and the parents and grandparents were used for further analysis.

Genome size estimation
The genome size of S. zeamais was estimated by comparing the relative florescence of
stained neural tissue from an unknown strain of D. melanogaster to stained neural tissue
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from S. zeamais (Table 1). Genome size was estimated for males and females separately
since the species is heterogametic. The meioformula has been reported as n = 10 + XX for
females and n = 10 + Xyp for males (da Silva et al., 2015, 2018). A total of five females were
measured and the average haploid genome size was 682 Mb (SE +/− 1.7). Additionally, five
males were measured, but only four were used to estimate the genome size because the
D. melanogaster control for one individual failed to stain and fluoresce. Males had an
average genome size of 674 Mb (SD +/− 7.0). The medians were 681 Mb and 680 Mb for
females and males, respectively (Fig. 1). We note that B chromosomes vary among
individuals of the species, and may confound size estimates of the standard karyotype.

Linkage map
The map was produced using ddRadSeq markers (radtags) from the F1 parents and 104 of
the 108 F2 progeny because four individuals failed to produce an adequate number of
sequencing reads. The average number of reads per progeny used in the analysis was
914,379. The average number of reads of the four excluded samples was 5,910. The lowest

Figure 1 Boxplot of genome size for male and female Sitophilus zeamais. The mean, represented by
the open diamonds, is 682 Mb (s.d. = 3.8) and 674 Mb (s.d. = 14.1) for females and males, respectively.
The median for females is 681 Mb and the median for males is 680 Mb.

Full-size DOI: 10.7717/peerj.15414/fig-1
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number of reads per individual for the retained samples was 315,155. The number of reads
for the male and female parents were 965,533 and 960,524 respectively.

A set of 5,992 radtags were exported from the Stacks populations pipeline and filtered
based on Mendelian inheritance and number of individuals genotyped per radtag. Radtags
that did not meet Mendelian inheritance based on a chi-squared test and radtags that were
not present in 100 out of 104 offspring were removed. A final set of 1,123 radtags with
sequence length of 116 bp was used to produce the linkage map (Fig. 2). The map was

Figure 2 Linkage map. Each linkage group is represented by a black bar and is numbered at the top.
The distance (cM) for each linkage group is listed at the bottom and each marker is represented by a tick
mark to the right side of the linkage groups. Full-size DOI: 10.7717/peerj.15414/fig-2
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made using a LOD score of 11, which generated 11 linkage groups using 1,121 radtags
(Table S1). Two radtags did not map to any linkage group. The total map length was
1,421.47 cM and linkage groups ranged in size from 70.69 cM to 225.87 cM (Table 2).
There were an average of 101.9 markers per linkage group (range: 29–235) with an average
spacing of 1.45 cM between markers. The linkage map with LOD score of 11 was chosen
because it produced the map with the highest LOD score that contained 11 chromosomes,
which best corresponds to the karyotype of 10 autosomes and 1 X-chromosome (Smith &
Brower, 1974; Zhi-Yua, Pei & Guo-Xiong, 1989; da Silva et al., 2015, 2018). By lowering the
LOD threshold to six all 1,123 radtags could be incorporated into a map. That map
contained 11 linkage groups and had a total map length of 1,470.53 cM. But, this map was
not chosen as the lower LOD score provides less confidence in the overall linkage map.

Table 1 Flow cytometry data. Sex of maize weevil, relative fluorescence of the standard (female Dro-
sophila melanogaster), and the relative fluorescence of the experimental Sitophilus zeamais are recorded.

Sample Sex FluorescenceDm FluorescenceSz

1 Female 22,617 88,682

2 Female 22,233 86,517

3 Female 22,521 87,448

4 Female 22,508 88,209

5 Female 22,769 88,190

6 Male 21,904 85,452

7 Male 22,720 84,823

8 Male 22,013 85,215

9 Male 22,203 86,663

Table 2 Linkage map summary statistics. A table showing the number of markers, the average distance
between markers in cM, and the total length in cM of each linkage group.

Linkage group Num markers Length (cM) Mean distance (cM)

1 119 126.47 1.06

2 68 89.21 1.31

3 162 217.67 1.34

4 65 93.5 1.44

5 235 225.87 0.96

6 59 118.38 2.01

7 99 104.58 1.06

8 173 201.54 1.16

9 66 89.49 1.36

10 46 84.07 1.83

11 29 70.69 2.44
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DISCUSSION
S. zeamais is a worldwide pest that disproportionately affects subsistence farmers in
developing countries. Damage from this pest threatens food security in these communities
as widely available and effective control methods are lacking. With the revolution of
genetic pest management, the potential to control this species at an ecosystem scale, which
could reduce the cost burden on farmers, may be possible (Esvelt et al., 2014; Baltzegar
et al., 2018). However, achieving this technical goal requires sophisticated genomic tools,
very few of which currently exist for S. zeamais. Here, we have measured the genome size
and developed the first genetic linkage map for this species.

Knowledge of an organism’s genome size is a necessary parameter for many sequencing
projects because this value allows for proper experimental design to obtain sufficient
sequencing coverage. The haploid genome size was estimated using the gold standard
method of comparing relative fluorescence measured via flow cytometry as 682 Mb and
674 Mb for females and males, respectively. This is somewhat smaller than the 713.5 Mb
(females) and 709.3 Mb (males) previously reported (da Silva et al., 2018). Genome size
varies naturally within different lines of D. melanogaster (Huang et al., 2014). Therefore,
the difference in genome size here compared to the previous study may be accounted for
by a difference in the accuracy of the estimated genome size used for controls. Also, the
previous study used Drosophila virilis instead of D. melanogaster as a reference (da Silva
et al., 2018). D. melanogaster has a smaller genome size than D. virilis. Its use as a standard
in this study may have contributed to an underestimate in the genome size of S. zeamais
due to the greater difference between the control and experimental samples and the
nonlinearity inherent in flow cytometry analysis. Another possibility is that there exists a
difference in the number of B chromosomes between sampled individuals in this study as
compared to the previous. Supernumerary chromosomes are known to vary between
populations as well as among individuals in S. zeamais (da Silva et al., 2015). The status of
B chromosomes in the individuals used in this study is unknown. There were no B
chromosomes in the line used for the original study (da Silva et al., 2018). Therefore, the
difference in B chromosome presence is unlikely to account for the smaller size measured
here. Future studies may consider using an average of the published genome sizes,
especially if the status of B chromosomes in the population is unknown.

The linkage map contains 1,121 radtags segregating in a Mendelian fashion between two
laboratory S. zeamais colonies. The map was resolved into 11 linkage groups, which
correspond to the 10 autosomes and 1 X-chromosome found in the species. Future work
should examine the Y-chromosome as some promising genetic pest management
strategies rely on creating a male-biased population.

Although basic molecular tools exist for S. zeamais, the creation of a linkage map is an
advancement in the development of modern genomic tools for the species. The linkage
map will be a useful tool when assembling a genome. And, a completely sequenced and
assembled genome will aid researchers by expanding the types of genetic manipulation and
research questions that may be addressed. This linkage map also provides the necessary
genome-wide sequence information required to perform quantitative trait loci (QTL)
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analyses and genome-wide association studies (GWAS). Both QTL and GWAS could be
used to identify useful phenotypic traits that may be targeted for future pest control
methods.

CONCLUSIONS
Development of genomic tools for S. zeamaismay aid researchers in developing ecosystem
wide genetic-based management solutions. This study measures the genome size and
creates the first genetic linkage map for this species. The linkage map will be useful for
assembling a complete genome sequence for this pest species and for providing the first set
of genome-wide sequence data for QTL and GWAS studies.
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