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Abstract 14 

Background. The genicular or knee joint angles of terrestrial mammals are kept constant 15 

when they arewhile the stance phase of their walking, but the angles differ among the 16 

speciestaxa. It is known that the knee joint angle correlates with taxa and body masses among 17 

extant mammals, but several extinct mammals such as desmostylians do not have closely 18 

related descendants. Furthermore, fossils have lost its soft tissues by the time they are 19 

unearthed, therefore, estimating its body mass is a hard problem. ThisThese factors causes a 20 

huge problem in reconstructing the proper posture of extinct mammals. The knee joint under 21 

pressure to flex by gravity, tries to extend against it by the musculus quadriceps femoris. 22 

However, it is impossible to extract only the agonist elements from this muscle complex.A 23 

muscle reaction called co-contraction is known thatto increaseing the joint stiffness. B; both, 24 

agonist and antagonist muscles applyingworking toon the same joint at the same timework 25 

when co-contraction occurs. The antagonist muscle against the extensor muscle that extends 26 

the knee joint is the m.musculus semimembranosus flexes the knee joint and acts ais an 27 

antagonist muscle to those which extend the keen joint. Therefore, Tthe angle between the m. 28 

semimembranosus and the tibia would be kept constant because of the generation of co-29 

contraction of those muscles during walking, and consequently the constant joint angles are 30 

estimated from the antagonistthis muscle.  31 

Methods. Twenty-one species of terrestrial mammals were examined to find the elements that 32 

have a relationship betweenconstitute the angle made withbetween the m. semimembranosus 33 

and the tibia based on the period between the hindlimb touched down and taken off the 34 

ground, which. Measurements were captured from the videos with high-speed mode (420 35 

fps), picked picking 13 pictures from the first 75 % of each movie when theyile animals were 36 

walking, and t. The angles between the main force lines of the m. semimembranosus and the 37 

tibia, which were defined as θsm-t in this our study, were measured.  38 

Results. More than 8085 % of target animals, which was (17 out of 2120 species), had the 39 

difference between the maximum and minimum angles between the m. semimembranosus and 40 

the tibia (θsm-t) of stance instance (SI), which were each picked pictured used and defined in 41 

thisour study, during the stance (SI-1 to SI-13) within ± 10 degrees from the middle. The 42 

difference between each SI next to the next had a slight difference, therefore, the θsm-t 43 

transition was smooth. According to the results of the total stance differences among the 44 

target animals, the θsm-t was kept constant during a stance; therefore, the average of the θsm-t 45 

(θave) could represent each animal. The correlation coefficient was 0.26 between the angle of 46 

θave and the body mass without Suricata which has a unique behavior when compared with 47 

other target animals. The low correlation coefficient indicated few relationships between the 48 

body mass and θave. The statistically differences were not detected between the and θave 49 

variables (taxon, ambulatory style, and body mass); therefore, it could not say the θave 50 

correlates these variables in our study.  51 
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Conclusion. The θave was 100 ± 21 10 degrees even if the species had anyregardless taxon, 52 

body mass, limb posture, or gait ambulatory style. It is simply necessary to measure only 53 

three points on skeletons to determine the θsm-tave and thus, this new approximation to 54 

understand the hindlimb posture could be applied to the study of the hindlimbsreconstruct the 55 

proper posture of the extinct mammals that do not have descendants could also be 56 

possiblewith no closely related extant descendants.  57 

 58 

  59 
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Introduction 60 

  The hindlimbs act as a the propulsive devices in terrestrial locomotion (Demes et al., 61 

1994). Walk, run, and jump are the behaviors that are commonly done among the terrestrial 62 

mammals on land. These common terrestrial behaviors require limbs to support body mass 63 

against the gravity. This means that the terrestrial mammals must resist collapsing joints 64 

against the gravity; therefore, on land, active movements require to keep extending extended 65 

the joints. Although the limbs have same roles that support body mass, the joint angles are 66 

different between species (Biewener, 1983, 2005; Inuzuka, 1996; Dutto et al., 2006; Polly, 67 

2007; Fujiwara, 2009; Dick & Clemente, 2017). For example, the angle at the knee joint in 68 

Asian elephants hadwas around 160 degrees (Ren et al., 2008), chacma baboons had 137 69 

degrees (Patel et al., 2013), domestic cats had 115 degrees, lion had 124 degrees (Day & 70 

Jayne, 2007). The limb joint angle is unique in each species, but the joint has wider rotatable 71 

range than the angle kept by each species during standing or walking. This causes the problem 72 

to reconstruct skeletal specimens in accurate posture when they were alive. In particular, the 73 

extinct taxa have some high wall to reconstruct their accurate postures, because they cannot 74 

be observed the actual angle when they were alive cannot be observed. For example, 75 

desmostylian mammals, which do not have any closely related living descendants, have been 76 

reconstructed in several different postures even though almost complete skeletons of the same 77 

species have been unearthed almost complete skeletons (Domning, 2002; Inuzuka, Sawamura 78 

& Watabe, 2006; Fujiwra, 2009). EvenFurthermore, the earlierly diverging cetaceans such as 79 

pakicetids and ambulocetids had functional hindlimbs, the extant cetaceans had completely 80 

had lost hindlimbs though (Thewissen, Madar, & Hussain, 1998; Gingerich, 2001; Thewissen 81 

et al., 2001; Madar, 2007; Gingerich et al., 2009; Gingerich et al., 2017). These extinct 82 

mammals have no extant mammals to use as references for the skeleton reconstruction. 83 

Therefore, the knowledge on the hindlimb postures in terrestrial mammals on land is 84 

important to understand the transition of locomotive ability through the mammalian evolution 85 

even if it directsadapts their life from land to sea.To resolve this problem, it is important to 86 

reveal the relationships between the joint angle and skeletons. 87 

  The hindlimbs act as the propulsive devices in terrestrial locomotion (Demes et al., 88 

1994). All the known terrestrial mammals have hindlimbs. Even the early diverging cetaceans 89 

such as pakicetids and ambulocetids had functional hindlimbs, the extant cetaceans 90 

completely had lost hindlimbs though (Thewissen, Madar, & Hussain, 1998; Gingerich, 2001; 91 

Thewissen et al., 2001; Madar, 2007; Gingerich et al., 2009; Gingerich et al., 2017). 92 

Therefore, the knowledge on the hindlimb postures in terrestrial mammals on land is 93 

important to understand the transition of locomotive ability through the mammalian evolution 94 

even if it directs from land to sea. In particular, the knee joint has a role to control limb 95 

motions (Pandy et al., 1988). However, to observe the knee joint angle with live specimen 96 

without equipment is hard, because the femur is completely covered by the musculus 97 

quadriceps femoris and the m. biceps femoris. Furthermore, its flexion must accompany a slip 98 
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motion between the femur and the tibia; therefore, the rotation is not circle, and the rotation 99 

center is not continued on the center (Castaing, J., and Jean-Jacques Santini, 1986; Yin et al., 100 

2015).  101 

  Several previous studies explore the relationship between the limb posture and 102 

variables, such as taxa, body masses, and skeletal morphologies among extant mammals 103 

(Biewener, 1983, 1989, 1990, 2005; Day & Jayne, 2007; Fujiwara, 2009; Fujiwara & 104 

Hutchinson, 2012: Dick & Clemente, 2017). These previous studies indicated there is a 105 

tendency, that the larger body mass mammals with the larger body mass hasve the morest 106 

upright limb posture. However, there are several exceptions of theis relationship between the 107 

limb posture and the body mass (Fujiwara, 2009). Furthermore, there is a huge problem with 108 

the estimationg of body mass ofin extinct mammals because fossils have already lost soft 109 

tissues when unearthed. To resolve these problems, it is important to discover some criteria 110 

which are not affected by other factors as possible.  111 

The musculus quadriceps femoris and the m. semimembranosus are known as the knee 112 

joint extensor and flexor muscles, respectively. These muscles are agonist and antagonist 113 

muscles to each other. There is an action that both agonist and antagonist muscles contract 114 

simultaneously called co-activation or co-contraction (Smith, 1981; Le et al., 2017; Latash, 115 

2018). The quadrupedal mammals maintain their joint angles in limited range while standing 116 

or walking (Manter, 1938; Gray, 1944; Goslow, Reinking & Stuart, 1973; Goslow et al., 1981; 117 

Alexander & Jayes, 1983; Inuzuka, 1996; Fischer et al., 2002; McGowan, Baudinette & 118 

Biewener, 2005). If the joint angles are constant, the distance between the ground and the 119 

center of mass is also constant. Therefore, limbs move as a like pendulum while walking 120 

(Cavagna, Heglund & Taylor, 1977; Griffin, Main & Farley, 2004). When a joint angle is 121 

locked against the force to change the angle via gravity, muscles work not only the agonist 122 

muscle but also the antagonist muscle. This action is confirmed that it increases joint stiffness 123 

in humans (Olmstead et al., 1986; Louie & Mote, 1987; Nielsen et al., 1994; Riemann & 124 

Lephart, 2002; Knarr, Zeni & Higginson, 2012). Some electromyographic studies of 125 

quadrupedal mammals showed that both, agonist and antagonist muscles stimulated act in at 126 

the same time during the stance phase which is athe period ain which the hindlimb supports 127 

itsthe body mass (Engberg & Lundberg, 1969; Tokuriki, 1973; Deban, Schilling & Carrier, 128 

2012; Araújo et al., 2016). While the walking of quadrupedal mammals, the joint angles are 129 

maintained in limited range, and both agonist and antagonist muscles are stimulated; 130 

therefore, co-contraction would be occuroccurred at that time. The m. semimembranosus is 131 

known as the knee joint flexor muscle, which is an antagonist muscle of the m. quadriceps 132 

femoris when the joint extends. 133 

 The musculus semimembranosus attaches on the ischial tuberosity and the interior-134 

proximal end of the tibia (Fig. 1) (Böhmer. et al., 2020). These attachment positions do not 135 

move, and involved parts of the skeletons do not change its shape greatly among taxa; 136 

therefore, the positional relationship between muscle and these parts of the skeleton also 137 
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shows the relationship between among skeletonsskeleton elements. ThisOur study aims 138 

revealing the joint angle of terrestrial mammals between the m. semimembranosus and the 139 

tibia during walking to show its and explore its relationships with taxa, body masses, and 140 

ambulatory styles.  141 

 142 

Materials & Methods 143 

  The angles between m. semimembranosus and tibia in vivo were collected from 21 20 144 

extant species among 2120 genera, 1413 families within seven orders: i.e., Elephas maximus 145 

(Asian elephant), Cercopithecus neglectus (De Brazza’s monkey), Chlorocebus aethiops 146 

(grivet monkey), Macaca fuscata (Japanese macaque), Dolichotis patagonum (Patagonian 147 

mara), Ammotragus lervia (Barbary sheep), Capra hircus (goat), Cervus nippon (Japanese 148 

deer), Giraffa camelopardalis (giraffe), Rangifer tarandus (reindeer), Chrysocyon brachyurus 149 

(maned wolf), Canis lupus (eastern wolf), Felis catus (cat), Panthera leo (lion), Suricata 150 

suricatta (meerkat), Helarctos malayanus (sun bear), Ursus thibetanus (Asian black bear), 151 

Equus caballus (Kiso horse (Japanese local horse)), Diceros bicornis (black rhinoceros), 152 

Tapirus terrestris (Brazilian tapir), Macropus giganteus (eastern gray kangaroo), which 153 

employ the sagittal posture (Table 1). These species were selected to be as various as possible 154 

to cover the superorder and order of mammals (Afrotheria, Proboscidea; Euarchontoglires, 155 

Primates, Rodentia; Laurasiatheria, Artiodactyla, Carnivora, Perissodactyla; and Marsupialia, 156 

Diprotodontia), wide range of body mass  from 0.73 kg (i.e., S. suricatta)(i.e., from 4.5 kg of 157 

Cercopithecus neglectus to 4060 kg (i.e.,of Elephas. maximus), and three walking 158 

patternsambulatory styles (plantigrade, digitigrade, and unguligrade), and live on land without 159 

limitations of height to extend itstheir limb joints:, i.e., they do not live in the tunnels and or 160 

under the ground (Table 1). All the studied speciestarget animals were kept in zoos where 161 

Higashi Park Zoological Gardens (Okazaki, Japan), Higashiyama Zoo and Botanical Garden 162 

(Aichi, Japan), Hitachi Kaminé Zoo (Ibaraki, Japan), Toyohashi Zoo and Botanical Park 163 

(Aichi, Japan), and Ueno Zoological Gardens (Tokyo, Japan), and all observations on living 164 

individuals were operated under official permission. Significant pathologies and/or 165 

malformations were not detected in allany of the targetsspecimens. 166 

 All the target animals were subjected to videos by a digital movie camera (EX-FH20, 167 

Casio, Japan) with high-speed mode (420 fps). The camera was mounted on a tripod on the 168 

visitors route. Therefore, the distances from each target were dependent on each 169 

exhibition/cage. All videos were taken from the lateral side and the nearly same level of theof 170 

walking when a target animal when they walksed across vertically and completely (without 171 

stopping, turning, and or changing speed) the camera with more than three steps on a flat 172 

ground. We waited until each target walked across the camera voluntary because we had not 173 

applied any treatments on them; therefore, it had taken several weeks of months to take 174 

movies.These taken videos were treated the following processes to collect data. First, 175 

preparing pictures to measure the angles; pictures were captured from each video in every 176 
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frame between a target animal’s foot had touched down and taken off We chose three movies 177 

in each target species which walked with complete one cycle (touched down to next touched 178 

down), straight and vertically to the camera. Each movie was converted to still images in 179 

every frame when a period between touched down and took off with GOM Player (GOM & 180 

Company, South Korea).; This period did not depend on time, it depended on the target’s 181 

behavior. Each converted still images of the one period were cut off last 25% of captured 182 

pictures were cut off, because “ the muscles that are anatomically positioned to produce limb 183 

retraction – the gluteus superficialis and medius, semimembranosus and cranial biceps femoris 184 

– were active in the second half of swing and approximately the first 50–75% of stance” 185 

(Deban, Schilling & Carrier, 2012).; The sill images of each this period divided so that 13 186 

pictures including the first and the last (Fig. 2A).were picked from the first 75% in equally 187 

intervals. Second, measuring the angle of each picked pictures Several dDrawings were 188 

applied on each of the 13 pictures to measure the angle: a line between the ankle joint and the 189 

proximal end of the tibia, with parallel to the Achilles tendon, and a line between the ischial 190 

tuberosity and the proximal end of the tibia werewas drawn; the angle between these two lines 191 

were measured with Inkscape (Inkscape project) (Fig. 2B1). 192 

A blue line represents a line between the ankle joint and the proximal end of the tibia with 193 

parallel to the Achilles tendon. A pink line represents a line between the ischial tuberosity and 194 

the proximal end of the tibia. An angle filled with yellow represents θsm-t. Each target animal 195 

has three stances, and each stance measured 13 angles. 196 

This Our study defined, one picked picture of the 13 pictures as step instant (SI) and 197 

numbered it SI-1 to SI-13,. aA series of SI-1 to SI-13 was defined as one stance. measured. 198 

Each species was taken three stances.We measured the angle using drawn lines in each picture 199 

which was drawn lines for one stance and took three stances for each target species with 200 

Inkscape (Inkscape project). Then calculate average value of each SI and the value was 201 

defined as θsm-t. Body mass of each species came from previous studies (Table 1) or records 202 

taken by zoos. This Our study compared the transition of θsm-t in a stance between among 203 

species or, gait patternambulatory styles (unguligrade, digitigrade, and plantigrade) and the 204 

average of the θsm-t (i.e., θave) versus body mass. 205 

The maned wolf used for dissection in this study (Fig. 1B) was dead at the Ueno 206 

Zoological Garden on May 17th, 2018, and it was transferred to the National Museum of 207 

Nature and Science (Ibaraki, Japan) on July 5th, 2019, where it now bears the registration 208 

number is NSMT-M72566.  209 

 210 

Results 211 

Six taxa, i.e., Elephas (Proboscidea), Cervus and Rangifer (Artiodactyla), Tapirus 212 

(Perissodactyla), Felis and Panthera (Carnivora), had the a difference between the maximum 213 

and minimum angles during a stance less than 10 degrees, which means the θsm-t changed 214 

within ± 5 degrees from the middle. Cervus has the smallest difference during a stance, 5.80 215 
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degrees. ElevenTen taxa, i.e., Chlorocebus and Macaca (Primates), Dolichotis (Rodentia), 216 

Ammotragus, Capra, and Giraffa (Artiodactyla), Canis, Chrysocyon, Suricata, and Helarctos 217 

(Carnivora), and Equus (Perissodactyla), had the difference between the maximum and the 218 

minimum angles during a stance less thanbetween 10 and 20 degrees, which means the θsm-t 219 

changed, as a maximum, within ± 10 degrees from the middle. Three taxa, i.e., Diceros 220 

(Perissodactyla), Ursus (Carnivora), and Ceropithecus (Primates) had the a difference 221 

between the maximum angle and minimum angle during a stance less thanbetween 20 and 30 222 

degrees, which means the θsm-t changed, as a maximum, within ± 15 degrees from the middle. 223 

Even though Macropus (Diprotodontia) had the largest difference between the maximum and 224 

minimum angles during a stance, 31.72 degrees, which means the θsm-t changed within ± 16 225 

degrees from the middle. Panthera had the smallest standard deviation, 1.73. Macropus had 226 

the largest standard deviation, 11.5 (Fig. 23 and Table 2).  227 

Among all studied species, The the smallest difference of each SI among the all target 228 

species was SI-1 with 41.4431.97 degrees as the smallest and , while the largest was SI-13 229 

with 54.8239.65 degrees and 12.81 of standard deviation as the biggest. However, the smallest 230 

statistically standard deviation was SI-711 which is 10.2213.64. The biggest largest 231 

statistically standard deviation was same as degree, SI-13, 17.63. Primates examined had the 232 

smallest difference of degree at SI-6, 2.86, and the biggest difference of degree at SI-13, 233 

13.74. However, the smallest standard deviation was at SI-5, 1.61, and the biggest standard 234 

deviation was at SI-13, 6.87 (Fig. 3 and Table 2). 235 

Taxonomically, primates had the smallest difference of degree at SI-7,  (2.86), and the 236 

bigglargest difference of degree at SI-13,  (13.74). Statistically, the smallest standard 237 

deviation was at SI-5,  (1.61), and the biglargest standard deviation was at SI-13,  (6.87). 238 

aArtiodactyls examined had the smallest difference of degree at SI-6, 11.29, and the biggest 239 

largest difference of degree at SI-1,  (21.15). Both Statistically, the smallest and the biggest 240 

largest standard deviation were at same SI, as degree,with 4.92 and 9.487 degrees 241 

respectively. Carnivorans examined had the smallest difference of degree at SI-79,  242 

(37.4229.39), and the largestbiggest difference of degree at SI-13,  (54.8216.51). 243 

Statistically,Both Both, the smallest and the largest biggest standard deviation were at same SI 244 

as degree, with 13.026.08 and 17.9311.74 degrees respectively. Perissodactyls examined had 245 

the smallest difference of degree at SI-3,  (6.98), and the largest biggest difference of degree 246 

at SI-13,  (13.27). BothStatistically, tThe smallest and the largestbiggest standard deviation 247 

were at same SI as degree, with 3.51 and 7.39 degrees, respectively (Fig. 3 and Table 2).  248 

Ambulatory, digitigrade such as Dolichotis (Rodentia) and Carnivora except Ursidae had 249 

the smallest difference of degree at SI-3, 28.38, and the biggest difference of degree at SI-13, 250 

50.14. However, the smallest standard deviation was at SI-2, 11.06, and the biggest standard 251 

deviation was at SI-13, 18.29. Uunguligrades, such as Perissodactyla and Artiodactyla, had 252 

the smallest difference of degree at SI-611, 28.5414.11, and the biggest difference of degree at 253 

SI-51, 33.2521.15. However, the SI of statistically the smallest standard deviation differed 254 
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from the angle, it was at SI-7, 8.745.45, and the biggest standard deviation was at SI-2, 10.54. 255 

Digitigrades such as Elephas (Proboscidea), Dolichotis (Rodentia) and Carnivora (except 256 

Ursidae) had the smallest difference of degree at SI-1, 27.08, and this SI had the smallest 257 

statistically standard deviation, 11.22. The biggest difference of degree at SI-9, 39.95. 258 

However, statistically the biggest standard deviation was at SI-13, 13.82. Plantigrade such as 259 

Ursidae and Primates had the smallest difference of degree at SI-7, 11.76, and the biggest 260 

difference of degree at SI-13, 23.3. However, the smallest standard deviation was at SI-6, 261 

4.89, and the biggest standard deviation was at SI-13, 9.83 (Fig. 43 and Table 23). 262 

All the target species except Elephas and Macropus had positive values of the difference 263 

between θsm-t of SI-2 subtracted from SI-1., while Tthe subtracted values of SI-3 – SI-2 were 264 

positive among the target species except Cervus and Rangifer, indicating they start the stance 265 

phase by flexing their knee joint. The number of species having negative value increasinged 266 

in the following steps, but the values inverted to positive soon. The subtracted values of 267 

adjacent SIs were repeatedly positive and negative with in short span up to SI-9 and almost 268 

targetmost  species hadpresented the negative values after SI-10, showing extension of the 269 

knee joint when finishing the stance phase. There were no species that changed more than 10 270 

degrees between adjacent SIs (Table 4).  271 

According to the results of the θsm-t transition, the whole target animalsevery studied 272 

species could be considered that they had relatively small differences between maximum and 273 

minimum ones during the stance phase (Fig. 23, and 34, and Table 2). The θaveaverage θsm-t of 274 

a stance (from SI-1 to SI-13) of all target animals was 96.85102.62 ± 23.8618.10 degrees. The 275 

smallest θavethis angle was presented by SuricataDolichotis, 72.9884.52 degrees, and the 276 

largest was Elephas presented the largest one, 120.71 degrees. More than 90 % of target 277 

animals (1918/2120) had this angle between 80 and 120 degrees, and more than 8085 % of 278 

targets (17/2120) had this angle between 90 and 110 degrees; the range is only 20 degrees. 279 

This showed that the total stance differences of the angles of the knee joint during the stance 280 

phase among the target animals were small; therefore, the average value of the θave θsm-t (i.e., 281 

θave) could represent each animal. Accordingly, we also analyzed the relationships between the 282 

θave and the body mass. The correlation coefficient of all target animals was 0.4626 with the p-283 

value 0.0328. The R-squared value was 0.17 (Fig. 45). There were nNone of the analyzed 284 

variables that showed significant differences in correlation with body mass, either 285 

taxonomically or in ambulatory (Table 5). In other words, it cannot be said that there was a 286 

correlation between the θave and body mass. This correlation coefficient value meant that the 287 

relationship between the θave and the body mass was low, and therefore, the θave was stable 288 

and almost independent from the body mass. 289 

 290 

Discussion 291 

The quadrupedal animals are though to use their limbs with inverted pendulum-like 292 

movements (Cavagna, Heglund & Taylor, 1977; Griffin, Main & Farley, 2004). This inverted 293 
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pendulum-like movements are defined that considering the point of touchdown as pivot point, 294 

and the arm length is equal to the length between the pivot and the animal´s center of mass. 295 

The arm length of the inverted pendulum is assumed as maintaining in constant in these 296 

previous studies. In this regard, limbs are the only structure to control the distance between 297 

the ground and the body trunk, therefore, the inverted pendulum arm length is depended 298 

depends on the joint angles. Furthermore, the angle between the femur and the m. 299 

semimembranosus has a small variance range because both of them attached on the pelvis. In 300 

other words, the knee joint angle is mainly depended on the angle between the m. 301 

semimembranosus and the tibia (θsm-t). When compared the θsm-t transition of SIs next to each 302 

other, both joint extension and flexion occurred during a stance (Table 3). This joint extension 303 

and flexion occurred alternately in the first half of a stance. The knee joint received receives 304 

forces to flex from several factors such as a collision at touch down, gravity, and rising the 305 

center of mass, therefore, extensor muscles reacted to against the flexion immediately. 306 

Biomechanically, the inverted pendulum arm is preferred to keep its length, therefore, the 307 

joint angle would also be preferred expected to be keept in constant. To increase the joint 308 

stiffness, co-contraction would be occurred at this time (Hogan, 1984). In other words, the 309 

flexor muscles would be stimulated at that time. Both, the femur focused in previous studies 310 

and the ischial tuberosity used in our study locate on the pelvis, and the pelvis does not rotate 311 

drastically during walking; therefore, this logic is also applicable to the θsm-t. When looking at 312 

one stance of our study, extension and flexion periods were not separated completely as in the 313 

case of extension in the first half of a stance and the flexion in the last half, and the difference 314 

between the of the θsm-t adjacent SIs showed that they were repeated in a short span (Table 4). 315 

The alternative increasing and decreasing of the θsm-t joint angles between each SIs allows 316 

quadrupedal mammals to maintain its joint angles. In other words, the role of co-contraction 317 

during walking is not to fix the joint angles, but to maintain the joint angles within a certain 318 

range by making small increase and decrease of the θsm-t were occurred in broad taxa in our 319 

study (Table 4). Therefore,made the angle transitions of the θsm-t wholeduring one stance were 320 

small among the target species (Fig. 34). The results in thisour study showed that 17 out of 321 

2120 studiedtarget species had a slight difference of the θsm-t change, which was less than ± 322 

10 degrees from its middle value, even though the largest difference was ± 15.86 (Fig. 32 and 323 

Table 2).  324 

According to the results of the average angle of θsm-t (i.e., θave), most of the target 325 

animalsspecies (>9085 %) had its θave in 100 ± 2110 degrees (Fig 45). The target animals fell 326 

into this range included all three gait typesambulatory styles (i.e., unguligrade, digitigrade, 327 

and plantigrade) among four super orders (Afrotheria, Euarchontoglires, Laurasiatheria, and 328 

Marspialia). In addition, they also had wide range of the body mass, from 4.8 kg of Felis to 329 

4060 1100 kg of ElephasDiceros (Table 1 and 3). (Alexander & Pond, 1992) 330 

Effective mechanical advantage (EMA) is one of the directions to estimate the 331 

mammalian limb posture: larger EMA ratio indicates more upright posture (Biewener, 332 
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1898,1990, 2005; Dick & Clemente, 2017). These previous studies showed larger species had 333 

the larger EMA. It is different from results of our study that the quadrupedal mammals had 334 

similar θave. This was due to the difference in the measuring position where the angle 335 

measured in each study. The ischial tuberosity where the m. semimembranosus attaches places 336 

on near the posterior end of the pelvis. The orientation of the pelvis of which horizontally or 337 

vertically is related to the body mass, and the larger body mass has the more upright 338 

orientation (Polly, 2007). Therefore, the larger body mass has the larger differences between 339 

the angle of femur-tibia (traditional knee joint angle) and m. semimembranosus-tibia (θsm-t and 340 

θave) as a previously standardized measurements: in other words, θem-t and θave as our new 341 

measurements could show the small differences between the angle of large body mass species 342 

and small body mass species. Furthermore, EMA does not increase linearly more than 300 kg 343 

(Biewener, 1990, 2005; Dick & Clemente, 2017), and felids had crouched posture even with 344 

large body mass (Day & Jayne, 2007; Dick & Clemente, 2017). In contrast, θave showed 345 

contrast value 100 ± 10 among every ambulatory style and wide body mass range (4.5 kg to 346 

1100 kg) in our study (Table 1 and 3). Among the studied species, Suricata (Meerkat, 347 

Carnivora), which does not fall into this range, has some unique characteristics when 348 

compared to the others. Suricata is considered as a digger, and its body is adjusted to live in 349 

tunnels (van Staaden, 1994). In this regard, our analyses also suggest that Suricata would 350 

reasonably be excluded from the walking style of the standard mammals. When the 351 

recalculate the correlation coefficient between the angle of θmid and the body mass without 352 

Suricata, it become 0.26. This value indicates there are few relationships between the body 353 

mass and θave. Therefore, “standard” terrestrial mammals have the angle of θave, 100 ± 21 354 

degrees even if the species have any taxon, body mass, limb posture, or gait. FurthermoreIn 355 

addition, θsm-t was measured with three points on skeletons in thisour study: the ischial 356 

tuberosity, the interior-proximal end of the tibia and the distal end of the tibia (Fig. 1B). This 357 

indicates that the position of the ischial tuberosity and tibia can be fixed with 100 ± 10 358 

degrees on the extant terrestrial quadrupedal mammalsposture of the hind limbs of terrestrial 359 

mammals are able to reconstruct with only ischium and tibia, and thus the hind limbs of and 360 

thus, this new approximation to understanding hindlimb postures could be applied to the study 361 

of the hindlimbs of extinct mammals who which does not have phylogenetically closely 362 

related extant descendants. If a femur exists or can be estimate its shape, the limb posture can 363 

be are also able to reconstructed with higher accuracy because both the caput femoris and the 364 

distal end of the femur can be put in the determined positions, where are the acetabulum and 365 

the proximal end of tibia, respectively. For example, the Desmostylia has been reconstructed 366 

in several different postures among researchers even it has been known from several fossils of 367 

whole bodywhole-body skeletons (Shikama, 1966; Inuzuka, 1988; Domning, 2002; Inuzuka, 368 

Sawamura & Warabe, 2006). It because this extinct mammal has no extant closely related 369 

descendants and extremely bizarre tibia: the tibia strongly twisted interiorly (Shikama, 1966; 370 

Inuzuka, 1988). There are no extant mammals which have the tibia resemble to Desmostylia. 371 
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The θave, which is 100 ± 10 degrees, is independent value from taxonomy, body mass, and 372 

ambulatory style, therefore, this degree can be applied on the Desmostylia. 373 

 374 

Conclusion 375 

The stimulation of agonist and antagonist muscles called co-contraction increases the 376 

joint stiffness. In the case of the knee joint angle, our result showed that the θsm-t transition had 377 

almost flat wave form. It indicated that the θsm-t was did not changed drastically during the 378 

first 75 % of stance phase and that the co-contraction represented by part of the m. quadriceps 379 

femoris (as an agonist muscle) and the m. semimembranosus (as an antagonist muscle) was 380 

can effectively supported the constant posture of hind limbthe knee joint in all themost 381 

terrestrial mammals at least. That is more than 90 85 % of target animals in thisour study had 382 

similar θave, 100 ± 21 10 degrees even if the animal is classified in any taxaon, and has any 383 

body mass, limb posture, or employs any ambulatory stylegait. The θsm-t could be measured 384 

with three points on skeletons,. tTherefore, θave shows the distinction of standard and non-385 

standard mammals in regard to their gaits. In addition, thewas independent from those 386 

variables. These features of θave indicate that θave becomes one of the criteria possibility for 387 

reconstruction of extinct mammals even if they have no extant closely related descendants 388 

was also indicated. 389 
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