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Thalattosuchian crocodylomorphs were a diverse clade that lived from the Early Jurassic to
the Early Cretaceous. The subclade Metriorhynchoidea underwent a remarkable transition,
evolving from semi-aquatic ambush predators into fully aquatic forms living in the open
oceans. Thalattosuchians share a peculiar palatal morphology with semi-aquatic and
aquatic fossil cetaceans: paired anteroposteriorly aligned grooves along the palatal surface
of the bony secondary palate. In extant cetaceans, these grooves are continuous with the
greater palatine artery foramina, arteries that supply their oral thermoregulatory
structures. Herein, we investigate the origins of thalattosuchian palatal grooves by
examining CT scans of six thalattosuchian species (one teleosauroid, two early-diverging
metriorhynchoids and three metriorhynchids), and CT scans of eleven extant crocodylian
species. All thalattosuchians had paired osseous canals, enclosed by the palatines, that
connect the nasal cavity to the oral cavity. These osseous canals open into the oral cavity
via foramina at the posterior terminus of the palatal grooves. Extant crocodylians lack both
the external grooves and the internal canals. We posit that in thalattosuchians these novel
palatal canals transmitted hypertrophied medial nasal vessels (artery and vein), creating a
novel heat exchange pathway connecting the palatal vascular plexus to the endocranial
region. Given the general hypertrophy of thalattosuchian cephalic vasculature, and their
increased blood flow and volume, thalattosuchians would have required a more extensive
suite of thermoregulatory pathways to maintain stable temperatures for their
neurosensory tissues.
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ABSTRACT

Thalattosuchian crocodylomorphs were a diverse clade that lived from the Early Jurassic to the
Early Cretaceous. The subclade Metriorhynchoidea underwent a remarkable transition, evolving
from semi-aquatic ambush predators into fully aquatic forms living in the open oceans.
Thalattosuchians share a peculiar palatal morphology with semi-aquatic and aquatic fossil
cetaceans: paired anteroposteriorly aligned grooves along the palatal surface of the bony
secondary palate. In extant cetaceans, these grooves are continuous with the greater palatine
artery foramina, arteries that supply their oral thermoregulatory structures. Herein, we investigate
the origins of thalattosuchian palatal grooves by examining CT scans of six thalattosuchian
species (one teleosauroid, two early-diverging metriorhynchoids and three metriorhynchids), and
CT scans of eleven extant crocodylian species. All thalattosuchians had paired osseous canals,
enclosed by the palatines, that connect the nasal cavity to the oral cavity. These osseous canals
open into the oral cavity via foramina at the posterior terminus of the palatal grooves. Extant
crocodylians lack both the external grooves and the internal canals. We posit that in
thalattosuchians these novel palatal canals transmitted hypertrophied medial nasal vessels (artery
and vein), creating a novel heat exchange pathway connecting the palatal vascular plexus to the
endocranial region. Given the general hypertrophy of thalattosuchian cephalic vasculature, and
their increased blood flow and volume, thalattosuchians would have required a more extensive
suite of thermoregulatory pathways to maintain stable temperatures for their neurosensory

tissues.

INTRODUCTION
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Thalattosuchian crocodylomorphs underwent a major evolutionary transition during the Jurassic,
evolving from semi-aquatic nearshore predators to fully aquatic forms which lived in the open
oceans (Fraas, 1902; Andrews, 1913; Buffetaut, 1982; Young et al., 2010; Wilberg, 2015; Osi et
al., 2018; Schwab ef al., 2020). Thalattosuchia is composed of two subgroups: Teleosauroidea,
which evolved a diverse range of semi-aquatic morphologies but never made the transition to
being fully aquatic (Buffetaut, 1982; Johnson et al., 2020); and Metriorhynchoidea, where the
transition to life in the open ocean did occur (Fraas, 1902; Young ef al. 2010; Wilberg 2015; Osi
et al., 2018). Within Metriorhynchoidea, the fully aquatic subgroup Metriorhynchidae evolved a
wide range of pelagic adaptations, including hydrofoil-like forelimbs, a hypocercal tail, loss of
bony armour (osteoderms), and an osteoporotic-like lightening of the skull, femora and ribs (e.g.,
Fraas, 1902; Andrews, 1913; Hua & Buffrénil, 1996; Young et al., 2010). Metriorhynchids are
also known to have had hypertrophied salt exocrine glands (Fernandez & Gasparini, 2000, 2008;
Fernandez & Herrera, 2009; Herrera ef al., 2013; Cowgill et al., 2022a) and smooth scaleless
skin (Spindler et al., 2021). They possibly also evolved viviparity (see Young et al., 2010;
Herrera et al., 2017) and a poorly homeothermic form of endothermy (Séon ef al., 2020).
Recently, computed tomography (CT) has been used to analyse the internal anatomy of
thalattosuchian skulls, investigating their brains, sinuses, vasculature, salt glands and bony
labyrinths (see Fernandez & Herrera, 2009; Fernandez et al., 2011; Herrera et al., 2013, 2018;
Brusatte et al., 2016; Pierce et al., 2017; Schwab et al., 2020, 2021; Bowman et al., 2022;
Cowgill et al., 2022a, 2022b; Wilberg et al., 2022). Thus, we are now beginning to get an
unparalleled insight into the neurosensory and internal rostral soft-tissue anatomy of
thalattosuchians, as well as the extensive changes that occurred within their crania as this group

transitioned from being semi-aquatic to being fully aquatic.
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One rostral structure that has not been investigated are the palatal grooves (sometimes
also referred to as maxillo-palatine grooves, palatal canals, or anteroposterior sulci). All known
thalattosuchians have paired anteroposteriorly aligned grooves on the roof of the oral cavity,
present on the palatal surface of the palatines and maxillae (Fig. 1; Andrews, 1913; Parrilla-Bel
et al., 2013; Foffa & Young 2014; Johnson et al., 2019, 2020; Aiglstorfer et al., 2020; Young et
al.,2020a, 2021). What formed the palatal grooves is unknown. Given that this feature is
ubiquitous within Thalattosuchia, but absent in other crocodylomorphs, it is possible that these
grooves are linked to the land to sea transition that thalattosuchians underwent. To determine
whether this is correct, here we investigate the palatal grooves in CT scans of six thalattosuchian
species. We discovered that the posterior terminus of the grooves (on the palatines) is continuous
with ossified canals that connect the oral cavity to the nasal cavity. Given their location, we
hypothesise that these canals primarily held vasculature, and that the medial nasal arteries and
veins, which are present in virtually all extant diapsids (Porter & Witmer 2015, 2016; Porter et
al.,2016), took a novel course and were transmitted along the external grooves. This would have
connected the palatal vascular plexus to the ethmoid vessels, creating a new heat exchange

pathway that would have helped moderate brain and eye temperatures.

INSTITUTIONAL ABBREVIATIONS

AMNH, American Museum of Natural History, New York City, New York, USA; CM,
Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA; FMNH, Field Museum of
Natural History, Chicago, Illinois, USA; IRSNB, Institut Royal des Sciences Naturelles de
Bruxelles, Belgium; IVPP, Institute of Paleontology and Paleoanthropology, Beijing, China;

IWCMS, Isle of Wight County Museums Services (Dinosaur Isle Museum and visitor attraction)
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92 Sandown, United Kingdom; MLP, Museo de La Plata, La Plata, Argentina; MM, Minden

93 Museum, Minden, Germany; MINB, National Museum of the Bahamas, Nassau, Bahamas;

94 MNHN, Muséum national d’Histoire naturelle, Paris, France; MTM, Magyar

95 Természettudomanyi Muzeum, Budapest, Hungary; NMS, National Museum of Scotland,

96 Edinburgh, Scotland, UK; NHMUK, Natural History Museum, London, UK; OUVC, Ohio

97 University, Vertebrate Collection, Athens, Ohio, USA; TMM, Texas Memorial Museum,

98 University of Texas at Austin, Austin, Texas, USA; UF, University of Florida, Florida Museum

99 of Natural History, Gainesville, Florida, USA; USNM, National Museum of Natural History,
100 Washington DC, USA.
101
102 MATERIALS & METHODS
103 We made internal rostral reconstructions of six thalattosuchian skulls based on CT scans
104  (see Table 1). Our sample includes the teleosauroid Plagiophthalmosuchus gracilirostris
105 (NHMUK PV OR 33095); two early-diverging metriorhynchoids Pelagosaurus typus (NHMUK
106 PV OR 32599) and Eoneustes gaudryi NHMUK PV R 3263); and three metriorhynchids,
107  Thalattosuchus superciliosus (NHMUK PV R 11999), Cricosaurus araucanensis (MLP 72-1V-
108 7-1) and Cricosaurus schroederi (MM Pal). Apart from Pl gracilirostris and Cri. araucanensis,
109  which have nearly complete rostra, all the thalattosuchian specimens are missing the anterior
110 portion of the rostrum (comprising the premaxilla and the anterior end of the maxilla) but
111  preserve the portions relevant to this study.
112 The fossils were segmented manually using Materialise Mimics Innovation Suite (version
113 24.0, Materialize NV 2021) using the livewire tool. The palatal canals were identified in coronal

114  view as circular or elliptical holes in the palatine bones that bud off the nasal cavity and form a
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canal oriented anteroventrally which communicates ventrally with the oral cavity. To aid our
understanding of palatal vasculature in extant crocodylians, we examined a CT scan of a skull of
Alligator mississippiensis (OUVC 9757) where the arteries and veins had been injected with a
barium-latex contrast medium prior to CT scanning, which created a strong contrast between the
vessels and surrounding tissues (see Porter et al., 2016). The vessels were segmented as one
mask by using the threshold segmentation tool on the full scan in Materialize Mimics. The
palatal vessels and plexus were then removed from this first mask and segmented using the
threshold tool in coronal view at every fifth slice. The 3D interpolate function was then used to
fill in the gaps between these slices.

To compare the osteology of the crania, the thalattosuchians were compared to CT scans
of 17 extant crocodylians from 11 species (Figs. 2C, 2D, and 3). We included two species of
alligatorid, Alligator mississippiensis (OUVC 10606, OUVC 9761, OUVC 11415, TMM M-983,
and USNM 211233) and Caiman crocodilus (FMNH 73711); seven species of crocodylid,
Crocodylus acutus (FMNH 59071), Cro. johnstoni (TMM M-6807), Cro. moreletii (TMM M-
4980), Cro. porosus (OUVC 10899), Cro. rhombifer (MNB AB50.071), Mecistops cataphractus
(TMM M-3529), and Osteolaemus tetraspis (FMNH 98936); and two species of gavialid,
Gavialis gangeticus (TMM M-5490 and UF herp 118998) and Tomistoma schlegelii (TMM M-
6342 and USNM 211322). Our sample spanned the entire range of crocodylian snout shapes,
from broad platyrostral to tubular longirostrine (see Figure 3). Finally, we included multiple
specimens of A. mississippiensis, G. gangeticus and To. schlegelii to ascertain whether the

presence of palatal grooves was impacted by ontogeny.

Results
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All thalattosuchian skulls in our sample have paired osseous canals that are enclosed by
the palatines (Figs. 4-9). These canals are oriented anteroventrally connecting the nasal cavity to
the oral cavity (Figs. 4-9). They open into the oral cavity via paired foramina at the posterior
terminus of the palatal grooves (best seen in Pelagosaurus typus, Fig. 1B). In the semi-aquatic
thalattosuchians (i.e. the teleosauroid Plagiophthalmosuchus and the early-diverging
metriorhynchoid Pelagosaurus), the canals are almost horizontal when seen in lateral view (Figs.
4C and 5C) and converge at a shallow angle when seen in dorsal view (Figs. 4B and 5B). In
contrast, Foneustes and the fully aquatic metriorhynchids have palatal canals that noticeably
angled anteroventrally when seen in lateral view (Figs. 6C, 7C, 8C, and 9C). The
metriorhynchids also have canals that converge anteriorly at a greater angle (Figs. 7B, 8B, and
9B).

The thalattosuchian skulls in our sample also had paired anteroposteriorly aligned
parasagittal grooves on the palatal surface of the palatines and maxilla (= palatal grooves; Figs.
1, 2A, and 2B). These grooves are a synapomorphy of Thalattosuchia, and are present in all
examined teleosauroids and metriorhynchoids (e.g. Andrews, 1913; Parrilla-Bel et al., 2013;
Foffa & Young, 2014; Johnson et al., 2019, 2020; Aiglstorfer et al., 2020; Hua, 2020; Young et
al.,2020a, 2021; Figs. 1, 2A and 2B). In Plagiophthalmosuchus and Pelagosaurus, the grooves
are close to the skull midline and remain parallel on the palatines and for most of the maxilla
(diverging only in the anterior-most region of the maxilla) (see Andrews, 1913; Pierce & Benton,
2006; Johnson et al., 2019, 2020; Figs. 1A, 1B, and 2A). In metriorhynchids however, the
grooves diverge at the anterior palatines, and on the maxilla the grooves become largely parallel
but are much more widely separated than in non-metriorhynchid thalattosuchians (see Andrews,

1913; Parrilla-Bel et al., 2013; Foffa & Young, 2014; Young et al., 2020a, 2021; Fig. 1). The
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shift in morphology occurs gradually within Metriorhynchoidea, as the palatal grooves become
more widely spaced relative to the maxillary midline in the early-diverging metriorhynchoids
Teleidosaurus, Opisuchus and Eoneustes, being intermediate between Pelagosaurus and
metriorhynchids (see Aiglstorfer et al., 2020; Hua, 2020; NHMUK PV R 3263).

In contrast, all of the extant crocodylian skulls in our sample lacked the external palatal
grooves (Figs. 2C, 2D, and 3) and the internal canals (Figs. 10 and 11). This was true for
alligatorids (Alligator mississippiensis and Caiman crocodilus), crocodylids (Crocodylus acutus,
Cro. johnstoni, Cro. moreletii, Cro. porosus, Cro. rhombifer, Mecistops cataphractus, and
Osteolaemus tetraspis) and gavialids (Gavialis gangeticus and Tomistoma schlegelii). Moreover,
the grooves and canals are not present in any of the different ontogenetic stages we examined,
including the hatchling (Fig. 3A), juveniles (Figs. 3B, 3C, 3D, and 3J), subadults (Figs. 3F, 3L,
3N, and 3P) and adults (Figs. 3E, 3K, 3M, 30, and 3Q). Based on our sample of thalattosuchians
and extant crocodylians we posit that the osseous palatal canals and the external grooves are
linked. Both structures are continuous, and are only found to co-occur (i.e. skulls lacking palatal
grooves also lack internal palatal canals, and skulls which have palatal grooves also have internal
palatal canals).

Based on first-hand examination of extant crocodylian skulls, the grooves are also absent
in the following specimens: the ga@ids Gavialis gangeticus (NHMUK 1935-6-4-1, NHMUK
1946-1-7-3, NHMUK 1996-7-7-4, NHMUK 2005-1601) and Tomistoma schlegelii (NHMUK
1948-10-31-19); the crocodylids Mecistops cataphractus (NHMUK 64.4.4.1), Osteolaemus
tetraspis NHMUK 1961-3-20-8, NHMUK 1962-6-30-5, NMS Z.2013.175, NMS Z.2014.3),
Crocodylus acutus (NHMUK 1975.997), Cro. halli NHMUK 1886.5.20.1, NHMUK

1886.5.20), Cro. intermedius (NMS Z.1945.42), Cro. moreletii (NHMUK 1861.4.14), Cro.
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184  niloticus (NHMUK 1949-1-1-2, NHMUK 1959.1.8.55), Cro. palustris (NHMUK 1868.4.9.11,
185 NMS Z.1945.43), Cro. porosus (NHMUK 1847.3.5.33, NHMUK 1929-2-225-3803, NHMUK
186 1943-8-18-4, NHMUK 1947-3-5-33), Cro. rhombifer (NMS Z.2014.18.2), and Cro. siamensis
187 (NHMUK 1921.4.1.168); and the alligatorids Alligator mississippiensis (NHMUK 68.2.12.6,
188 NHMUK ZD 290, NHMUK ZD 1973-2-21-2, NHMUK ZD 1974-3010, NHMUK ZD 1975-
189 1424, NHMUK ZD II-1-1), Alligator sinensis (NHMUK X184), Caiman crocodilus (NHMUK
190 1898.9.26.1, NHMUK 1933.5.10.1), Caiman latirostris (NHMUK 2008-270, NHMUK

191 86.10.4.2), Melanosuchus niger (NHMUK 1945-8-25-126), and Paleosuchus trigonatus

192 (NHMUK 1868.10.8.1). Coupled with our CT analyses, this broader sampling of extant

193 crocodylians shows that the longitudinal palatal grooves cannot be found in extant species.

194 In extinct taxa, the longitudinal grooves are absent on the maxilla and/or palatine, based
195 on first-hand examination in: the atop(%rid Theriosuchus pusillus (NHMUK PV OR 48216);
196 the goniopholidids Anteophthalmosuchus hooleyi (NHMUK PV R 3876; Ristevski et al., 2018),
197  Anteophthalmosuchus epikrator IWCMS 2001.446, IWCMS 2005.127; Ristevski et al., 2018),
198 and Eutretauranosuchus delfsi (CM 8028; Pritchard et al., 2013); the pholidosaurids

199  Pholidosaurus purbeckensis NHMUK PV R 3956, NHMUK PV R 36721) and Terminonarus
200 browni (AMNH 5851); the early-diverging dyrosauroids Elosuchus broinae (MNHN.F SAM
201 129; Meunier & Larsson, 2017) and Elosuchus cherifensis (MNHN.F MRS 340; Meunier &
202 Larsson, 2017); the bernissartiid Koumpiodontosuchus aprosdokiti IWCMS 2012.203-204;
203 Sweetman et al., 2015); the hylacochampsid Tharkutosuchus makadii (MTM 2006.52.1; Osi et
204  al., 2007); the early-diverging gavialoid Eosuchus lerichei (IRSNB-R-49; Delfino et al., 2005);
205 the crocodylids Voay robustus (NHMUK PV R 36684, NHMUK PV R 36685), Brochuchus

206 pigotti NHMUK PV R 7729) and Crocodylus palaeindicus NHMUK PV OR 39795); and the
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alligatoroid Diplocynodon hantoniensis (NHMUK PV OR 25166, NHMUK PV OR 30392; Rio
et al., 2020).

Based on information from the literature, thgﬁ)oves are also absent in: the
shartegosuchoid Shartegosuchus asperapalatum (Dollman et al., 2018); the sphagesaurids
Caipirasuchus montealtensis (Andrade & Bertini, 2008), Sphagesaurus huenei (Pol, 2003) and
Yacarerani boliviensis (Novas et al., 2009); the baurusuchids Campinasuchus dinizi (Carvalho et
al., 2011) and Baurusuchus salgadoensis (Carvalho et al., 2005); the sebecians Hamadasuchus
rebouli (Larsson & Sues, 2007), Kaprosuchus saharicus (Sereno & Larsson, 2009) and
Montealtosuchus arrudacamposi (Carvalho et al., 2007); the goniopholidids Calsoyasuchus
valliceps (Tykoski et al., 2002) and Hulkepholis willetti (Salisbury & Naish, 2011); the
paluxysuchid Paluxysuchus newmanni (Adams, 2013); the pholidosaurids Meridiosaurus
vallisparadisi (Fortier et al., 2011) and Oceanosuchus boecensis (Hua et al., 2007); the
dyrosaurids Anthracosuchus balrogus (Hastings et al., 2015), Cerrejonisuchus improcerus
(Hastings et al., 2010), Dyrosaurus maghribensis (Jouve et al., 2006) and Guarinisuchus munizi
(Barbosa et al., 2008); the susisuchid Isisfordia duncani (Salisbury et al., 2006); the bernissartiid
Bernissartia fagesii (Martin et al., 2020); the paralligatorids Rugosuchus nonganensis (Wu et al.,
2001) and Shamosuchus spp. (Turner, 2015); the allodaposuchids Allodaposuchus precedens
(Delfino et al., 2008) and Lohuecosuchus megadontos (Narvaez et al., 2015); and the gavialoid

Hanyusuchus sinensis (Iijima et al., 2022).

DISCUSSION

Palatal structures in Crocodylomorpha
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The presence of palatal grooves is one of the defining characteristics of Thalattosuchia
(Andrews, 1913; Parrilla-Bel et al., 2013; Foffa & Young, 2014; Johnson et al., 2019, 2020;
Aiglstorfer et al., 2020; Young et al., 2020a, 2021). As we note herein, these grooves are not
found in extant crocodylians, irrespective of their ontogenetic stage. Given that no other
mesoeucrocodylian taxon with a maxillopalatine secondary palate has been observed to have
palatal grooves, we posit that they are synapomorphies of Thalattosuchia. This is in agreement
with phylogenetic analyses that have found these features to be explicit thalattosuchian
synapomorphies (e.g. Johnson et al., 2020; Young et al., 2020a, 2021). The only other
crocodylomorph known to have prominent palatal foramina and depressions is the notosuchian
Simosuchus clarki. Kley et al. (2010: 38, figures 3B, 8F) described paired palatal fossae on the
anterior palatal rami of the maxilla, at the premaxilla-maxilla boundary. Within each deep fossa
is a palatal foramen. However, given their anterior position and lack of palatal grooves we do not
seem consider them to be homologous to the palatal canals found in thalattosuchians. In the same
location, large foramina are also found in the allodaposuchid Lohuecosuchus megadontos,
however there is no surrounding fossa (Narvaez et al., 2015). Interestingly, mid-way along the
maxilla there are paired foramina close to the skull midline in Lohuecosuchus megadontos
(Narvéez et al., 2015). However, these palatal foramina are not found in any other species of

allodaposuchid (Narvaez et al., 2015: 25). @

Palatal grooves in aquatic mammals and oral vascularisation
While no crocodylomorph clade shares the paired longitudinal palatal grooves seen in
Thalattosuchia, curiously fossil and extant cetaceans do. A very similar morphology is present in

the semi-aquatic remingtonocetid Remingtonocetus harudiensis (Bajpai et al., 2011: figure 1.3),
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the semi-aquatic protocetid Aegyptocetus tarfa (Bianucci & Gingerich, 2011: figure 3), and in
fully aquatic forms, including the early-diverging mysticete Aetiocetus weltoni (Ekdale &
Demér¢, 2022: figure 2A), the early-diverging odontocetes Simocetus rayi (Fordyce, 2002: figure
4) and Echovenator sanderi (Churchill et al., 2016: figures 1F, 1G), and the beluga-like
odontocete Bohaskaia monodontoides (Veléz-Juarbe & Pyenson, 2012: figure 3). The same
morphology has also been described and figured for the extant gray whale (Eschrichtus robustus)
and finback whale (Balaenoptera physalus) (see Ekdale et al., 2015), and is also present in the
humpback whale (Megaptera novaeangliae) (Fig. 12). There are four striking parallels between
thalattosuchians and cetaceans: (1) the presence of anteroposteriorly aligned (longitudinal)
grooves, present along most of the maxilla with their posterior terminus either on the palatines
(as in thalattosuchians) or at the maxilla-palatine suture (cetaceans); (2) the longitudinal grooves
have a large foramen at their posterior terminus; (3) in both clades the morphology is present in
both semi-aquatic and fully aquatic forms; and (4) the grooves are closer to the skull midline in
the semi-aquatic forms (see Pelagosaurus herein and Remingtonocetus in Bajpai et al., 2011),
whereas in the fully aquatic forms the grooves are much more widely spaced (see the
metriorhynchids herein, and Aetiocetus in Ekdale & Deméré, 2022; Simocetus in Fordyce, 2002;
Echovenator in Churchill et al., 2016 and Bohaskaia in Veléz-Juarbe & Pyenson, 2012).
Intermediate morphologies also appear in cetacean evolution, such as in Aegyptocetus (Bianucci
& Gingerich, 2011).

In extant whales, the greater (or descending) palatine artery exits through the palatal
foramen and continues anteriorly via the longitudinal groove/sulcus (Deméré et al., 2008; Ekdale
et al., 2015). This has also been hypothesised for fossil cetaceans (e.g. Bajpai et al., 2011; Veléz-

Juarbe & Pyenson, 2012; Ekdale & Deméré, 2022). Although there has been a long discussion on
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whether the greater palatine artery is associated with the evolution of baleen in mysticetes, this
hypothesis seems to have been falsified (see Ekdale et al., 2015; Ekdale & Deméré, 2022). Two
further hypotheses have been suggested for the expansion of the palatine vasculature in
cetaceans, positing that it is either a consequence of rostral elongation (Ichishima et al., 2008) or
for thermoregulation (Ekdale ef al., 2015). Ekdale et al. (2015: 699), however, noted that similar
structures are not found in other mammals with elongate snouts (although the palatine foramina,
and some form of palatal grooves, are). Within Crocodylomorpha there are numerous long-
snouted groups, both extinct and extant, but none show evidence of palatal grooves. Moreover,
among extant species long-snouted taxa do not have expanded rostral vasculature compared to
broader snouted species (e.g. Bowman et al., 2022).

Mysticetes have highly vascularised oral cavities, with the mouth being an important site
for thermoregulation (e.g., Ford & Krause, 1992; Werth, 2007; Ford et al., 2013; Ekdale et al.,
2015). This is unsurprising given that mysticetes bulk filter feed, which involves the mouth being
repeatedly exposed to (often cold) sea water. However, odontocetes seem to lack vascular
adaptations for thermoregulation within the oral cavity (Werth, 2007). This is supported by the
palatine foramen being greatly reduced, or almost closed, in extant delphinoid odontocetes
(although the foramina are greatly enlarged in the fossil genus Odobenocetops, see de Muizon et
al., 2002), although the grooves are present in the killer whale (Orcinus orca) and Cuvier’s
beaked whale (Ziphius cavirostris) (Fig. 13). Werth (2007) suggested that for odontocetes there
was either less need to prevent oral heat loss, or that other regions of the body were more
important sites for thermoregulation.

During their land-to-sea transition, pinnipedimorphs (seals and their close fossil relatives)

evolved a similar morphology (Fig. 14). In early-diverging forms such as Enalioarctos, the
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palatal grooves originating from the palatine foramina are relatively short (Berta, 1991). During
phocid (‘true seals’) evolution, however, the grooves became increasingly broader and more
elongated (Dewaele ef al., 2018; Rule et al., 2020; Koretsky & Rahmat, 2021).

Many other amniote groups have a venous plexus within the soft tissues of the palate. In
birds, the palatal plexus and the rete ophthalmicum help maintain eye and brain temperature
(Kilgore et al., 1979, Midtgéard 1983, 1984, Porter & Witmer 2016), while in extant crocodylians
there is an extensive palatal plexus (Porter ef al., 2016). In extant archosaurs the palatal plexus is
supplied by the palatine artery (Figs. 15 and 16); however, the palatine arteries travel through the
soft tissue of the secondary palate (see Porter & Witmer 2016; Porter et al., 2016), unlike in
cetaceans where they pass through the bony palate. Moreover, in extant archosaurs the palatine
arteries are situated laterally in the rostrum (see Fig. 15; Porter & Witmer 2016; Porter et al.,
2016), not medially as in cetaceans. We propose an osteological correlate for the palatine vessels
in thalattosuchians: the groove that originates at the anterior margin of the suborbital fenestra
(Fig. 1: SOG). This groove is consistent with location of the palatine vessels in extant
crocodylians (Porter ef al., 2016).

Based on the striking similarity between thalattosuchian palatal canal/groove system and
those of cetaceans (particularly the fossil semi-aquatic and aquatic species), and the known
routes and positions of extant crocodylian cranial vasculature, we hypothesise the following:

1. The thalattosuchian palatal canal/groove system transmitted the medial nasal vessels

(artery and vein) or a novel branch thereof, and possibly also some of the rostral
nerves. In all extant diapsids, the medial nasal vessels branch off from nasal vessels at
the posterodorsal aspect of the nasal cavity. The medial nasal vessels then descend

anteroventrally on either side of the median cartilaginous internasal septum to run on
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the floor of the nasal cavity (e.g. Figs. 15 and 16; Porter & Witmer 2015, 2016; Porter
et al., 2016). Therefore, the paramedian/parasagittal position of the palatal
canal/groove system in thalattosuchians is consistent with the medial nasal vessels.
Early in thalattosuchian evolution, the medial nasal vessels (or a ventral branch
thereof) pierced the bony palate to emerge on to the roof of the oral cavity

The medial nasal vessels that entered the oral cavity anastomosed with the palatal
vascular plexus (which are supplied by the palatine vessels).

The large internal osseous canals represent a hypertrophy of the medial nasal vessels.
A novel heat exchange pathway was created by linking the palatal plexus to medial
nasal vessels. In extant crocodylians, the medial nasal vessels communicate with the
encephalic arteries and veins via the ethmoid vessels (Porter ef al., 2016). The palatal
vascular plexus is a critical location of thermal exchange in extant crocodylians
(Porter et al., 2016). While the palatal plexus is not thought to have a substantial role
in thermoregulation of the brain in extant crocodylians, based on our proposed
vascular pathway, the palatal plexus weuld have moderated brain temperatures of

thalattosuchians via the ethmoid vessels.

338 Increased cephalic blood volume in Thalattosuchia

339 A novel heat exchange pathway to help maintain brain and eye temperatures would have been

340 greatly beneficial for Metriorhynchidae. Not only did metriorhynchids have an elevated

341 metabolism (possibly a poorly homeothermic form of endothermy, see Séon et al., 2020), but

342 they had expanded cerebral hemispheres and orbits relative to extant crocodylians and other

343 thalattosuchians (e.g. see Young et al., 2010; Herrera et al., 2018; Schwab et al., 2021). An
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obvious question is why would semi-aquatic thalattosuchians also have had a novel heat
exchange pathway? One of the defining features of Thalattosuchia is the enlarged cerebral
carotid foramina on the occipital surface of the cranium, being found in both semi-aquatic and
fully aquatic species (Andrews, 1913; Pierce & Benton, 2006; Jouve, 2009; Pol & Gasparini,
2009; Fernandez et al., 2011; Young et al., 2012, 2013, 2020b; Herrera & Vennari, 2015;
Brusatte et al., 2016; Johnson et al., 2020). Note, the cerebral carotid foramina become even
larger in the clade Zoneait + Metriorhynchidae (Wilberg, 2015; Herrera et al., 2018), while they
become smaller in some freshwater teleosauroids (Herrera et al., 2018). In mammals, larger
encephalic arteries are associated with higher rates of blood flow, as flow (perfusion) is
proportional to the radius of the arterial lumen raised to an exponent of approximately 2.5
(Seymour et al., 2019). In extant crocodylians, the cerebral carotid arteries supply blood to the
brain, eyes, nasal cavities, and the rostral sinuses (Porter ef al., 2016). Therefore, it is possible
that these vessels supplied a greater volume of blood to these regions in thalattosuchians
compared to extant crocodylians.

Further, these enlarged foramina do not represent the full extent of vascular hypertrophy
observed in thalattosuchian skulls. The cerebral carotid vessels enter the greatly enlarged
pituitary fossa chamber, another thalattosuchian synapomorphy, which in extant crocodylians
houses the cavernous venous sinus (Porter et al., 2016) and was possibly hypertrophied in
thalattosuchians. Exiting the anterior margin of the pituitary fossa chamber are two ossified
canals thought to transmit the orbital arteries (Brusatte et al., 2016), with these canals being
almost as wide as the cerebral carotid canals (Brusatte ef al., 2016; Pierce et al., 2017; Herrera et
al., 2018; Wilberg et al., 2022). Within Crocodylomorpha, only thalattosuchians and the

dyrosaurid Rhabdognathus (Erb & Turner, 2021) are known to have the orbital arteries contained
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within ossified canals. Further, the midbrain and hindbrain of thalattosuchians are very poorly
delineated in their endocasts due to the hypertrophy of the longitudinal and transverse dural
venous sinuses, the latter being continuous with the hypertrophied stapedial canals (Wharton,
2000; Fernandez et al., 2011; Brusatte et al., 2016; Pierce et al., 2017; Herrera et al., 2018;
Schwab et al., 2021; Wilberg et al., 2022). Collectively, this implies that thalattosuchians had
increased encephalic blood volumes and potentially increased perfusion rates relative to extant
crocodylians. As such, maintaining stable brain and eye temperatures may have required more
extensive heat exchange mechanisms.

Unfortunately, we do not know the timing of these internal changes. All examined
thalattosuchians show the same suite of vascular characters outlined above, and the palatal
groove/canal system described herein. It is unclear whether encephalic vascular evolution in
Thalattosuchia was stepwise and gradual, or whether one of these characteristics was a ‘key
adaptation’ that triggered rapid change within the thalattosuchian skull. Only new fossil
discoveries, of taxa basal to the teleosauroid-metriorhynchoid split, will allow us to understand
this radical reorganisation.

Regardless of what selection pressures drove basal thalattosuchians to evolve these
encephalic vascular characteristics, we posit that within Metriorhynchoidea, as the clade became
increasingly aquatic, these characteristics made the evolution of larger orbits, larger cerebral
hemispheres, and an elevated metabolism pessible. An elevated metabolism and a pathway to
help maintain stable brain and eye temperatures would also have made feeding below the
thermocline viable, especially in a group considered to be primarily vision-based hunters
(Massare, 1988; Martill et al., 1994; Young et al., 2010; Bowman et al., 2022). Isotopic analyses

suggest that belemnites lived below the thermocline during the Jurassic (e.g. Jenkyns et al.,
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2012; Xu et al., 2018), and an abundance of belemnite hooklets have been found within the body
cavity of Middle Jurassic metriorhynchids from the Oxford Clay Formation of the UK (Martill,
1986). While the evolution of hypertrophied salt glands has been cited as an example of how
physiological changes expanded the metriorhynchid prey envelope, to include osmoconforming
species (Fernandez & Gasparini, 2000, 2008; Cowgill ef al., 2022a), thermophysiological
changes were undoubtedly also exceptionally important. The suite of vascular characters outlined
herein are unique to thalattosuchians, and no other crocodylomorph clade contained a lineage
that evolved to become fully aquatic. Perhaps these changes in cranial vasculature were a

necessary precursor for the development of the fully aquatic metriorhynchids.

CONCLUSIONS

Herein we show that the palatal grooves of thalattosuchians were unique within
Crocodylomorpha. We cannot find any other crocodylomorph clade that had anteroposteriorly
aligned grooves along their maxilla and palatines, and cannot find any evidence that the absence
of the grooves is influenced by ontogeny. Based on CT scans of thalattosuchian skulls, these
grooves are continuous with a pair of canals which travel through the palatines connecting the
oral and nasal cavities. The canals open into the posterior terminus of the grooves via foramina
(best seen in Fig. 1B). These internal canals are also not present in the CT scans of extant
crocodylian skulls.

However, the palatal canals, foramina and grooves are strikingly similar to those of
another group, cetaceans. Present in both fossil semi-aquatic species, and fossil and extant fully
aquatic species, these structures transmit the greater palatine artery which supplies a palatal

venous thermoregulatory structure. Given the convergence in palatal grooves between these
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groups, we hypothesise that the canals and grooves of thalattosuchians transmitted hypertrophied
vasculature. Based on the position of the canal/groove system, the most likely candidate are the
medial nasal vessels. Connecting the medial nasal vessels to the palatal vascular plexus would
have created a novel heat exchange pathway, one that linked the plexus (an important
thermoregulatory site) to the vessels that supply blood to the brain and eyes. As thalattosuchians
likely had increased cephalic blood volume and flow rates relative to other crocodylomorphs, a
corresponding increase in cephalic thermoregulatory capabilities would be necessary. However,
at present we cannot ascertain which came first: increased blood flow (e.g. wider cerebral carotid
canal and external foramina), increased blood volume (e.g. orbital canals almost as wide as the
carotid canals, and hypertrophied pituitary fossa chamber, transverse dural venous sinuses and
stapedial canals), or the medial nasal vessel mediated thermoregulatory pathway. We also do not
know the rate and order at which these changes occurred. New fossil discoveries are needed to

elucidate thalattosuchian cephalic vascular evolution.
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Figures

FIGURE 1. Comparison of the palatal grooves in different thalattosuchian clades, skulls shown
in palatal view. (A) IVPP V 10098, Chinese teleosaurid; (B) NHMUK PV OR 32599, the early-
diverging metriorhynchoid Pelagosaurus typus; (C) NHMUK PV R 3700, the metriorhynchid

‘Metriorhynchus’ brachyrhynchus. Abbreviations: PG, palatal groove; SOG, suborbital groove.

Planned for full page width.

FIGURE 2. Comparison between the thalattosuchian and extant crocodylians studied, CT
reconstructions of the skulls shown in palatal view. (A) NHMUK PV OR 32599, the early-
diverging metriorhynchoid Pelagosaurus typus; (B) MLP 72-1V-7-1, the metriorhynchid
Cricosaurus araucanensis; (C) UF herp 118998, the gavialid Gavialis gangeticus; (D) TMM
MO83, the alligatorid Alligator mississippiensis. Abbreviations: PG, palatal groove.

Planned for full page width.

FIGURE 3. Comparison of the extant crocodylians studied, CT reconstructions of the skulls
shown in palatal view. Note, none of the extant crocodylians have palatal grooves. (A) OUVC
10606, hatchling specimen of Alligator mississippiensis; (B) OUVC 9761, juvenile specimen of
Alligator mississippiensis; (C) OUVC 11415, juvenile specimen of Alligator mississippiensis;
(D) TMM M-983, juvenile specimen of Alligator mississippiensis; (E) USNM 211233, adult
specimen of Alligator mississippiensis; (F) FMNH 73711, subadult specimen of Caiman
crocodilus; (G) FMNH 59071, adult specimen of Crocodylus acutus; (H) MNB AB50.071, adult
specimen of Crocodylus rhombifer; (I) TMM M-4980, adult specimen of Crocodylus moreletii;

(J) OUVC 10899, juvenile specimen of Crocodylus porosus; (K) FMNH 98936, adult specimen
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780

of Osteolaemus tetraspis; (L) TMM M-6807, subadult specimen of Crocodylus johnstoni; (M)
TMM M-3529, adult specimen of Mecistops cataphractus; (N) TMM M-5490, subadult
specimen of Gavialis gangeticus; (O) UF herp 118998, adult specimen of Gavialis gangeticus;
(P) TMM M-6342, subadult specimen of Tomistoma schlegelii; (Q) USNM 211322, adult
specimen of Tomistoma schlegelii.
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FIGURE 4. The early-diverging teleosauroid Plagiophthalmosuchus gracilirostris (NHMUK
PV OR 15500), from the early Toarcian of the UK. (A) snout coronal view showing the position
of the palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral
view, both showing the palatal canals in red and the CT slice of (A) shown in blue.
Abbreviations: Alv, alveolus; DAC, dorsal alveolar canal; PC, palatal canal.

Planned for full page width.

FIGURE 5. The early-diverging metriorhynchoid Pelagosaurus typus (NHMUK PV OR 32599)
referred specimen, early Toarcian of France. (A) snout coronal view showing the position of the
palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view,
both showing the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv,
alveolus; DAC, dorsal alveolar canal; PC, palatal canal.

Planned for full page width.

FIGURE 6. The early-diverging metriorhynchoid Eoneustes gaudryi (NHMUK PV R 3263)
holotype, Bathonian of France. (A) snout coronal view showing the position of the palatal canals.

Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing
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the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus;
DAC, dorsal alveolar canal; PC, palatal canal.

Planned for full page width.

FIGURE 7. The metriorhynchid Thalattosuchus superciliosus (NHMUK PV R 11999) referred
specimen, middle Callovian of the UK. (A) snout coronal view showing the position of the
palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view,
both showing the palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv,
alveolus; DAC, dorsal alveolar canal; PC, palatal canal.

Planned for full page width.

FIGURE 8. The metriorhynchid Cricosaurus araucanensis (MLP 72-1V-7-1) holotype,
Tithonian of Argentina. (A) snout coronal view showing the position of the palatal canals. Three-
dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the
palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC,
dorsal alveolar canal; PC, palatal canal.

Planned for full page width.

FIGURE 9. The metriorhynchid Cricosaurus schroederi (MM Pal), from the early Valanginian
of Germany. (A) snout coronal view showing the position of the palatal canals. Three-
dimensional reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the
palatal canals in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC,
dorsal alveolar canal; PC, palatal canal.

Planned for full page width.
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FIGURE 10. The extant gavialid Gavialis gangeticus (UF-herp-118998). (A) snout coronal view
showing the lack of palatal canals. Three-dimensional reconstruction of the skull in (B) dorsal,
and (C) lateral view, both showing the palatal canals in red and the CT slice of (A) shown in
blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus; DAC, dorsal alveolar canal;
Nas, nasal cavity.

Planned for full page width.

FIGURE 11. The extant alligatorid A/ligator mississippiensis (USNM 211233). (A) snout
coronal view showing the lack of palatal canals. Three-dimensional reconstruction of the skull in
(B) dorsal, and (C) lateral view, both showing the palatal canals in red and the CT slice of (A)
shown in blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus; Nas, nasal cavity.

Planned for full page width.

FIGURE 12. The extant humpback whale (Megaptera novaeangliae). (A) skull showing the
palate, due to size the skull it is shown at an angle; (B) a close-up on the right palatal groove.
Abbreviations: PG, palatal groove.

Planned for full page width.

FIGURE 13. Comparison of the palatal grooves in different extant odontocete cetaceans, skulls
shown in palatal view. (A) Cuvier’s beaked whale (Ziphius cavirostris) NMS 2020.9.26; (B)
killer whale (Orcinus orca) NMS Z.2015.179. Abbreviations: PG, palatal groove.

Planned for full page width.
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FIGURE 14. Comparison of the palatal grooves in different extant pinnipeds, skulls shown in
palatal view. (A) the Antarctic fur seal (Arctocephalus gazella) NMS 2007.91.10; (B) the
Leopard seal (Hydrurga leptonyx) NMS 1822.240.T29; (C) the Harbour seal (Phoca vitulina)
NMS 1996.99.13. (A) is an otariid, while (B) and (C) are phocids. Abbreviations: PG, palatal
groove.

Planned for full page width.

FIGURE 15. The extant alligatorid A/ligator mississippiensis (OUVC 9757) in dorsal view.
Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine
artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the
vasculature. Abbreviations: atvMedNas, medial nasal artery and vein; a+vPal, palatine artery
and vein; a+vPPlex, arterial and venous palatal plexus.

Planned for full page width.

FIGURE 16. The extant alligatorid Alligator mississippiensis (OUVC 9757) in lateral view.
Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine
artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the
vasculature. Abbreviations: atvMedNas, medial nasal artery and vein; a+vPal, palatine artery
and vein; atvPPlex, arterial and venous palatal plexus.

Planned for full page width.
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TABLE 1. List of specimens examined herein.
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Species Specimen number | Age Voxel size (mm) Facility/Source

Alligator OUVC 10606 Recent 0.045 Ohio University MicroCT Facility, USA

mississippiensis

Alligator OuUVvC 9761 Recent 0.5X1 Ohio Health O'Bleness Hospital, USA

mississippiensis

Alligator OUVC 11415 Recent 0.0493 Ohio University MicroCT Facility, USA

mississippiensis

Alligator TMM M983 Recent 0.25X0.48 High-Resolution X-ray CT facility,

mississippiensis University of Texas, USA

Alligator USNM 211233 Recent 0.625 Ohio Health O'Bleness Hospital, USA

mississippiensis

Caiman crocodilus FMNH 73711 Recent 0.065 X 0.142 High-Resolution X-ray CT facility,
University of Texas, USA

Crocodylus acutus FMNH 59071 Recent 0.625 Ohio Health O’Bleness Hospital, USA

Crocodylus rhombifer MNB AB50.0171 Recent 0.1748 X 0.5 High-Resolution X-ray CT facility,
University of Texas, USA

Crocodylus moreletii TMM M-4980 Recent 0.1904 X 0.5 High-Resolution X-ray CT facility,
University of Texas, USA

Crocodylus porosus OUVC 10899 Recent 0.0472 Ohio Health O'Bleness Hospital, USA

Osteolaemus tetraspis FMNH 98936 Recent 0.0546875 X High-Resolution X-ray CT facility,

0.1108 University of Texas, USA

Crocodylus johnstoni TMM M-6807 Recent 0.223 High-Resolution X-ray CT facility,

University of Texas, USA
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Mecistops cataphractus | TMM M-3529 Recent 0.165 X 0.5 High-Resolution X-ray CT facility,
University of Texas, USA

Gavialis gangeticus TMM M-5490 Recent 0.228 High-Resolution X-ray CT facility,
University of Texas, USA

Gavialis gangeticus UF-herp-118998 Recent 0.14654672 Florida Museum of Natural History, USA

Tomistoma schlegelii USNM 211322 Recent 0.625 Ohio Health O'Bleness Hospital, USA

Tomistoma schlegelii TMM M-6342 Recent 0.165 X 0.46 High-Resolution X-ray CT facility,
University of Texas, USA

Plagiophthalmosuchus | NHMUK PV OR Toarcian 0.236872 X 0.1185 | pVIS X-Ray Imaging Centre, University of

gracilirostris 15500 Southampton, UK

Pelagosaurus typus NHMUK PV OR Toarcian 0.098627983 Nikon XT H 225S CT system, Natural

32599 History Museum, London, UK
Eoneustes gaudryi NHMUK PV R Bathonian 0.159849 pVIS X-Ray Imaging Centre, University of
3263 Southampton, UK

Thalattosuchus NHMUK PV R Callovian 0.12 pVIS X-Ray Imaging Centre, University of

superciliosus 11999 Southampton, UK

Cricosaurus MLP 72-1V-7-1 Tithonian 0.448 Hospital Interzonal de Agudos de la Matanza

araucanensis “Dr. Diego Pairoissien” La Matanza,
Argentina

Cricosaurus schroederi | MM Pal Valanginian | 0.5 Leibniz Institute for Zoo and Wildlife

Research, Berlin, Germany
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Figure 1

Comparison of the palatal grooves in different thalattosuchian clades, skulls shown in
palatal view.

(A) IVPP V 10098, Chinese teleosaurid; (B) NHMUK PV OR 32599, the early-diverging
metriorhynchoid Pelagosaurus typus; (C) NHMUK PV R 3700, the metriorhynchid

‘Metriorhynchus’ brachyrhynchus. Abbreviations: PG, palatal groove; SOG, suborbital groove.
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Figure 2

Comparison between the thalattosuchian and extant crocodylians studied, CT
reconstructions of the skulls shown in palatal view.

(A) NHMUK PV OR 32599, the early-diverging metriorhynchoid Pelagosaurus typus; (B) MLP
72-IV-7-1, the metriorhynchid Cricosaurus araucanensis; (C) UF herp 118998, the gavialid
Gavialis gangeticus; (D) TMM M983, the alligatorid Alligator mississippiensis. Abbreviations:

PG, palatal groove.
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Figure 3

Comparison of the extant crocodylians studied, CT reconstructions of the skulls shown
in palatal view. Note, none of the extant crocodylians have palatal grooves.

(A) OUVC 10606, hatchling specimen of Alligator mississippiensis; (B) OUVC 9761, juvenile
specimen of Alligator mississippiensis; (C) OUVC 11415, juvenile specimen of Alligator
mississippiensis; (D) TMM M-983, juvenile specimen of Alligator mississippiensis; (E) USNM
211233, adult specimen of Alligator mississippiensis; (F) FMNH 73711, subadult specimen of
Caiman crocodilus; (G) FMNH 59071, adult specimen of Crocodylus acutus; (H) MNB
AB50.071, adult specimen of Crocodylus rhombifer; (1) TMM M-4980, adult specimen of
Crocodylus moreletii; (J) OUVC 10899, juvenile specimen of Crocodylus porosus; (K) FMNH
98936, adult specimen of Osteolaemus tetraspis; (L) TMM M-6807, subadult specimen of
Crocodylus johnstoni; (M) TMM M-3529, adult specimen of Mecistops cataphractus; (N) TMM
M-5490, subadult specimen of Gavialis gangeticus; (O) UF herp 118998, adult specimen of
Gavialis gangeticus; (P) TMM M-6342, subadult specimen of Tomistoma schlegelii; (Q) USNM

211322, adult specimen of Tomistoma schlegelii.
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Figure 4

The early-diverging teleosauroid Plagiophthalmosuchus gracilirostris (NHMUK PV OR
15500), from the early Toarcian of the UK.

(A) snout coronal view showing the position of the palatal canals. Three-dimensional
reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals
in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC, dorsal alveolar

canal; PC, palatal canal.
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Figure 5

The early-diverging metriorhynchoid Pelagosaurus typus (NHMUK PV OR 32599)
referred specimen, early Toarcian of France.

(A) snout coronal view showing the position of the palatal canals. Three-dimensional
reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals
in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC, dorsal alveolar

canal; PC, palatal canal.
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Figure 6

The early-diverging metriorhynchoid Eoneustes gaudryi (NHMUK PV R 3263) holotype,
Bathonian of France.

(A) snout coronal view showing the position of the palatal canals. Three-dimensional
reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals
in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC, dorsal alveolar

canal; PC, palatal canal.
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Figure 7

The metriorhynchid Thalattosuchus superciliosus (NHMUK PV R 11999) referred
specimen, middle Callovian of the UK.

(A) snout coronal view showing the position of the palatal canals. Three-dimensional
reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals

in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC, dorsal alveolar

canal; PC, palatal canal.
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Figure 8

The metriorhynchid Cricosaurus araucanensis (MLP 72-1V-7-1) holotype, Tithonian of
Argentina.

(A) snout coronal view showing the position of the palatal canals. Three-dimensional
reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals

in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC, dorsal alveolar

canal; PC, palatal canal.
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Figure 9

The metriorhynchid Cricosaurus schroederi (MM Pal), from the early Valanginian of
Germany.

(A) snout coronal view showing the position of the palatal canals. Three-dimensional
reconstruction of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals

in red and the CT slice of (A) shown in blue. Abbreviations: Alv, alveolus; DAC, dorsal alveolar

canal; PC, palatal canal.
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Figure 10

The extant gavialid Gavialis gangeticus (UF-herp-118998).

(A) snout coronal view showing the lack of palatal canals. Three-dimensional reconstruction
of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals in red and the

CT slice of (A) shown in blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus;

DAC, dorsal alveolar canal; Nas, nasal cavity.
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Figure 11

The extant alligatorid Alligator mississippiensis (USNM 211233).

(A) snout coronal view showing the lack of palatal canals. Three-dimensional reconstruction
of the skull in (B) dorsal, and (C) lateral view, both showing the palatal canals in red and the

CT slice of (A) shown in blue. Abbreviations: Ant, antorbital pneumatic sinus; Alv, alveolus;

Nas, nasal cavity.
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Figure 12

The extant humpback whale (Megaptera novaeangliae).

(A) skull showing the palate, due to size the skull it is shown at an angle; (B) a close-up on

the right palatal groove. Abbreviations: PG, palatal groove.
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Figure 13

Comparison of the palatal grooves in different extant odontocete cetaceans, skulls
shown in palatal view.

(A) Cuvier's beaked whale (Ziphius cavirostris) NMS 2020.9.26; (B) killer whale (Orcinus orca)
NMS Z.2015.179. Abbreviations: PG, palatal groove.
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Figure 14

Comparison of the palatal grooves in different extant pinnipeds, skulls shown in palatal
view.

(A) the Antarctic fur seal (Arctocephalus gazella) NMS 2007.91.10; (B) the Leopard seal
(Hydrurga leptonyx) NMS 1822.240.729; (C) the Harbour seal (Phoca vitulina) NMS
1996.99.13. (A) is an otariid, while (B) and (C) are phocids. Abbreviations: PG, palatal groove.
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Figure 15

The extant alligatorid Alligator mississippiensis (OUVC 9757) in dorsal view.

Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine
artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the
vasculature. Abbreviations: a+vMedNas, medial nasal artery and vein; a+vPal, palatine

artery and vein; a+VvPPlex, arterial and venous palatal plexus.
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Figure 16

The extant alligatorid Alligator mississippiensis (OUVC 9757) in lateral view.

Cephalic vasculature with the medial nasal artery/vein shown in yellow and the palatine
artery/vein and palatal plexus shown in red, (A) with the transparent skull, and (B) just the
vasculature. Abbreviations: a+vMedNas, medial nasal artery and vein; a+vPal, palatine

artery and vein; a+vPPlex, arterial and venous palatal plexus.
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