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Comprehensive identiûcation and expression analysis of
CAMTA gene family in Phyllostachys edulis under abiotic
stress
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Background. The CAMTA family are major transcription factor regulated by calmodulin (CaM) that play
an essential role in plant growth, development and response to biotic and abiotic stresses. The CAMTA
gene family has been identiûed in Arabidopsis thaliana, rice and other model plants, and its gene
function in moso bamboo (Phyllostachys edulis) has not been identiûed.

Results. In this study, a total of 11 CAMTA genes were identiûed in the moso bamboo genome.
Conserved domain and multiplex sequence alignment analysis showed that the structure between these
genes was highly similar, with all members having CG-1 domains and some members having TIG and IQ
domains. Phylogenetic relationship analysis showed that the CAMTA gene was divided into 5 subfamilies,
and gene fragment replication promoted the evolution of this gene family. Promoter analysis revealed a
large number of cis-acting elements associated with drought stress in PHCAMTA, suggesting that this
family is involved in drought stress. Abiotic stress on moso bamboo was also found to be involved in
drought stress response, which was similar to the results of promoter analysis. Gene expression pattern
according to transcriptome data revealed participation of the PHCAMTA genes in tissue development.

Conclusions. Our results present new ûndings for the moso bamboo CAMTA family and provide partial
experimental evidence for further validation of the function of PHCAMTAs.
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18 Abstract

19 Background. The CAMTA family are major transcription factor regulated by calmodulin (CaM) 

20 that play an essential role in plant growth, development and response to biotic and abiotic 

21 stresses. The CAMTA gene family has been identified in Arabidopsis thaliana, rice and other 

22 model plants, and its gene function in moso bamboo (Phyllostachys edulis) has not been 

23 identified. 

24 Results. In this study, a total of 11 CAMTA genes were identified in the moso bamboo genome. 

25 Conserved domain and multiplex sequence alignment analysis showed that the structure between 

26 these genes was highly similar, with all members having CG-1 domains and some members 

27 having TIG and IQ domains. Phylogenetic relationship analysis showed that the CAMTA gene 

28 was divided into 5 subfamilies, and gene fragment replication promoted the evolution of this 

29 gene family. Promoter analysis revealed a large number of cis-acting elements associated with 

30 drought stress in PHCAMTA, suggesting that this family is involved in drought stress. Abiotic 

31 stress on moso bamboo was also found to be involved in drought stress response, which was 

32 similar to the results of promoter analysis. Gene expression pattern according to transcriptome 

33 data revealed participation of the PHCAMTA genes in tissue development. 

34 Conclusions. Our results present new findings for the moso bamboo CAMTA family and 

35 provide partial experimental evidence for further validation of the function of PHCAMTAs.

36

37 Introduction

Abstract

÷
÷

÷
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38 Calcium (Ca2+) ions are involved in many cellular signaling pathways as prevalent secondary 

39 messengers in eukaryotes (Wu et al. 2016). Ca2+-mediated signaling plays a key role in the 

40 transmission of signals generated by different stimuli, thus mediating various stress responses in 

41 plants (Evans et al. 2001; White & Broadley 2003). CaM is a ubiquitous eukaryotic Ca2+ sensor 

42 that binds Ca2+ into a flexible Ca2+/CaM structural protein, which, together with the ability of 

43 Ca2+ to interact with a number of proteins, allows CaM to regulate protein targets in many 

44 different signaling pathways (Bouché et al. 2005; DeFalco et al. 2016; Poovaiah et al. 2013; 

45 Yamniuk & Vogel 2004). Ca2+ and CaM complexes deliver various endogenous and exogenous 

46 signals through multiple interactions with transcription factors (TFs) in response to plant 

47 responses (Kim et al. 2009). CAMTA, a major transcription factor regulated by calmodulin 

48 (CaM), was first identified in tobacco in 2009 (Kim et al. 2009). The CAMTA protein structural 

49 domain contains the following functional domains: (1) N-terminal containing a CG-1 DNA 

50 binding domain; (2) A TIG structural domain engaged in non-specific DNA binding; (3) Ankyrin 

51 repeat sequences responsible for mediating interactions between different proteins; (4) a Ca2+-

52 dependent CaM binding domain between the N-terminal and C-terminal; (5) IQ motifs 

53 interacting with CaM (IQXXXRGXXXR) (Bähler & Rhoads 2002; Bouché et al. 2002; Du et al. 

54 2009; Finkler et al. 2007; Yang & Poovaiah 2002). CAMATA was discovered when part of the 

55 cDNA clone (CG-1) was isolated from parsley and subsequently reported in various multicellular 

56 organisms (Iqbal et al. 2020).

57 It has been found that CAMTA transcription factors exhibit very important and simple and 

58 effective functions in plant growth and development, biotic and abiotic stress (e. g. low 

59 temperature stress) responses, and that CAMTAs of different species respond to various biotic 

60 and abiotic stresses including low temperature, hormones, high salt and drought to varying 

61 degrees (Chung et al. 2020; Noman et al. 2021; Shkolnik et al. 2019; Yue et al. 2015). The 

62 important role of CAMTA3 gene for Brassica napus (cabbage, kale and kale type oilseed rape) in 

63 cold and disease resistance was found (Luo et al. 2021). Two genes, ZmCAMTA4 and 

64 ZmCAMTA6, were highly expressed in maize under abiotic stress treatment, and cis-element 

65 analysis revealed the involvement of CAMTA genes in the association between environmental 

66 stress and stress-related hormones (Liu et al. 2021). Ming wei (Wei et al. 2017) suggested that 

67 PtCAMTA genes play an essential role in resistance to cold stress, and he showed that woody 

68 plants and crops have different CAMTA gene expression patterns under abiotic stresses and 

69 phytohormone treatments. The land cotton (Gossypium hirsutum) GhCAMTA11 gene is 

70 specifically expressed in roots and under heat stress, and GhCAMTA7 and GhCAMTA14 are 

71 also expressed under drought stress, indicating that the land cotton CAMTA gene family is 

72 involved in the growth and development process and stress reaction of land cotton (Zhang et al. 

73 2022). It was found that the biochemical response of HbCAMTA3 in response to low 

74 temperature stress in rubber trees is similar to that of AtCAMTA3 in Arabidopsis, and that the 

75 AtCAMTA3 gene is also involved in salt stress reaction implying that HbCAMTA3 in rubber 

76 trees is functionally diverse (Lin et al. 2021). Interestingly, it was found that TaCAMTA mainly 

77 responds to drought stress in wheat in reaction to various abiotic stresses in the nursery stage, 
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78 and TaCAMTA1b-B. 1 plays an essential role in the response to drought stress caused by water 

79 deficit in the nursery stage (Wang et al. 2022).

80 Phyllostachys edulis is a genus of Phyllostachys Sieb in the family Gramineae, which is widely 

81 distributed in China and is an important bamboo resource with the characteristics of strong 

82 adaptability, rapid growth, easy reproduction and good timber (Lin et al. 2002; Xu et al. 2022; 

83 Yang & Li 2017).

84 We comprehensively analyzed the phylogenetic relationships between moso bamboo and model 

85 plants in the CAMTA gene family to elucidate their evolutionary relationships. Using available 

86 RNA-seq data and qRT-PCR results, we analyzed the expression profile of PHCAMTA family 

87 genes during plant growth and development, as well as the expression of this gene family during 

88 stressful abiotic stresses. In this study, we identified the CAMTA gene family in P. edulis in 

89 order to provide relevant data support in future plant breeding studies and to open new avenues 

90 for further elucidation of its role in P. edulis signal transduction.

91

92 Materials & Methods

93 dentiûcation of CAMTA Genes in P.edulis

94 All files associated with the whole genome sequence data of Phyllostachys edulis were 

95 downloaded from the database website (http://gigadb.org/dataset/100498). A numerical tabular 

96 Hidden Markov Model (Profile HMM) was constructed using HMMER3 

97 (https://myhits.sib.swiss/cgi-bin) to match the Phyllostachys edulis protein database (significant 

98 E value set to no more than 1×10-20) (Finn et al. 2011). The CAMTA domain (PF03859) 

99 obtained from the Pfam database was screened and integrated (Finn et al. 2016), and the 

100 candidate gene family members were obtained from the initial screening. The CAMTA structural 

101 domains of the candidate family members were analyzed using SMART (Letunic et al. 2012), 

102 along with the Plant TFDB and NCBI BLAST for further comprehensive analysis and 

103 identification to obtain candidate CAMTA transcription factor families (Jin et al. 2017).

104 Physicochemical properties and signal peptide analysis of P.edulis CAMTA

105 The Sequence Toolkits module of TBtools software (v1.098765) was used to derive the coding 

106 sequence (CDS), protein fasta sequence, and gene structure and location information of CAMTA 

107 family members from the corresponding genome-wide database (Chen et al. 2020) using The 

108 online tools Prot Param and TargetP 2.0 Server 

109 (https://services.healthtech.dtu.dk/service.php?TargetP-2.0) were used to analyze their 

110 physicochemical Properties, signal peptides were analyzed.

111 Interspecific evolutionary analysis of gene families

112 The whole genome information of rice, Arabidopsis, Zea, and Brachypodium distachyon. was 

113 downloaded from the rice genome database, the Arabidopsis 

114 database(http://www.arabidopsis.org), Zea database(http://www.arabidopsis.org), and 

115 Brachypodium distachyon. database(http://plants.ensembl.org/), respectively, and based on the 

116 obtained CAMTA Protein sequences of the 4 plants, the software ClustalX2.1 was used to 

117 contrast the CAMTA Protein sequences of M. spp. The sequence alignment results were used to 
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118 construct phylogenetic trees by the software MEGA7 using the neighbor-joining (NJ) method, 

119 and the bootstrap evaluation (Bootstrap) was repeated 1000 times.

120 Gene structure, conserved structural domains and motif analysis

121 Based on the gene location information of P.edulis genome annotation file (GFF), the gene 

122 intron and exon sequences were analyzed and the gene structure of PHCAMTA family was 

123 visualized; the NCBI online software CDD was used to forecast the conserved structural 

124 domains of CAMTA family members, and their amino acid conserved sequences were predicted 

125 using the online software MEME (Bailey et al. 2009).

126 Cis-acting elements in the PHCAMTA gene promoter regions

127 Extract the first 1500 bp sequence of the promoter of PHCAMTA family gene, predict it online 

128 using Plant Care, and submit the results to TBtools (v1.098765) Visualization.

129 ChroMosome distribution and interspecies covariance analysis

130 The BLAST module of TBtools (v1.098765) software was used to execution sequence 

131 comparison of all proteins in the genome of bamboo, and two-way alignment of Moso bamboo 

132 with rice and Moso bamboo with Arabidopsis, based on genome-wide GFF files, using MC 

133 ScanX, Circos (0.69-9) and Multipe Synteny Plot. CAMTA family chroMosome distribution and 

134 interspecies covariance were visualized using MC ScanX, Circos (0.69-9) and Multipe Synteny 

135 Plot.

136 Tissue-Speciûc Expression Levels of PHCAMTA Genes

137 In order to analyze the specific expression of CAMTA gene in P. chinensis chinensis, we 

138 downloaded RNA-seq data from the NCBI gene expression profiles database (Accession: 

139 ERR105067-ERR105076). Transcriptome data, quantified as transcripts per million reads 

140 (TPM), and log2-transformed (Cushion et al. 2018).

141 Plant Material, RNA extraction and qRT-PCR analysis

142 Normal-grown 3-month-old live Moso bamboo seedlings were used as the control group with the 

143 following abiotic stress treatments: 4 °C and 500 ml 30% PEG6000; sampled at 0, 3, 6, 12 and 

144 24 h for the above treatments, and at 0, 3, 6 and 12 h for 42 °C-treated live Moso bamboo 

145 seedlings, and the second youngest leaf from top to bottom was snap-frozen in liquid nitrogen 

146 and saved in a -80 °C freezer. 

147 Extraction of total RNA using an RNA extraction kit (Kangwei Century Biotechnology Co., 

148 Ltd.). cDNA was synthesized using Ta Ka Ra's SriciptTM RT kit and used for subsequent qRT-

149 PCR assays. For the 11 identified PHCAMTA genes, qRT-PCR primers were designed online 

150 using Primer Premier 3, with Moso bamboo NTB (nucleotide tract-binding protein) as the 

151 internal reference gene (Fan et al. 2013). SYBR qPCR Master Mix (Code. Q311-02, Nanjing, 

152 China) was used to perform qRT-PCR in Multiplate� 96-well PCR plates (Bio-Rad, California, 

153 USA). Each sample was tested using three technical replicates to ensure the accuracy of results. 

154 The reaction conditions refer to the method of Ma R (Ma et al. 2021).

155

156 Results

157 Identification and characterization of PHCAMTA genes in P.edulis
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158 Eleven candidate family members were searched by the plant CAMTA Pfam (PF04770) model, 

159 and a significant E value of no more than 1×10-20 was set for preliminary screening. 11 

160 CAMTA family members were obtained by combining gene structure, chroMosomal 

161 localization, conserved structural domains and other characteristics, and removing gene duplicate 

162 transcripts and non-full-length amino acid sequences. As shown in Table 1, the CAMTA family 

163 genes were renamed PHCAMTA01 to PHCAMTA11 based on the chroMosomal positioning 

164 information of the genes. bioinformatics analysis of the protein sequences of the 11 family 

165 members showed that the largest protein molecular weight of the CAMTA family members was 

166 114.92 kD, and the smallest protein molecular weight was 90.10 kD. The amino acid sequence 

167 lengths ranged from 816 to 1031aa. The isoelectric points lie between 5.18 and 8.2. Two of the 

168 family proteins are basic (theoretical isoelectric point >7) and nine are acidic (theoretical 

169 isoelectric point <7). The aliphatic amino acid index revealed that the thermal stability of the 

170 proteins of this family was between 74.03 and 80.82, suggesting that the proteins of this family 

171 have small differences in thermal stability. Signal peptide analysis showed that none of the 23 

172 members had signal peptides, indicating that the protin sequences of the CAMTA genes of 

173 P.edulis do not have transmembrane structures.

174 Phylogenetic analysis

175 In reference to (Dezhou Wang) (Wang et al. 2022), the amino acid sequences of Mao bamboo 

176 CAMTA, Rice CAMTA, Arabidopsis CAMTA, Zea CAMTA and B.distachyon CAMTA were 

177 subjected to phylogenetic analysis. The analysis revealed that the amino acid sequences of 

178 PHCAMTA could be classified into five subclades (a~e) (Fig 1), among which the protein 

179 sequences of Arabidopsis CAMTA genes were classified into one subclade, and the amino acid 

180 sequences of rice, Zea, P.edulis and PHCAMTA genes were grouped into one subclade. It is 

181 more closely related to rice and Zea, and more distantly related to Arabidopsis.

182 Gene structure, conserved domains, motifs and sequence analysis

183 Analysis of the gene structure of PHCAMTA family showed that the number of introns (intron) 

184 of each PHCAMTA gene ranged from 10 to 14. The 11 sequences were divided into four 

185 categories, because the affinities of P.edulis in other species make the results differ from the 

186 classification in the evolutionary tree. Gene PHCAMTA09 in subfamily III contains the longest 

187 intron region, while gene PHCAMTA04 in subfamily II and gene PHCAMTA11 in subfamily III 

188 have the shortest introns.

189 PHCAMTA gene family was further analyzed for conserved structural domains based on the 

190 NCBI online software CDD, as shown in Fig 2C. As shown, all CAMTA family members 

191 contained CG-1 structural domains located at the N terminus, PHCAMTA10, PHCAMTA05, 

192 PHCAMTA03 in the first subclade and PHCAMTA11, PHCAMTA06 in the third subclade had 

193 TIG structural domains in addition to the typical CG-1 structural domains, while PHCAMTA08 

194 in the first subgroup and PHCAMTA09 in the third subgroup do not have TIG structural 

195 domains, and both the second and fourth subgroups contain both CG-1 and TIG structural 

196 domains. All of the first subgroup contained ANKYR structural domains, PHCAMTA07 in the 

197 second subgroup and PHCAMTA09 and PHCAMTA06 in the third subgroup contained ANKYR 
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198 structural domains, and the rest of PHCAMTA01 and PHCAMTA04 in the second subgroup, 

199 PHCAMTA11 in the third subgroup and the fourth subgroup did not contain ANKYR structural 

200 domains. All of the second subclade contained IQ structural domains, PHCAMTA08, 

201 PHCAMTA10, PHCAMTA03 in the first subclade, PHCAMTA11, PHCAMTA09 in the third 

202 subclade and the fourth subclade contained IQ structural domains, and the remaining 

203 PHCAMTA05 in the first subclade and PHCAMTA06 in the third subclade did not have IQ 

204 structural domains. PHCAMTA08, PHCAMTA10, PHCAMTA03 in the first subfamily and 

205 PHCAMTA07 in the second subfamily have all CAMTA structural domains.

206 The members of the Mauve CAMTA gene family contain motifs numbering 6 and 8, which are 

207 highly conserved, of which motif1, motif6 and motif7 constitute the CG-1 structural domain. 

208 Except for PHCAMTA05, which lacks motif7 and motif3 in the first family, the genes in the 

209 other families have all motifs.

210 ChroMosomal location and gene duplication of PHCAMTA genes

211 The chroMosome distribution of the PHCAMTA gene family showed that 11 CAMTA genes 

212 were distributed on nine chroMosomes with different chroMosome gene division densities, and 

213 only genes PHCAMTA08 and PHCAMTA10 underwent gene doubling (tandem duplication), 

214 while the rest of the genes did not show gene duplication. The results indicated that only 

215 individual genes caused amplification of CAMTA transcription factor members on different 

216 chroMosomes through gene duplication.

217 As shown in Fig 4, no CAMTA homologous protein genes of Moso bamboo occur in pepper 

218 chroMosomes, only three Moso bamboo CAMTA homologous protein genes occur in 

219 Arabidopsis chroMosomes, while 14 Moso bamboo CAMTA genes can be found on six Zea 

220 chroMosomes with corresponding paralogous homologs, and 17 Moso bamboo CAMTA genes 

221 can be found on five rice chroMosomes with corresponding paralogous the same genes were 

222 found on five rice chroMosomes. Therefore, the covariance between Moso and rice and Zea was 

223 more significant than that between Moso and pepper and Arabidopsis. In addition, most of the 

224 genes in the rice and Zea CAMTA families have more than two paralogous homologs in Moso 

225 bamboo, inferring that there may have been a massive gene doubling event in the Moso bamboo 

226 CAMTA gene family in the evolution process.

227 Cis-element analysis of PHCAMTAs

228 The Moso bamboo CAMTA family members contain 11 genes extracted upstream to 1500 bp 

229 nucleotide sequences, and promoter prediction revealed that in addition to the core promoter 

230 elements, many other cis-acting elements were found (Fig 5), such as light-responsive elements, 

231 hormone-response-related elements and stress-responsive elements related to plant growth and 

232 development. The most abundant were hormone response-related elements, with all gene 

233 promoters containing at least one light response element and most gene promoters containing at 

234 least one phytohormone response element. The stress response elements include low temperature 

235 stress response components, drought stress response components, anaerobic induction response 

236 components and other abiotic stress response components. All PHCAMTAs contained the 

237 drought stress response component MYC, and the drought stress response component MYB was 
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238 the most abundant response element, suggesting that PHCAMTA plays an essential role in 

239 drought stress response. The results suggest that different components of the promoter region of 

240 Moso bamboo CAMTA gene family may be important in regulating plant growth and 

241 development and in resisting abiotic stresses.

242 Tissue-Speciûc Expression Levels of PHCAMTA Genes

243 To study the physiological role of CAMTAs, we analyzed the gene expression patterns of 

244 CAMTAs. The expression levels of CAMTAs in four tissues (leaf, stem, whip and root) were 

245 assessed by RNA-seq data. Gene expression profiles in different tissues indicated that CAMTA 

246 has different functions in moso bamboo. The results showed that PHCAMTA07/11 expression 

247 profile was higher than other genes. The expression of Moso bamboo CAMTA was higher in 

248 leaves than in stems, whips and roots, except for PHCAMTA11. Moreover, PHCAMTA11 was 

249 more highly expressed in each tissue, indicating that this gene plays an important role in the 

250 overall development of Moso bamboo.

251 Expression profiles of the PHCAMTA genes during abiotic stress

252 To investigate the expression of PHCAMTA during abiotic stress, we analyzed the expression of 

253 11 PHCAMTAs under three abiotic stresses using qRT-PCR: polyethylene glycol (PEG), heat, 

254 and cold treatment. the expression patterns of PHCAMTAs responded differently to the three 

255 abiotic stresses, and some PHCAMTAs were either significantly induced or repressed. The 

256 expression pattern of most genes changed significantly during the early phase (0-6 h) of the 

257 stress response.

258 As shown in the (Fig 7), the expression of the Mao bamboo CAMTA gene family under drought 

259 stress. PHCAMTA gene expression showed weak changes when subjected to drought stress for 3 

260 h, and the expression at 6 h of stress was significantly higher than that at other times of stress. 

261 most of the genes, except PHCAMTA 06 and PHCAMTA 10, had a higher expression at 24 h of 

262 drought stress than the expression of most of the genes was slightly higher at 24 h of drought 

263 stress than at 12 h of drought stress.

264 In contrast, the overall expression of CAMTA in Moso bamboo was higher when subjected to 

265 drought stress than when subjected to cold stress, and it is assumed that PHCMATA is mainly 

266 involved in drought stress regulation.

267

268 Discussion

269 Genome-wide identification and phylogenetic analysis of the CAMTA gene of Moso 

270 bamboo

271 CAMTAs are a specific class of plant transcription factors that play an essential role in the 

272 regulation of plant growth and development and metabolism (Galon et al. 2008; Yang et al. 

273 2012; Yang & Poovaiah 2002). The molecular functions of CAMTA have been verified not only 

274 in Arabidopsis (Galon et al. 2010; Pandey et al. 2013) and rice as model plants, but also in cotton 

275 (Pant et al. 2018), maize (Yue et al. 2015), tobacco (Kakar et al. 2018) and tomato (Yang et al. 

276 2012), where the CAMTA gene family has been gradually identified. However, no studies on 

277 CAMTAs have been conducted in the economically important bamboo species, moso bamboo. 
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278 Currently, the draft genome of Moso bamboo is largely complete, allowing for a full 

279 identification of key gene families (Peng et al. 2013; Zhao et al. 2018). We classified the 11 

280 PHCAMTA genes into five categories, ClassI, ClassII, ClassIII and ClassIV, based on 

281 phylogenetic analysis. Among them, four members (36%) belonged to Class I, three members 

282 (27%) to Class II, three members (27%) to Class III, and one member (9%) to Class IV (Fig 1).

283 Gene structure analysis reveals structural differences among members within the same 

284 subfamily. Such as, PHCAMTA members in the same family I have intron numbers ranging 

285 from 10-14. Therefore, we hypothesize that members of subfamily I may have undergone 

286 pruning of gene fragments during their evolution (Li et al. 2016; Staiger & Brown 2013). 

287 Nevertheless, the similar conserved sequences and gene structures among CAMTA family 

288 members suggest that gene biological functions are generally the same within a family. All six 

289 NTR1 homologs of Arabidopsis have a conserved structural feature with a DNA-binding region 

290 (CGCG structural domain) at the N-terminal end and a CaM-binding structural domain at the C-

291 terminal end. The role of Ca2+/CaM may be expressed in controlling interactions with other 

292 proteins or altering transcriptional activation of other proteins. In addition, conserved domain 

293 comparison showed that all PHCAMTA genes have CG-1 structural domains, indicating that the 

294 conserved motifs of the CAMTAs family are broadly conserved during evolution.

295 During signal transduction, multiple cis-acting elements on a gene promoter work together to 

296 regulate multiple complex biological responses. S.lycopersicum SlCAMTA gene contains salt 

297 stress regulatory elements, including ABRE, G-box, MBS, and TGA (Wang et al. 2021), and 

298 CAMTAs of different species have been reported to respond to a variety of biotic and abiotic 

299 stresses, including low temperature, hormones, high salt, and drought. Two genes, ZmCAMTA4 

300 and ZmCAMTA6, were highly expressed under stress treatment, and cis-element analysis 

301 revealed the involvement of CAMTA genes in the association between environmental stress and 

302 stress-related hormones, and the GhCAMTA gene family may also be involved in the 

303 phytohormone signaling pathway (Liu et al. 2021; Pant et al. 2018). On the basis of PlantCARE 

304 software, we found that elements involved in abscisic acid response, MeJA response, growth 

305 hormone (IAA) and many other hormone regulation-related elements were present. Therefore, 

306 we suggest that PHCAMTA genes may also be involved in the stress response of plants. 

307 Interestingly, the promoter regions of most PHCAMTA genes have the largest number of MYB 

308 elements involved in drought induction (Fig. 5). Previous studies on the response of this family 

309 of genes to abiotic stresses are relatively scarce, but recent studies on wheat confirmed that the 

310 expression of TaCAMTA1a-B and TaCAMTA1b-B. 1 was down- and up-regulated, 

311 respectively, in response to drought stress to maintain normal physiological functions associated 

312 with the plant, and wheat CAMTA family members also contain a large number of MYB 

313 elements (Wang et al. 2022).

314 Evolutionary Characterization of the PHCAMTA Family

315 Gene duplication may produce new genes, which greatly helps in the evolution of gene function. 

316 The three evolutionary patterns of gene replication are (Liu et al. 2019): segmental duplication, 

317 tandem duplication and translocation events. Segmental and tandem replication are the most 
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318 common basis for gene family expansion in plants (Freeling 2009; Li & Barker 2020). Previous 

319 studies on whole genome replication have shown that the genome size of Bamboo (2051.7 Mb) 

320 and its close relative, Z.mays (2066.4 Mb), is similar, but the number of CAMTA families is 

321 higher than that of the latter (Chen et al. 2020). Therefore, we performed a consistency analysis 

322 within and among the Moso bamboo genomes. Within the Moso bamboo genome, there was one 

323 pair of segmental duplication genes in the CAMTA gene. Therefore, the amplification of the 

324 CAMTA gene family mainly comes from gene fragment replication. Simultaneous analysis of 

325 the genome of Bamboo and four other sequenced plant genomes showed that the members of the 

326 bamboo CAMTA family had significant consistency with the genomes of the monocot plant rice.

327 The role of CAMTA genes in different tissues and organs

328 Several studies have shown that CAMTAs can regulate plants during the developmental period 

329 of lateral organs, such as important effects on plant organs formation (Rahman et al. 2016; 

330 Shangguan et al. 2014; Wang et al. 2015; Yang et al. 2015), which is consistent with our 

331 findings. Analysis of expression profiles in different bamboo tissues revealed that a large number 

332 of PHCAMTAs showed the amount of expression varies in different tissues (Fig 6). For 

333 example, PHCAMTA07 was highly expressed in root tissues, and it is speculated that 

334 PHCAMTA07 gene function may be similar to that of NtabCAMTA03 in tobacco, which is 

335 directly involved in stem tip meristem tissue production for differentiation into leaf primordia. 

336 Interestingly, the expression of some PHCAMTAs in leaves is higher than in flowers, and it is 

337 speculated that they are mainly involved in the plant growth process but not in the process of 

338 plant flower bud differentiation.

339 Expression of PHCAMTA Genes in Responses to Cold, Drought and Heat Treatments

340 The PheE2F/DP promoter in response to drought stress contains many MYB and MYC2 binding 

341 sites (Li et al. 2021). The involvement of PHCAMTA in drought stress regulation was also 

342 confirmed in subsequent expression analyses, which revealed a large number of MYB and MYC 

343 elements in PHCAMTA regulated by drought stress. We found that the expression levels of all 

344 genes increased overall at the beginning of abiotic stress in Moso bamboo, and decreased to the 

345 lowest expression level at 24h of stress. The expression level showed an increasing trend at 12h-

346 24h of drought stress, and it was speculated that Moso bamboo responded to drought stress after 

347 12h of stress in order to enhance its stress resistance. Our study suggests that the PHCAMTA 

348 gene family plays an essential role during drought stress response, but more studies are needed to 

349 reveal the functional significance of the CAMTA gene family in moso bamboo.

350

351 Conclusions

352 Our results present new findings for the moso bamboo CAMTA family and provide partial 

353 experimental evidence for further validation of the function of PHCAMTAs.

354
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Table 1(on next page)

Physicochemical properties of proteins encoded by CAMTA genes in Phyllostachy edulis

PeerJ reviewing PDF | (2022:11:79685:0:1:NEW 28 Nov 2022)

Manuscript to be reviewed



1 Table 1 Physicochemical properties of proteins encoded by CAMTA genes in Phyllostachy 
2 edulis

ID Gene name
Number of amino 

acids

Molecular weight

ÿkDaÿ
Theoretical pI Aliphatic index

Grand average 

of 

hydropathicity 

(GRAVY)

signal 

peptide

PH02Gene18220.t1 PHCAMTA01 1024 113.88 5.74 77.09 -0.456 NO

PH02Gene42704.t1 PHCAMTA02 925 103.43 8.2 76.1 -0.477 N

PH02Gene37813.t1 PHCAMTA03 1027 114.18 5.51 74.14 -0.503
N

PH02Gene40726.t1 PHCAMTA04 1030 114.81 5.49 75.5 -0.507 N

PH02Gene36566.t1 PHCAMTA05 816 90.10 5.18 74.73 -0.45 N

PH02Gene07259.t1 PHCAMTA06 851 96.14 7.61 80.82 -0.47 N

PH02Gene08544.t1 PHCAMTA07 1028 114.92 5.69 77.72 -0.48 N

PH02Gene05448.t1 PHCAMTA08 1025 114.11 5.92 76.92 -0.50 N

PH02Gene05785.t1 PHCAMTA09 851 96.18 6.51 77.39 -0.55 N

PH02Gene15267.t1 PHCAMTA10 1026 114.85 5.78 75.30 -0.51 N

PH02Gene16049.t4 PHCAMTA11 1031 114.95 5.88 74.03 -0.567 N

3
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Figure 1
Phylogenetic tree analysis of CAMTA sequences.

The full-length amino acid sequences of 50 CAMTA proteins were used to construct the
phylogenetic tree using MEGA7.0 with the neighbor-joining (NJ) method. The size of graphics
at the branch represents the conûdence relative value obtained by 100 bootstrap tests.
AtCAMTA represents CAMTA protein sequence of Arabidopsis thaliana, OsCAMTA represents
CAMTA protein sequence of rice, ZmCAMTA represents CAMTA protein sequence of maize
and BradiCAMTA represents CAMTA protein sequence of Brachypodium distachyon.
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Figure 2
Gene structure, conserved motifs and conserved domains of PHCAMTA.

Phylogenetic trees were made with maximum likelihood by using the Neighbor joining model
and MEGA 7.0 software. Diûerent colors plates represent diûerent groups. (A) Exon3intron
distribution of PHCAMTA. (B) Conserved motifs in PHCAMTA. Motif 1 to motif 8 represented
diûerent motifs, and they were represented by diûerent color boxes on the right. (C)
Conserved domains in PHCAMTA. CG-1, CG-1 domains. TIG, IPT/TIG domain. ANKYR, ankyrin
repeats. IQ, is a calmodulin-binding motif.
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Figure 3
The distribution and duplication events of PHCAMTA on the chroMosome.

The location of these genes on the chroMosome was visualized using the visualization tools.
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Figure 4
synteny relationships (A) Intraspeciûc colinearity analysis.

A total of 11 PHCAMTAs were mapped onto the chroMosomes on the basis of their physical
location. ChroMosome numbers (scaûold1-scaûold24) are distributed in the outer circle, the
red lines indicate duplicated PHCAMTA gene pairs. (B) Analysis of collinearity between
diûerent species. The gray lines indicate duplicated blocks, while the red lines indicate
duplicated PHCAMTA gene pairs. ChroMosome numbers are at the bottom of each
chroMosome.
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Figure 5
Cis-acting elements in PHCAMTA promoters.

The circle represented the number of speciûc cis-acting elements per gene. The chart and
number on the right indicated the number of genes corresponding to the speciûc cis-acting
element.
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Figure 6
Expression proûle cluster analysis of PHCAMTA genes with diûerential tissue expression.

Heatmap showing relative expression levels of PHCAMTAs in roots, leaves, panicles, and
rhizomes. The values are expressed with log2 TPM.
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Figure 7
Results of RT-qPCR analysis showing the expression patterns of CAMTA genes in Moso
bamboo subjected to abioic stress at diûerent time points.

A: Expression of 11 PHCAMTA genes under three abiotic stresses; A1: cold stress; A2: heat
stress; A3: drought stress. B: Comparison of PHCAMTA gene expression under three abiotic
stresses.
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Figure 8
Results of RT-qPCR analysis showing the expression patterns of CAMTA genes in Moso
bamboo subjected to abioic stress at diûerent time points.

C: Comparison among PHCAMTA genes in Moso bamboo when subjected to abiotic stress.
Bars with same letter means no signiûcant diûerence based on LSD test (pf0.05).
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