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ABSTRACT
In defensivemimicry, resemblance between unequally defended species can be parasitic;
this phenomenon has been termed quasi-Batesian mimicry. Few studies have used
real co-mimics and their predators to test whether the mimetic interactions were
parasitic. Here, we investigated the mimetic interaction between two well-defended
insect species, the bombardier beetle Pheropsophus occipitalis jessoensis (Coleoptera:
Carabidae) and the assassin bug Sirthenea flavipes (Hemiptera: Reduviidae), using their
potential predator, the pond frog Pelophylax nigromaculatus (Anura: Ranidae), which
coexists with these insect species in the same habitat in Japan.We observed behavioural
responses of this frog species (adults and juveniles) to adult Ph. occipitalis jessoensis
and adult S. flavipes under laboratory conditions. Among the frogs, 100% and 75%
rejected Ph. occipitalis jessoensis and S. flavipes, respectively, suggesting that, compared
with the assassin bug S. flavipes, the bombardier beetle Ph. occipitalis jessoensis is more
well-defended against frogs. An assassin bug or a bombardier beetle was provided to a
frog that had encountered the other insect species. Frogs with a history of assassin bug
encounter demonstrated a lower rate of attack toward bombardier beetles. Similarly,
frogs with a history of bombardier beetle encounter demonstrated a lower rate of attack
toward assassin bugs. Therefore, both the bombardier beetlePh. occipitalis jessoensis and
the assassin bug S. flavipes benefit from the mimetic interaction.

Subjects Animal Behavior, Ecology, Entomology, Evolutionary Studies, Zoology
Keywords Assassin bugs, Bombardier beetles, Brachinini, Carabidae, Chemical defences,
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INTRODUCTION
Animals have evolved diverse anti-predator strategies such as chemical, morphological,
physical, and behavioural defences (Edmunds, 1974; Ruxton, Sherratt & Speed, 2004; Eisner,
Eisner & Siegler, 2005; Sugiura, 2020a). Some well-defended animals have aposematic body
colours, which signal distaste and danger to their predators (i.e., warning signals; Ruxton,
Sherratt & Speed, 2004). Well-defended species frequently share warning signals that serve
to deter predation (i.e., Müllerian mimicry; Müller, 1878; Müller, 1879; Ruxton, Sherratt &
Speed, 2004; Sherratt, 2008), while some non-defended species mimic well-defended species
(i.e., Batesian mimicry; Bates, 1862; Ruxton, Sherratt & Speed, 2004). Müllerian mimicry
is the mutualistic interaction between equally defended species, while Batesian mimicry
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is the parasitic or commensal interaction between non-defended and well-defended
species (Ruxton, Sherratt & Speed, 2004; Sherratt, 2008; Balogh, Gamberale-Stille & Leimar,
2008; Honma, Takakura & Nishida, 2008). These two types of mimicry are traditionally
considered extreme ends of a defensive mimicry spectrum (Balogh, Gamberale-Stille
& Leimar, 2008). On the mimicry spectrum, mimetic interactions between unequally
defended species can be parasitic—this phenomenon is termed quasi-Batesian mimicry
(Speed, 1993; Speed, 1999; Speed & Turner, 1999; Rowland et al., 2010). However, there is
controversy regarding whether mimetic interactions between unequally defended species
are truly parasitic (Speed et al., 2000; Rowland et al., 2007; Rowland et al., 2010; Aubier,
Joron & Sherratt, 2017). Some experimental studies have indicated such interactions are
parasitic (Speed et al., 2000; Rowland et al., 2010), while other studies have indicated that
they are mutualistic (Rowland et al., 2007) or not always parasitic (Lindström et al., 2006).
Previous experimental studies used bird predators and artificial prey to investigate the
nature of quasi-Batesian mimicry (Speed et al., 2000; Lindström et al., 2006; Ihalainen,
Lindström &Mappes, 2007; Rowland et al., 2007; Ihalainen et al., 2008; Rowland et al.,
2010). Although resemblance between unequally defended species is commonly found
in the natural environment (Marples, Brakefield & Cowie, 1989; Marples, 1993; Winters et
al., 2018; Chouteau et al., 2019; Soukupová, Veselý & Fuchs, 2021), few studies have used
real co-mimics and their natural predators to determine whether the mimetic interactions
are parasitic or mutualistic (Pekár et al., 2017; Raška et al., 2020).

Bombardier beetles (Coleoptera: Carabidae: Brachininae: Brachinini) are chemically
defended; their adults eject toxic chemicals at a temperature of 100 ◦C when they are
attacked by predators (Aneshansley et al., 1969; Dean, 1979; Eisner, Eisner & Siegler, 2005;
Arndt et al., 2015). The discharge of hot chemicals—namely, bombing—can protect
beetles from various groups of predators such as birds (Kojima & Yamamoto, 2020),
reptiles (Bonacci et al., 2008), amphibians (Eisner & Meinwald, 1966; Dean, 1980; Sugiura
& Sato, 2018; Sugiura, 2018; Sugiura & Date, 2022), and arthropods (Eisner, 1958; Eisner &
Meinwald, 1966; Eisner & Dean, 1976; Eisner et al., 2006; Sugiura, 2021). Many bombardier
beetle species have similar aposematic body colours (Schaller et al., 2018; Anichtchenko
et al., 2022) and are visually mimicked by some insect species that coexist with them
in the same habitats (Shelford, 1902; Bonacci et al., 2008; Kojima & Yamamoto, 2020).
For example, in Italy, the carabid species Anchomenus dorsalis (Pontoppidan) and the
bombardier beetle species Brachinus sclopeta (Fabricius) have a similar body colour pattern
(green-blue and red-brown) (Bonacci et al., 2008; Bonacci, Brandmayr & Brandmayr,
2011). In Borneo, a raspy cricket species (Orthoptera: Gryllacrididae) shares a black
and orange body colour with the bombardier beetle Pheropsophus (Stenaptinus) agnatus
(Chaudoir) (Shelford, 1902). In Japan, the assassin bug Sirthenea flavipes (Stål) (Hemiptera:
Reduviidae: Peiratinae) has a black and yellow body colour similar to the colour of the
bombardier beetle Pheropsophus (Stenaptinus) occipitalis jessoensis Morawitz (formerly
called Pheropsophus jessoensis; Figs. 1A and 1B; Kojima & Yamamoto, 2020). Although the
interaction between the carabid species A. dorsalis and the bombardier beetle B. sclopeta has
been suggested to constitute Müllerian mimicry (Bonacci et al., 2008; Bonacci, Brandmayr
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Figure 1 A bombardier beetle, an assassin bug, and their potential predator. (A) An adult bombardier
beetle Pheropsophus occipitalis jessoensis. (B) An adult assassin bug Sirthenea flavipes. (C) An adult pond
frog Pelophylax nigromaculatus. The photos were taken in the same grassland (in Hyogo Prefecture) on 13
October 2021. Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-1

& Brandmayr, 2011), few studies have examined whether mimetic interactions between
bombardier beetles and distantly related insects are parasitic or mutualistic.

To investigate mimetic interactions that involve bombardier beetles, we used two well-
defended insect species (the bombardier beetle Ph. occipitalis jessoensis and the assassin
bug S. flavipes) and their potential predator, the black-spotted pond frog Pelophylax
nigromaculatus (Hallowell) (Anura: Ranidae), which coexists with these insects in the same
habitat in Japan (Fig. 1).
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The bombardier beetle Ph. occipitalis jessoensis (Fig. 1A) is distributed in East Asia (Japan,
Korea, and China) and Southeast Asia (Vietnam) (Fedorenko, 2021). In Japan, adult Ph.
occipitalis jessoensis are commonly found on the ground in farmland, grassland, and
forest edges (Habu & Sadanaga, 1965; Yahiro et al., 1992; Ishitani & Yano, 1994; Fujisawa,
Lee & Ishii, 2012; Ohwaki, Kaneko & Ikeda, 2015; Sugiura, 2018; Sugiura, 2021; Sugiura &
Date, 2022). Female adults lay eggs in soil and the hatched larvae feed exclusively on egg
masses of the mole cricket Gryllotalpa orientalis Burmeister (Orthoptera: Gryllotalpidae)
(Akino, Sasaki & Okamoto, 1956; Habu & Sadanaga, 1965). Adults feed on live and dead
insects of various species on the ground (Habu & Sadanaga, 1965; Sugiura, 2018). The
bombardier beetle Ph. occipitalis jessoensis can eject quinones (1,4-benzoquinone and
2-methyl-1,4-benzoquinone) and water (vapor) at a temperature of approximately 100
◦C from the end of its abdomen (Video S1; Kanehisa & Murase, 1977; Kanehisa, 1996)
to repel predators such as the pond frog Pe. nigromaculatus (Sugiura, 2018), the bullfrog
Lithobates catesbeianus (Shaw) (Anura: Ranidae) (Sugiura & Date, 2022), quails (Kojima &
Yamamoto, 2020), and praying mantises (Sugiura, 2021).

Similar to bombardier beetles, assassin bugs are considered well-defended insects;
assassin bugs kill prey insects and defend against their predators by using their proboscis
(i.e., labium) to inject them with painful venoms (Eisner, Eisner & Siegler, 2005; Schmidt,
2009;Walker et al., 2016). In addition, assassin bugs have a variety of scent glands that can
act as chemical defences (Louis, 1974; Staddon, 1979). The assassin bug S. flavipes (Fig. 1B)
is distributed in East Asia (Japan, Korea, and China), Southeast Asia (Cambodia, Indonesia,
Laos, Malesia, Myanmar, Philippines, Thailand, and Vietnam), South Asia (Bangladesh,
India, Nepal, Pakistan, and Sri Lanka), and West Asia (Afghanistan and Iran) (Chłond,
2018). Sirthenea flavipes is found on the ground in grassland and farmland (Ito, Okutani
& Hiura, 1977; Tomokuni et al., 1993; Takahashi, 1996; Hirashima & Morimoto, 2008).
Similar to adults of the North American species Sirthenea carinata (Fabricius) (Hudson,
1987), juveniles and adults of S. flavipes exclusively prey onmole crickets (Hayashi, 2023); S.
flavipes uses a long proboscis (labium) to inject paralyzing venoms into prey, then feeds on
the prey (Video S2; Fig. 2). Sirthenea flavipes aggressively stabs attackers with its proboscis
when it is caught (Ito, Okutani & Hiura, 1977; Yasunaga et al., 2018). A bite (stab) by adult
S. flavipes reportedly causes severe pain to humans (Takara, 1957; Ito, Okutani & Hiura,
1977; Tomokuni et al., 1993; Takahashi, 1996; Yasunaga et al., 2018). The assassin bug S.
flavipes shares the microhabitat (on the ground in grassland), prey (mole crickets), and
body colour pattern (black and yellow colour) with the bombardier beetle Ph. occipitalis
jessoensis (Fig. 1). However, the relationship between the bombardier beetle Ph. occipitalis
jessoensis and assassin bug S. flavipes remains unexplored.

The black-spotted pond frog Pe. nigromaculatus is distributed in East Asia, including
Japan, Korea, and China (Komaki et al., 2015; Matsui & Maeda, 2018). Postmetamorphic
juveniles and adults of Pe. nigromaculatus are found in paddy fields and surrounding
grasslands (Matsui & Maeda, 2018). Postmetamorphic juveniles and adults prey on animals
smaller than themselves, especially terrestrial insects (Hirai & Matsui, 1999; Hirai, 2002;
Honma, Oku & Nishida, 2006; Sano & Shinohara, 2012; Sarashina, Yoshihisa & Yoshida,
2011; Sugiura, 2018). Pelophylax nigromaculatus uses its tongue to catch and swallow prey
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Figure 2 An assassin bug Sirthenea flavipes feeding on the mole cricketGryllotalpa orientalis. The ar-
row indicates the proboscis of the adult assassin bug. Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-2

(Sugiura, 2018; Sugiura, 2020b; Sugiura & Tsujii, 2022). Pelophylax nigromaculatus is found
with Ph. occipitalis jessoensis and S. flavipes on grasslands in central Japan (Fig. 1). Sugiura
(2018) observed that almost all Pe. nigromaculatus juveniles and adults could attack the
bombardier beetle Ph. occipitalis jessoensis, but ultimately rejected it under laboratory
conditions. Therefore, the pond frog Pe. nigromaculatus was used as a model predator to
investigate the mimetic interaction between Ph. occipitalis jessoensis and S. flavipes.

To elucidate the nature of the mimetic interaction between bombardier beetles and
assassin bugs, we observed behavioural responses of the frog Pe. nigromaculatus to Ph.
occipitalis jessoensis and S. flavipes under laboratory conditions. Specifically, we compared
rates of rejection by Pe. nigromaculatus between Ph. occipitalis jessoensis and S. flavipes. To
determine whether Ph. occipitalis jessoensis and/or S. flavipes benefits from the mimetic
interaction, we experimentally investigated whether a frog would attack an insect species
after it had encountered the other insect species. The rate of attack by frogs that had
encountered bombardier beetles (or assassin bugs) was compared with the rate of attack
by frogs that had not encountered the indicated species. Finally, we discuss the adaptive
significance of mimetic interactions between bombardier beetles and assassin bugs.

MATERIALS AND METHODS
Sampling
Forty-three adults of the bombardier beetle Ph. occipitalis jessoensis were collected from
Honshu (Hyogo, Shiga, and Shimane Prefectures) in July–September 2020 and May–
October 2021. Adult beetles were housed separately in plastic cases (diameter: 85 mm;
height: 25mm) under laboratory conditions (25 ◦C; cf. Sugiura, 2018; Sugiura & Sato, 2018;
Sugiura, 2021; Sugiura & Date, 2022) and fed dead larvae of Spodoptera litura (Fabricius)
(Lepidoptera: Noctuidae) (cf. Sugiura, 2018; Sugiura & Sato, 2018; Sugiura, 2021; Sugiura
& Date, 2022). Prior to experiments, body length and weight were measured to the nearest
0.01 mm and 0.1 mg using electronic slide callipers (CD-15AX, Mitsutoyo, Kawasaki,
Japan) and an electronic balance (CPA64, Sartorius Japan K.K., Tokyo, Japan), respectively
(Table 1). The same beetles were not used for multiple experiments.
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Table 1 Body sizes of bombardier beetles, assassin bugs, and pond frogs used in this study.

Bombardier beetle Assassin bug Pond frog
Pheropsophus occipitalis jessoensis Sirthenea flavipes Pelophylax nigromaculatus

Body length (mm)a 18.7± 0.2 (15.9–20.9) 20.3± 0.2 (18.6–21.9) 51.2± 0 .9 (39.0–62.0)
Body weight (mg)a 291.9± 8.9 (160.2–412.9) 133.9± 6.7 (92.9–201.7) 13428.8± 828.0(5497.4–29761.3)
n 43 20 48

Notes.
aMean± SE (range: minimum–maximum).

Twenty adults of the assassin bug S. flavipes were collected from Honshu (Hyogo and
Shimane Prefectures) in August–October 2021. Adult bugs were housed separately in
plastic cases (diameter: 85 mm; height: 25 mm) under laboratory conditions (25 ◦C). Prior
to experiments, body length and weight were measured to the nearest 0.01 mm and 0.1 mg
using electronic slide callipers and an electronic balance, respectively (Table 1). Adults and
nymphs of the mole cricket G. orientalis were provided as prey (cf. Hayashi, 2023). Some
assassin bugs were used repeatedly in different experiments.

Forty-eight adults and juveniles of the pond frog Pe. nigromaculatus were collected
from Honshu (Hyogo Prefecture) in June–October 2021. Frogs were housed separately
in plastic cages (length: 120 mm; width: 85 mm; height: 130 mm) in the laboratory at 25
◦C (cf. Sugiura, 2018; Sugiura, 2020b; Sugiura & Tsujii, 2022). Live mealworms—larvae
of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae)—were provided as prey (cf.
Sugiura, 2018; Sugiura, 2020b; Sugiura & Tsujii, 2022). Snout–vent length and body weight
were measured to the nearest 0.01 mm and 0.1 mg using electronic slide callipers and an
electronic balance, respectively (Table 1). Some frogs were used repeatedly in different
experiments.

Experiment 1: initial response
Weused the predatorPe. nigromaculatus to test whether the bombardier beetlePh. occipitalis
jessoensis or the assassin bug S. flavipes is better defended under laboratory conditions. In
accordance with the method established by Sugiura (2018), we experimentally investigated
behavioural responses of Pe. nigromaculatus to Ph. occipitalis jessoensis and S. flavipes
in the laboratory (Graduate School of Agricultural Science, Kobe University) between
September 2021 and October 2021. We used frogs that had fed onmealworms >24 h before
experiments. First, a frog was placed in a plastic cage (length: 120 mm; width: 85 mm;
height: 130 mm). Next, a bombardier beetle (or an assassin bug) was transferred to the
cage containing the frog. The behaviours of the frog and the bombardier beetle (or assassin
bug) were recorded using a digital camera (iPhone 12 Pro Max; Apple Inc., Cupertino,
CA, USA) and a digital video camera (Handycam HDR-PJ790V, Sony, Tokyo, Japan).
The footage of recorded behaviour was reviewed to investigate how each insect could
defend. The bombing sounds of bombardier beetles were checked to investigate whether
bombing forced the frogs to reject the beetles. Stabbing by assassin bugs was investigated to
determine whether stabbing forced the frogs to reject the bugs. When a frog did not attack
a bombardier beetle or an assassin bug within 2 min, we considered it to have ignored
the insect. When a frog swallowed a bombardier beetle or an assassin bug, we observed
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whether the frog subsequently vomited the insect (cf. Sugiura & Sato, 2018; Sugiura, 2018;
Sugiura & Date, 2022). When the frog did not vomit the insect, we inferred that the frog
had digested the insect. In Experiment 1, we used 20 bombardier beetles, 20 assassin bugs,
and 40 frogs. The body size (snout–vent length and body weight) of frogs that attacked
bombardier beetles did not significantly differ from the body size of frogs that attacked
assassin bugs (t -test; snout–vent length, t = −0.77455, df = 37.923, P = 0.4434; body
weight, t = 0.98556, df = 35.179, P = 0.3311). The same individuals of bombardier beetles,
assassin bugs, and frogs were not used repeatedly in this experiment. The sample size was
determined based on the number of assassin bugs collected in this study. Experiment 1 was
part of the following experiment; specifically, the initial responses of 35 frogs observed in
Experiment 2 were used as the data for Experiment 1.

Experiment 2: generalisation tests
Weexperimentally investigated the interaction between the bombardier beetlePh. occipitalis
jessoensis and the assassin bug S. flavipes via the potential predator Pe. nigromaculatus under
laboratory conditions. Specifically, we investigated how a frog responded to a bombardier
beetle or an assassin bug after the frog had encountered the other insect species (i.e.,
generalisation test; Fig. 3). The same plastic cages and video cameras (see Experiment 1
for details) were used in this experiment. A bombardier beetle was provided to a frog
that had encountered (attacked or ignored) an assassin bug (n = 23; Fig. 3A). We tested
whether the frog attacked or ignored the bombardier beetle approximately 6 min (median:
6 min; range: 5–14 min) after the frog had encountered an assassin bug. The rate of attack
on bombardier beetles by frogs that had encountered assassin bugs was compared to the
rate of attack by frogs that had not encountered assassin bugs. Similarly, an assassin bug
was provided to a frog that had encountered a bombardier beetle (n = 20; Fig. 3B). We
tested whether the frog attacked or ignored the assassin bug approximately 6 min (median:
6 min; range: 5–7 min) after the frog had encountered a bombardier beetle. The rate of
attack on assassin bugs by frogs that had encountered bombardier beetles was compared
to the rate of attack by frogs that had not encountered bombardier beetles. Although the
duration used in our generalisation tests (5–14 min) was shorter than the generalisation
time of a spider (1 h; Raška et al., 2020) and the memory retention time of a bird (35
days; Kojima & Yamamoto, 2020), our field observations (Fig. 1) suggest that pond frogs
frequently encounter bombardier beetles and assassin bugs under field conditions. Survivals
of bombardier beetles, assassin bugs, and frogs used in this study were checked within 24
h after experiments. When a frog died within 24 h after the experiment, we dissected the
frog to investigate the cause of death. In Experiment 2, we used 43 bombardier beetles, 17
assassin bugs, and 43 frogs. The same individuals of bombardier beetles and frogs were not
used repeatedly in this experiment. The initial behavioural responses of 35 frogs observed
in this experiment were also used as the data for Experiment 1. In addition, eight frogs
were exclusively used in Experiment 2.

All experiments were performed in accordance with Kobe University Animal
Experimentation Regulations (Kobe University’s Animal Care and Use Committee, No.
30–01). Only one pair of insect species was provided to each frog to minimise the negative
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Bombardier beetle

Assassin bugBombardier beetle

Assassin bug

(A) (B)

Attack rate: 75.0%

Attack rate: 40.0%

Attack rate: 91.3%

Attack rate: 21.7%

Figure 3 Experimental procedures and results of generalisation tests. (A) A bombardier beetle was pro-
vided to a frog that had encountered an assassin bug. (B) An assassin bug was provided to a frog that had
encountered a bombardier beetle. Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-3

impacts of well-defended insects on frogs. Healthy frogs were released after the experiments
had been completed. No frogs were euthanised in this study.

Data analysis
All analyses were performed using R version 3.5.2 (R Core Team, 2018).

Fisher’s exact test was used to compare the rates of rejection by frogs between bombardier
beetles and assassin bugs. Welch’s t -test was used to compare the body size (body length
and weight) of bombardier beetles and assassin bugs; it was also used to compare the
body size (snout–vent length and body weight) of pond frogs that attacked bombardier
beetles and assassin bugs. A generalised linear mixed model (GLMM) with a binomial error
distribution and a logit link was used to investigate the effects of insect species and frog
encounter history on the rate of attack by frogs. The frog response (attack, 1; or ignore, 0)
was used as a response variable. The insect species (the bombardier beetle Ph. occipitalis
jessoensis or the assassin bug S. flavipes), frog encounter history (an initial response or a
response after encountering the other species), and the interaction between insect species
and frog encounter history were used as fixed factors. Individual assassin bugs and frogs
were used as random effects. The GLMM was conducted using the lme4 package version
1.1.19 in R (Bates et al., 2015). A significance threshold of 0.05 was used for all statistical
tests.
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Figure 4 Behavioural responses of the frog Pelophylax nigromaculatus to the bombardier beetle
Pheropsophus occipitalis jessoensis and the assassin bug Sirthenea flavipes. Frogs that had not
encountered the bombardier beetle or assassin bug were used in this study. Swallow: frogs successfully
swallowed beetles (or bugs). Spit out: frogs spat out beetles (or bugs) immediately after taking the
indicated insects into their mouths. Stop attack: frogs stopped their attacks immediately after their
tongues had contacted beetles (or bugs). Ignore: frogs did not attack beetles (or bugs). Bombed: frogs were
bombed by beetles. Stabbed: frogs were bitten (stabbed) by bugs. Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-4

RESULTS
Experiment 1: initial response
Among the 20 frogs in this experiment, none successfully swallowed bombardier beetles
(Fig. 4). Five frogs (25%) captured beetles in their mouths but spat out the beetles
immediately after bombing had occurred in their mouths (Video S3; Figs. 4 and 5). Ten
frogs (50%) stopped attacking beetles immediately after their tongues had contacted the
beetles (Fig. 4). Five frogs (25.0%) ignored the beetles (Fig. 4).

Five (25%) of 20 frogs successfully swallowed assassin bugs (Fig. 3), although these
frogs were stabbed by assassin bugs in their mouths (Fig. 4). Fifteen of the 20 frogs (75%)
rejected assassin bugs. Five frogs (25%) captured assassin bugs in their mouths but spat
out the bugs immediately after stabbing had occurred in their mouths (Video S4; Figs. 4
and 6). Eight frogs (40%) stopped attacking assassin bugs immediately after their tongues
had contacted the bugs (Fig. 4). Two frogs (10.0%) ignored the bugs (Fig. 4).

The rate of bombardier beetle rejection by frogs (100.0%) significantly differed from
the rate of assassin bug rejection by frogs (75.0%; Fisher’s exact test, P = 0.0471). The
body size (body length and weight) significantly differed between bombardier beetles and
assassin bugs; bombardier beetles were shorter but heavier than assassin bugs (t -test; body
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Figure 5 Temporal sequence of the frog Pelophylax nigromaculatus rejecting an adult bombardier beetle Pheropsophus occipitalis jessoen-
sis. (A) 0 ms. (B) 929 ms. (C) 1,337 ms. (D) 3,780 ms. (E) 3,861 ms. (F) 3,918 ms. (G) 4,646 ms. (H) Close-up view (E), with the arrow indicating
bombing from the tip of the abdomen of the adult Ph. occipitalis jessoensis. The frog spat out the bombardier beetle after bombing had occurred in
its mouth (see Video S3). Credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-5
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Figure 6 Temporal sequence of the frog Pelophylax nigromaculatus rejecting an adult assassin bug Sirthenea flavipes. (A) 0 ms. (B) 346 ms. (C)
1,332 ms. (D) 2,188 ms. (E) 2,256 ms. (F) 2,760 ms. (G) 2,959 ms. (H) Close-up view (E), with the arrow indicating the proboscis of the adult assas-
sin bug. The frog spat out the assassin bug after stabbing had occurred in its mouth (see Video S4). Credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-6

Sugiura and Hayashi (2023), PeerJ, DOI 10.7717/peerj.15380 11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.15380#supp-4
https://doi.org/10.7717/peerj.15380/fig-6
http://dx.doi.org/10.7717/peerj.15380


Table 2 Results of generalisation tests: responses of frogs to assassin bugs (first) and bombardier beetles (second).

Second trial: frog responses to bombardier beetles

Frog behavioura Swallow Spit out (bombed) Stop attack Ignore Total

First trial: frog responses to assassin bugs Swallow 0 0 0 5 5
Spit out (stabbed) 0 1 1 2 4
Stop attack 0 0 3 9 12
Ignore 0 0 0 2 2
Total 0 1 4 18 23

Notes.
Values: numbers of frogs.

aFrog behaviour: Swallow: frogs successfully swallowed beetles (or bugs). Spit out: frogs spat out beetles (or bugs) immediately after capturing the insects in their mouths (frogs
were bombed or stabbed). Stop attack: frogs stopped their attacks immediately after their tongues had contacted beetles (or bugs). Ignore: frogs did not attack beetles (or bugs).

Table 3 Results of generalisation tests: responses of frogs to bombardier beetles (first) and assassin bugs (second).

Second trial: frog responses to assassin bugs

Frog behavioura Swallow Spit out (stabbed) Stop attack Ignore Total

First trial: frog responses to bombardier beetles Swallow 0 0 0 0 0
Spit out (bombed) 0 1 0 4 5
Stop attack 0 1 5 4 10
Ignore 0 0 1 4 5
Total 0 2 6 12 20

Notes.
Values: numbers of frogs.

aFrog behaviour: Swallow: frogs successfully swallowed beetles (or bugs). Spit out: frogs spat out beetles (or bugs) immediately after capturing the insects in their mouths (frogs
were bombed or stabbed). Stop attack: frogs stopped their attacks immediately after their tongues had contacted beetles (or bugs). Ignore: frogs did not attack beetles (or bugs).

length, t = −4.8737, df = 35.532, P < 0.0001; body weight, t = 11.255, df = 30.211, P <

0.0001).

Experiment 2: generalisation tests
Twenty-one (91.3%) of 23 frogs attacked assassin bugs (Figs. 3A and 7; Table 2). Bombardier
beetles were provided to the frogs that had encountered assassin bugs (n = 23); five frogs
(21.7%) attacked bombardier beetles (Figs. 3A and 7; Table 2), while 18 frogs (78.3%)
ignored bombardier beetles (Table 2).

Fifteen (75.0%) of 20 frogs attacked bombardier beetles (Figs. 3B and 7; Table 3).
Assassin bugs were provided to the frogs that had encountered bombardier beetles (n =
20); eight frogs (40.0%) attacked assassin bugs (Figs. 3B and 7), while 12 frogs (60.0%)
ignored assassin bugs (Table 3).

A history of assassin bug encounter reduced the rate of attack on bombardier beetles by
frogs from 75.0% to 21.7% (Fig. 7), although the rate of rejection by frogs did not change
(100%; Fig. 8A). A history of bombardier beetle encounter reduced the rate of attack
on assassin bugs by frogs from 91.3% to 40.0% (Fig. 7); the rate of rejection increased
from 78.3% to 100.0% (Fig. 8B). The GLMM analysis showed that frog encounter history
had a significant influence on the rate of attack by frogs, although insect species and the
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Figure 7 Rates of attack on the bombardier beetle Pheropsophus occipitalis jessoensis and the assas-
sin bug Sirthenea flavipes by the frog Pelophylax nigromaculatus before and after encounters with the
other insect. Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-7

Table 4 Results of a generalised linear mixedmodel (GLMM) to identify factors that influenced the rates of attack on bombardier beetles and
assassin bugs by frogs.

Response variable Explanatory variable (fixed factor) Coefficient estimate SE z value P value

Attack Intercept 3.2264 1.4013 2.302 0.0213
Insect species (vs. bombardier beetles)a −1.5950 1.2290 −1.298 0.1943
Frog encounter history (vs. encounter)b −3.8513 1.7386 −2.215 0.0267
Insect species× frog experience 0.2856 1.6187 0.176 0.8599

Notes.
aAssassin bugs were used as a reference.
bInitial (no previous encounter) response was used as a reference.

interaction between insect species and frog encounter history did not have significant
effects on the rate of attack (Table 4).

Survival
None of the bombardier beetles or assassin bugs that successfully defended against frogs
died within 24 h after the experiments. Of the frogs (n = 48), one (2.1%) died within 24 h
(4 h) after swallowing an assassin bug; a dead assassin bug was found in the stomach of the
dead frog. Other frogs (97.9%) were not harmed by our experiments.

DISCUSSION
There has been controversy regarding whether mimetic interactions between unequally
defended species are parasitic (Speed et al., 2000; Rowland et al., 2007; Rowland et al., 2010;
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Figure 8 Responses of the frog Pelophylax nigromaculatus to the bombardier beetle Pheropsophus oc-
cipitalis jessoensis and the assassin bug Sirthenea flavipes after the frog encountered the other insect
species. Swallow: frogs successfully swallowed beetles (or bugs). Spit out: frogs spat out beetles (or bugs)
immediately after capturing the insects in their mouths (frogs were bombed or stabbed). Stop attack: frogs
stopped their attacks immediately after their tongues had contacted beetles (or bugs). Ignore: frogs did not
attack beetles (or bugs). Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.15380/fig-8

Aubier, Joron & Sherratt, 2017). In the present study, we showed that both the bombardier
beetle Ph. occipitalis jessoensis and the assassin bug S. flavipeswere well-defended against the
frog Pe. nigromaculatus (Fig. 4). In generalisation tests (Experiment 2), frogs with a history
of assassin bug encounter attacked bombardier beetles less frequently compared with frogs
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that had no such encounter history (Figs. 3A, 7 and 8A). Similarly, frogs with a history of
bombardier beetle encounter attacked assassin bugs less frequently compared with frogs
that had no such encounter history (Figs. 3B, 7 and 8B). These results suggest that both the
bombardier beetle Ph. occipitalis jessoensis and the assassin bug S. flavipes benefit from the
mimetic interaction in terms of defence against the potential predator Pe. nigromaculatus.
Although Ph. occipitalis jessoensis demonstrated superior defensive abilities compared to
S. flavipes (Figs. 4 and 8), the mimetic interaction between these two unequally defended
species may be mutualistic, rather than parasitic.

Frogs as predators
Frogs have been frequently used as predators to investigate the effectiveness of anti-predator
defences in insects (Taniguchi et al., 2005; Ito, Taniguchi & Billen, 2016; Matsubara &
Sugiura, 2017; Sugiura, 2018; Shinohara & Takami, 2020; Sugiura, 2020a; Sugiura, 2020b;
Sugiura & Date, 2022; Sugiura & Tsujii, 2022). In this study,weusedpond frogs as predators
of bombardier beetles and assassin bugs to show that the frog species Pe. nigromaculatus
was unable to distinguish between the bombardier beetle Ph. occipitalis jessoensis and the
assassin bug S. flavipes. This finding could be explained by the adaptive generalisation in
predators, where they learn to recognise dangerous prey by generalising the appearance
of previously encountered prey to that of subsequently encountered prey (Ruxton et al.,
2008).

In the Experiment 2, the time used in the generalisation tests ranged from 5–14 min.
The time used in previous memory and generalisation tests (1 h–35 days; Ito, Taniguchi &
Billen, 2016; Kojima & Yamamoto, 2020; Raška et al., 2020) was longer than the time of our
generalisation tests. For example, the tree frog Dryophytes japonica (Günther) reportedly
retains the memory of unpalatable prey for at least 1 day (Ito, Taniguchi & Billen, 2016).
In addition, the Pe. nigromaculatus individuals used in this study were collected from
the study sites where both Ph. occipitalis jessoensis and S. flavipes were found, suggesting
that some individuals of Pe. nigromaculatus may have already experienced Ph. occipitalis
jessoensis and/or S. flavipes at the sites prior to our experiments. Therefore, the use of short
experimental durations and wild-collected individuals may have influenced the results of
our experiments in Pe. nigromaculatus. Further studies are needed to investigate detailed
memory retention in Pe. nigromaculatus.

Some predators have evolved counter defences, such as specific skills to avoid well-
defended prey by detecting toxic chemicals or recognising warning signals (Edmunds,
1974; Endler, 1991; Ruxton, Sherratt & Speed, 2004; Skelhorn & Rowe, 2006; Williams et
al., 2010). In the present study, 50% and 40% of frogs stopped attacking Ph. occipitalis
jessoensis and S. flavipes before they had been bombed and stabbed, respectively (Fig. 4).
Because Pe. nigromaculatus individuals stopped attacking immediately after their tongues
had contacted these insects, this frog species may quickly detect deterrent characteristics
on the body surfaces of Ph. occipitalis jessoensis and S. flavipes with its tongue; this enables
avoidance of damage (Sugiura, 2018). Such reactions to well-defended prey have been
reported in other predators such as tree frogs (Ito, Taniguchi & Billen, 2016) and quails
(Kojima & Yamamoto, 2020).
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Bombardier beetles as models and mimics
Bombardier beetles can chemically defend themselves against various types of predators
(Eisner, 1958; Eisner & Meinwald, 1966; Eisner & Dean, 1976; Dean, 1980; Eisner et al.,
2006; Bonacci et al., 2008; Sugiura & Sato, 2018; Sugiura, 2018; Kojima & Yamamoto, 2020;
Sugiura, 2021; Sugiura & Date, 2022). Many bombardier beetle species have aposematic
body colour patterns that advertise their toxicity to predators (Schaller et al., 2018;
Anichtchenko et al., 2022). Therefore, bombardier beetles are visually mimicked by distantly
related insects that coexist with them in the same habitats (Shelford, 1902; Bonacci et al.,
2008; Kojima & Yamamoto, 2020). However, very few studies have elucidated the nature
of mimetic interactions that include bombardier beetles. In the present study, we used the
frog Pe. nigromaculatus as a potential predator to investigate that the mimetic interaction
between the bombardier beetle Ph. occipitalis jessoensis and the assassin bug S. flavipes.
We found that a history of encounter with Ph. occipitalis jessoensis reduced the rate of
attack on S. flavipes (Fig. 8B), suggesting that the coexistence with Ph. occipitalis jessoensis
is beneficial for S. flavipes. However, Ph. occipitalis jessoensis consistently repelled the
frog Pe. nigromaculatus in our study (Figs. 4 and 8A). Therefore, a history of encounters
with the assassin bug S. flavipes may not benefit Ph. occipitalis jessoensis. Nevertheless, the
mortality risk from frog attacks is not zero, as a previous study reported that 3.6% of the
frog Pe. nigromaculatus successfully ate Ph. occipitalis jessoensis (Sugiura, 2018). Thus, the
coexistence with the assassin bug S. flavipes is beneficial for the bombardier beetle Ph.
occipitalis jessoensis, although the mutualistic interaction between these two insect species
may be asymmetric.

Assassin bugs as mimics
Ground-dwelling assassin bugs that belong to the subfamily Peiratinae reportedly stab with
their proboscises, causing severe pain in humans (Readio, 1927; Ito, Okutani & Hiura, 1977;
Willemse, 1985; Tomokuni et al., 1993; Gil-Santana, Forero & Weirauch, 2015; Yasunaga et
al., 2018). Assassin bugs can paralyze prey and repel enemies through the injection of saliva
or venom (Eisner, Eisner & Siegler, 2005; Schmidt, 2009; Walker et al., 2016). Assassin bugs
also have scent glands to chemically defend themselves against predators (Louis, 1974;
Staddon, 1979). However, few studies have investigated the effectiveness of anti-predator
defences in assassin bugs (Walker et al., 2018; Walker et al., 2019).

In this study, we showed that the frog species Pe. nigromaculatus frequently rejected
the assassin bug S. flavipes (Figs. 4 and 8). Although some frogs successfully swallowed S.
flavipes individuals (Figs. 4 and 8B), one frog died 4 h after a successful swallowing event.
These results suggest that S. flavipes venom is sufficiently strong to repel predators. In
addition, some frogs stopped attacking assassin bugs immediately after their tongues had
contacted the bugs (Fig. 4), suggesting that chemicals on the body surfaces of S. flavipes act
as a deterrent to Pe. nigromaculatus.

Some assassin bug species share body colour patterns with hymenopteran insects
such as paper wasps, ichneumonid wasps, spider wasps, and stingless bees (Maldonado
Capriles & Lozada Robles, 1992; Zhang & Weirauch, 2014), suggesting that they mimic
wasps (Haviland, 1931; Forero & Giraldo-Echeverry, 2015; Gil-Santana, Forero & Weirauch,
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2015) and bees (Jackson, 1973; Wattanachaiyingcharoen & Jongjitvimol, 2007; Gil-Santana,
2008; Gil-Santana, Forero & Weirauch, 2015; Alvarez, Zamudio & Melo, 2019). Although
assassin bugs reportedly coexist with model wasps or bees in the same microhabitats
(Alvarez, Zamudio & Melo, 2019), the mimetic interactions between assassin bugs and
other insects have not been experimentally tested using predators. In this study, we used
the frog Pe. nigromaculatus as a potential predator to investigate the mimetic interaction
between the assassin bug S. flavipes and the bombardier beetle Ph. occipitalis jessoensis.
Although both species were well defended against predators, S. flavipes showed poorer
defence than did Ph. occipitalis jessoensis (Figs. 4 and 8). This could be explained by the
differences in body size between the two insect species (Table 1), as prey weight could
influence predation success by the frog Pe. nigromaculatus (Sugiura, 2018).

The distribution of the assassin bug S. flavipes overlaps with the distribution of the
bombardier beetle Ph. occipitalis jessoensis in East and Southeast Asia (Chłond, 2018;
Fedorenko, 2021). However, S. flavipes is also found in South and West Asia where Ph.
occipitalis jessoensis is not distributed (Chłond, 2018; Fedorenko, 2021). In the assassin bug
S. flavipes, the body colour pattern of the South andWest Asian populations partially differs
from the body colour pattern of the East and Southeast Asian populations; the pronotum
of the South and West Asian populations is redder than the pronotum of the East and
Southeast Asian populations, although both types share the black and yellow pattern
on other body parts (Chond, Bugaj-Nawrocka & Sawka-Gadek, 2019). Notably, the body
colour pattern of South andWest Asian S. flavipes is very similar to the body colour pattern
of another bombardier beetle, Pheropsophus (Stenaptinus) catoirei (Dejean); adult Ph.
catoirei individuals have a reddish head and pronotum (Fedorenko, 2021). Pheropsophus
catoirei, which is closely related to Ph. occipitalis jessoensis, shares its distribution area
(South and West Asia) with S. flavipes in East and Southeast Asia (Chond, Bugaj-Nawrocka
& Sawka-Gadek, 2019; Fedorenko, 2021). Therefore, the mimetic partner of S. flavipes could
differ between East–Southeast Asia and West–South Asia.

CONCLUSIONS
Some aposematic species form ‘mimicry rings’ (Kunte, Kizhakke & Nawge, 2021; Chatelain
et al., 2023). Mimicry rings are composed of at least two Müllerian co-mimics or one
aposematic species plus one Batesian mimic (Kunte, Kizhakke & Nawge, 2021); the smallest
mimicry rings include only two species (Kunte, Kizhakke & Nawge, 2021), while the largest
mimicry rings include >100 species (Pekár et al., 2017). Although many studies have
investigated mimicry rings that are composed of closely related taxa (Kunte, Kizhakke &
Nawge, 2021), fewer studies have focused on mimicry complexes that involve distantly
related taxa (Linsley, Esiner & Klots, 1961; Pekár et al., 2017). Our results suggest that the
bombardier beetle Ph. occipitalis jessoensis and the distantly related S. flavipes form a
multi-order mimetic complex. Other insects such as the rove beetle species Ocypus weisei
Harold (Coleoptera: Staphylinidae) may be included in the mimetic complex; O. weisei
adults share a similar microhabitat (on the ground in grassland), body colour pattern
(black and yellow pattern), and movement pattern with Ph. occipitalis jessoensis and S.
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flavipes adults in Japan. Furthermore, the black and yellow body colour pattern of these
insects is similar to the typical aposematic colour of stinging hymenopteran insects, such
as paper wasps and bees (Chatelain et al., 2023). The presence of a colour pattern similar
to a typical aposematic pattern likely provides S. flavipes and Ph. occipitalis jessoensis with
more robust protection from predators, compared with other colour patterns.
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