Epiperipatus puri sp. nov., a new velvet worm from Atlantic forest in Southeastern of Brazil (Onychophora, Peripatidae)

Cristiano Sampaio Costa¹, Amanda C. Mendes², Alessandro Ponce de Leão Giupponi³,

- ¹ Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
- ² Departamento de Zoologia, Instituto de Biologia Roberto de Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- ³ Laboratório Referência Nacional em Vetores das Riquetsioses (LIRN/IOC), Coleção de Artrópodes Vetores Ápteros de Importância em Saúde das Comunidades (CAVAISC/IOC, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil

Corresponding Author:

Cristiano Sampaio Costa¹

Departamento de Biologia e Zoologia, Instituto de Biociências, Universidade Federal de Mato Grosso. Avenida Fernando Correa da Costa 2367, Boa Esperança, 78060-900 Cuiabá, MT, Brazil.

Email address: csampaioc@gmail.com

Abstract

After 120 years since the last species of Onychophora was described from the state of Rio de Janeiro (RJ), we describe *Epiperipatus puri* sp. nov. from Reserva Ecológica de Guapiaçu (REGUA), located in Cachoeiras de Macacu municipality, RJ, Brazil. The species can be diagnosed mainly by large primary papillae close to the insertion of the legs drawing light band from the anterior to posterior regions of the body and the large dorsal primary papillae alternating on the dorsal plicae. Moreover, they are recognized *jn vivo* by the brownish-orange diamond-shaped marks along the body. *Epiperipatus puri* sp. nov. seems to be related to *Epiperipatus ohausi* (Bouvier, 1900) by resemblance of dorsal papillae, and to *Epiperipatus acacioi* (Marcus & Marcus, 1955) by the shape of apical piece of the primary papillae. However, the phylogeny confirms only the close relationship to *E. ohausi* and a still undescribed species.

Deleted: for

Formatted: Font: Bold

Deleted: The name is a homage to indigenous population who resided in coastal Brazil.

Deleted:

Formatted: Font: Italic

Deleted: color of the

Deleted: brownish orange

Formatted: Font: Bold

Deleted: second

Deleted: of Epiperipatus still undescribed

forming a clade with species from Rio de Janeiro, Brazil. Epiperipatus puri sp. nov. is the second species described to Rio de Janeiro, a Brazilian state totally included in the Atlantic Forest, one of the most threatened biomes in the world.

Introduction

Onychophora (velvet worms) has received more attention in the last decade than ever, especially Neopatida (= the Neotropical Peripatidae) which was phylogenetically tested, and five species were recently described (Costa, Chagas-Junior, Pinto-da-Rocha, 2018; Giribet et al. 2018). Although velvet worms are among the most fascinating terrestrial groups of invertebrates, their biodiversity is still poorly understood and their taxonomy is elusive. It is probably a consequence of the poor sampling of individuals in the field, since these animals are hard to find in significant quantity and, as a consequence of it, low numbers of specimens available in museums. Many times, the found specimens are inadequately preserved, we also frequently face the poor access to historical collections, scarce type-locality data and the conservative studies on the morphology of the group (Froehlich, 1968; Peck, 1975; Read, 1988; Chagas-Júnior & Costa, 2014; Le Bras et al., 2015; Costa & Giribet, 2016; Costa, Chagas-Junior & Pinto-da-Rocha, 2018; Giribet et al., 2018). The lack of easy external characters capable of clearly delimiting the boundaries of the taxa led to the search for new approaches such as scanning electron microscopy (e.g. Read, 1988; Morera-Brenes and Monge-Nájera, 1990; Oliveira et al., 2010; Costa and Giribet, 2016) and DNA sequences (e.g. Oliveira et al, 2013; Giribet et al., 2018).

Currently the *circa* of 200 recent species of Onychophora are distributed in two families, Peripatidae Evans, 1901 (81 species) and Peripatopsidae Bouvier, 1905 (XX species). Epiperipatus Clark, 1913 is the most diverse of the 11 recent genera within Peripatidae, with currently 35 valid species. Those are distributed in the Antilles, Central and South America, with 13 species from Brazil (Peck, 1975; Brito et al., 2010; Oliveira et al., 2011; Oliveira, Read & Mayer, 2012; Costa, Chagas-Junior & Pinto-da-Rocha, 2018; Costa, Giribet & Pinto-da-Rocha, 2020).

Epiperipatus was erected by Clark (1913) as a subgenus of Peripatus Guilding, 1826 along with other two new subgenera (*Plicatoperipatus* Clark, 1913 and *Macroperipatus* Clark, 1913), designating Peripatus edwardsii Blanchard, 1847 as the type species and transferring more nine

Formatted: Font: Bold

Deleted:

Deleted:

Deleted: newly

Deleted: recently

Deleted: 1

Deleted:

Deleted: This

Deleted: due to

Deleted:

Deleted: , low numbers of lots

Deleted:

Deleted: often accompanied by

Deleted: specimen

Deleted: ation

Deleted: of some species,

Commented [BC1]: How many species of Peripatopsidae are there?

species to this subgenus (Clark, 1913: 18). Since the revisionary work of Peck (1975), *Epiperipatus* is treated as genus, although this author did not explicitly elevate the rank from subgenus. Peck cited it under an identification key for families and genera of Onychophora and made the combinations with the species without using *Peripatus* in the binomina (Peck 1975: 345). Until Peck's work *Epiperipatus* counted with 17 species. Subsequent works added species either newly described (Brito et al., 2010; Morera-Brenes & Monge-Nájera J. 2010; Oliveira et al., 2011; Costa, Chagas-Junior & Pinto-da-Rocha, 2018) or by transference from other genera (Oliveira, Wieloch & Mayer, 2010; Chagas-Júnior & Costa, 2014; Costa, Chagas-Junior & Pinto-da-Rocha, 2018; Costa, Giribet & Pinto-da-Rocha, 2020).

A revision of *Epiperipatus* had intended to improve the delimitation of the genus based on morphological and molecular data (Costa, Giribet & Pinto-da-Rocha, 2020), but there are still many issues to solve. In this paper, although *Epiperipatus* appears as non-monophyletic, a core monophyletic group emerges including the type species *Epiperipatus edwardsii*. The type species of the genus was recently redescribed under modern parameters (Costa, Chagas-Junior & Pinto-da-Rocha, 2018).

One of the undescribed species which according to Costa, Giribet & Pinto-da-Rocha (2020) belongs to *Epiperipatus* occurs in Cachoeiras de Macacu, Rio de Janeiro, Brazil. The area where the types were collected is a fragment of the Atlantic Rainforest (AF hereafter), a biome extremely threatened by pressures of agriculture, cattle ranching, hunting, tourism and city expansion (Ribeiro et al., 2011). The AF is one of the 36 conservation hotspots of the world (Myers et al. 2000; CEPF. 2019), being one of the most important given its conservation value in contrast with the imperil that havoes this irreplaceable region (Laurance, 2009).

In the present work, the species is newly described as Epiperipatus puri sp. nov. the typespecies are deposited at National Museum of Federal University of Rio de Janeiro (MNRJ), as a mark of rebuilding of the zoological collections, Epiperipatus puri sp. nov. is the first species of onychophorans deposited in MNRJ after its main building lost in ruthless fire. The building was a historical Palace from the time which Brazil was a Portuguese colony, and housed anthropological, archaeological, and paleontological collections, besides laboratories, postgraduation programs, the exhibition, and administrative facilities. The collection of Onychophora was held in together with the collections of Arachnida and Myriapoda, under the curatorship of Adriano B. Kury. Most of the three collections were lost in the fire except for material under

Deleted: , which remains poor,

Deleted: were

Deleted: F

Deleted: this

Deleted:

Deleted: Its

Formatted: Font: Bold

Deleted:

Deleted: Rio de Janeiro

Deleted: MN

Deleted: its

Formatted: Font: Bold

Deleted: MN

loan and all the data, which were safe due to the routine backup policy of the curator (Kury, Giupponi & Mendes, 2018).

Materials & Methods

The type-series is composed of six specimens deposited in Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro (MNRJ) (curator A. B. Kury) and Museu de Zoologia da Universidade de São Paulo, São Paulo (MZUSP) (curator R. Pinto-da-Rocha), both in Brazil. The specimens were collected between 2012 and 2018 in a small patch of tropical humid forest (Fig. 1) around the Rio de Janeiro (Metropolitan Region), under the deep-grown roots of grass (Fig. 7). Specimens were in 70% and 100% EtOH. We examined their morphology in detail and compared with specimens of Epiperipatus ohausi (Bouvier, 1900) from Nova Iguaçu municipality, Rio de Janeiro, Brazil, aiming to detect diagnostic features of the new species: MNRJ 0056; 1♀; BRAZIL, Rio de Janeiro, Nova Iguaçu, Reserva Particular do Patrimônio Natural dos Petroleiros; 23.XII.2009; Costa, C.S., Giupponi, A.P.L. leg. MNRJ 0058; 1♂; same locality; 11.III.2010; Costa, C.S., Chagas-Jr, A., Giupponi, A.P.L., Kury, A.B. leg. We studied one of the specimens (MNRJ 0093, voucher 065) using scanning electron microscopy (SEM). We dissected out one mandible, the fifth oncopod of the left side, and a small rectangular section of the dorsal integument covering from the dorsomedian furrow to the base of the oncopods. The structures were critical point dried and mounted in SEM stubs with biadhesive carbon tape. A 5-nm gold layer was applied. Samples were imaged with a JEOL JSM-6390LV at the SEM Platform Rudolf Barth at Instituto Oswaldo Cruz—Fundação Oswaldo Cruz (IOC-FIOCRUZ)

Photographs in vivo were taken with a SONY Cybershot DSC-HX1 with built-in flash, or Canon EOS Rebel XS with macro lens and flash circular camera. Images were edited using Adobe Photoshop CS5. Photographs in color of a live specimen were taken in the field. Coloration was described from the photographs of the living specimen (Figs. 2–6) following the standard names of the 267 Color Centroids of the NBS/ISCC Color System (see Kelly, 1958; also available at Centore, 2016, and Colors - ISCC/NBS, by w3schools.com). We compiled descriptions, and dissection of dead specimens using a stereomicroscope. Also, we combined the stereomicroscopy and Scanning Electron Microscopy (SEM) studies of the external morphology of the specimens for descriptions. The morphological descriptive nomenclature follows the

Deleted: type

Deleted: that are

Deleted: Greater

Deleted: Coloration

Commented [BC2]: That sentence doesn't make sense.

terminologies of Read (1988), Morera-Brenes & Monge-Nájera (2010), Oliveira, Wieloch & Mayer (2010) and Costa, Chagas-Junior & Pinto-da-Rocha (2018). All measurements are given in millimeters (mm). The herein described species was part of a detailed study of Epiperipatus combining morphological and molecular data of many (how many????) specimens from the Neotropics (Costa, Giribet & Pinto-da-Rocha, 2020) (see Fig. 13). Here, we chose to unify names of the references to simplify for the readers retrieving information about authors with two or more papers listed, and due to the names in references that do not follow rules of standardization (Kury et al., 2020).

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub:6823B793-FD60-42D9-B3D4-184F680A34CB. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

Results

Taxonomic results

Family Peripatidae Evans, 1901

Genus Epiperipatus Clark, 1915

Epiperipatus puri sp. nov.

Epiperipatus [sp6]: Costa: 2016; Costa et al: 2020: 6, 8, 25.

(Figs 2-6, 8-12)

Diagnosis. Large primary papillae close to the insertion of the legs drawing a narrow light band from the anterior to posterior regions of the body. The large dorsal primary papillae alternating on the dorsal plicae. Moreover, they are recognized in vivo by the color the diamond-shape marks brownish-orange (Figs. 2–5)

Deleted: we

Deleted: described in here

Deleted: more

Deleted: for

Deleted: to

Commented [BC3]: I believe this information is unnecessary.

Commented [BC4]: I believe this information is unnecessary.

Deleted: brownish

Description of female holotype (MNRJ 0093).

Measurements. length 43; width 3.0, height 3.9.

Color (for living specimen Figs. 2–6). Background color of body moderate reddish_brown overlaid by a shade of diamond-shaped marks brownish-orange. A broad dashed-line (close to the insertion of the legs) similarly colored as the diamond-shaped marks. Dorsomedian furrow dark reddish_brown. Anterior portion of head moderate reddish_brown and antennae strong brown. Color of dorsal portion of legs grayish reddish orange. Legs and ventral surface displaying same color, moderate reddish brown. Ventral and preventral organs moderate brown. Description of body (Figs 2–6, 8–12). Conspicuous dorsomedial furrow and hyaline organs along the main body axis (Figs 3, 8). Twelve plicae per segment, two incompletes as broad as the diamond-shaped marks, and seven crossing over to ventral side (Fig. 8).

Almost all dorsal papillae on the plicae, except by the smaller accessory papillae on the furrow between the plicae. Primary dorsal papillae aligned on top of folds; two primary papillae separated by one to five accessory papillae not occurring close together (Figs 5, 8). Both dorsal papillae with conical basal piece composed of scales that never overlap each other at base of papillae (Figs 8, 9). Primary papillae as the largest dorsal papillae, with roundish dome insertion and asymmetrical regular spherical apical piece (Fig. 9). Basal piece larger than apical, with a range of at least seven scale ranks (Fig. 9). Apical piece with three posterior scale ranks (Fig. 9). Narrow scales both on base and apical piece (Fig. 9). Needle-shaped sensory bristle directed posteriorly (Fig. 9). Small and large primary papillae with conspicuous constriction between the base and the apical piece (Figs 8, 9). Two sized dorsal primary papillae: the largest are on the top of body in continuous plicae, (close to the dorsomedian furrow and drawing the diamond-shape) and close to the legs. Lateral papillae in alternated dorsal plicae. Accessory papillae are the smallest dorsal, with roundish insertion similar in shape to the base of the primary papillae; they are more abundant per plicae and differ in position in relation to primary papillae (Figs 5, 8). Head. No evident structures or patterns on the head. Antennae (Figs 2-4) composed of 40 rings. Antennal tip composed of seven broad rings, excluding the disc on the top, followed by a sequence of narrow and broad rings alternating until at least ring 20. Eyes and frontal organs present ventrolateral to the antennal base. Conspicuous frontal organs as long as six fused antennal papillae. Mouth opening surrounded by small, anterior, unique lobe, and seven flanked

Deleted:

Deleted: brownish

Deleted:

Deleted: reddish

lobes decreasing in size from anterior to posterior ends of the mouth. Dental formula of inner and outer jaws (Figs 11–12), respectively: 1/1 and 1/2/10. Accessory tooth thinner in the outer jaw. Second accessory tooth reduced.

Legs. 28 pairs of legs (Fig. 6). Nephridial tubercle on fourth and fifth pairs of legs, between third and fourth spinous pads (Fig. 6), connected by the top to the third spinous pad. On fourth and fifth pairs of legs, four spinous complete pads present and no evidence of fifth spinous pad. Sexual dimorphism. Male with two pregenital pairs of legs with crural papilla one in each leg. Two pairs of pregenital legs with one crural papilla (male) each, absent in females. Anal glands are inconspicuous and represented only by two pores on anterior margin of anal aperture, absent in females.

Type material. Holotype: MNRJ 0093, 1 \updownarrow , BRAZIL, Rio de Janeiro, Cachoeiras de Macacu, Reserva Ecológica de Guapiaçu (REGUA), X.2012, A.P.L. Giupponi, J.S. Silva leg. Paratypes: MNRJ 0087, 1 unsexed specimen, MNRJ 0088, 1 \circlearrowleft , same locality, 28.II - 02.III.2012, A.P.L. Giupponi, J.S. Silva leg; MNRJ 0107, 1 unsexed specimen, same locality, 19.III.2018, R.L.C. Baptista leg; MZUSP 0122, 1 \updownarrow , same locality, 21.XII.2014, A. Ferreira, A.P.L. Giupponi, A. Rezende, C.S. Costa leg.

Distribution. Only known from type locality (Fig. 1).

Etymology. The epithet puri (in apposition) refers to the Puri indigenous group belonging to the *Macro-Jê* linguistic group. They inhabited, among other places, the mountain region of the Rio de Janeiro state where specimens of this species were collected. Noun in apposition.

Remarks. Paratype. Length 12 to 22; width 1.0 to 2.5. Legs. 26 and 27 pairs of legs.

Discussion

Classification of Epiperipatus puri sp. nov.

The fuzzy generic limits due to lack of clear morphological characters is a major issue of Neopatida taxonomy. Splitting species of Peripatidae in several genera might be a problem, especially in the systematics of Brazilian fauna (Giribet et al., 2018: 860; Costa, 2016

Deleted: The a

Deleted: is

Deleted: The s

Deleted: is

Formatted: Font: Bold

Deleted: of genera

Deleted: taxonomic

Unpublished PhD thesis). *Epiperipatus* is one of the most speciose genera of Peripatidae (Oliveira, Read & Mayer, 2012; Costa, Chagas-Junior & Pinto-da-Rocha, 2018) with 36 described species after this paper.

However recent studies based on the molecular data regards the genus as non-monophyletic (Costa, 2016 Unpublished PhD thesis; Giribet et al., 2018). Phylogenetically, Costa et al. (2020) based on the study of four molecular markers besides morphological data distinguished two clades of Brazilian species, the smallest with species from the state of Pará and the largest with the remaining species of the country. Epiperipatus puri sp. nov. appears nested in the largest clade closely related with species from the state of Rio de Janeiro: Epiperipatus ohausi (Bouvier, 1900) and a potentially undescribed species (see in Costa et al. (2020): 23, fig. 3, clade S, and Fig.e 13 here). This clade is sister-group to another composed by *Epiperipatus machadoi* (Oliveira & Wieloch, 2005) and three unnamed species from Espírito Santo, Brazil. Epiperipatus puri sp. nov. is characterized as a new species by the roundish insertion of dorsal papillae, the three posterior scale ranks and two prolateral and one retrolateral foot papillae in the feet of the fourth and fifth oncopods (Fig. 10). The presence of incomplete folds differs E. puri sp. nov. from Epiperipatus brasiliensis (Bouvier, 1899), Epiperipatus tucupi Froelich, 1968 and Epiperipatus cratensis Brito et al., 2010. The new species differs from Epiperipatus diadenoproctus Oliveira et al., 2011 by the inconspicuous anal glands in E. puri sp. nov. In Epiperipatus paurognostus Oliveira et al., 2011 the background color of body is reddish brown (in vivo) and the fourth spinous pad can be complete or incomplete, in E. puri sp. nov. the background color of body is moderate reddish brown (in vivo) and the fourth spinous pad is complete. The apical piece is conical in *Epiperipatus adenocryptus* Oliveira et al., 2011 and E. machadoi and Epiperipatus lucerna Costa, Chagas-Jr & Pinto-da-Rocha, 2018 and Epiperipatus marajoara Costa, Chagas-Jr & Pinto-da-Rocha, 2018, and spherical in E. puri sp. nov. The apical piece is conical and reduced in Epiperipatus beckeri Costa, Chagas-Jr & Pinto-da-Rocha, 2018 and Epiperipatus titanicus Costa, Chagas-Jr & Pinto-da-Rocha, 2018, robust in Epiperipatus hyperbolicus Costa, Chagas-Jr & Pinto-da-Rocha, 2018, while the apical piece is regular in E. puri sp. nov. The new species seems to be closely related to Epiperipatus acacioi (Marcus & Marcus, 1955) by the shape of apical piece of the primary papillae, however E. puri sp. nov. primary papillae are lighter than other papillae. Epiperipatus ohausi and E. puri sp. nov.

Deleted: a

Deleted · almost all

Deleted: Brazilian examined

Deleted: m

Deleted: n

Formatted: Font: Bold

Deleted: , into a smaller clade of

Deleted: of species of Rio de Janeiro

Deleted: other

Formatted: Font: Bold

Deleted:

Formatted: Font: Bold

Formatted: Font: Bold

Deleted: E.

Formatted: Font: Bold

Formatted: Font: Bold

bear dorsal papillae with similar shape and size, but the latter also bear accessory papillae on the flanks, and uniform background color of body and oncopods.

Additionally, the results of Costa, et al. (2020) include the species in a clade containing the type species of the genus, although the clade also includes species of other genera. Giribet *et al* (2018) suggested that Caribbean species of *Epiperipatus* are closer to *Peripatus* than to the remaining "*Epiperipatus*", however this could be confirmed only by the inclusion of *Peripatus juliformis* Guilding, 1826 (type species of *Peripatus*) in Peripatidae analyses, neither of both studies included this species. Although the boundaries between *Epiperipatus* and *Peripatus* remain unclear, we cautiously preferred keeping the new species as *Epiperipatus*, as their putative closer species *E. ohausi* is currently classified.

Conservation

Epiperipatus puri sp. nov. is the 21th species of Onychophora (all belonging to Peripatidae) and the 16th Epiperipatus species described from Brazil (Chagas-Jr & Oliveira, 2019). Besides E. puri sp. nov., only E. ohausi is nominally recorded from Rio de Janeiro (See Costa, Chagas-Junior & Baptista, 2009; Costa, Chagas-Junior & Pinto-da-Rocha, 2018), a Brazilian state entirely located in the Atlantic Forest domain.

The Atlantic Forest is the second largest rainforest in South America and one of the most distinctive biogeographic unit in Neotropical Region with high levels of endemicity and biodiversity (Ribeiro et al., 2011). However, this biome has experienced large habitat losses since European colonization and currently only 12.59% remains of its original area (Ribeiro et al., 2009, 2011) making it one of the "hottest hotspots" for conservation (Mittermeier et al., 2004; Laurance, 2009).

Our species was collected in a private conservation unit, the RPPN Reserva Ecológica de Guapiaçu (REGUA) (Fig. 1), an effort to preserve the Atlantic Forest. The reserve is in the upper Guapiaçu River Valley and started as a group of farms registered as a non-governmental organization in the early 2000's. Today part of its area (in a total of 357ha of two areas) is officially recognized as one of the private conservation units of Rio de Janeiro state, part of the state program of Private Reserves of Natural Patrimony (Portuguese acronym: RPPN) (see Guagliardi, 2018). The total area of the reserve (official and nonofficial) encompasses 7,500ha of forest in different stages of conservation, with an altitudinal range from 0 to above 2,000 m.a.s.l.

Deleted: and collaborators

Deleted: and two further undescribed species are

Formatted: Font: Bold

Deleted: e Atlantic Forest

(Soares et al., 2011). The region is in a mountain region where the Guapi-Macacu Basin belongs, which contributes to the water supply of 2.5 million inhabitants of five municipalities (Rodríguez-Osuma et al., 2014). In this watershed the degradation of aquatic resources are the processes of urbanization, intense agriculture and conversion of riparian vegetation (Rodríguez-Osuma et al., 2014). The forest cover of the landscape in the Guapi-Macacu Basin is circa 40%, and it is a mosaic of different ages; unfortunately fragments anterior to 1976 occupy only 12% of the landscape (Costa et al., 2017).

Although composed mainly by secondary forests, REGUA is an important element to the conservation of local fauna. The area is known for the relevant fauna of birds (Pimentel & Olmos, 2011), butterflies (Soares et al., 2011), mosquitoes (Silva et al., 2014) and for being one of the richest spots for dragonflies and damselflies in the world, with more than 200 species recorded (Kompier, 2015), one of them just recently described (Pinto & Kompier, 2018). *E. puri* sp. nov. is the first record of Onychophora for REGUA. This demonstrates the high value of this reserve as a complement to the recuperation of the critical area where it is located, mostly deforested by agricultural practices.

For more than 30 years, scientists advocated for the importance of the invertebrates and their conservation (Wilson, 1987). Although we have made some progress, the perspective has not changed much: despite the crucial role they play in maintaining ecosystems, the knowledge is far behind comparing to vertebrates in terms of conservation (e.g. Collen et al., 2012). The velvet worms are at risk given their distribution in threatened biomes, as the Atlantic Forest itself, and because they seem to occur in small sized populations, although the amount of data available on population dynamics is scarce (New, 1995). Sometimes the species are newly named already critically endangered (e.g. Oliveira et al., 2015).

Currently 80% of Brazilian species of onychophorans are in the Livro Vermelho da Fauna Brasileira Ameaçada de Extinção (ICMBio, 2018). One of the species considered endangered in Brazil's Red Book is *E. ohausi* (see Costa, Cordeiro & Chagas-Jr, 2018), the only named species from Rio de Janeiro state until this work, considered here to be a close species to *E. puri* sp. nov. *Epiperipatus ohausi* is known from Petrópolis (type-locality) and Nova Iguaçu (Chagas-Júnior & Costa, 2014), forests from both localities suffer from pressures of urbanization. The population of the species is severely fragmented since it occupies humid shaded habitats, with an extent amount of litter, typical of forested areas (Costa, Cordeiro & Chagas-Jr, 2018). Although *E. puri*

sp. nov. is distributed in a close area, also with high pressures of urbanization and agriculture, fortunately it is inside a Reserve, and probably its distribution extends to the area of Parque Estadual dos Três Picos, a State Reserve contiguous to REGUA. This reinforces the need for preservation of those reserves and encourages to expand their areas.

After a few years of political stability and economic growth, Brazil is passing through severe economic, political, and social turmoil. From 1995 to 2014 there were in the country policies prioritizing fight against poverty, environmental destruction, and the historical deficit in science and education (Dobrovolski et al., 2018). Current Brazilian government demonstrates that environmental policies are not in the list of priorities of the country, and its attitude jeopardizes Brazilian natural environments. Therefore, recently the indexes of deforestation are skyrocketing in all Brazilian biomes (INPE, 2020), which seems to be related to policies favoring livestock ranching and agribusiness, and the weakening of Brazilian system of protection of environment and Indigenous lands (Ferrante et al., 2020).

Although fires in Amazonian Forest, Cerrado and Pantanal usually are related to the replacement of natural vegetation by cattle ranching and soy crops, in the AF currently the deforestation is mostly related to urbanization (see Joly, Metzger & Tabarelli, 2014) and pressure of the real-estate market. The increment in the deforestation process in association with the negligence with its scientific institutions (the destruction of Museu Nacional and its collections being an emblematic symbol) which are suffering significative budget cuts

(Martelli-Jr et al., 2019; Escobar, 2019), lack of staff replacement and direct federal political intervention in their management, undermine the protection of fragile biota.

Conclusions

One of the known obstacles to conservation of invertebrates is the poor state of knowledge of the species, many still unnamed. In case of velvet worms the difficulty to describe a species is notorious, and one recent proposed solution to deal with this problem is to connect information of undescribed species to common names (Sosa-Bartuano, Monge-Nájera & Morera-Brenes, 2018). Our description of *Epiperipatus puri* sp. nov. contributes to the knowledge of the biodiversity in a hotspot for conservation, the Atlantic Forest. We characterized the species morphologically with the use of SEMs and photographs, including *in vivo* (important for recognizing the species in the field). All the type material was collected in a private reserve

which is contiguous to a State Protected Area, demonstrating the importance of this type of initiative. *E. puri* sp. nov. was assigned to *Epiperipatus* as their putative closer species is, *E. ohausi*, but future studies could reveal the actual boundaries of the genera for there is molecular evidence that they could belong to *Peripatus* (Giribet et al., 2018).

Acknowledgements

We are grateful to *Plataforma de Microscopia Eletrônica Rudolf Barth* (FIOCRUZ – IOC) and to their staff, Wendell Girard Dias, Roger Magno Macedo Silva, Rômulo Custódio dos Santos and Taíssa Ribeiro Adriano de Oliveira, for the help with the SEM images. We are grateful to Adriano B. Kury (MNRJ) who provided support with the Latin grammatical forms. We are in debit with Júlia dos Santos Silva (FIOCRUZ) Nicholas Locke, Raquel Locke who assisted with SEM images. Jorge Bizarro for valuable information of REGUA. We also thank Flávio Uemori Yamamoto for providing the beautiful photographs of the new species. This work and fieldwork for CSC was funded by São Paulo Research Foundation (FAPESP, who was supported by fellowships from FAPESP #2011/20211-0, 2012/02969-6 and 2014/20557-2).

References

Le Bras G, Geoffroy J-J, Albenga L, Mauriès J-P. 2015. The Myriapoda and Onychophora collection (MY) of the Muséum national d'Histoire naturelle (MNHN, Paris). ZooKeys 518:139–153. DOI: 10.3897/zookeys.518.10223.

Brito S V., Pereira JC, Ferreira FS, Vasconcellos A, Almeida W de O. 2010. Epiperipatus cratensis sp. nov. (Onychophora: Peripatidae) from northeastern Brazil. Neotropical Biology and Conservation 5:47–52. DOI: 10.4013/nbc.2010.51.07.

Centore P. 2016. sRGB Centroids for the ISCC-NBS Colour System.

CEPF. 2019.Explore the Biodiversity Hotspots | CEPF. Available at https://www.cepf.net/our-work/biodiversity-hotspots

Chagas-Jr A, Oliveira I de S. 2019. Onychophora Grube, 1853. Available at http://fauna.jbrj.gov.br/fauna/faunadobrasil/19 (accessed March 3, 2017).

Chagas-Júnior A, Costa CS. 2014. *Macroperipatus ohausi*: redescription and taxonomic notes on its status (Onychophora: Peripatidae). *Revista de Biología Tropical* 62:977–985.

Clark AH. 1913. A revision of the American species of *Peripatus*. *Proceedings of the Biological Society Washington* 26:15–19.

Collen B, Böhm B, Kemp R, Baillie JEM. 2012. Spineless: status and trends of the world's invertebrates. *London: Zoological Society of London, United Kingdom*.

Colors - ISCC/NBS. *Available at https://www.w3schools.com/colors/colors_nbs.asp* (accessed July 17, 2019).

Costa CS. 2016. Sistemática e análise filogenética de *Epiperipatus* Clark, 1913 baseada em dados moleculares e morfológicos (Onychophora: Peripatidae). Unpublished Ph.D. Thesis, Universidade de São Paulo.

Costa CS, Chagas-Junior A, Baptista RLC. 2009. Brazilian species of Onychophora with notes on their taxonomy and distribution. *Zoologia (Curitiba)* 26:553–561. DOI: 10.1590/S1984-46702009005000004.

Costa CS, Chagas-Junior A, Pinto-da-Rocha R. 2018. Redescription of *Epiperipatus edwardsii*, and descriptions of five new species of *Epiperipatus* from Brazil (Onychophora: Peripatidae). *Zoologia* 35:1–15. DOI: 10.3897/zoologia.35.e23366.

Costa CS, Cordeiro LM, Chagas-Jr A. 2018. *Epiperipatus ohausi* (Bouvier, 1900). In: Instituto Chico Mendes de Conservação da Biodiversidade (Org.). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume VII - Invertebrados. Brasília: In: Instituto Chico Mendes de Conservação da Biodiversidade ed. *Livro Vermelho da Fauna Brasileira Ameaçada de Extinção*. Brasília: ICMBio, 577–586.

Costa CS, Giribet G. 2016. Taxonomic Notes on Mesoperipatus tholloni (Onychophora: Peripatidae), an Elusive Velvet Worm from Gabon. *Breviora* 552:1–10. DOI: 10.3099/MCZ30.1. Costa CS, Giribet G, Pinto-da-Rocha R. 2020. Morphological and molecular phylogeny of *Epiperipatus* (Onychophora: Peripatidae): a combined approach. *Zoological Journal of the Linnean Society*. DOI: 10.1093/zoolinnean/zlaa100.

Costa RL, Prevedello JA, de Souza BG, Cabral DC. 2017. Forest transitions in tropical landscapes: A test in the Atlantic Forest biodiversity hotspot. *Applied Geography* 82:93–100. DOI: 10.1016/j.apgeog.2017.03.006.

Dobrovolski R, Loyola R, Rattis L, Gouveia SF, Cardoso D, Santos-Silva R, Gonçalves-Souza D, Bini LM, Diniz-Filho JAF. 2018. Science and democracy must orientate Brazil's path to

sustainability. *Perspectives in Ecology and Conservation* 16:121–124. DOI: 10.1016/j.pecon.2018.06.005.

Escobar H. 2019. 'We can't take another hit like this': Brazilian scientists lament big budget freeze. *Science AAAS*. DOI: 10.1126/science.aax6227.

Ferrante L, Gomes M, Fearnside PM. 2020. Amazonian indigenous peoples are threatened by Brazil's Highway BR-319. *Land Use Policy* 94: 104548.

https://doi.org/10.1016/j.landusepol.2020.104548.

Froehlich CG. 1968. On some Brazilian Onychophores. *Beitrage zur Neotropischen Fauna* 5:160–171. DOI: 10.1080/01650526809360404.

Giribet G, Buckman-Young RS, Sampaio Costa C, Baker CM, Benavides LR, Branstetter MG, Daniels SR, Pinto-da-Rocha R. 2018. The "Peripatos" in Eurogondwana? – Lack of evidence that south-east Asian onychophorans walked through Europe. *Invertebrate Systematics* 32:842–865. DOI: 10.1071/IS18007.

Guagliardi R (ed.). 2018. RPPN - Private Natural Heritage Reserves State Program: 10 years in support of biodiversity conservation. Rio de Janeiro: Instituto Estadual do Ambiente.

Instituto Chico Mendes de Conservação da Biodiversidade. 2018. *Livro Vermelho da Fauna Brasileira Ameaçada de Extinção*. Brasília.

Instituto Nacional de Pesquisas Espaciais.Programa Queimadas. *Available at http://queimadas.dgi.inpe.br/queimadas/aq1km/* (accessed October 27, 2020).

Joly CA, Metzger JP, Tabarelli M. 2014. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. *New Phytologist* 204:459–473. DOI: 10.1111/nph.12989.

Kelly KL. 1958. Central notations for the revised iscc-nbs color-name blocks. *Journal of Research of the National Bureau of Standards* 61.

Kompier T. 2015. A guide to the dragonflies and damselflies of the Serra dos Orgaos [sic] South-easthern Brazil. Brussels: REGUA Publications.

Kury AB, Giupponi APL, Mendes AC. 2018. Immolation of Museu Nacional, Rio de Janeiro – unforgettable fire and irreplaceable loss. *The Journal of Arachnology* 46:556–558. DOI: 10.1636/JoA-S-18-094.1.

Kury, AB, Mendes, AC, Cardoso, L, Kury, MS, & Granado, AA. 2020. WCO-Lite: online world catalogue of harvestmen (Arachnida, Opiliones). Version 1.0 — Checklist of all valid nomina in

Opiliones with authors and dates of publication up to 2018. Self, Rio de Janeiro.: ii \pm 237. DOI: 10.5281/zenodo.4025288

Laurance WF. 2009. Conserving the hottest of the hotspots. *Biological Conservation* 142:1137. DOI: 10.1016/j.biocon.2008.10.011.

Martelli -Jr H, Martelli DR, Silva ACS e, Oliveira MCL, Oliveira EA. 2019. Brazil's endangered postgraduate system. *Science* 363:240–240. DOI: 10.1126/science.aav9015.

Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GABD. 2004. *Hotspots revisited: earths biologically richest and most endangered terrestrial ecoregions*. Mexico City: CEMEX.

Morera-Brenes B, Monge-nájera J. 1990. *Epiperipatus hilkae* m sp from Costa Rica (Onychophora: Peripatidae). *Revista de biología tropical* 38:449–455. DOI: 10.15517/rbt.v38i2.25444.

Morera-Brenes B, Monge-Nájera J. 2010. A new giant species of placented worm and the mechanism by which onychophorans weave their nets (Onychophora: Peripatidae). *Revista de biología tropical* 58:1127–42.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. *Nature* 403:853–858. DOI: 10.1038/35002501.

New TR. 1995. Onychophora in invertebrate conservation: priorities, practice and prospects. *Zoological Journal of the Linnean Society* 114:77–89.

Oliveira I de S, Lacorte GA, Fonseca CG, Wieloch AH, Mayer G. 2011. Cryptic speciation in Brazilian *Epiperipatus* (Onychophora: Peripatidae) reveals an underestimated diversity among the peripatid velvet worms. *PloS one* 6:e19973. DOI: 10.1371/journal.pone.0019973.

Oliveira I de S, Lacorte GA, Weck-Heimann A, Cordeiro LM, Wieloch AH, Mayer G. 2015. A new and critically endangered species and genus of Onychophora (Peripatidae) from the Brazilian savannah – a vulnerable biodiversity hotspot. *Systematics and Biodiversity* 13:211–233. DOI: 10.1080/14772000.2014.985621.

Oliveira I de S, Read VMSJ, Mayer G. 2012. A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. *ZooKeys* 211:1–70. DOI: 10.3897/zookeys.211.3463.

Oliveira I de S, Schaffer S, Kvartalnov P V, Galoyan EA, Palko I V, Weck-Heimann A, Geissler P, Ruhberg H, Mayer G. 2013. A new species of *Eoperipatus* (Onychophora) from Vietnam

reveals novel morphological characters for the South-East Asian Peripatidae. *Zoologischer Anzeiger* 252:495–510.

Oliveira I de S, Wieloch AH, Mayer G. 2010. Revised taxonomy and redescription of two species of the Peripatidae (Onychophora) from Brazil: a step towards consistent terminology of morphological characters. *Zootaxa*:16–34.

Peck SB. 1975. A review of the New World Onychophora with the description of a new cavernicolous genus and species from Jamaica. *Psyche* 82:341–358. DOI: 10.1155/1975/98614. Pimentel L, Olmos F. 2011. The birds of Reserva Ecológica Guapiaçu (REGUA), Rio de Janeiro, Brazil. *Cotinga* 33:8–24.

Pinto ÂP, Kompier T. 2018. In honor of conservation of the Brazilian Atlantic Forest: description of two new damselflies of the genus Forcepsioneura discovered in private protected areas (Odonata: Coenagrionidae). *Zoologia* 35:1–19. DOI: 10.3897/zoologia.35.e21351. Read VMSJ. 1988. The application of scanning electron microscopy to the systematics of the

neotropical Peripatidae (Onychophora). Zoological Journal of the Linnean Society 93:187-223.

DOI: 10.1111/j.1096-3642.1988.tb01361.x.

Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano F, Fortin M-J. 2011. The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot. In: Zachos FE, Habel JC eds. *Biodiversity hotspots: distribution and protection of conservation priority areas. Heidelberg [Germany]*. New York: Springer, 405–434.

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. *Biological Conservation* 142:1141–1153. DOI: 10.1016/j.biocon.2009.02.021. Rodríguez Osuna V, Börner J, Nehren U, Prado RB, Gaese H, Heinrich J. 2014. Priority areas for watershed service conservation in the Guapi-Macacu region of Rio de Janeiro, Atlantic Forest, Brazil. *Ecological Processes* 3:16. DOI: 10.1186/s13717-014-0016-7.

Silva J dos S, Souto Couri M, de Leão Giupponi AP, Alencar J. 2014. Mosquito fauna of the Guapiaçu Ecological Reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil, collected under the influence of different color CDC light traps. *Journal of Vector Ecology* 39:384–394. DOI: 10.1111/jvec.12114.

Soares A, Bizarro JMS, Bastos CB, Tangerini N, Silva NA, Silva AS da, Silva GB. 2011. Preliminary analysis of the diurnal Lepidoptera fauna of the Três Picos State Park, Rio de Janeiro, Brazil, with a note on Parides ascanius (Cramer, 1775). *Tropical Lepidoptera Research* 22:66–79.

Sosa-Bartuano Á, Monge-Nájera J, Morera-Brenes B. 2018. A proposed solution to the species problem in velvet worm conservation (Onychophora). *UNED Research Journal* 10:193–197. DOI: 10.22458/urj.v10i1.2027.

Wilson EO. 1987. The Little Things That Run the world* (The Importance and Conservation of Invertebrates). *Conservation Biology* 1:344–346. DOI: 10.1111/j.1523-1739.1987.tb00055.x.