Evidence for a novel cranial thermoregulatory pathway in thalattosuchian crocodylomorphs (#81259)

First submission

Guidance from your Editor

Please submit by 27 Jan 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

16 Figure file(s)

1 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Evidence for a novel cranial thermoregulatory pathway in thalattosuchian crocodylomorphs

Corresponding Author: Mark T Young Email address: marktyoung1984@gmail.com

Thalattosuchian crocodylomorphs were a diverse clade that lived from the Early Jurassic to the Early Cretaceous. The subclade Metriorhynchoidea underwent a remarkable transition, evolving from semi-aquatic ambush predators into fully aquatic forms living in the open oceans. Thalattosuchians share a peculiar palatal morphology with semi-aquatic and aquatic fossil cetaceans: paired anteroposteriorly aligned grooves along the palatal surface of the bony secondary palate. In extant cetaceans, these grooves are continuous with the greater palatine artery foramina, arteries that supply their oral thermoregulatory structures. Herein, we investigate the origins of thalattosuchian palatal grooves by examining CT scans of six thalattosuchian species (one teleosauroid, two early-diverging metriorhynchoids and three metriorhynchids), and CT scans of eleven extant crocodylian species. All thalattosuchians had paired osseous canals, enclosed by the palatines, that connect the nasal cavity to the oral cavity. These osseous canals open into the oral cavity via foramina at the posterior terminus of the palatal grooves. Extant crocodylians lack both the external grooves and the internal canals. We posit that in thalattosuchians these novel palatal canals transmitted hypertrophied medial nasal vessels (artery and vein), creating a novel heat exchange pathway connecting the palatal vascular plexus to the endocranial region. Given the general hypertrophy of thalattosuchian cephalic vasculature, and their increased blood flow and volume, thalattosuchians would have required a more extensive suite of thermoregulatory pathways to maintain stable temperatures for their neurosensory tissues.

¹ School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

² LWL-Museum für Naturkunde, Münster, Germany

Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

⁴ Department of Biomedical Sciences, Ohio University, Athens, Ohio, United States

Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina

1 Evidence for a novel cranial thermoregulatory pathway in

2 thalattosuchian crocodylomorphs

3 Mark T. Young 1,2,*, Charlotte I. W. Bowman 1, Arthur Erb 1, Julia A. Schwab 1,3, Lawrence M. 4 Witmer ⁴, Yanina Herrera ⁵, Stephen L. Brusatte ¹ 5 6 ¹ School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, 7 Edinburgh, EH9 3FE, UK. 8 ² LWL-Museum für Naturkunde, Sentruper Straße 285, 48161 Münster, Germany. 9 ³ Department of Earth and Environmental Sciences, The University of Manchester, Williamson 10 Building, Oxford Road, Manchester M13 9PL, UK. 11 ⁴ Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio 12 University, Athens, Ohio, USA. 13 ⁵ Consejo Nacional de Investigaciones Científicas y Técnicas, División Paleontología 14 Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional 15 de La Plata, La Plata, Buenos Aires, Argentina. 16 17 Corresponding author: Mark T. Young 18

20

19

21 Keywords: Crocodylomorpha, Metriorhynchidae, Thalattosuchia, Thermoregulation, Vasculature

22

Email address: mark.young@ed.ac.uk

24 ABSTRACT

25	Thalattosuchian crocodylomorphs were a diverse clade that lived from the Early Jurassic to the
26	Early Cretaceous. The subclade Metriorhynchoidea underwent a remarkable transition, evolving
27	from semi-aquatic ambush predators into fully aquatic forms living in the open oceans.
28	Thalattosuchians share a peculiar palatal morphology with semi-aquatic and aquatic fossil
29	cetaceans: paired anteroposteriorly aligned grooves along the palatal surface of the bony
30	secondary palate. In extant cetaceans, these grooves are continuous with the greater palatine
31	artery foramina, arteries that supply their oral thermoregulatory structures. Herein, we investigate
32	the origins of thalattosuchian palatal grooves by examining CT scans of six thalattosuchian
33	species (one teleosauroid, two early-diverging metriorhynchoids and three metriorhynchids), and
34	CT scans of eleven extant crocodylian species. All thalattosuchians had paired osseous canals,
35	enclosed by the palatines, that connect the nasal cavity to the oral cavity. These osseous canals
36	open into the oral cavity via foramina at the posterior terminus of the palatal grooves. Extant
37	crocodylians lack both the external grooves and the internal canals. We posit that in
38	thalattosuchians these novel palatal canals transmitted hypertrophied medial nasal vessels (artery
39	and vein), creating a novel heat exchange pathway connecting the palatal vascular plexus to the
40	endocranial region. Given the general hypertrophy of thalattosuchian cephalic vasculature, and
41	their increased blood flow and volume, thalattosuchians would have required a more extensive
42	suite of thermoregulatory pathways to maintain stable temperatures for their neurosensory
43	tissues.

44

45

INTRODUCTION

46	Thalattosuchian crocodylomorphs underwent a major evolutionary transition during the Jurassic,
47	evolving from semi-aquatic nearshore predators to fully aquatic forms which lived in the open
48	oceans (Fraas, 1902; Andrews, 1913; Buffetaut, 1982; Young et al., 2010; Wilberg, 2015; Ősi et
49	al., 2018; Schwab et al., 2020). Thalattosuchia is composed of two subgroups: Teleosauroidea,
50	which evolved a diverse range of semi-aquatic morphologies but never made the transition to
51	being fully aquatic (Buffetaut, 1982; Johnson et al., 2020); and Metriorhynchoidea, where the
52	transition to life in the open ocean did occur (Fraas, 1902; Young et al. 2010; Wilberg 2015; Ősi
53	et al., 2018). Within Metriorhynchoidea, the fully aquatic subgroup Metriorhynchidae evolved a
54	wide range of pelagic adaptations, including hydrofoil-like forelimbs, a hypocercal tail, loss of
55	bony armour (osteoderms), and an osteoporotic-like lightening of the skull, femora and ribs (e.g.
56	Fraas, 1902; Andrews, 1913; Hua & Buffrénil, 1996; Young et al., 2010). Metriorhynchids are
57	also known to have had hypertrophied salt exocrine glands (Fernández & Gasparini, 2000, 2008;
58	Fernández & Herrera, 2009; Herrera et al., 2013; Cowgill et al., 2022a) and smooth scaleless
59	skin (Spindler et al., 2021). They possibly also evolved viviparity (see Young et al., 2010;
60	Herrera et al., 2017) and a poorly homeothermic form of endothermy (Séon et al., 2020).
61	Recently, computed tomography (CT) has been used to analyse the internal anatomy of
62	thalattosuchian skulls, investigating their brains, sinuses, vasculature, salt glands and bony
63	labyrinths (see Fernández & Herrera, 2009; Fernández et al., 2011; Herrera et al., 2013, 2018;
64	Brusatte et al., 2016; Pierce et al., 2017; Schwab et al., 2020, 2021; Bowman et al., 2022;
65	Cowgill et al., 2022a, 2022b; Wilberg et al., 2022). Thus, we are now beginning to get an
66	unparalleled insight into the neurosensory and internal rostral soft-tissue anatomy of
67	thalattosuchians, as well as the extensive changes that occurred within their crania as this group
68	transitioned from being semi-aquatic to being fully aquatic.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

One rostral structure that has not been investigated are the palatal grooves (sometimes also referred to as maxillo-palatine grooves, palatal canals, or anteroposterior sulci). All known thalattosuchians have paired anteroposteriorly aligned grooves on the roof of the oral cavity, present on the palatal surface of the palatines and maxillae (Fig. 1; Andrews, 1913; Parrilla-Bel et al., 2013; Foffa & Young 2014; Johnson et al., 2019, 2020; Aiglstorfer et al., 2020; Young et al., 2020a, 2021). What formed the palatal grooves is unknown. Given that this feature is ubiquitous within Thalattosuchia, but absent in other crocodylomorphs, it is possible that these grooves are linked to the land to sea transition that thalattosuchians underwent. To determine whether this is correct, here we investigate the palatal grooves in CT scans of six thalattosuchian species. We discovered that the posterior terminus of the grooves (on the palatines) is continuous with ossified canals that connect the oral cavity to the nasal cavity. Given their location, we hypothesise that these canals primarily held vasculature, and that the medial nasal arteries and veins, which are present in virtually all extant diapsids (Porter & Witmer 2015, 2016; Porter et al., 2016), took a novel course and were transmitted along the external grooves. This would have connected the palatal vascular plexus to the ethmoid vessels, creating a new heat exchange pathway that would have helped moderate brain and eye temperatures.

85

86

INSTITUTIONAL ABBREVIATIONS

- 87 **AMNH**, American Museum of Natural History, New York City, New York, USA; **CM**,
- 88 Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA; FMNH, Field Museum of
- Natural History, Chicago, Illinois, USA; **IRSNB**, Institut Royal des Sciences Naturelles de
- 90 Bruxelles, Belgium; **IVPP**, Institute of Paleontology and Paleoanthropology, Beijing, China;
- 91 **IWCMS**, Isle of Wight County Museums Services (Dinosaur Isle Museum and visitor attraction)

92	Sandown, United Kingdom; MLP, Museo de La Plata, La Plata, Argentina; MM, Minden
93	Museum, Minden, Germany; MNB, National Museum of the Bahamas, Nassau, Bahamas;
94	MNHN, Muséum national d'Histoire naturelle, Paris, France; MTM, Magyar
95	Természettudományi Múzeum, Budapest, Hungary; NMS, National Museum of Scotland,
96	Edinburgh, Scotland, UK; NHMUK, Natural History Museum, London, UK; OUVC, Ohio
97	University, Vertebrate Collection, Athens, Ohio, USA; TMM, Texas Memorial Museum,
98	University of Texas at Austin, Austin, Texas, USA; UF, University of Florida, Florida Museum
99	of Natural History, Gainesville, Florida, USA; USNM, National Museum of Natural History,
100	Washington DC, USA.
101	
102	MATERIALS & METHODS
103	We made internal rostral reconstructions of six thalattosuchian skulls based on CT scans
104	(see Table 1). Our sample includes the teleosauroid Plagiophthalmosuchus gracilirostris
105	(NHMUK PV OR 33095); two early-diverging metriorhynchoids <i>Pelagosaurus typus</i> (NHMUK
106	PV OR 32599) and Eoneustes gaudryi (NHMUK PV R 3263); and three metriorhynchids,
107	Thalattosuchus superciliosus (NHMUK PV R 11999), Cricosaurus araucanensis (MLP 72-IV-
108	7-1) and Cricosaurus schroederi (MM Pa1). Apart from Pl. gracilirostris and Cri. araucanensis,
109	which have nearly complete rostra, all the thalattosuchian specimens are missing the anterior
110	portion of the rostrum (comprising the premaxilla and the anterior end of the maxilla) but
111	preserve the portions relevant to this study.
112	The fossils were segmented manually using Materialise Mimics Innovation Suite (version
113	24.0, Materialize NV 2021) using the livewire tool. The palatal canals were identified in coronal
114	view as circular or elliptical holes in the palatine bones that bud off the nasal cavity and form a

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

canal oriented anteroventrally which communicates ventrally with the oral cavity. To aid our understanding of palatal vasculature in extant crocodylians, we examined a CT scan of a skull of Alligator mississippiensis (OUVC 9757) where the arteries and veins had been injected with a barium-latex contrast medium prior to CT scanning, which created a strong contrast between the vessels and surrounding tissues (see Porter et al., 2016). The vessels were segmented as one mask by using the threshold segmentation tool on the full scan in Materialize Mimics. The palatal vessels and plexus were then removed from this first mask and segmented using the threshold tool in coronal view at every fifth slice. The 3D interpolate function was then used to fill in the gaps between these slices. To compare the osteology of the crania, the thalattosuchians were compared to CT scans of 17 extant crocodylians from 11 species (Figs. 2C, 2D, and 3). We included two species of alligatorid, Alligator mississippiensis (OUVC 10606, OUVC 9761, OUVC 11415, TMM M-983, and USNM 211233) and Caiman crocodilus (FMNH 73711); seven species of crocodylid, Crocodylus acutus (FMNH 59071), Cro. johnstoni (TMM M-6807), Cro. moreletii (TMM M-4980), Cro. porosus (OUVC 10899), Cro. rhombifer (MNB AB50.071), Mecistops cataphractus (TMM M-3529), and Osteolaemus tetraspis (FMNH 98936); and two species of gavialid, Gavialis gangeticus (TMM M-5490 and UF herp 118998) and Tomistoma schlegelii (TMM M-6342 and USNM 211322). Our sample spanned the entire range of crocodylian snout shapes, from broad platyrostral to tubular longirostrine (see Figure 3). Finally, we included multiple specimens of A. mississippiensis, G. gangeticus and To. schlegelii to ascertain whether the

136

137

Results

presence of palatal grooves was impacted by ontogeny.

139

140

141

143

144

145

146

147

148

149

150

151

153

154

155

156

157

158

159

160

All thalattosuchian skulls in our sample have paired osseous canals that are enclosed by the palatines (Figs. 4-9). These canals are oriented anteroventrally connecting the nasal cavity to the oral cavity (Figs. 4-9). They open into the oral cavity via paired foramina at the posterior terminus of the palatal grooves (best seen in *Pelagosaurus typus*, Fig. 1B). In the semi-aquatic thalattosuchians (i.e. the teleosauroid *Plagiophthalmosuchus* and the early-diverging 142 metriorhynchoid *Pelagosaurus*), the canals are almost horizontal when seen in lateral view (Figs. 4C and 5C) and converge at a shallow angle when seen in dorsal view (Figs. 4B and 5B). In contrast, *Eoneustes* and the fully aquatic metriorhynchids have palatal canals that noticeably angled anteroventrally when seen in lateral view (Figs. 6C, 7C, 8C, and 9C). The metriorhynchids also have canals that converge anteriorly at a greater angle (Figs. 7B, 8B, and 9B). The thalattosuchian skulls in our sample also had paired anteroposteriorly aligned parasagittal grooves on the palatal surface of the palatines and maxilla (= palatal grooves; Figs. 1, 2A, and 2B). These grooves are a synapomorphy of Thalattosuchia, and are present in all examined teleosauroids and metriorhynchoids (e.g. Andrews, 1913; Parrilla-Bel et al., 2013; 152 Foffa & Young, 2014; Johnson et al., 2019, 2020; Aiglstorfer et al., 2020; Hua, 2020; Young et al., 2020a, 2021; Figs. 1, 2A and 2B). In Plagiophthalmosuchus and Pelagosaurus, the grooves are close to the skull midline and remain parallel on the palatines and for most of the maxilla (diverging only in the anterior-most region of the maxilla) (see Andrews, 1913; Pierce & Benton, 2006; Johnson et al., 2019, 2020; Figs. 1A, 1B, and 2A). In metriorhynchids however, the grooves diverge at the anterior palatines, and on the maxilla the grooves become largely parallel but are much more widely separated than in non-metriorhynchid thalattosuchians (see Andrews, 1913; Parrilla-Bel et al., 2013; Foffa & Young, 2014; Young et al., 2020a, 2021; Fig. 1). The

161	shift in morphology occurs gradually within Metriorhynchoidea, as the palatal grooves become
162	more widely spaced relative to the maxillary midline in the early-diverging metriorhynchoids
163	Teleidosaurus, Opisuchus and Eoneustes, being intermediate between Pelagosaurus and
164	metriorhynchids (see Aiglstorfer et al., 2020; Hua, 2020; NHMUK PV R 3263).
165	In contrast, all of the extant crocodylian skulls in our sample lacked the external palatal
166	grooves (Figs. 2C, 2D, and 3) and the internal canals (Figs. 10 and 11). This was true for
167	alligatorids (Alligator mississippiensis and Caiman crocodilus), crocodylids (Crocodylus acutus,
168	Cro. johnstoni, Cro. moreletii, Cro. porosus, Cro. rhombifer, Mecistops cataphractus, and
169	Osteolaemus tetraspis) and gavialids (Gavialis gangeticus and Tomistoma schlegelii). Moreover,
170	the grooves and canals are not present in any of the different ontogenetic stages we examined,
171	including the hatchling (Fig. 3A), juveniles (Figs. 3B, 3C, 3D, and 3J), subadults (Figs. 3F, 3L,
172	3N, and 3P) and adults (Figs. 3E, 3K, 3M, 3O, and 3Q). Based on our sample of thalattosuchians
173	and extant crocodylians we posit that the osseous palatal canals and the external grooves are
174	linked. Both structures are continuous, and are only found to co-occur (i.e. skulls lacking palatal
175	grooves also lack internal palatal canals, and skulls which have palatal grooves also have internal
176	palatal canals).
177	Based on first-hand examination of extant crocodylian skulls, the grooves are also absent
178	in the following specimens: the gawarids Gavialis gangeticus (NHMUK 1935-6-4-1, NHMUK
179	1946-1-7-3, NHMUK 1996-7-7-4, NHMUK 2005-1601) and Tomistoma schlegelii (NHMUK
180	1948-10-31-19); the crocodylids Mecistops cataphractus (NHMUK 64.4.4.1), Osteolaemus
181	tetraspis (NHMUK 1961-3-20-8, NHMUK 1962-6-30-5, NMS Z.2013.175, NMS Z.2014.3),
182	Crocodylus acutus (NHMUK 1975.997), Cro. halli (NHMUK 1886.5.20.1, NHMUK
183	1886.5.20), Cro. intermedius (NMS Z.1945.42), Cro. moreletii (NHMUK 1861.4.14), Cro.

184	niloticus (NHMUK 1949-1-1-2, NHMUK 1959.1.8.55), Cro. palustris (NHMUK 1868.4.9.11,
185	NMS Z.1945.43), Cro. porosus (NHMUK 1847.3.5.33, NHMUK 1929-2-225-3803, NHMUK
186	1943-8-18-4, NHMUK 1947-3-5-33), Cro. rhombifer (NMS Z.2014.18.2), and Cro. siamensis
187	(NHMUK 1921.4.1.168); and the alligatorids <i>Alligator mississippiensis</i> (NHMUK 68.2.12.6,
188	NHMUK ZD 290, NHMUK ZD 1973-2-21-2, NHMUK ZD 1974-3010, NHMUK ZD 1975-
189	1424, NHMUK ZD II-1-I), Alligator sinensis (NHMUK X184), Caiman crocodilus (NHMUK
190	1898.9.26.1, NHMUK 1933.5.10.1), Caiman latirostris (NHMUK 2008-270, NHMUK
191	86.10.4.2), Melanosuchus niger (NHMUK 1945-8-25-126), and Paleosuchus trigonatus
192	(NHMUK 1868.10.8.1). Coupled with our CT analyses, this broader sampling of extant
193	crocodylians shows that the longitudinal palatal grooves cannot be found in extant species.
194	In extinct taxa, the longitudinal grooves are absent on the maxilla and/or palatine, based
195	on first-hand examination in: the atoposadrid <i>Theriosuchus pusillus</i> (NHMUK PV OR 48216);
196	the goniopholidids Anteophthalmosuchus hooleyi (NHMUK PV R 3876; Ristevski et al., 2018)
197	Anteophthalmosuchus epikrator (IWCMS 2001.446, IWCMS 2005.127; Ristevski et al., 2018),
198	and Eutretauranosuchus delfsi (CM 8028; Pritchard et al., 2013); the pholidosaurids
199	Pholidosaurus purbeckensis (NHMUK PV R 3956, NHMUK PV R 36721) and Terminonarus
200	browni (AMNH 5851); the early-diverging dyrosauroids Elosuchus broinae (MNHN.F SAM
201	129; Meunier & Larsson, 2017) and Elosuchus cherifensis (MNHN.F MRS 340; Meunier &
202	Larsson, 2017); the bernissartiid Koumpiodontosuchus aprosdokiti (IWCMS 2012.203-204;
203	Sweetman et al., 2015); the hylaeochampsid Iharkutosuchus makadii (MTM 2006.52.1; Ősi et
204	al., 2007); the early-diverging gavialoid Eosuchus lerichei (IRSNB-R-49; Delfino et al., 2005);
205	the crocodylids Voay robustus (NHMUK PV R 36684, NHMUK PV R 36685), Brochuchus
206	pigotti (NHMUK PV R 7729) and Crocodylus palaeindicus (NHMUK PV OR 39795); and the

207	alligatoroid Diplocynodon hantoniensis (NHMUK PV OR 25166, NHMUK PV OR 30392; Rio
208	et al., 2020).

209	Based on information from the literature, the grooves are also absent in: the
210	shartegosuchoid Shartegosuchus asperapalatum (Dollman et al., 2018); the sphagesaurids
211	Caipirasuchus montealtensis (Andrade & Bertini, 2008), Sphagesaurus huenei (Pol, 2003) and
212	Yacarerani boliviensis (Novas et al., 2009); the baurusuchids Campinasuchus dinizi (Carvalho et
213	al., 2011) and Baurusuchus salgadoensis (Carvalho et al., 2005); the sebecians Hamadasuchus
214	rebouli (Larsson & Sues, 2007), Kaprosuchus saharicus (Sereno & Larsson, 2009) and
215	Montealtosuchus arrudacamposi (Carvalho et al., 2007); the goniopholidids Calsoyasuchus
216	valliceps (Tykoski et al., 2002) and Hulkepholis willetti (Salisbury & Naish, 2011); the
217	paluxysuchid Paluxysuchus newmanni (Adams, 2013); the pholidosaurids Meridiosaurus
218	vallisparadisi (Fortier et al., 2011) and Oceanosuchus boecensis (Hua et al., 2007); the
219	dyrosaurids Anthracosuchus balrogus (Hastings et al., 2015), Cerrejonisuchus improcerus
220	(Hastings et al., 2010), Dyrosaurus maghribensis (Jouve et al., 2006) and Guarinisuchus munizi
221	(Barbosa et al., 2008); the susisuchid Isisfordia duncani (Salisbury et al., 2006); the bernissartiid
222	Bernissartia fagesii (Martin et al., 2020); the paralligatorids Rugosuchus nonganensis (Wu et al.,
223	2001) and Shamosuchus spp. (Turner, 2015); the allodaposuchids Allodaposuchus precedens
224	(Delfino et al., 2008) and Lohuecosuchus megadontos (Narváez et al., 2015); and the gavialoid
225	Hanyusuchus sinensis (Iijima et al., 2022).

227

228

DISCUSSION

Palatal structures in Crocodylomorpha

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

The presence of palatal grooves is one of the defining characteristics of Thalattosuchia (Andrews, 1913; Parrilla-Bel et al., 2013; Foffa & Young, 2014; Johnson et al., 2019, 2020; Aiglstorfer et al., 2020; Young et al., 2020a, 2021). As we note herein, these grooves are not found in extant crocodylians, irrespective of their ontogenetic stage. Given that no other mesoeucrocodylian taxon with a maxillopalatine secondary palate has been observed to have palatal grooves, we posit that they are synapomorphies of Thalattosuchia. This is in agreement with phylogenetic analyses that have found these features to be explicit thalattosuchian synapomorphies (e.g. Johnson et al., 2020; Young et al., 2020a, 2021). The only other crocodylomorph known to have prominent palatal foramina and depressions is the notosuchian Simosuchus clarki. Kley et al. (2010: 38, figures 3B, 8F) described paired palatal fossae on the anterior palatal rami of the maxilla, at the premaxilla-maxilla boundary. Within each deep fossa is a palatal foramen. However, given their anterior position and lack of palatal grooves we do not seem consider them to be homologous to the palatal canals found in thalattosuchians. In the same location, large foramina are also found in the allodaposuchid *Lohuecosuchus megadontos*, however there is no surrounding fossa (Narváez et al., 2015). Interestingly, mid-way along the maxilla there are paired foramina close to the skull midline in Lohuecosuchus megadontos (Narváez et al., 2015). However, these palatal foramina are not found in any other species of allodaposuchid (Narváez et al., 2015: 25).

247

248

249

250

251

246

Palatal grooves in aquatic mammals and oral vascularisation

While no crocodylomorph clade shares the paired longitudinal palatal grooves seen in Thalattosuchia, curiously fossil and extant cetaceans do. A very similar morphology is present in the semi-aquatic remingtonocetid *Remingtonocetus harudiensis* (Bajpai *et al.*, 2011: figure 1.3),

the semi-aquatic protocetid Aegyptocetus tarfa (Bianucci & Gingerich, 2011: figure 3), and in
fully aquatic forms, including the early-diverging mysticete Aetiocetus weltoni (Ekdale &
Deméré, 2022: figure 2A), the early-diverging odontocetes Simocetus rayi (Fordyce, 2002: figure
4) and Echovenator sanderi (Churchill et al., 2016: figures 1F, 1G), and the beluga-like
odontocete Bohaskaia monodontoides (Veléz-Juarbe & Pyenson, 2012: figure 3). The same
morphology has also been described and figured for the extant gray whale (Eschrichtus robustus)
and finback whale (Balaenoptera physalus) (see Ekdale et al., 2015), and is also present in the
humpback whale (Megaptera novaeangliae) (Fig. 12). There are four striking parallels between
thalattosuchians and cetaceans: (1) the presence of anteroposteriorly aligned (longitudinal)
grooves, present along most of the maxilla with their posterior terminus either on the palatines
(as in thalattosuchians) or at the maxilla-palatine suture (cetaceans); (2) the longitudinal grooves
have a large foramen at their posterior terminus; (3) in both clades the morphology is present in
both semi-aquatic and fully aquatic forms; and (4) the grooves are closer to the skull midline in
the semi-aquatic forms (see <i>Pelagosaurus</i> herein and <i>Remingtonocetus</i> in Bajpai et al., 2011),
whereas in the fully aquatic forms the grooves are much more widely spaced (see the
metriorhynchids herein, and Aetiocetus in Ekdale & Deméré, 2022; Simocetus in Fordyce, 2002;
Echovenator in Churchill et al., 2016 and Bohaskaia in Veléz-Juarbe & Pyenson, 2012).
Intermediate morphologies also appear in cetacean evolution, such as in Aegyptocetus (Bianucci
& Gingerich, 2011).
In extant whales, the greater (or descending) palatine artery exits through the palatal
foramen and continues anteriorly via the longitudinal groove/sulcus (Deméré et al., 2008; Ekdale
et al., 2015). This has also been hypothesised for fossil cetaceans (e.g. Bajpai et al., 2011; Veléz-
Juarbe & Pyenson, 2012; Ekdale & Deméré, 2022). Although there has been a long discussion on

whether the greater palatine artery is associated with the evolution of baleen in mysticetes, this hypothesis seems to have been falsified (see Ekdale *et al.*, 2015; Ekdale & Deméré, 2022). Two further hypotheses have been suggested for the expansion of the palatine vasculature in cetaceans, positing that it is either a consequence of rostral elongation (Ichishima *et al.*, 2008) or for thermoregulation (Ekdale *et al.*, 2015). Ekdale *et al.* (2015: 699), however, noted that similar structures are not found in other mammals with elongate snouts (although the palatine foramina, and some form of palatal grooves, are). Within Crocodylomorpha there are numerous long-snouted groups, both extinct and extant, but none show evidence of palatal grooves. Moreover, among extant species long-snouted taxa do not have expanded rostral vasculature compared to broader snouted species (e.g. Bowman *et al.*, 2022).

Mysticetes have highly vascularised oral cavities, with the mouth being an important site for thermoregulation (e.g., Ford & Krause, 1992; Werth, 2007; Ford *et al.*, 2013; Ekdale *et al.*, 2015). This is unsurprising given that mysticetes bulk filter feed, which involves the mouth being repeatedly exposed to (often cold) sea water. However, odontocetes seem to lack vascular adaptations for thermoregulation within the oral cavity (Werth, 2007). This is supported by the palatine foramen being greatly reduced, or almost closed, in extant delphinoid odontocetes (although the foramina are greatly enlarged in the fossil genus *Odobenocetops*, see de Muizon *et al.*, 2002), although the grooves are present in the killer whale (*Orcinus orca*) and Cuvier's beaked whale (*Ziphius cavirostris*) (Fig. 13). Werth (2007) suggested that for odontocetes there was either less need to prevent oral heat loss, or that other regions of the body were more important sites for thermoregulation.

During their land-to-sea transition, pinnipedimorphs (seals and their close fossil relatives) evolved a similar morphology (Fig. 14). In early-diverging forms such as *Enalioarctos*, the

palatal grooves originating from the palatine foramina are relatively short (Berta, 1991). During phocid ('true seals') evolution, however, the grooves became increasingly broader and more elongated (Dewaele *et al.*, 2018; Rule *et al.*, 2020; Koretsky & Rahmat, 2021).

Many other amniote groups have a venous plexus within the soft tissues of the palate. In birds, the palatal plexus and the rete ophthalmicum help maintain eye and brain temperature (Kilgore *et al.*, 1979, Midtgård 1983, 1984, Porter & Witmer 2016), while in extant crocodylians there is an extensive palatal plexus (Porter *et al.*, 2016). In extant archosaurs the palatal plexus is supplied by the palatine artery (Figs. 15 and 16); however, the palatine arteries travel through the soft tissue of the secondary palate (see Porter & Witmer 2016; Porter *et al.*, 2016), unlike in cetaceans where they pass through the bony palate. Moreover, in extant archosaurs the palatine arteries are situated laterally in the rostrum (see Fig. 15; Porter & Witmer 2016; Porter *et al.*, 2016), not medially as in cetaceans. We propose an osteological correlate for the palatine vessels in thalattosuchians: the groove that originates at the anterior margin of the suborbital fenestra (Fig. 1: SOG). This groove is consistent with location of the palatine vessels in extant crocodylians (Porter *et al.*, 2016).

Based on the striking similarity between thalattosuchian palatal canal/groove system and those of cetaceans (particularly the fossil semi-aquatic and aquatic species), and the known routes and positions of extant crocodylian cranial vasculature, we hypothesise the following:

1. The thalattosuchian palatal canal/groove system transmitted the medial nasal vessels (artery and vein) or a novel branch thereof, and possibly also some of the rostral nerves. In all extant diapsids, the medial nasal vessels branch off from nasal vessels at the posterodorsal aspect of the nasal cavity. The medial nasal vessels then descend anteroventrally on either side of the median cartilaginous internasal septum to run on

321		the floor of the nasal cavity (e.g. Figs. 15 and 16; Porter & Witmer 2015, 2016; Porter
322		et al., 2016). Therefore, the paramedian/parasagittal position of the palatal
323		canal/groove system in thalattosuchians is consistent with the medial nasal vessels.
324	2.	Early in thalattosuchian evolution, the medial nasal vessels (or a ventral branch
325		thereof) pierced the bony palate to emerge on to the roof of the oral cavity
326	3.	The medial nasal vessels that entered the oral cavity anastomosed with the palatal
327		vascular plexus (which are supplied by the palatine vessels).
328	4.	The large internal osseous canals represent a hypertrophy of the medial nasal vessels.
329	5.	A novel heat exchange pathway was created by linking the palatal plexus to medial
330		nasal vessels. In extant crocodylians, the medial nasal vessels communicate with the
331		encephalic arteries and veins via the ethmoid vessels (Porter et al., 2016). The palatal
332		vascular plexus is a critical location of thermal exchange in extant crocodylians
333		(Porter et al., 2016). While the palatal plexus is not thought to have a substantial role
334		in thermoregulation of the brain in extant crocodylians, based on our proposed
335		vascular pathway, the palatal plexus would have moderated brain temperatures of
336		thalattosuchians via the ethmoid vessels.
337		
338	Increased	cephalic blood volume in Thalattosuchia
339	A novel he	eat exchange pathway to help maintain brain and eye temperatures would have been
340	greatly be	neficial for Metriorhynchidae. Not only did metriorhynchids have an elevated
341	metabolisi	m (possibly a poorly homeothermic form of endothermy, see Séon et al., 2020), but
342	they had e	expanded cerebral hemispheres and orbits relative to extant crocodylians and other

thalattosuchians (e.g. see Young et al., 2010; Herrera et al., 2018; Schwab et al., 2021). An

343

obvious question is why would semi-aquatic thalattosuchians also have had a novel heat exchange pathway? One of the defining features of Thalattosuchia is the enlarged cerebral carotid foramina on the occipital surface of the cranium, being found in both semi-aquatic and fully aquatic species (Andrews, 1913; Pierce & Benton, 2006; Jouve, 2009; Pol & Gasparini, 2009; Fernández *et al.*, 2011; Young *et al.*, 2012, 2013, 2020b; Herrera & Vennari, 2015; Brusatte *et al.*, 2016; Johnson *et al.*, 2020). Note, the cerebral carotid foramina become even larger in the clade *Zoneait* + Metriorhynchidae (Wilberg, 2015; Herrera *et al.*, 2018), while they become smaller in some freshwater teleosauroids (Herrera *et al.*, 2018). In mammals, larger encephalic arteries are associated with higher rates of blood flow, as flow (perfusion) is proportional to the radius of the arterial lumen raised to an exponent of approximately 2.5 (Seymour *et al.*, 2019). In extant crocodylians, the cerebral carotid arteries supply blood to the brain, eyes, nasal cavities, and the rostral sinuses (Porter *et al.*, 2016). Therefore, it is possible that these vessels supplied a greater volume of blood to these regions in thalattosuchians compared to extant crocodylians.

Further, these enlarged foramina do not represent the full extent of vascular hypertrophy observed in thalattosuchian skulls. The cerebral carotid vessels enter the greatly enlarged pituitary fossa chamber, another thalattosuchian synapomorphy, which in extant crocodylians houses the cavernous venous sinus (Porter *et al.*, 2016) and was possibly hypertrophied in thalattosuchians. Exiting the anterior margin of the pituitary fossa chamber are two ossified canals thought to transmit the orbital arteries (Brusatte *et al.*, 2016), with these canals being almost as wide as the cerebral carotid canals (Brusatte *et al.*, 2016; Pierce *et al.*, 2017; Herrera *et al.*, 2018; Wilberg *et al.*, 2022). Within Crocodylomorpha, only thalattosuchians and the dyrosaurid *Rhabdognathus* (Erb & Turner, 2021) are known to have the orbital arteries contained

within ossified canals. Further, the midbrain and hindbrain of thalattosuchians are very poorly delineated in their endocasts due to the hypertrophy of the longitudinal and transverse dural venous sinuses, the latter being continuous with the hypertrophied stapedial canals (Wharton, 2000; Fernández *et al.*, 2011; Brusatte *et al.*, 2016; Pierce *et al.*, 2017; Herrera *et al.*, 2018; Schwab *et al.*, 2021; Wilberg *et al.*, 2022). Collectively, this implies that thalattosuchians had increased encephalic blood volumes and potentially increased perfusion rates relative to extant crocodylians. As such, maintaining stable brain and eye temperatures may have required more extensive heat exchange mechanisms.

Unfortunately, we do not know the timing of these internal changes. All examined thalattosuchians show the same suite of vascular characters outlined above, and the palatal groove/canal system described herein. It is unclear whether encephalic vascular evolution in Thalattosuchia was stepwise and gradual, or whether one of these characteristics was a 'key adaptation' that triggered rapid change within the thalattosuchian skull. Only new fossil discoveries, of taxa basal to the teleosauroid-metriorhynchoid split, will allow us to understand this radical reorganisation.

Regardless of what selection pressures drove basal thalattosuchians to evolve these encephalic vascular characteristics, we posit that within Metriorhynchoidea, as the clade became increasingly aquatic, these characteristics made the evolution of larger orbits, larger cerebral hemispheres, and an elevated metabolism possible. An elevated metabolism and a pathway to help maintain stable brain and eye temperatures would also have made feeding below the thermocline viable, especially in a group considered to be primarily vision-based hunters (Massare, 1988; Martill et al., 1994; Young et al., 2010; Bowman et al., 2022). Isotopic analyses suggest that belemnites lived below the thermocline during the Jurassic (e.g. Jenkyns et al.,

2012; Xu et al., 2018), and an abundance of belemnite hooklets have been found within the body cavity of Middle Jurassic metriorhynchids from the Oxford Clay Formation of the UK (Martill, 1986). While the evolution of hypertrophied salt glands has been cited as an example of how physiological changes expanded the metriorhynchid prey envelope, to include osmoconforming species (Fernández & Gasparini, 2000, 2008; Cowgill et al., 2022a), thermophysiological changes were undoubtedly also exceptionally important. The suite of vascular characters outlined herein are unique to thalattosuchians, and no other crocodylomorph clade contained a lineage that evolved to become fully aquatic. Perhaps these changes in cranial vasculature were a necessary precursor for the development of the fully aquatic metriorhynchids.

CONCLUSIONS

Herein we show that the palatal grooves of thalattosuchians were unique within Crocodylomorpha. We cannot find any other crocodylomorph clade that had anteroposteriorly aligned grooves along their maxilla and palatines, and cannot find any evidence that the absence of the grooves is influenced by ontogeny. Based on CT scans of thalattosuchian skulls, these grooves are continuous with a pair of canals which travel through the palatines connecting the oral and nasal cavities. The canals open into the posterior terminus of the grooves via foramina (best seen in Fig. 1B). These internal canals are also not present in the CT scans of extant crocodylian skulls.

However, the palatal canals, foramina and grooves are strikingly similar to those of another group, cetaceans. Present in both fossil semi-aquatic species, and fossil and extant fully aquatic species, these structures transmit the greater palatine artery which supplies a palatal venous thermoregulatory structure. Given the convergence in palatal grooves between these

groups, we hypothesise that the canals and grooves of thalattosuchians transmitted hypertrophied vasculature. Based on the position of the canal/groove system, the most likely candidate are the medial nasal vessels. Connecting the medial nasal vessels to the palatal vascular plexus would have created a novel heat exchange pathway, one that linked the plexus (an important thermoregulatory site) to the vessels that supply blood to the brain and eyes. As thalattosuchians likely had increased cephalic blood volume and flow rates relative to other crocodylomorphs, a corresponding increase in cephalic thermoregulatory capabilities would be necessary. However, at present we cannot ascertain which came first: increased blood flow (e.g. wider cerebral carotid canal and external foramina), increased blood volume (e.g. orbital canals almost as wide as the carotid canals, and hypertrophied pituitary fossa chamber, transverse dural venous sinuses and stapedial canals), or the medial nasal vessel mediated thermoregulatory pathway. We also do not know the rate and order at which these changes occurred. New fossil discoveries are needed to elucidate thalattosuchian cephalic vascular evolution.

ACKNOWLEDGEMENTS

We thank S. Maidment (NHMUK), Z. Timmons (NMS) R. Allain (MNHN), and M. Gasparik and Z. Szentesi (MTM) for providing generous access to the specimens in their care, M. Johnson (Stuttgart) for providing photograph of the Chinese teleosaurid and S. Sachs (Bielefeld) for generously helping with the NMS figures. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

35	Adams 1L. 2013. A new neosuchian crocodyliform from the Lower Cretaceous (late Aptian)
36	Twin Mountains Formation of north-central Texas. Journal of Vertebrate Paleontology
37	33 :85–101
38	Aiglstorfer M, Havlik P, Herrera Y. 2020. The first metriorhynchoid crocodyliform from the
39	Aalenian (Middle Jurassic) of Germany, with implications for the evolution of
40	Metriorhynchoidea. Zoological Journal of the Linnean Society 188:522-551
41	Andrade MB, Bertini RJ. 2008. A new Sphagesaurus (Mesoeucrocodylia: Notosuchia) from
42	the Upper Cretaceous of Monte Alto City (Bauru Group, Brazil), and a revision of the
43	Sphagesauridae. Historical Biology 20(2):101–136
44	Andrews CW. 1913. A descriptive catalogue of the marine reptiles of the Oxford Clay, Part
45	Two. P. xxiv + 206. 13 pl. British Museum (Natural History), London
46	Bajpai S, Thewissen JGM, Conley RW. 2011. Cranial anatomy of middle Eocene
47	Remingtonocetus (Cetacea, Mammalia) from Kutch, India. Journal of Paleontology 85:703-
48	718
49	Barbosa JA, Kellner AWA, Viana MSS. 2008. New dyrosaurid crocodylomorph and evidences
50	for faunal turnover at the K–P transition in Brazil. <i>Proceeding of the Royal Society B</i>
51	275 (1641):1385–1391
52	Berta A. 1991. New Enaliarctos* (Pinnipedimorpha) from the Oligocene and Miocene of
53	Oregon and the role of 'enaliarctids' in pinniped phylogeny. Smithsonian Contributions to
54	Paleobiology 69:1–33
55	Bianucci B, Gingerich PD. 2011. Aegyptocetus tarfa, n. gen. et sp. (Mammalia, Cetacea), from
56	the middle Eocene of Egypt: clinorhynchy, olfaction, and hearing in a protocetid whale.
57	Journal of Vertebrate Paleontology 31 :1173–1188

458	Bowman CIW, Young MT, Schwab JA, Walsh S, Witmer LM, Herrera Y, Choiniere J,
459	Dollman K, Brusatte SL. 2022. Rostral neurovasculature indicates sensory trade-offs in
460	Mesozoic pelagic crocodylomorphs. The Anatomical Record 305:2654–2669
461	Brusatte SL, Muir A, Young MT, Walsh S, Steel L, Witmer LM. 2016. The braincase and
462	neurosensory anatomy of an Early Jurassic marine crocodylomorph: implications for
463	crocodylian sinus evolution and sensory transitions. <i>The Anatomical Record</i> 299 :1511–1530
464	Carvalho IS, Campos ACA, Nobre PH. 2005. Baurusuchus salgadoensis, a new
465	Crocodylomorpha from the Bauru Basin (Cretaceous), Brazil. Gondwana Research 8(1):11-
466	30
467	Carvalho IS, Teixeira VPA, Ferraz MLF, Ribeiro LCB, Martinelli AG, Neto FM, Sertich
468	JJW, Cunha GC, Cunha IC, Ferraz PF. 2011. Campinasuchus dinizi gen. et sp. nov., a
469	new Late Cretaceous baurusuchid (Crocodyliformes) from the Bauru Basin, Brazil. Zootaxa
470	2871 :19–42
471	Carvalho IS, Vasconcellos FM, Tavares SAS. 2007. Montealtosuchus arrudacamposi, a new
472	peirosaurid crocodile (Mesoeucrocodylia) from the Late Cretaceous Adamantina Formation
473	of Brazil. Zootaxa 1607 :35–46
474	Churchill M, Martinez-Caceres M, de Muizon C, Mnieckowski J, Geisler JH. 2016. The
475	Origin of high frequency hearing in whales. Current Biology 26:2144–2149
476	Cowgill T, Young MT, Schwab JA, Walsh S, Witmer LM, Herrera Y, Dollman KN, Turner
477	AH, Brusatte SL. 2022a. Cephalic salt gland evolution in Mesozoic pelagic
478	crocodylomorphs. Zoological Journal of the Linnean Society zlac027

179	Cowgill T, Young MT, Schwab JA, Walsh S, Witmer LM, Herrera Y, Dollman K,
180	Choiniere J, Brusatte SL. 2022b. Paranasal sinus system and upper respiratory tract
181	evolution in Mesozoic pelagic crocodylomorphs. <i>The Anatomical Record</i> 305 :2583–2603
182	Delfino M, Codrea V, Folie A, Dica P, Godefroit P, Smith T. 2008. A complete skull of
183	Allodaposuchus precedens Nopcsa, 1928 (Eusuchia) and a reassessment of the morphology
184	of the taxon based on the Romanian remains. Journal of Vertebrate Paleontology 28(1):111-
185	122
186	Delfino M, Piras P, Smith T. 2005. Anatomy and phylogeny of the gavialoid crocodylian
187	Eosuchus lerichei from the Paleocene of Europe. Acta Palaeontologica Polonica 50(3):565-
188	580
189	Deméré TA, McGowen MR, Berta A, Gatesy J. 2008. Morphological and molecular evidence
190	for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Systematic
191	Biology 57 :15–37
192	Dewaele L, Lambert O, Louwye S. 2018. A critical revision of the fossil record, stratigraphy
193	and diversity of the Neogene seal genus Monotherium (Carnivora, Phocidae). Royal Society
194	Open Science 5:171669
195	Dollman KN, Clark JM, Norell MA, Xing X, Choiniere JN. 2018. Convergent evolution of a
196	eusuchian-type secondary palate within Shartegosuchidae. American Museum Novitates
197	3901 :1–23
198	Ekdale EG, Deméré TA. 2022. Neurovascular evidence for a co-occurrence of teeth and baleen
199	in an Oligocene mysticete and the transition to filter-feeding in baleen whales. Zoological
500	Journal of the Linnean Society 194:395–415

501	Ekdale EG, Deméré TA, Berta A. 2015. Vascularization of the grey whale palate (Cetacea,
502	Mysticeti, Eschrichtius robustus): soft tissue evidence for an alveolar source of blood to
503	baleen. Journal of Anatomical Research 298:691–702
504	Erb A, Turner AH. 2021. Braincase anatomy of the Paleocene crocodyliform Rhabdognathus
505	revealed through high resolution computed tomography. PeerJ 9:e11253
506	Fernández, M. and Gasparini, Z. 2000. Salt glands in a Tithonian metriorhynchid
507	crocodyliform and their physiological significance. Lethaia 33:269-276
508	Fernández M, Gasparini Z. 2008. Salt glands in the Jurassic metriorhynchid Geosaurus:
509	implications for the evolution of osmoregulation in Mesozoic marine crocodyliforms.
510	Naturwissenschaften 95 :79–84
511	Fernández MS, Herrera Y. 2009. Paranasal sinus system of Geosaurus araucanensis and the
512	homology of the antorbital fenestra of metriorhynchids (Thalattosuchia: Crocodylomorpha).
513	Journal of Vertebrate Paleontology 29 :702–714
514	Fernández MS, Carabajal AP, Gasparini Z, Chong Diaz G. 2011. A metriorhynchid
515	crocodyliform braincase from northern Chile. Journal of Vertebrate Paleontology 31:369-
516	377
517	Foffa D, Young MT. 2014. The cranial osteology of Tyrannoneustes lythrodectikos
518	(Crocodylomorpha: Metriorhynchidae) from the Middle Jurassic of Europe. <i>PeerJ</i> 2:e608
519	Ford Jr TJ, Kraus SD. 1992. A rete in the right whale. Nature 359:680
520	Ford Jr TJ, Werth AJ, George JC. 2013. An intraoral thermoregulatory organ in the bowhead
521	whale (Balaena mysticetus), the corpus cavernosum maxillaris. The Anatomical Record
522	296 :701–708

523	Fordyce RE. 2002. Simocetus rayi (Odontoceti, Simocetidae, new family); a bizarre new archaic
524	Oligocene dolphin from the eastern North Pacific. Smithsonian Contributions to
525	Paleobiology 93:185–222
526	Fortier D, Perea D, Schultz C. 2011. Redescription and phylogenetic relationships of
527	Meridiosaurus vallisparadisi, a pholidosaurid from the Late Jurassic of Uruguay. Zoological
528	Journal of the Linnean Society 163:S257–S272
529	Fraas E. 1902. Die Meer-Krocodilier (Thalattosuchia) des oberen Jura unter specieller
530	Berücksichtigung von Dacosaurus und Geosaurus. Palaeontographica 49:1-72
531	Hastings AK, Bloch JI, Cadena EA, Jaramillo CA. 2010. A new small short-snouted
532	dyrosaurid (Crocodylomorpha, Mesoeucrocodylia) from the Paleocene of northeastern
533	Colombia. Journal of Vertebrate Paleontology 30:139–162
534	Hastings AK, Block JI, Jaramillo CA. 2015. A new blunt-snouted dyrosaurid, Anthracosuchus
535	balrogus gen. et sp. nov. (Crocodylomorpha, Mesoeucrocodylia) from the Palaeocene of
536	Colombia. Historical Biology 27:998–1020
537	Herrera Y, Vennari VV. 2015. Cranial anatomy and neuroanatomical features of a new
538	specimen of Geosaurini (Crocodylomorpha: Metriorhynchidae) from west-central Argentina.
539	Historical Biology 27:33–41
540	Herrera Y, Fernández MS, Gasparini Z. 2013. The snout of Cricosaurus araucanensis: a case
541	study in novel anatomy of the nasal region of metriorhynchids. <i>Lethaia</i> 46 :331–340
542	Herrera Y, Fernández MS, Lamas SG, Campos L, Talevi M, Gasparini Z. 2017.
543	Morphology of the sacral region and reproductive strategies of Metriorhynchidae: a counter-
544	intuitive approach. Earth and Environmental Science Transactions of the Royal Society of
545	Edinburgh 106:247–255

546	Herrera Y, Leardi JM, Fernandez MS. 2018. Braincase and endocranial anatomy of two
547	thalattosuchian crocodylomorphs and their relevance in understanding their adaptations to the
548	marine environment. PeerJ 6:e5686
549	Hua S. 2020. A new specimen of <i>Teleidosaurus calvadosii</i> (Eudes-Deslongchamps, 1866)
550	(Crocodylia, Thalattosuchia) from the Middle Jurassic of France. Annales de Paléontologie
551	106 :102423
552	Hua S, Buffetaut E, Legall C, Rogron P. 2007. Oceanosuchus boecensis n. gen, n. sp., a
553	marine pholidosaurid (Crocodylia, Mesosuchia) from the Lower Cenomanian of Normandy
554	(western France). Bulletin de la Société Géologique de France 178:503-513
555	Hua S, de Buffrénil V. 1996. Bone histology as a clue in the interpretation of functional
556	adaptations in the Thalattosuchia (Reptilia, Crocodylia). Journal of Vertebrate Paleontology
557	16 :703–717
558	Ichishima H, Sawamura H, Ito H, Otani S, Ishikawa H. 2008. Do the so-called nutrient
559	foramina on the palate tell us the presence of baleen plates in toothed mysticetes? In:
560	Abstracts of the Fifth Conference on Secondary Adaptation of Tetrapods to Life in Water. P
561	24–25
562	Iijima M, Qiao Y, Lin W, Peng Y, Yoneda M, Liu J. 2022. An intermediate crocodylian
563	linking two extant gharials from the Bronze Age of China and its human-induced extinction.
564	Proceedings of the Royal Society B 289:20220085
565	Jenkyns HC, Schouten-Huibers L, Schouten S, Sinninghe Damsté JS. 2012. Warm Middle
566	Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean.
567	Climate of the Past 8:215–226

568	Johnson MM, Young M1, Brusatte SL, Thuy B, Weis R. 2019. A catalogue of teleosauroids
569	(Crocodylomorpha: Thalattosuchia) from the Toarcian and Bajocian (Jurassic) of southern
570	Luxembourg. Historical Biology 31(9):1179–1194
571	Johnson MM, Young MT, Brusatte SL. 2020. The phylogenetics of Teleosauroidea
572	(Crocodylomorpha, Thalattosuchia) and implications for their ecology and evolution. PeerJ
573	8 :e9808
574	Jouve S. 2009. The skull of <i>Teleosaurus cadomensis</i> (Crocodylomorpha; Thalattosuchia), and
575	phylogenetic analysis of Thalattosuchia. Journal of Vertebrate Paleontology 29:88-102
576	Jouve S, Iarochène M, Bouya B, Amaghzaz M. 2006. A new species of Dyrosaurus
577	(Crocodylomorpha, Dyrosauridae) from the early Eocene of Morocco: phylogenetic
578	implications. Zoological Journal of the Linnean Society 148:603-656
579	Kilgore DL, Boggs DF, Birchard, G.F. 1979. Role of the rete mirabile ophthalmicum in
580	maintaining the body-to-brain temperature difference in pigeons. Journal of Comparative
581	Physiology 129 :119–122
582	Kley NJ, Sertich JJ, Turner AH, Krause DW, O'Connor PM, Georgi JA. 2010. Craniofacial
583	morphology of Simosuchus clarki (Crocodyliformes: Notosuchia) from the late Cretaceous of
584	Madagascar. Journal of Vertebrate Paleontology 30:13–98
585	Koretsky IA, Rahmat SJ. 2021. Unique short-faced Miocene seal discovered in Grytsiv
586	(Ukraine). Zoodiversity 55:143–154
587	Larsson HCE, Sues H-D. 2007. Cranial osteology and phylogenetic relationships of
588	Hamadasuchus rebouli (Crocodyliformes: Mesoeucrocodylia) from the Cretaceous of
589	Morocco. Zoological Journal of the Linnean Society 149:533-567

590	Martill DM. 1986. The diet of <i>Metriorhynchus</i> , a Mesozoic marine crocodile. <i>Neues Jahrbuch</i>
591	für Geologie und Palaontologie, Abhandlungen 173:621–625
592	Martill DM, Taylor MA, Duff KL, Riding JB, Bown PR. 1994. The trophic structure of the
593	biota of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. Journal of the
594	Geological Society 151:173–194
595	Massare JA. 1988. Swimming capabilities of Mesozoic marine reptiles: Implications for method
596	of predation. Paleobiology 14:187–205
597	Martin JE, Smith T, Salaviale C, Adrien J, Delfino M. 2020. Virtual reconstruction of the
598	skull of Bernissartia fagesii and current understanding of the neosuchian-eusuchian
599	transition. Journal of Systematic Palaeontology 18:1079–1101
600	Meunier LV, Larsson HC. 2017. Revision and phylogenetic affinities of Elosuchus
601	(Crocodyliformes). Zoological Journal of the Linnean Society 179(1):169–200
602	Midtgård U. 1983. Scaling of the brain and the eye cooling system in birds: a morphometric
603	analysis of the rete ophthalmicum. Journal of Experimental Zoology 225:197-207
604	Midtgård U. 1984. Blood vessels and the occurrence of arteriovenous anastomoses in cephalic
605	heat loss areas of mallards, Anas platyrhynchos (Aves). Zoomorphology 104:323-335
606	de Muizon C, Domning DP, Ketten DR. 2002. Odobenocetops peruvianus, the Walrus-
607	convergent delphinoid (Mammalia: Cetacea) from the Early Pliocene of Peru. Smithsonian
608	Contributions to Paleobiology 93:223–262
609	Narváez I, Brochu CA, Escaso F, Pérez-García A, Ortega F. 2015. New crocodyliforms from
610	Southwestern Europe and definition of a diverse clade of European Late Cretaceous basal
611	eusuchians. PLoS ONE 10 (11):e0140679

612	Novas FE, Pais DF, Pol D, Carvalno IS, Scanteria A, Mones A, Suarez Rigios M. 2009.
613	Bizarre notosuchian crocodyliform with associated eggs from the Upper Cretaceous of
614	Bolivia. Journal of Vertebrate Paleontology 29:1316–1320
615	Ősi A, Clark JM, Weishampel DB. 2007. First report on a new basal eusuchian crocodyliform
616	with multicusped teeth from the Upper Cretaceous (Santonian) of Hungary. Neues Jahrbuch
617	für Geologie und Paläontologie, Abhandlungen 243 :169–177
618	Ősi A, Young MT, Galácz A, Rabi M. 2018. A new large-bodied thalattosuchian crocodyliforn
619	from the Lower Jurassic (Toarcian) of Hungary, with further evidence of the mosaic
620	acquisition of marine adaptations in Metriorhynchoidea. PeerJ 6:e4668
621	Parrilla-Bel J, Young MT, Moreno-Azanza M, Canudo JI. 2013. The first metriorhynchid
622	crocodyliform from the Middle Jurassic of Spain, with implications for evolution of the
623	subclade Rhacheosaurini. PLOS ONE 8(1):e54275
624	Pierce SE, Benton MJ, 2006. Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia:
625	Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England.
626	Journal of Vertebrate Paleontology 26 :621–635
627	Pierce SE, Williams M, Benson RBJ. 2017. Virtual reconstruction of the endocranial anatomy
628	of the early Jurassic marine crocodylomorph Pelagosaurus typus (Thalattosuchia). PeerJ
629	5 :e3225
630	Pol D. 2003. New remains of Sphagesaurus (Crocodylomorpha: Mesoeucrocodylia) from the
631	Upper Cretaceous of Brazil. Journal of Vertebrate Paleontology 23(4):817–831
632	Pol D, Gasparini Z. 2009. Skull anatomy of Dakosaurus andiniensis (Thalattosuchia:
633	Crocodylomorpha) and the phylogenetic position of Thalattosuchia. Journal of Systematic
634	Palaeontology 7:163–197

635	Porter WR, Witmer LM. 2015. Vascular patterns in Iguanas and other squamates: blood
636	vessels and sites of thermal exchange. PLoS ONE 10:e0139215
637	Porter WR, Witmer LM. 2016. Avian cephalic vascular anatomy, sites of thermal exchange,
638	and the rete ophthalmicum. The Anatomical Record 299:1461-1486
639	Porter WR, Sedlmayr JC, Witmer LM. 2016. Vascular patterns in the heads of crocodilians:
640	blood vessels and sites of thermal exchange. Journal of Anatomy 229:800-824
641	Pritchard AC, Turner AH, Allen ER, Norell MA. 2013. Osteology of a North American
642	goniopholidid (Eutretauranosuchus delfsi) and palate evolution in Neosuchia. American
643	Museum Novitates 3783:1–56
644	Rio JP, Mannion PD, Tschopp E, Martin JE, Delfino M. 2020. Reappraisal of the
645	morphology and phylogenetic relationships of the alligatoroid crocodylian Diplocynodon
646	hantoniensis from the late Eocene of the United Kingdom. Zoological Journal of the Linnean
647	Society 188 :579–629
648	Ristevski J, Young MT, Andrade MB, Hastings AK. 2018. A new species of
649	Anteophthalmosuchus (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of
650	the Isle of Wight, United Kingdom, and a review of the genus. Cretaceous Research 84:340-
651	383
652	Rule JR, Adams JW, Rovinsky DS, Hocking DP, Evans AR, Fitzgerald EMG. 2020. A new
653	large-bodied Pliocene seal with unusual cutting teeth. Royal Society Open Science 7:201591
654	Salisbury SW, Molnar RE, Frey E, Willis P. 2006. The origin of modern crocodyliforms: new
655	evidence from the Cretaceous of Australia. Proceedings of the Royal Society B 273:2439–
656	2448

657	Salisbury SW, Naish D. 2011. Crocodilians. In: Batten, D., Lane, P.D. (eds). English Wealden
658	fossils. Palaeontological Association, Aberystwyth, 305-369
659	Seymour RS, Hu Q, Snelling EP, White CR. 2019. Interspecific scaling of blood flow rates
660	and arterial sizes in mammals. Journal of Experimental Biology 222(7): jeb199554
661	Schwab JA, Young MT, Neenan JM, Walsh SA, Witmer LM, Herrera Y, Allain R, Brochu
662	CA, Choiniere JN, Clark JM, Dollman KN, Etches S, Fritsch G, Gignac PM,
663	Ruebenstahl A, Sachs S, Turner AH, Vignaud P, Wilberg EW, Xu X, Zanno LE,
664	Brusatte SL. 2020. Inner ear sensory system changes as extinct crocodylomorphs
665	transitioned from land to water. Proceedings of the National Academy of Sciences
666	117 :10422–10428
667	Schwab JA, Young MT, Herrera Y, Witmer LM, Walsh S, Katsamenis OL, Brusatte SL.
668	2021. The braincase and inner ear of 'Metriorhynchus' cf. brachyrhynchus - implications for
669	aquatic sensory adaptations in crocodylomorphs. Journal of Vertebrate Paleontology
670	41 :e1912062
671	Séon N, Amiot R, Martin JE, Young MT, Middleton H, Fourel F, Picot L, Valentin X,
672	Lécuyer C. 2020. Thermophysiologies of Jurassic marine crocodylomorphs inferred from the
673	oxygen isotope composition of their tooth apatite. Philosophical Transactions of the Royal
674	Society B 375 :2019–2039
675	Sereno PC, Larsson HCE. 2009. Cretaceous Crocodyliforms from the Sahara. ZooKeys 28:1–
676	143
677	Spindler F, Lauer R, Tischlinger H, Mäuser M. 2021. The integument of pelagic
678	crocodylomorphs (Thalattosuchia: Metriorhynchidae). Palaeontologia Electronica 24:a25

6/9	Sweetman SC, Pedreira-Segade U, Vidovic SU. 2015. A new bernissartiid crocodyliform from
680	the Lower Cretaceous Wessex Formation (Wealden Group, Barremian) of the Isle of Wight,
681	southern England. Acta Palaeontologica Polonica 60:257–268
682	Turner AH. 2015. A review of Shamosuchus and Paralligator (Crocodyliformes, Neosuchia)
683	from the Cretaceous of Asia. PLOS ONE 10:e0118116
684	Tykoski RS, Rowe TB, Ketcham RA, Colbert MW. 2002. Calsoyasuchus valliceps, a new
685	crocodyliform from the Early Jurassic Kayenta Formation of Arizona. Journal of Vertebrate
686	Paleontology 22:593–611
687	Vélez-Juarbe J, Pyenson ND. 2012. Bohaskaia monodontoides, a new monodontid (Cetacea,
688	Odontoceti, Delphinoidea) from the Pliocene of the western North Atlantic Ocean. Journal og
689	Vertebrate Paleontology 32 :476–484
690	Werth AJ. 2007. Adaptations of the cetacean hyolingual apparatus for aquatic feeding and
691	thermoregulation. <i>The Anatomical Record</i> 290 :546–568
692	Wharton DS. 2000. An enlarged endocranial venous system in Steneosaurus pictaviensis
693	(Crocodylia: Thalattosuchia) from the Upper Jurassic of Les Lourdines, France. Comptes
694	Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science 331(3):221–
695	226
696	Wilberg EW. 2015. A new metriorhynchoid (Crocodylomorpha, Thalattosuchia) from the
697	Middle Jurassic of Oregon and the evolutionary timing of marine adaptations in
698	thalattosuchian crocodylomorphs. Journal of Vertebrate Paleontology 35:e902846
699	Wilberg EW, Beyl AR, Pierce SE, Turner AH. 2022. Cranial and endocranial anatomy of a
700	three-dimensionally preserved teleosauroid thalattosuchian skull. The Anatomical Record
701	305 :2620–2653

/ 02	Xu W, Ruhi M, Jenkyns HC, Leng MJ, Huggett JM, Minisini D, Ullmann CV, Riding JB,
703	Weijers JWH, Storm MS, Percival LME, Tosca NJ, Idiz EF, Tegelaar EW, Hesselbo
704	SP. 2018. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic
705	controls on local sedimentary processes (Cardigan Bay Basin, UK). Early and Planetary
706	Science Letters 484 :396–411
707	Wu X-C, Cheng ZW, Russell AP, Cumbaa SL. 2001. Cranial anatomy of a new crocodyliform
708	(Archosauria: Crocodylomorpha) from the Lower Cretaceous of Song-Liao Plain,
709	northeastern China. Canadian Journal of Earth Sciences 38:1653-1663
710	Young MT, Andrade MB, Etches S, Beatty BL. 2013. A new metriorhynchid crocodylomorph
711	from the Lower Kimmeridge Clay Formation (Late Jurassic) of England, with implications
712	for the evolution of dermatocranium ornamentation in Geosaurini. Zoological Journal of the
713	Linnean Society 169 :820–848
714	Young MT, Brignon A, Sachs S, Hornung J, Foffa D, Kitson JJN, Johnson MM, Steel L.
715	2021. Cutting the Gordian knot: a historical and taxonomic revision of the Jurassic
716	crocodylomorph Metriorhynchus. Zoological Journal of the Linnean Society 192(2):510–553
717	Young MT, Brusatte SL. Andrade MB, Desojo JB, Beatty BL, Steel L, Fernández MS,
718	Sakamoto M, Ruiz-Omeñaca JI, Schoch RR. 2012. The cranial osteology and feeding
719	ecology of the metriorhynchid crocodylomorph genera Dakosaurus and Plesiosuchus from
720	the Late Jurassic of Europe. PLOS ONE 7:e44985
721	Young MT, Brusatte SL, Ruta M, Andrade MB. 2010. The evolution of Metriorhynchoidea
722	(Mesoeucrocodylia, Thalattosuchia): an integrated approach using geometrics
723	morphometrics, analysis of disparity and biomechanics. Zoological Journal of the Linnean
724	Society 158 :801–859

725	Young MT, Foffa D, Steel L, Etches S. 2020b. Macroevolutionary trends in the genus
726	Torvoneustes (Crocodylomorpha: Metriorhynchidae) and discovery of a giant specimen from
727	the Late Jurassic of Kimmeridge, UK. Zoological Journal of the Linnean Society 189(2):483-
728	493
729	Young MT, Sachs S, Abel P, Foffa D, Herrera Y, Kitson JJN. 2020a. Convergent evolution
730	and possible constraint in the posterodorsal retraction of the external nares in pelagic
731	crocodylomorphs. Zoological Journal of the Linnean Society 189(2):494–520
732	

733	Figures
734	
735	FIGURE 1. Comparison of the palatal grooves in different thalattosuchian clades, skulls shown
736	in palatal view. (A) IVPP V 10098, Chinese teleosaurid; (B) NHMUK PV OR 32599, the early-
737	diverging metriorhynchoid Pelagosaurus typus; (C) NHMUK PV R 3700, the metriorhynchid
738	'Metriorhynchus' brachyrhynchus. Abbreviations: PG, palatal groove; SOG, suborbital groove.
739	Planned for full page width.
740	
741	FIGURE 2. Comparison between the thalattosuchian and extant crocodylians studied, CT
742	reconstructions of the skulls shown in palatal view. (A) NHMUK PV OR 32599, the early-
743	diverging metriorhynchoid Pelagosaurus typus; (B) MLP 72-IV-7-1, the metriorhynchid
744	Cricosaurus araucanensis; (C) UF herp 118998, the gavialid Gavialis gangeticus; (D) TMM
745	M983, the alligatorid Alligator mississippiensis. Abbreviations: PG, palatal groove.
746	Planned for full page width.
747	
748	FIGURE 3. Comparison of the extant crocodylians studied, CT reconstructions of the skulls
749	shown in palatal view. Note, none of the extant crocodylians have palatal grooves. (A) OUVC
750	10606, hatchling specimen of Alligator mississippiensis; (B) OUVC 9761, juvenile specimen of
751	Alligator mississippiensis; (C) OUVC 11415, juvenile specimen of Alligator mississippiensis;
752	(D) TMM M-983, juvenile specimen of Alligator mississippiensis; (E) USNM 211233, adult
753	specimen of Alligator mississippiensis; (F) FMNH 73711, subadult specimen of Caiman
754	crocodilus; (G) FMNH 59071, adult specimen of Crocodylus acutus; (H) MNB AB50.071, adult
755	specimen of Crocodylus rhombifer; (I) TMM M-4980, adult specimen of Crocodylus moreletii;
756	(J) OUVC 10899, juvenile specimen of <i>Crocodylus porosus</i> ; (K) FMNH 98936, adult specimen

757	of Osteolaemus tetraspis; (L) TMM M-6807, subadult specimen of Crocodylus johnstoni; (M)
758	TMM M-3529, adult specimen of <i>Mecistops cataphractus</i> ; (N) TMM M-5490, subadult
759	specimen of Gavialis gangeticus; (O) UF herp 118998, adult specimen of Gavialis gangeticus;
760	(P) TMM M-6342, subadult specimen of <i>Tomistoma schlegelii</i> ; (Q) USNM 211322, adult
761	specimen of Tomistoma schlegelii.
762	Planned for full page width.
763	
764	FIGURE 4. The early-diverging teleosauroid Plagiophthalmosuchus gracilirostris (NHMUK
765	PV OR 15500), from the early Toarcian of the UK. (A) snout coronal view showing the position
766	of the palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral
767	view, both showing the palatal canals in red and the CT slice of (A) shown in blue.
768	Abbreviations: Alv, alveolus; DAC, dorsal alveolar canal; PC, palatal canal.
769	Planned for full page width.
770	
771	FIGURE 5. The early-diverging metriorhynchoid <i>Pelagosaurus typus</i> (NHMUK PV OR 32599)
772	referred specimen, early Toarcian of France. (A) snout coronal view showing the position of the
773	palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view,
774	both showing the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv,
775	alveolus; DAC, dorsal alveolar canal; PC, palatal canal.
776	Planned for full page width.
777	
778	FIGURE 6. The early-diverging metriorhynchoid <i>Eoneustes gaudryi</i> (NHMUK PV R 3263)
779	holotype, Bathonian of France. (A) snout coronal view showing the position of the palatal canals.
780	Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing

781	the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus;
782	DAC, dorsal alveolar canal; PC, palatal canal.
783	Planned for full page width.
784	
785	FIGURE 7. The metriorhynchid <i>Thalattosuchus superciliosus</i> (NHMUK PV R 11999) referred
786	specimen, middle Callovian of the UK. (A) snout coronal view showing the position of the
787	palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view,
788	both showing the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv
789	alveolus; DAC, dorsal alveolar canal; PC, palatal canal.
790	Planned for full page width.
791	
792	FIGURE 8. The metriorhynchid Cricosaurus araucanensis (MLP 72-IV-7-1) holotype,
793	Tithonian of Argentina. (A) snout coronal view showing the position of the palatal canals. Three-
794	dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the
795	palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC,
796	dorsal alveolar canal; PC, palatal canal.
797	Planned for full page width.
798	
799	FIGURE 9. The metriorhynchid Cricosaurus schroederi (MM Pa1), from the early Valanginian
800	of Germany. (A) snout coronal view showing the position of the palatal canals. Three-
801	dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the
802	palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC,
803	dorsal alveolar canal; PC, palatal canal.
804	Planned for full page width.

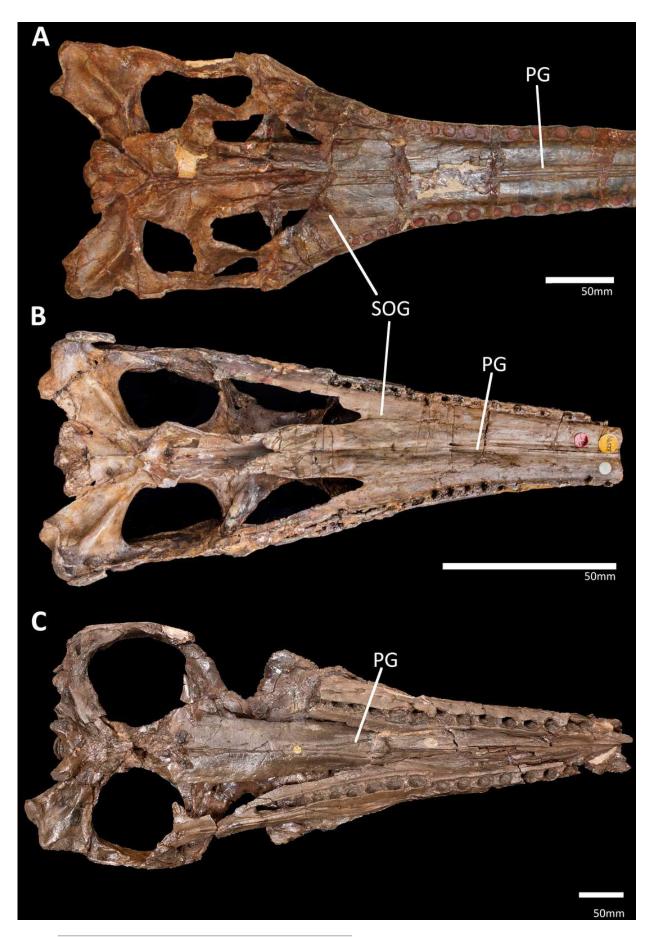
805	
806	FIGURE 10. The extant gavialid <i>Gavialis gangeticus</i> (UF-herp-118998). (A) snout coronal view
807	showing the lack of palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal,
808	and (C) lateral view, both showing the palatal canals in red and the CT slice of (A) shown in
809	blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus; DAC, dorsal alveolar canal;
810	Nas, nasal cavity.
811	Planned for full page width.
812	
813	FIGURE 11. The extant alligatorid Alligator mississippiensis (USNM 211233). (A) snout
814	coronal view showing the lack of palatal canals. Three-dimensional reconstruction of the skull in
815	(B) dorsal, and (C) lateral view, both showing the palatal canals in red and the CT slice of (A)
816	shown in blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus; Nas, nasal cavity.
817	Planned for full page width.
818	
819	FIGURE 12. The extant humpback whale (Megaptera novaeangliae). (A) skull showing the
820	palate, due to size the skull it is shown at an angle; (B) a close-up on the right palatal groove.
821	Abbreviations: PG, palatal groove.
822	Planned for full page width.
823	
824	FIGURE 13. Comparison of the palatal grooves in different extant odontocete cetaceans, skulls
825	shown in palatal view. (A) Cuvier's beaked whale (Ziphius cavirostris) NMS 2020.9.26; (B)
826	killer whale (Orcinus orca) NMS Z.2015.179. Abbreviations: PG, palatal groove.
827	Planned for full page width.
828	

829	FIGURE 14. Comparison of the palatal grooves in different extant pinnipeds, skulls shown in
830	palatal view. (A) the Antarctic fur seal (Arctocephalus gazella) NMS 2007.91.10; (B) the
831	Leopard seal (<i>Hydrurga leptonyx</i>) NMS 1822.240.T29; (C) the Harbour seal (<i>Phoca vitulina</i>)
832	NMS 1996.99.13. (A) is an otariid, while (B) and (C) are phocids. Abbreviations: PG, palatal
833	groove.
834	Planned for full page width.
835	
836	FIGURE 15. The extant alligatorid <i>Alligator mississippiensis</i> (OUVC 9757) in dorsal view.
837	Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine
838	artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the
839	vasculature. Abbreviations: a+vMedNas, medial nasal artery and vein; a+vPal, palatine artery
840	and vein; a+vPPlex, arterial and venous palatal plexus.
841	Planned for full page width.
842	
843	FIGURE 16. The extant alligatorid <i>Alligator mississippiensis</i> (OUVC 9757) in lateral view.
844	Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine
845	artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the
846	vasculature. Abbreviations: a+vMedNas, medial nasal artery and vein; a+vPal, palatine artery
847	and vein; a+vPPlex, arterial and venous palatal plexus.
848	Planned for full page width.

Table 1(on next page)

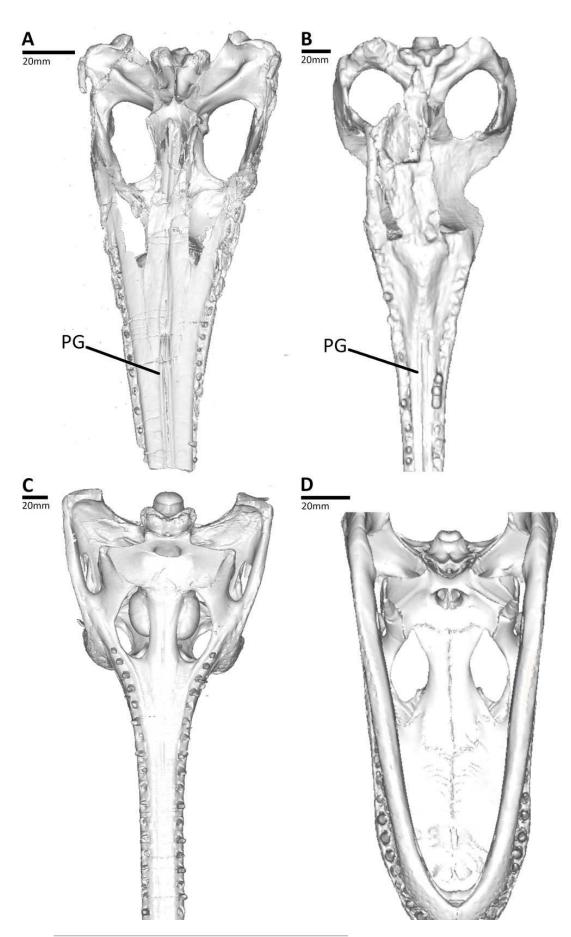
List of specimens examined herein.

1 TABLE 1. List of specimens examined herein.

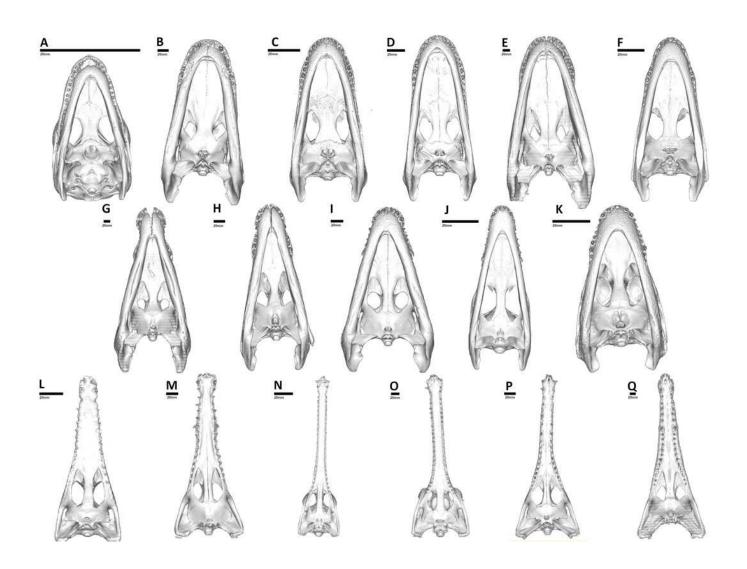

Species	Specimen number	Age	Voxel size (mm)	Facility/Source
Alligator mississippiensis	OUVC 10606	Recent	0.045	Ohio University MicroCT Facility, USA
Alligator mississippiensis	OUVC 9761	Recent	0.5 X 1	Ohio Health O'Bleness Hospital, USA
Alligator mississippiensis	OUVC 11415	Recent	0.0493	Ohio University MicroCT Facility, USA
Alligator mississippiensis	TMM M983	Recent	0.25 X 0.48	High-Resolution X-ray CT facility, University of Texas, USA
Alligator mississippiensis	USNM 211233	Recent	0.625	Ohio Health O'Bleness Hospital, USA
Caiman crocodilus	FMNH 73711	Recent	0.065 X 0.142	High-Resolution X-ray CT facility, University of Texas, USA
Crocodylus acutus	FMNH 59071	Recent	0.625	Ohio Health O'Bleness Hospital, USA
Crocodylus rhombifer	MNB AB50.0171	Recent	0.1748 X 0.5	High-Resolution X-ray CT facility, University of Texas, USA
Crocodylus moreletii	TMM M-4980	Recent	0.1904 X 0.5	High-Resolution X-ray CT facility, University of Texas, USA
Crocodylus porosus	OUVC 10899	Recent	0.0472	Ohio Health O'Bleness Hospital, USA
Osteolaemus tetraspis	FMNH 98936	Recent	0.0546875 X 0.1108	High-Resolution X-ray CT facility, University of Texas, USA
Crocodylus johnstoni	TMM M-6807	Recent	0.223	High-Resolution X-ray CT facility, University of Texas, USA

Mecistops cataphractus	TMM M-3529	Recent	0.165 X 0.5	High-Resolution X-ray CT facility, University of Texas, USA
Gavialis gangeticus	TMM M-5490	Recent	0.228	High-Resolution X-ray CT facility, University of Texas, USA
Gavialis gangeticus	UF-herp-118998	Recent	0.14654672	Florida Museum of Natural History, USA
Tomistoma schlegelii	USNM 211322	Recent	0.625	Ohio Health O'Bleness Hospital, USA
Tomistoma schlegelii	TMM M-6342	Recent	0.165 X 0.46	High-Resolution X-ray CT facility, University of Texas, USA
Plagiophthalmosuchus gracilirostris	NHMUK PV OR 15500	Toarcian	0.236872 X 0.1185	μVIS X-Ray Imaging Centre, University of Southampton, UK
Pelagosaurus typus	NHMUK PV OR 32599	Toarcian	0.098627983	Nikon XT H 225S CT system, Natural History Museum, London, UK
Eoneustes gaudryi	NHMUK PV R 3263	Bathonian	0.159849	μVIS X-Ray Imaging Centre, University of Southampton, UK
Thalattosuchus superciliosus	NHMUK PV R 11999	Callovian	0.12	μVIS X-Ray Imaging Centre, University of Southampton, UK
Cricosaurus araucanensis	MLP 72-IV-7-1	Tithonian	0.448	Hospital Interzonal de Agudos de la Matanza "Dr. Diego Pairoissien" La Matanza, Argentina
Cricosaurus schroederi	MM Pa1	Valanginian	0.5	Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany

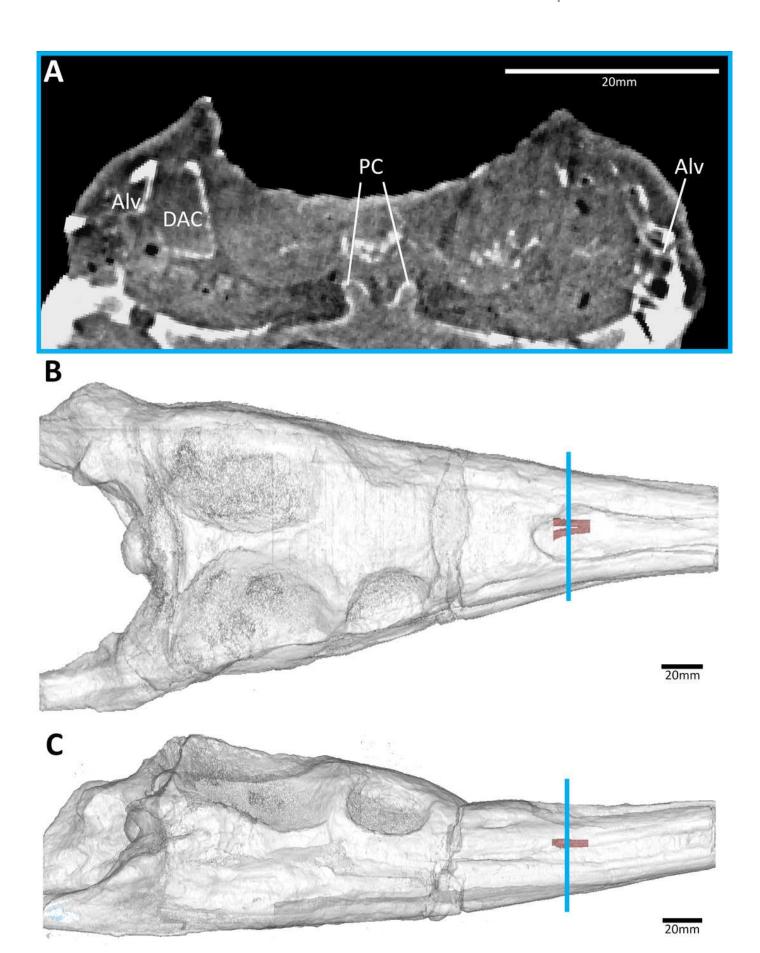
Comparison of the palatal grooves in different thalattosuchian clades, skulls shown in palatal view.


(A) IVPP V 10098, Chinese teleosaurid; (B) NHMUK PV OR 32599, the early-diverging metriorhynchoid *Pelagosaurus typus*; (C) NHMUK PV R 3700, the metriorhynchid 'Metriorhynchus' brachyrhynchus. Abbreviations: PG, palatal groove; SOG, suborbital groove.

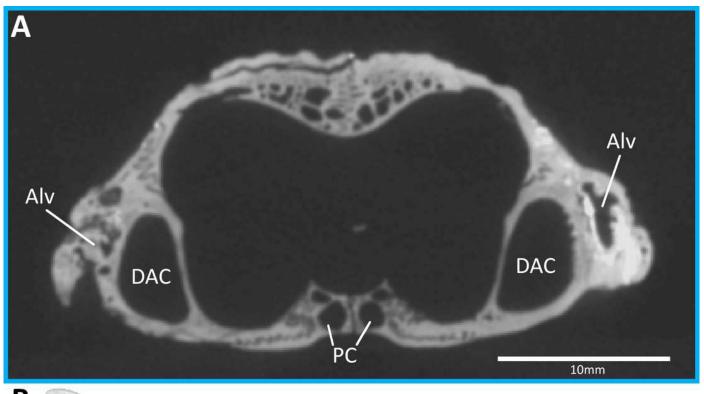
Comparison between the thalattosuchian and extant crocodylians studied, CT reconstructions of the skulls shown in palatal view.

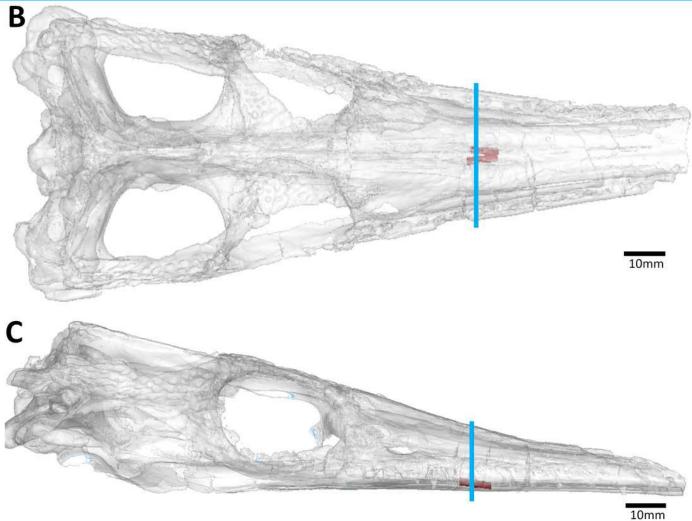

(A) NHMUK PV OR 32599, the early-diverging metriorhynchoid *Pelagosaurus typus*; (B) MLP 72-IV-7-1, the metriorhynchid *Cricosaurus araucanensis*; (C) UF herp 118998, the gavialid *Gavialis gangeticus*; (D) TMM M983, the alligatorid *Alligator mississippiensis*. Abbreviations: PG, palatal groove.

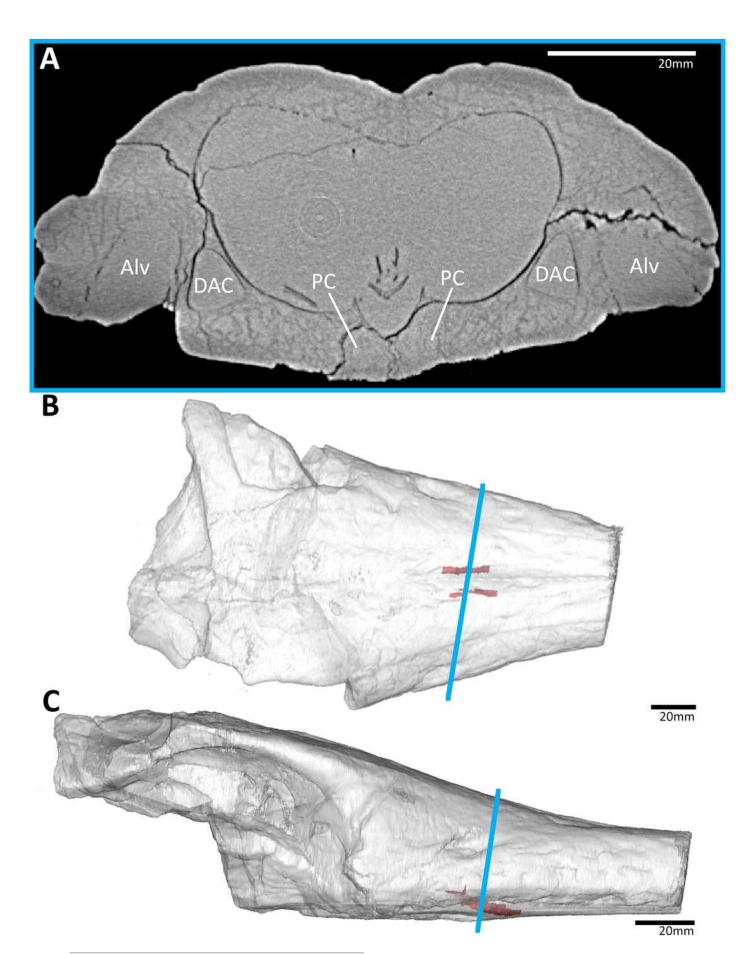
PeerJ reviewing PDF | (2023:01:81259:0:0:NEW 6 Jan 2023)

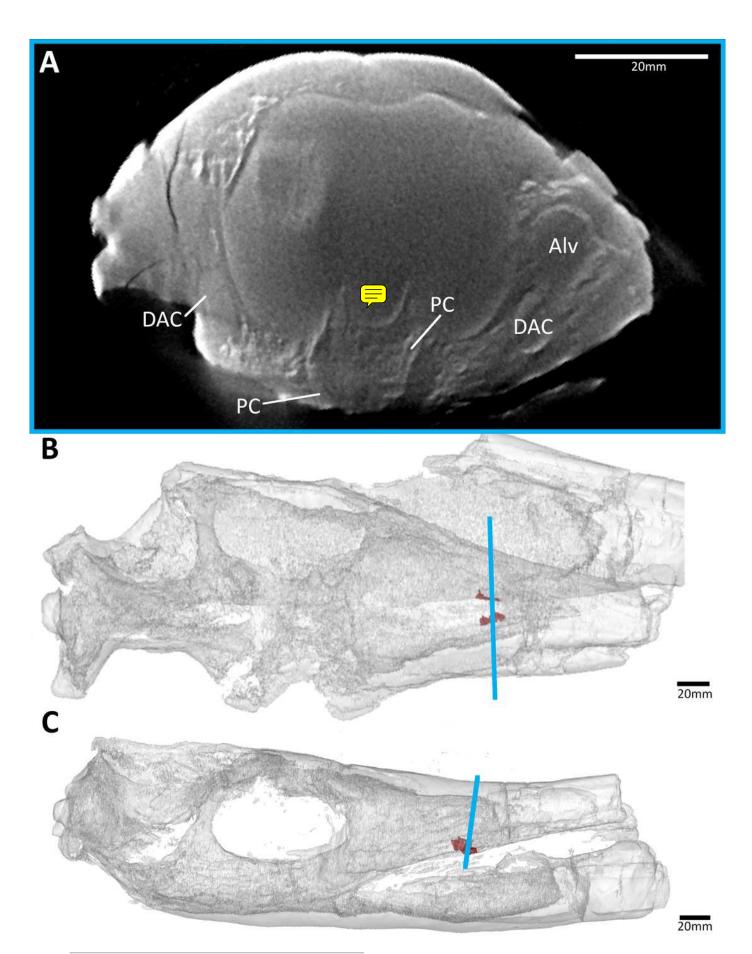

Comparison of the extant crocodylians studied, CT reconstructions of the skulls shown in palatal view. Note, none of the extant crocodylians have palatal grooves.

(A) OUVC 10606, hatchling specimen of *Alligator mississippiensis*; (B) OUVC 9761, juvenile specimen of *Alligator mississippiensis*; (C) OUVC 11415, juvenile specimen of *Alligator mississippiensis*; (D) TMM M-983, juvenile specimen of *Alligator mississippiensis*; (E) USNM 211233, adult specimen of *Alligator mississippiensis*; (F) FMNH 73711, subadult specimen of *Caiman crocodilus*; (G) FMNH 59071, adult specimen of *Crocodylus acutus*; (H) MNB AB50.071, adult specimen of *Crocodylus rhombifer*; (I) TMM M-4980, adult specimen of *Crocodylus moreletii*; (J) OUVC 10899, juvenile specimen of *Crocodylus porosus*; (K) FMNH 98936, adult specimen of *Osteolaemus tetraspis*; (L) TMM M-6807, subadult specimen of *Crocodylus johnstoni*; (M) TMM M-3529, adult specimen of *Mecistops cataphractus*; (N) TMM M-5490, subadult specimen of *Gavialis gangeticus*; (O) UF herp 118998, adult specimen of *Gavialis gangeticus*; (Q) USNM 211322, adult specimen of *Tomistoma schlegelii*.

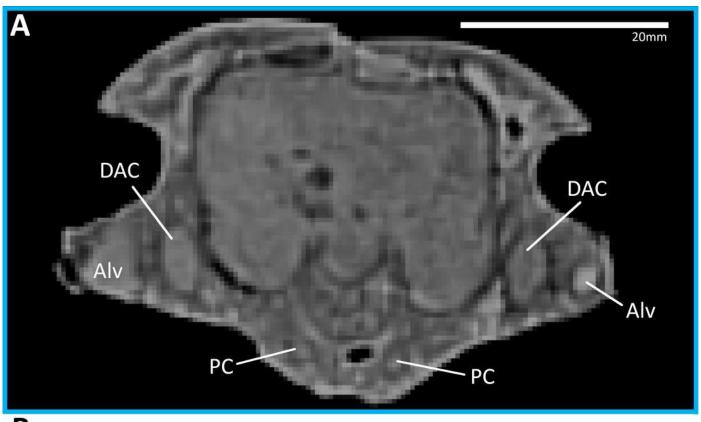


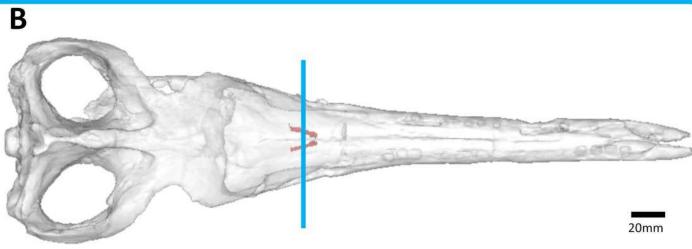

The early-diverging teleosauroid *Plagiophthalmosuchus gracilirostris* (NHMUK PV OR 15500), from the early Toarcian of the UK.

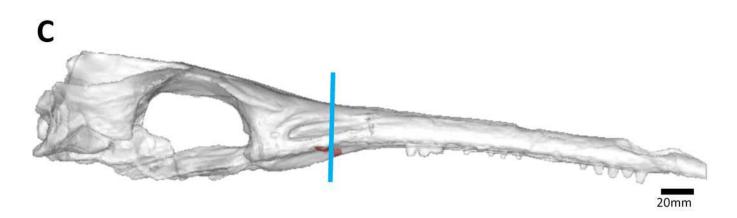

The early-diverging metriorhynchoid *Pelagosaurus typus* (NHMUK PV OR 32599) referred specimen, early Toarcian of France.



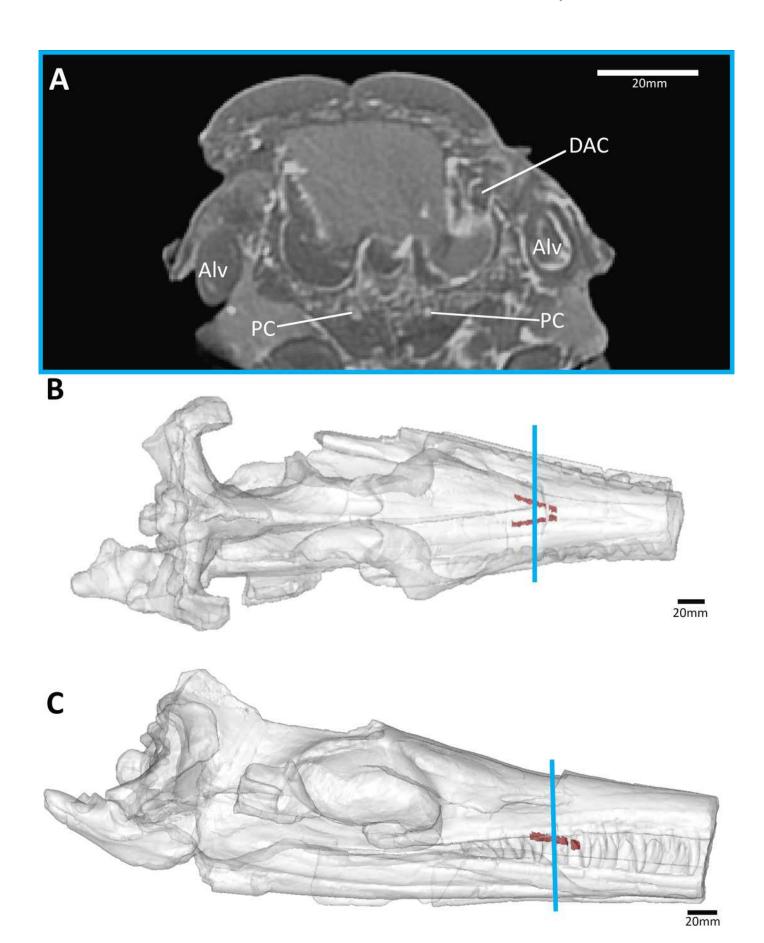
The early-diverging metriorhynchoid *Eoneustes gaudryi* (NHMUK PV R 3263) holotype, Bathonian of France.

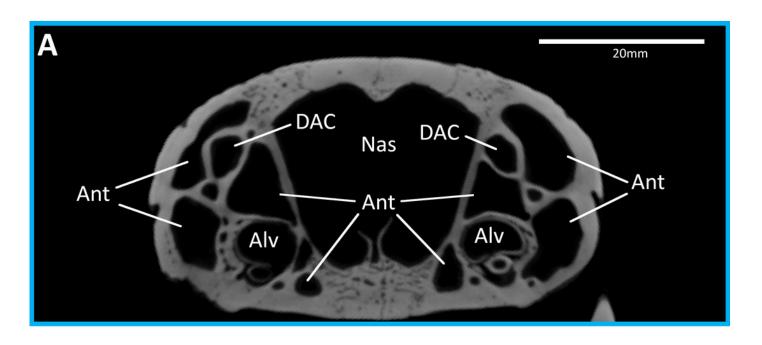


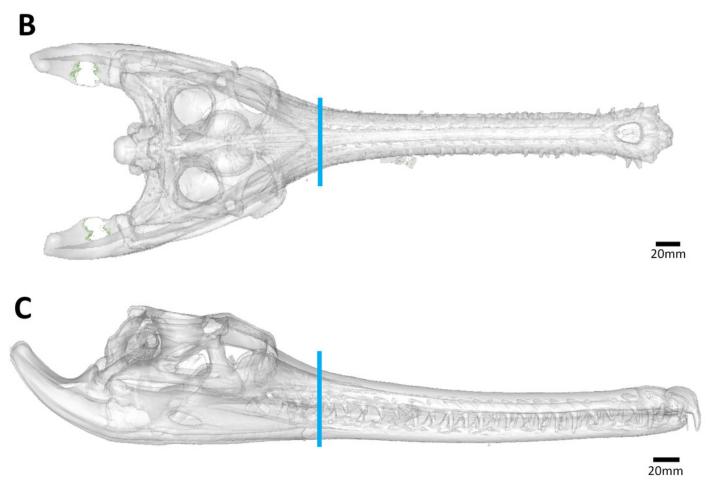

The metriorhynchid *Thalattosuchus superciliosus* (NHMUK PV R 11999) referred specimen, middle Callovian of the UK.



The metriorhynchid *Cricosaurus araucanensis* (MLP 72-IV-7-1) holotype, Tithonian of Argentina.

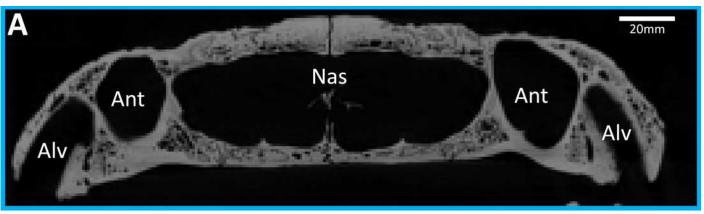


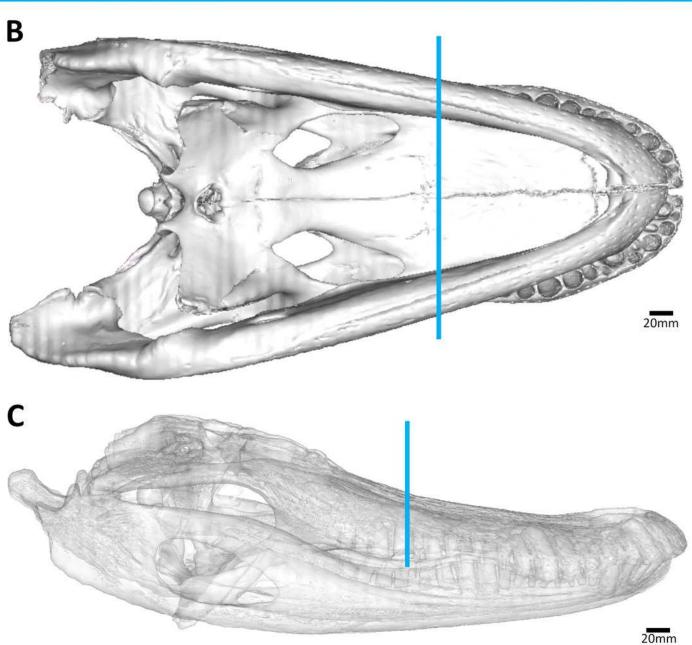

The metriorhynchid *Cricosaurus schroederi* (MM Pa1), from the early Valanginian of Germany.



The extant gavialid Gavialis gangeticus (UF-herp-118998).

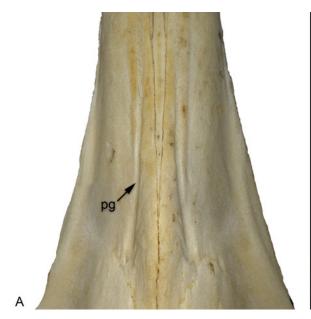
(A) snout coronal view showing the lack of palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus; DAC, dorsal alveolar canal; Nas, nasal cavity.





The extant alligatorid Alligator mississippiensis (USNM 211233).

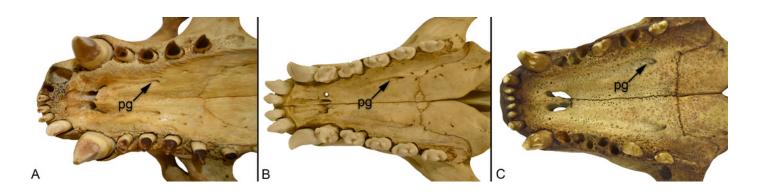
(A) snout coronal view showing the lack of palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus; Nas, nasal cavity.


The extant humpback whale (Megaptera novaeangliae).

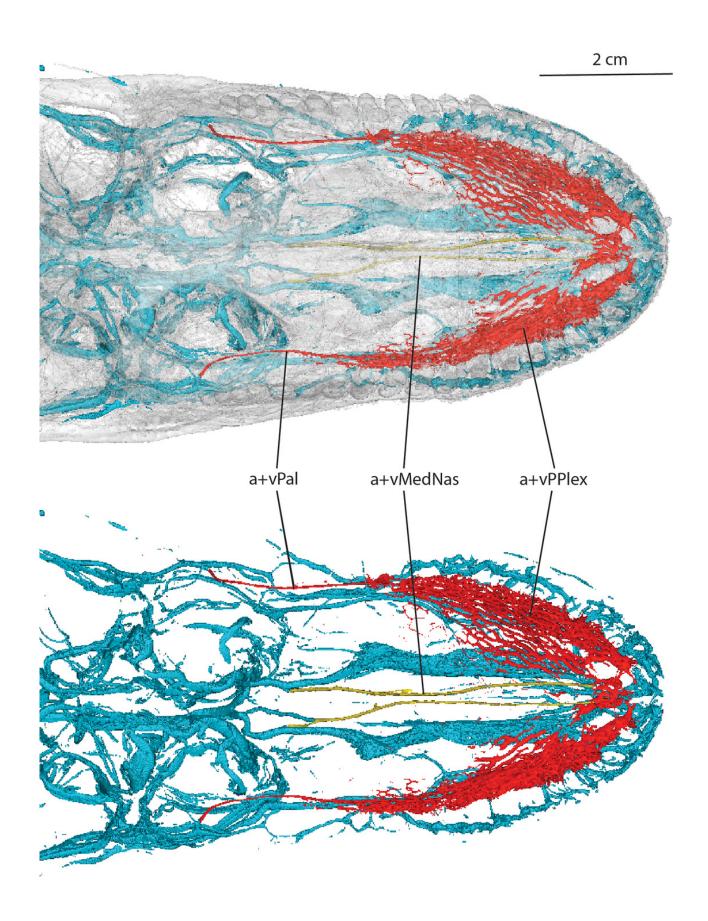
(A) skull showing the palate, due to size the skull it is shown at an angle; (B) a close-up on the right palatal groove. Abbreviations: PG, palatal groove.

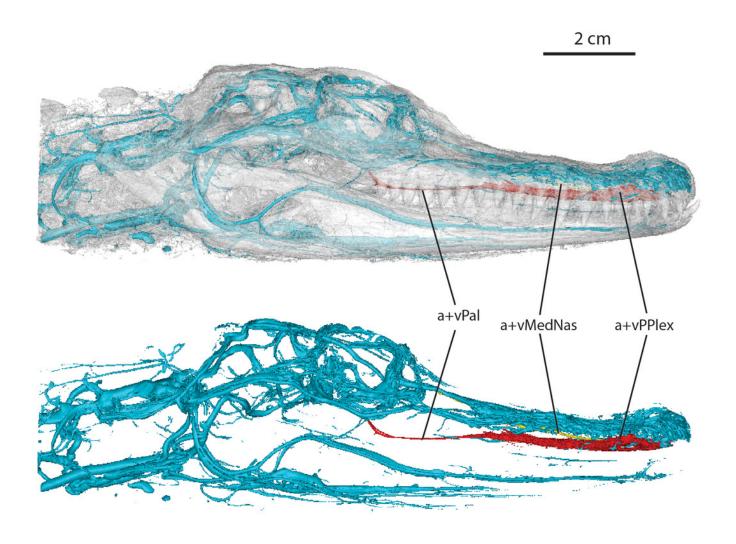
Comparison of the palatal grooves in different extant odontocete cetaceans, skulls shown in palatal view.

(A) Cuvier's beaked whale (*Ziphius cavirostris*) NMS 2020.9.26; (B) killer whale (*Orcinus orca*) NMS Z.2015.179. Abbreviations: PG, palatal groove.



Comparison of the palatal grooves in different extant pinnipeds, skulls shown in palatal view.


(A) the Antarctic fur seal (*Arctocephalus gazella*) NMS 2007.91.10; (B) the Leopard seal (*Hydrurga leptonyx*) NMS 1822.240.T29; (C) the Harbour seal (*Phoca vitulina*) NMS 1996.99.13. (A) is an otariid, while (B) and (C) are phocids. Abbreviations: PG, palatal groove.


The extant alligatorid Alligator mississippiensis (OUVC 9757) in dorsal view.

Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the vasculature. Abbreviations: a+vMedNas, medial nasal artery and vein; a+vPal, palatine artery and vein; a+vPPlex, arterial and venous palatal plexus.

The extant alligatorid Alligator mississippiensis (OUVC 9757) in lateral view.

Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the vasculature. Abbreviations: a+vMedNas, medial nasal artery and vein; a+vPal, palatine artery and vein; a+vPPlex, arterial and venous palatal plexus.

