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ABSTRACT
Pearl millet is a key food for millions living in semi-arid and arid regions and is a
main diet for poorer populations. The genetic diversity existing in the pearl millet
germplasm can be used to improve the micronutrient content and grain yield.
Effective and organized exploitation of diversity at morphological and DNA levels is
the strategy for any crop improvement program. In this study, the genetic diversity
of 48 pearl millet genotypes was evaluated for eight morphological traits and eleven
biochemical characters. All genotypes were also characterized using twelve SSR and
six SRAP markers to evaluate genetic diversity. The significant mean difference
between morphological and biochemical traits were detected. The productive tillers
per plant varied from 2.65 to 7.60 with a mean of 4.80. The grain yield of genotypes
varied more than 3× from 15.85 g (ICMR 07222) to 56.75 g (Nandi 75) with an
average of 29.54 g per plant. Higher levels of protein, iron, and zinc contents were
found to be present in ICMR 12555 (20.6%), ICMR 08666 (77.38 ppm), and IC
139900 (55.48 ppm), respectively, during the experiment. Substantial variability was
observed for grain calcium as it ranged from 100.00 ppm (ICMR 10222) to 256.00
ppm (ICMR 12888). The top eight nutrient-dense genotypes flowered in 34–74
days and had 5.71–9.39 g 1,000 grain weight. Genotype ICMR 08666 was superior
for Fe, Zn, K and P. The inter-genotype similarity coefficient at the genetic level,
generated using DNA markers, ranged from 0.616 to 0.877 with a mean of 0.743. A
combination of morpho-biochemical traits and DNA markers based diversity may
help to differentiate the genotypes and diverse genotypes can be used in breeding
programs to improve the mineral content in pearl millet.
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INTRODUCTION
Pearl millet (Pennisetum glaucum (L.)) is a small-seeded C4 plant of the Poaceae family.
The 1.7 GB genome of this crop is accommodated by 2n=2x=14 chromosomes. Com-
pared to other cereals like wheat and rice, it can effectively withstand drought, nutrient-
depleted soil, and hot environmental conditions of the hostile deserts of India and Africa.
This hardy nature makes pearl millet resilient to harsher climatic conditions consequently
it is cultivated in marginal environments of arid and semi-arid tropical regions of India
and south east Asia, sub-Saharan Africa and much of southern and eastern Africa (Ramya
et al., 2018). Pearl millet is a key food for millions living the semi-arid and arid regions.
The grain is mainly consumed as human food while biological yield is used as livestock
feed. Pearl millet is a primary food for mankind living in dryland agriculture regions.

Pearl millet accounts for circa 50% of the total global millet production. It is grown
on >28 million ha, mainly in Africa and India. India is the world’s largest producer of
millets, harvesting 11 million tonnes annually, or around 36% of global production. In
2020, India harvested 8.61 million tonnes of pearl millet grains from a 6.93 million ha area
with 1,243 kg/ha of productivity (Directorate of Millets Development, 2020).

In any breeding strategy, variation continues to be the key to success. Pearl millet
shows abundant phenotypic variability for most of the quantitative traits like flowering
time, ear head length, grain characteristics, tolerance to various (a)biotic stresses as well
as nutritional quality (Bhattacharjee et al., 2007). Effective and logical utilization of this
diversity is vital to any breeding program (Allard, 1960). Exploiting this genetic diversity
in the pearl millet population may allow the improvement of micronutrient density in
grain and grain yield.

Micronutrient insufficiency has emerged as a global problem, particularly for those
living in underdeveloped nations and consuming carbohydrate-rich cereal-based diets.
This deficiency can be managed with pearl millet, a nutritious cereal (Kumar et al., 2016).
Among all coarse cereals, pearl millet grains are dense in minerals like iron (Fe) and
zinc (Zn) concentration and essential amino acids. The protein in pearl millet ranges
between 9–21%, which is higher than sorghum (10.4%), rice (6.8%), and maize (4.7%)
(Kaur et al., 2014). The grains of pearl millet are gluten-free and have a low glycemic
index due to their high fiber content. The provitamin-A enriched grains are also a richer
source of fat (5–7 g/100 g) but are scarce in vitamins B and C (Gopalan, Rama Sastri &
Balasubramanian, 2003). Pearl millet grain is encased in a tough fibrous seed that contains
a variable amount of inhibitory factors like phytic acid and polyphenols (Arora, Sehgal
& Kawatra, 2003). However, these factors can be reduced through various approaches
like soaking, fermentation, blanching, and roasting (Kaushik & Grewal, 2017) up to
a certain extent only. Moreover, the presence of anti-nutrient factors like saponins,
tannins and phytic acid which can reduce nutrient utilization or food uptake hinders the
biofortification in millet.

To improve the nutritional quality and diminish the anti-nutritional factors of pearl
millet through any breeding approach, knowledge about the variability for mineral
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content, anti-nutritional factors and their relation with yield is a prerequisite. Accumu-
lation of both micro- and anti-nutrients in seeds is a complex mechanism containing
numerous genes and affected by the environment (Anuradha et al., 2017a; Anuradha et
al., 2017b). Due to the confounding effect of the environment, similar genotypes would
have different phenotypes due to environmental variability. Therefore, it is hard to equate
morpho-biochemical and genetic variability. In contrast, molecular markers reflect the
authentic genetic variability and relationships among accessions than phenotypic markers
(Glaszmann et al., 2010). In pearl millet, microsatellite, single nucleotide polymorphisms
(SNP) and restriction fragment length polymorphism (RFLP) markers have been applied
to create linkage maps followed by quantitative trait loci mapping and germplasm
characterization (Kumar et al., 2020a; Kumar et al., 2020b). The density and genome
coverage can be improved by the combination of various markers. In pearl millet, no
report is available on the deployment of sequence-related amplified polymorphism
(SRAP) markers for genetic diversity assessment though SRAP has been used for linkage
map development by Pedraza-Garcia, Specht & Dweikat (2010). Therefore, in the current
experiment, both SRAP and microsatellite markers have been used to expose the genetic
diversity. SRAP markers are dominant markers that target genomic coding sequences and
have been employed for genetic diversity assessment (Li & Quiros, 2001). The current
study was created to analyse the natural variability for grain mineral and anti-nutrient
content in grain as well as molecular diversity in pearl millet germplasm with the objective
of improving the nutritional quality and food safety of pearl millet as well as expanding
understanding in this area.

MATERIALS AND METHODS
The field trial was done in a randomized complete block design (RCBD) with two
replications. The inter- and intra-row distance was 60 and 15 cm, respectively. The
recommendations for crop management practices were followed for uniform plant
growth and a healthy crop stand. The seeds were sown on February 2021. A total of 48
pearl millet genotypes were used for the study (Table S1).

Morphological characters
The panicles were covered with glassine bags to prevent cross-pollination by outside
pollen and to collect self-seeds. For phenotyping of grain based traits, physiologically
mature panicles were collected, dried under sunlight, and then manually threshed in bulk.

The experimental material was evaluated for eight morphological traits viz., days to
50% flowering, plant height, panicle diameter (PD, cm), panicle length (PL, cm), number
of productive tillers, grain yield, days to maturity, and 1,000 grain weight. Except for days
to 50% flowering and days to maturity, which were recorded on a plot basis during the
study, data on the above traits were collected from randomly tagged five competitive
plants in each genotype in both replications. PD was measured with Vernier calipers.

Biochemical characters
Before biochemical analysis, grains were cleaned followed by hot air oven drying (80 ◦C
for 24 h). Dried grains (10 g) were powdered manually. For mineral analysis, 0.5 g flour
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was processed in 11 mL of nitric acid (69%) and one mL of H2O2. The digestions were
carried out in HVT50 vessels using rotor 12HVT50 in Multiwave GO/Multiwave GO
plus (Anton Paar GmbH, Graz, Austria). For microwave digestion the initial temperature
was kept at 180 ◦C with a ramp of 20 min and a hold period of 12 min. While the second
round of digestion was performed with a ramp time of 10 mins at 70 ◦C temperature and
a holding time of 5 mins. Inductively Coupled Plasma Optical Emission Spectrometry
(ICP-OES (model 7000DV; Perkin Elmer, Waltham, MA, USA, wintab32 software ver.
5.1)) was used to determine the mineral content (iron (Fe), zinc (Zn), calcium (Ca),
copper (Cu), and manganese (Mn)) in grain after diluting the digested mixture to a
volume of 50 ml using distilled water. The flow rate in a peristaltic pump was 1.5ml
per min. From the acid extract, potassium (K) content was quantified using a flame
photometer (Jackson, 1973), while the vanadate-molybdate method of Jackson (1973)
was used to estimate the phosphorus (P). Total phenols were estimated using the Folin-
Ciocalteau reagent asMalik & Singh (1980) and reading was measured at 730 nm using a
spectrophotometer. Soxhlet extraction was performed to estimate the crude oil content,
and semimicro-Kjeldahl was employed to determine the crude protein content.

Molecular marker study
Genomic DNA was extracted from tender leaves as perMace et al. (2003). Genotyping was
done using simple sequence repeat (SSR) and sequence-related amplified polymorphism
(SRAP) markers. For SSR marker profiling, markers from the PMES series (Zala et al.,
2017) were amplified in SensoQuest Thermocycler (Göttingen, Germany). The SSR-PCR
reaction conditions were as follows: 94 ◦C (initial denaturation) for 5 min., followed by 35
cycles of 94 ◦C for 45 s, X◦C (primer specific) for 45 s, 72 ◦C for 45 s, and 72 ◦C for 7 mins
(final extension). The SRAP amplification was as follows: 94 ◦C (initial denaturation) for
5 mins, followed by 5 cycles of 94 ◦C for 30 s, 35 ◦C for 45 s, and 72 ◦C for 90 s, followed
by 35 cycles of 94 ◦C for 30 s, X◦C (primer specific) for 45 s, 72 ◦C for 60 s and 72 ◦C for
10 min (final extension). An agarose gel (3%) was used to resolve PCR products.

Statistical analysis
The mean value of traits was figured out, and analysis of variance (ANOVA) was per-
formed in accordance with Panse & Sukhatme (1978) in Microsoft Excel 2013. A pheno-
typic trait-based dissimilarity matrix was constructed using Manhattan coefficients with
Numerical Taxonomy and Multivariate Analysis System (NTSYSpc 2.0; Rohlf, 1998). The
amplified products of SSR and SRAP markers were scored in 1 (presence) and 0(absence)
fashion. Polymorphism information content (PIC), Multiplex ratio (MR), effective
multiplex ratio (EMR) marker index (MI) and resolving power (Rp) value were estimated
following Sharma et al. (2016) in Microsoft Excel 2013. In NTSYSpc 2.0, The SIMQUAL
program used Jaccard’s similarity (J) coefficient to compute the genetic similarity between
genotypes, SAHN clustering method was used to construct the unweighted pair group
method with arithmetic mean (UPGMA) dendrogram (Sneath & Sokal, 1973).
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Table 1 Analysis of variance (ANOVA) of studied traits in pearl millet.

Trait Source of variation andmean squares

Replication
(df = 1)

Genotypes
(df = 47)

Error
(df = 47)

Days to 50% flowering 0.167 322.311* 5.954
Plant height 66.833 917.408* 62.211
Head diameter 0.027 0.159* 0.027
Panicle length 1.927 46.955* 3.880
Productive tillers per plant 0.027 3.712* 0.217
Grain yield per plant 11.003 203.764* 30.441
Days to maturity 2.344 9.292* 3.471
1000 grain weight 0.000176 2.863* 0.104
Protein content 2.004 10.363* 0.705
Lipid content 0.062 3.851* 0.052
Iron content 14.015 276.360* 16.714
Zinc content 41.12 79.610* 13.100
Manganese content 2.154 11.232* 1.576
Calcium content 661.5 2061.205* 332.691
Copper content 0.218 43.735* 0.551
Potassium content 57.722 102.837* 14.517
Phosphorus content 5.782 12.004* 5.093
Phytate content 895.482 8396.470* 541.246
Total phenolic acid 26.471 112.792* 36.582

Notes.
*Significant at 5% level of probability.

RESULTS AND DISCUSSION
The ANOVA resulted that genotypic variations were significant at a 5% level of probabil-
ity for all the traits, showing ample genetic diversity among the genotypes under study
(Table 1). This also suggested that there is sufficient scope to select superior breeding
material which can be exploited in pearl millet breeding programs.

Character variance analysis
Morphological parameters
Early flowering is a desirable trait for pearl millet as it is a crop of semi-arid and arid
regions. Earliness becomes an important trait in areas where scanty and erratic rains
aggravate the moisture stress condition during the growth stage of the crop and leads
to post-flowering moisture stress (Yadav et al., 2011). In the current study, though, the
population mean for days to 50% flowering was 54.69 days but the days to 50% flowering
ranged from 34 (IC 370523) to 77 days (ICMR 07999). Earlier literature also recorded
similar values for days to 50% flowering for example 49.06 days by Govindaraj et al.
(2011), 53.10 days by Sonali et al. (2019) and 55.61 days by Pallavi et al. (2020). PH is an
important trait that governs tradeoffs between competition and resource distribution,
which is decisive for productivity (He et al., 2021). Semi-dwarf genotypes are better than
their tall counterparts because of their reduced lodging vulnerability and better response
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to nitrogen (Azhaguvel et al., 2003). In the present experiment, PH ranged from 110.10
cm (ICMR 06555) to 205.35 cm (IC 332715) with an average of 149.42 cm. The results
indicated that most of the studied genotypes are semi-dwarf in nature and with better
management dwarfism supports the grain yield.

Panicle size (length and diameter) are two important traits that have direct positive
correlations with grain yield in pearl millet (Vengadessan et al., 2013). Hence, the
improvement of sink-size linked traits is a key objective for pearl millet improvement
programs. PL in the present study ranged from 15.55 cm (ICMR 11888) to 38.05 cm (IC-
332716) with an average of 24.03 while the diameter ranged from 1.03 cm (ICMR 10999)
to 2.15 cm (ICMR 09333) with an average of 1.53 cm. Abubakar et al. (2019) observed a
similar range and mean in pearl millet (2.26 cm) for panicle diameter. Similarly, results
for PL are comparable with previous reports (Sharma et al., 2018; Rani et al., 2019). The
number of productive tillers per plant varied from 2.65 (ICMR 08222, ICMR 11999) to
7.60 (IC 370523) with an average of 4.80 (Table 2). According to Siles et al. (2004), non-
tillering millet genotypes produced bold seeds having TGW >10 gm than the genotype
that produced tillers. Similarly,Maman et al. (2004a) andMaman et al. (2004b) also
reported that, a reduction in productive tillers from 10 to three or five improved seed
yields by 15–30%. Yadav et al. (2021) reported that private-sector hybrids are generally
have less effective tillers/plant. However, farmers in drought-prone areas prefer high
tillering hybrids because tillering is a strategy of adaptation to intermittent drought spells
(Yadav et al., 2016).

In cereal breeding, yield, a complex trait, is one of the supreme traits which is influ-
enced by several associated traits. The grain yield of genotypes varied more than 3× from
15.85 g (ICMR 07222) to 56.75 g (Nandi 75) with an average of 29.54 g per plant. Large
variability was also observed for1000 grain weight (TGW) which is determined by the
form, size and density of the grain and these are directly related to total grain yield. TGW
ranged from 4.93 g (ICMR 06888) to 10.45 g (ICMR 06555) with an average of 7.14 g.
A diversity assessment of 21,594 pearl millet genotypes from 50 nations revealed huge
variability for the TGW (1.5 to 21.3 g) (Upadhyaya, Reddy & Gowda, 2007). Three-fold
variability for TGW (6–16 g) was earlier recorded by Pujar et al. (2018).

Biochemical parameters
Compared to other main cereal crops, pearl millet yields more nutritious grains with pro-
tein, Ca, P, Fe, and Zn (Devos, Hanna & Ozias-Akins, 2006). Currently, the commercially
grown varieties/hybrids of pearl millet produce grains with an average Fe and Zn content
of 42 and 32 ppm (parts per million), respectively (Rai et al., 2016). However, a much
wider variability for these micro-nutrients has been reported in germplasm collections
(Rai et al., 2014). Fe is an essential element for blood production and for the growth
and development of the body. Zn is essential for the development of a strong immune
system. The values of Fe content in the current study ranged from 31.58 (ICMR 07777)
to 77.38 (ICMR 08666) with an average of 49.69. Zn content ranged from 29.34 (ICMR
08111) to 55.48 (IC 139903) with an average of 39.36 (Table 2). A similar mean value was
observed by Velu et al. (2007) where grain Fe was 45.50 ppm. In previous studies, values
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Table 2 Descriptive statistics for studied traits in pearl millet.

Trait Mean Range S.Em CD@ 5% CV%

Days to 50% flowering 54.69 34.00 (IC-370523)–77.00 (ICMR 07999) 1.73 4.91 4.46
Plant height (cm) 149.42 110.10 (ICMR 06555)–205.35 (IC-332715) 5.58 15.87 5.28
Head diameter (cm) 1.53 1.03 (ICMR 10999)–2.15 (ICMR 09333) 0.12 0.33 10.75
Panicle length (cm) 24.03 15.55 (ICMR 11888)–38.05 (IC-332716) 1.39 3.96 8.2
Productive tillers per plant 4.80 2.65 (ICMR 08222, ICMR 11999)–7.60 (IC-370523) 0.33 0.94 9.7
Grain yield per plant 29.54 15.85 (ICMR 07222)–56.75 (Nandi 75) 3.9 11.1 18.67
Days to maturity 85.64 80.50 (ICMR 12333)–89.00 (ICMR 08999, ICMR 07777) 5.82 16.57 9.71
1000 grain weight 7.14 4.93 (ICMR 06888)–10.45 (ICMR 06555) 0.23 0.65 4.51
Protein content (%) 13.73 8.26 (AICRP-PM-12)–20.06 (ICMR 12555) 0.59 1.68 6.12
Lipid content (%) 4.68 2.72 (ICMR 06999)–6.95 (ICMR 08444) 0.16 0.46 4.89
Iron content (ppm) 49.69 31.58 (ICMR 07777)–77.38 (ICMR 08666) 2.89 8.22 8.23
Zinc content (ppm) 39.36 29.34 (ICMR 08111)–55.48 (IC 139903) 2.65 7.53 9.5
Manganese content (ppm) 14.04 7.20 (ICMR 07222)–17.63 (ICMR 08444) 0.89 2.53 8.94
Calcium content (ppm) 199.31 100.00 (ICMR 10222)–256.00 (ICMR 12888) 12.9 36.69 9.15
Copper content (ppm) 9.86 4.92 (AICRP-PM- 6)–22.59 (GHB 558) 0.52 1.49 7.52
Potassium content (ppm) 4798 1,800 (ICMR 07222)–6,020 (ICMR 10999) 2.69 7.67 7.94
Phosphorus content (ppm) 3112 2,258 (AICRP-PM-62)–3,672 (ICMR 08666) 1.6 4.54 7.25
Phytate content (mg/100 g) 282.39 201.5 (ICMR 08111)–542.5 (GHB 558) 16.45 46.8 8.24
Total phenolic acid (mg/100 g) 60.26 75.16 (ICMR 12555)–44.41 (Nandi 75) 4.28 12.17 10.04

Notes.
S.Em., Standard error of mean; CD @ 5%, critical difference at 5% level of significance; CV, Coefficient of variance.

ranging from 45.50–55.73 for grain Fe concentration and from 38.60–46.61 for grain
Zn concentration have been reported (Anuradha et al., 2017a; Anuradha et al., 2017b;
Anuradha et al., 2018a; Anuradha et al., 2018b; Sonali et al., 2019).

In the human body, fats and carbohydrates metabolism, absorption of Ca, and the
control of blood sugar are all impacted by manganese. It is also essential for standard
brain/nerve functioning and bone mineral density. The values of Mn content ranged from
7.20 ppm (ICMR 07222) to 17.63 ppm (ICMR 08444) with an average of 14.04 ppm.
The outcome is in congruence with Anuradha et al. (2017a), Anuradha et al. (2017b),
Kumar et al. (2020a) and Govindaraj et al. (2020). Similarly, a low value of Mn (8 ppm)
was recorded by Oshodi, Oqungbenle & Oladimeji (1999).

Ca is very important for the contraction of muscle; the development of strong bones
and teeth, blood clotting, the transmission of nerve impulses, and in the regulation
heart beats. This is claimed that a high intake of cereal grains increases the chances of
Ca deficiency. However, this is not true with pearl millet as substantial variability was
observed for grain Ca as it ranged from 100.00 ppm (ICMR 10222) to 256.00 ppm (ICMR
12888) with an average of 199.31 ppm. Higher variability for Ca (85–249 ppm) was also
recorded by Govindaraj et al. (2020) in pearl millet core collection. In the current study,
50% of the genotypes had high Ca (>200 ppm).

Cu is essential for the synthesis of elastin and collagen. It is a key cofactor of many
metalloenzymes playing role in metabolism Fe and cellular respiration. In the current
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study, the grain Cu ranged from 4.92 ppm (IC 332703) to 22.59 ppm (GHB 558) with an
average of 9.86 ppm. The range of grain Cu in various studies is different like 4.14–15.35
ppm in Anuradha et al. (2018a); Anuradha et al. (2018b), 4–7 ppm in Govindaraj et al.
(2020), 3.19–4.76 ppm inWarrier et al. (2020).

The transport of water, nutrients, and carbohydrates within plant cells is linked with
potassium. It is a crucial mineral for the activation of several enzymes that control the
synthesis of protein, starch, and adenosine triphosphate (ATP) in plants. The K ranged
from 1,800 ppm (ICMR 07222) to 6,000 ppm (ICMR 10999) with an average of 4,700
ppm. Large variability for K was also recorded in 122 commercial pearl millet cultivars
(3,675–5,375 ppm; Govindaraj et al., 2020) and core collection (3,667–5,133 ppm;
Govindaraj et al., 2020).

The body needs P to produce protein for the development, upkeep, and repair of cells
and tissues. Additionally, it participates in the production of ATP. The values of P content
ranged from 2,200 (IC 139900) to 3,600 ppm (ICMR 08666) with an average of 3,112
ppm. ICMR 06555 was statistically at par with IC 139900.

Pearl millet is also a promising source of protein. Studies indicated that protein in pearl
millet is circa 11.8%, which is better than rice (8.6%), and maize (9.2%) and comparable
with sorghum (10.7%). Moreover, pearl millet grain is enriched with glutamate which
is a precursor of γ -aminobutyric acid (GABA) (Tomar et al., 2021). In the current study
the protein content ranged from 8.26% (IC 332716) to 20.06% (ICMR 12555) with an
average of 13.73%. ICMR 07444 (9.89%) was statistically at par with IC 332716. The
study of Pujar et al. (2020) reported grain protein content variation between 6–18%,
with a mean of 11%. The augmentation of pearl millet in daily food can reduce the risk
of protein malnutrition in an economical way. Moreover, protein extracted from pearl
millet can be exploited to design protein-enriched functional foods.

The lipid content ranged from 2.72% (ICMR 06999) to 6.95% (ICMR 08444) with an
average of 4.68%. A comparable range and mean were observed by Arulselvi et al. (2007)
(5.12%), Abdalla et al. (1998) (2.70–7.10%) and Tomar et al. (2021) (5.24–9.99). The lipid
content in pearl millet ranges from 1.5 to 6.8% which is higher sorghum and other millets
(Hassan, Sebola & Mabelebele, 2021). Though, the high lipids have been documented as
possible causes for the rancidity of millet flour. However, the shelf life of flour can be
increased by hydrothermal treatment, irradiation, cooling storage, or a combination of
more than one technology (Goyal & Chugh, 2017).

The metal-chelating ability of phytic acid makes it is an antinutritional phytochemical
as it declines the bio-availability of ions like Mn, Ca, Mg, Fe and Zn (Marathe et al.,
2018). In the current study, the phytate ranged from 201.5 mg/100 g (ICMR 08111) to
542.50 mg/100 g (GHB 558) with an average of 282.39. Abdalla et al. (1998) also recorded
a similar range from 354–795 mg/100 g of phytate. Gabaza et al. (2018) reported that
phytate in pearl millet grains ranges between 580 mg/100 g to 1,380 mg/100 g which is
similar to sorghum and maize. The range of phytate in the current study is supported by
the result of Pushparaj & Urooj (2014) in Indian cultivars where it was between 0.26–0.99
g/100 g. The result suggested that phytic acid content in pearl millet grain is significantly
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lower than in rice (0.68–1.03%; Liu, 2005), oat (0.5–1.2%; Peterson, 2001), soybean (1.0–
2.22%; Lolas, Palamidids & Markakis, 1976) and wheat (0.2–2.9%; Gupta, Gangoliya &
Singh, 2015) Hence, regular consumption will possibly not hamper the bioavailability of
minerals.

Polyphenols have many health benefits as having antioxidant activity. Moreover, phytic
acid is considered to be beneficial in dropping cholesterol and reducing cancer risk. The
values of total phenolic acid ranged from 44.41 mg/100 g (Nandi 75) to 75.16 mg/100
g (ICMR 12555) with an average of 60.26 mg/100 g. Higher phenol content in grain
makes pearl millet a good food to maintain the redox potential of cells and to quench
the ROS species. Phenolic may be particularly important in the treatment of postprandial
hyperglycemia since it has been documented that it reduces intestinal-glucosidase and
pancreatic-amylase (Shobana, Sreerama & Malleshi, 2009).

Nutrient-dense genotypes
Genotypes dense in multiple nutrients can directly be released as a variety after evaluating
their yield performance over the locations for multiple years. Such genotypes can be
exploited in a hybridization program. In the current study, the top eight nutrient-dense
genotypes flowered in 34–74 days and had 5.71–9.39 g TGW (Table 3). Top genotypes
had Fe content of 61.07–77.38 (ICMR 08666) ppm, Zn content of 45.11–55.48 (IC
139900) ppm, Mn content of 16.2–17.63 (ICMR 08444) ppm, Ca content of 230.5-256
(ICMR 12888) ppm, Cu content of14.32–22.59 (GHB 558) ppm, K content of 52.3–
60.15(ICMR 10999) ppm, and P content of 33.28–36.72 (ICMR 08666). IC 139900 was
superior for both Fe (71.22 ppm) and Zn (55.48 ppm). Genotype ICMR 08666 was dense
for Fe, Zn, K and P. Out of eight high-Fe genotypes, only two genotypes had >75 ppm.
Thus current experiment also identified the best genotypes that had a higher content of
multiple nutrients. Earlier, Govindaraj et al. (2020) also identified genotypes having a high
content of multiple nutrients.

Phenotypic diversity analysis
Phenotypic diversity is important for pearl millet breeding. The interactions between the
genome and all of its growing micro- and mega-environments lead to the phenotype of
the plant (Fasoula, Ioannides & Omirou, 2020). The mean value of each trait was used
to generate the Manhattan dissimilarity coefficient and dendrogram (Sokal, 1958). The
genotypes were divided into nine major clusters based on the Manhattan dissimilarity
coefficient. Earlier, Shashibhushan, Kumar & Kondi (2022) also generated eight clusters
of 40 pearl millet genotypes using phenotypic data (Fig. 1). In current study, the average
dissimilarity value among genotypes was calculated to be 0.16, demonstrating modest
phenotypic variability (Table 4). The dissimilarity between genotypes ranged from 0.08
(IC 139899 and ICMR 07888) to 0.27 (Nandi 75 and ICMR 07222) for the respective pair
of genotypes.

Cluster I comprise seven genotypes, characterized by high values of DFF, days to
maturity, lipid, potassium and low values of NPT. Cluster II consists of 25 genotypes.
Cluster III contains four genotypes, namely ICMR 10222, Nandi 75, ICMR 12111, and
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Table 3 Top eight genotypes for different nutritional traits with their agronomic performance.

Trait Top 8 genotypes Range

DFF TGW (g)

Fe ICMR 08666, ICMR 11888, IC 332727, IC 139900, ICMR
12555, ICMR 06111, ICMR 08333, ICMR 07888

37.00–72.00 5.91-8.45

Zn IC 139903, ICMR 08999, ICMR 06222, ICMR 12999, ICMR
10999, ICMR 08666, IC 332715, IC 332703

42.00–70.50 5.94–9.39

Mn ICMR 08444, ICMR 12555, ICMR 09888, ICMR 08333,
ICMR 06666, ICMR 12666, ICMR 09222, IC 332703

45.00–74.50 5.91–8.01

Ca ICMR 12888, ICMR 12777, ICMR 07444, ICMR 09333,
ICMR 11777, IC 332703, ICMR 08999, ICMR 08333

35.50–72.50 5.91–8.36

Cu GHB 558, IC 332715, IC 332716, ICMR 06666, ICMR
07222, ICMR 07444, ICMR 07777, ICMR 10999

42.00–73.50 5.71–8.02

K GHB 558, GHB 732, GHB 905, ICMR 08666, ICMR 10999,
ICMR 12555, ICMR 12666, ICMR 12777

43.50–74.00 6.16–8.99

P ICMR 08666, ICMR 06888, ICMR 06111, IC 370523, IC
332727, IC 139899, Nandi 75, ICMR 06666

34.00–73.50 4.93–9.34

Notes.
DFF, days to 50% flowering; TGW, 1,000-grain weight.

Figure 1 UPGMA based dendrogramwithManhattan dissimilarity coefficient of studied traits.
Full-size DOI: 10.7717/peerj.15403/fig-1

ICMR 10888. This cluster is characterized by more GY, days to maturity and TGW.
Cluster IV has four genotypes, namely ICMR 08999, ICMR 11888, ICMR 139900 and
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Table 4 Variability for mean values of 19 quantitative traits in nine groups identified byManhattan dissimilarity coefficient.

Trait Number of genotypes in each cluster

7 25 4 4 3 2 1 1 1

Days to 50% flowering 72.86 50.24 50.50 44.88 57.67 62.00 53.50 56.50 70.50
Plant height (cm) 126.56 152.87 174.28 139.36 172.68 139.78 125.45 135.95 151.25
Head diameter (cm) 1.66 1.55 1.49 1.59 1.41 1.16 1.65 1.45 1.03
Panicle length (cm) 23.71 23.68 25.99 23.90 30.53 19.23 22.00 26.00 17.95
Productive tillers per plant 3.67 4.98 4.36 5.29 4.70 6.70 5.90 4.70 3.50
Grain yield per plant 24.72 29.63 48.99 22.53 27.23 22.33 47.75 15.85 28.35
Days to maturity 86.50 85.12 86.13 88.38 87.00 81.50 85.00 86.00 84.00
1000 grain weight 7.83 7.12 7.79 6.50 7.04 6.32 7.27 5.71 6.16
Protein content (%) 12.50 14.49 12.72 12.61 9.71 13.69 20.06 15.72 15.71
Lipid content (%) 5.67 4.36 4.72 5.64 3.25 4.13 2.82 6.92 6.64
Iron content (ppm) 52.03 50.39 37.14 55.66 46.22 43.33 69.65 48.98 46.16
Zinc content (ppm) 36.59 40.25 35.21 47.05 36.07 30.54 35.13 44.98 48.79
Manganese content (ppm) 13.63 14.94 13.65 13.30 14.40 9.66 17.28 7.20 10.39
Calcium content (ppm) 191.57 208.04 144.75 207.25 215.83 158.75 229.00 204.50 218.50
Copper content (ppm) 9.40 8.02 7.19 13.85 19.78 9.44 8.18 17.29 19.29
Potassium content (ppm) 45.70 49.33 46.08 49.31 49.00 45.58 52.30 18.00 60.15
Phosphorus content (ppm) 31.43 31.81 30.68 27.54 31.98 29.23 27.75 31.52 32.07
Phytate content (mg/100 g) 283.74 272.46 327.68 248.10 398.32 206.55 287.75 307.10 250.95
Total phenolic acid (mg/100 g) 58.59 58.50 58.21 66.53 65.50 59.57 75.16 56.96 73.15

ICMR 07777. This cluster is characterized by more lipid content, Mn content, and days
to maturity. Cluster V has three genotypes (IC 332716, GHB 558, ICMR 07444) which
are characterized by low values of head diameter and lipid content. Cluster VI consists
of two genotypes (ICMR 08111 and ICMR 12333). This cluster is characterized by more
productive tillers per plant with low content of Zn. Cluster VII has only one genotype
(ICMR 12555) which has high values for characters like days to maturity, protein content,
Mn content and TGW (Table 4).

Molecular marker based diversity
Forty-eight genotypes of pearl millet were analyzed using SSRs and SRAP markers (Table
5). During the experiment, a total of 50 SSR markers were screened for amplification.
Out of 50 markers, 30 (60%) primers showed amplification. Of these 30 SSR markers,
12 (37.5%) markers were found polymorphic. These 12 polymorphic SSRs markers
generated 65 amplicons. The molecular weight of the amplicon ranged from 85 bp (PMES
190) to 292 bp (PMES 171). In previous reports with PMES-series SSR markers, Zala
et al. (2017) recorded amplicon size from 101 to 285 bp. The number of polymorphic
bands/amplicons per SSR marker ranged from 2 to 13, with a mean of 6.71. All SSR
amplicons were found polymorphic. The PIC value, the informativeness of a primer, for
each marker was computed for the estimation of marker allelic variation considering the
allele frequencies in studied genotypes. The mean PIC of SSR markers was 0.28 though
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Table 5 Amplification details of DNAmarkers.

SSRmarker system
Maker name Band size (bp) TB Polymorphism (%) PI PIC RP Mean RP
PMES153 145-154 4 100 1.14 0.29 2.00 0.50
PMES157 135-151 4 100 1.46 0.37 1.96 0.49
PMES160 134-150 4 100 1.36 0.34 2.13 0.53
PMES161 155-233 3 100 1.23 0.41 2.04 0.68
PMES162 132-162 7 100 1.35 0.19 1.63 0.23
PMES168 222-284 10 100 1.96 0.19 2.38 0.24
PMES170 154-195 9 100 1.43 0.16 2.00 0.22
PMES171 151-292 13 100 1.71 0.13 2.00 0.15
PMES173 216-203 8 100 0.99 0.50 2.00 1.00
PMES185 176-200 8 100 1.55 0.19 1.83 0.23
PMES190 85-104 6 100 1.53 0.26 1.92 0.32
PMES199 213-305 4 100 1.27 0.32 1.83 0.46
Average 6.17 1.42 0.28 1.98 0.42

SRAPmarker system
Em6+Me2 205-1234 25 100 8.11 0.32 13.25 0.53
Em2+Me2 94-1152 34 100 7.96 0.26 10.20 0.30
Em1+Me2 223-1125 18 100 5.33 0.30 6.88 0.38
Em5+Me4 120-1020 17 100 3.81 0.22 4.63 0.27
Em6+Me3 450-1357 10 100 2.33 0.23 5.42 0.54
Em2+Me3 313-1065 26 100 6.57 0.25 9.25 0.36
Average 21.67 5.69 0.26 8.27 0.4

Notes.
TB, Total Number of Bands; PI, Primer index; PIC, Polymorphic Information Content; RP, Resolving Power.

it varied from 0.132 (PMES 171) to 0.499 (PMES 173). This range was comparable with
Zala et al. (2017) where PIC was between 0.188–0.375.

The Rp was estimated considering the proportion of genotypes containing the
amplicon. The primer that might best differentiate the cultivar can easily be identified by
the value of the Rp and PIC. In the current study, Rp varied from 1.625 (PMES 162) to
2.375 (PMES 168), with an average of 1.98. Mean Rp was between 0.154 (PMES 171) to
1.000 (PMES 173). The PI ranged from 0.998 (PMES 173) to 1.963 (PMES 168), though
the mean PI value was 1.420. MI is considered to be an inclusive measure of the efficiency
to detect polymorphism. The SSR MI was 19.092.

In the case of the SRAP markers, of 25 SRAP, six (24%) were polymorphic. The
polymorphic SRAPs amplified 119 amplicons. The product size for SRAPs ranged
from 94 (Em2+Me2) to 1357 bp (Em6+Me3). The polymorphic bands ranged from
10 (Em6+Me3) to 34 (Em2+Me2), with a mean of 21.67. Liu et al. (2008) observed a
polymorphic band detected with each ranging from 6 to 17, with an average of 11.76.
Bhatt et al. (2017) had a band size from 120 to 500 bp in cumin.This suggested that in
different crops SRAP amplicon size will be highly variable. PIC oscillated from 0.224
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Table 6 Comparison between SSR and SRAPmarker system.

Marker
system

Total
markers

TB PB FP Hav MR EMR MI

SSR 12 74.00 74.00 1.00 3.35 5.69 5.69 19.092
SRAP 6 130.00 130.00 1.00 1.57 10.00 10.00 15.655

Notes.
TB, Total Number of Bands; PB, Number Polymorphic Bands; PI, Primer index; PIC, PolymorphicInformation Content;
RP, Resolving Power; FP, Fractionation of Polymorphism; Hav, Average PIC; MR, Multiplex Ratio; EMR, Effective Mul-
tiplex Ratio; MI, Marker Index.

(Em5+Me4)—0.324 (Em6+Me2), with an average of 0.26. Bhatt et al. (2017) reported a
PIC value (0.34).

The mean PI of SRAP markers was 5.69, through the maximum PI was for Em6+Me2
(8.108) and the lowest value for Em6+Me3 (2.335). Rp ranged from 4.625 (Em5+Me4)
to 13.250 (Em6+Me2), with an average value of 8.27. Mean Rp was between 0.272
(Em5+Me4)—0.542 (Em6+Me3) with an average of 0.40. Liu et al. (2008) stated higher
RP values ranged from 2.229 to 8.457 with an average of 4.927. The fraction of polymor-
phism, MR, EMR and MI for SRAPs are 1.00, 10.00, 10.00, and 15.65, respectively (Table
6).

Inter-genotype genetic relationship
Forty-eight pearl millet genotypes were divided into seven major groups by the dendro-
gram created using pooled data from SSR and SRAP markers based on Jaccard’s similarity
matrix. Clusters I, II, III, IV, V, VI and VII had one, one, 11, eight , three, 22, and two
genotypes, respectively (Fig. 2). In the study of Nehra et al. (2017), with SSR markers, 49
accessions were clustered into eight core clusters. Kumar et al. (2020b) alienated 18 lines
into three clusters in pearl millet using 74 SSRs. In the current study, the inter-accession
genetic coefficient of similarity ranged from 0.616 to 0.877 while the average similarity
was 0.743. ICMR 098888 and GHB 905 has a genetic distance (0.384) indicative that both
genotypes are having moderate genetic difference level and can be crossed to create a
bi-parental mapping population. The minimum genetic distance (0.123) was between
IC 139899 and IC 332727, demonstrating that these accessions have more similarity in
SSR locus. Moreover, based on diversity results, breeders can select diverse genotypes for
combining ability and heterosis analysis for traits studied in the current study.

CONCLUSION
The genetic diversity for morphological and grain biochemical traits, an outcome of
natural selection with the cross-pollination nature of pearl millet, was revealed by analysis
of variance. Variability for grain micronutrient content was found greater with a wide
range in the population. Genotypes namely ICMR 08666 and IC 139903 were superior
for Fe and Zn content, respectively. Genotype ICMR 08666 was also found promising for
Zn, K and P content and can further be utilized for genetic biofortification. In the present
study, phenotypic diversity analysis grouped all genotypes into nine different clusters.
Among all clusters, three clusters had only single genotype with better phenotypic value
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Figure 2 UPGMA based dendrogramwith Jaccard’s similarity coefficient of DNAmarkers.
Full-size DOI: 10.7717/peerj.15403/fig-2

for most of the grain biochemical parameters. But phenotype is a total outcome of the
genotype and its interaction with the environment. Genetic markers are found effective
in this study, they help to identify ICMR 098888 and GHB 905 as diverse genotypes for
making a bi-parental mapping population.
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