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ABSTRACT
Sustained attention is one of the basic abilities of humans to maintain concentration on
relevant information while ignoring irrelevant information over extended periods. The
purpose of the review is to provide insight into how to integrate neural mechanisms of
sustained attention with computational models to facilitate research and application.
Although many studies have assessed attention, the evaluation of humans’ sustained
attention is not sufficiently comprehensive. Hence, this study provides a current
review on both neural mechanisms and computational models of visual sustained
attention. We first review models, measurements, and neural mechanisms of sustained
attention and propose plausible neural pathways for visual sustained attention. Next,
we analyze and compare the different computational models of sustained attention
that the previous reviews have not systematically summarized. We then provide
computational models for automatically detecting vigilance states and evaluation of
sustained attention. Finally, we outline possible future trends in the research field of
sustained attention.

Subjects Neuroscience, Computational Science
Keywords Sustained attention, Computational models, Neural mechanisms, Evaluation,
Neural pathways

INTRODUCTION
Attention acts as a gate for information flow in the brain (Cohen, 2014), allowing the
brain to concentrate on processing continuous information. The term ‘‘attention’’ comes
from the Latin ‘‘attentus’’, which is the past participle of attendere, which means ‘‘to
heed’’ (Itti & Baldi, 2005). Although the word existed in Roman times, little scientific
research was conducted on it until philosophers and pioneering psychologists paid
attention to it. Attention research has primarily interested specialists in psychology
because attention is linked to many mental disorders. Human beings with attention-
deficit disorders such as dyslexia (Walda et al., 2021), traumatic brain injury (Carroll et
al., 2020), depression (Vaughn-Coaxum et al., 2021), and attention-deficit/hyperactivity
disorder (ADHD) (Mansour et al., 2021) will have difficulty concentrating. As one of the
fundamental cognitive abilities, attention has been the subject of research by experts
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in various research fields, including philosophy, physiology, neuropsychology, clinical,
education, and computer science (Cohen, Sparling-Cohen & O’Donnell, 1993). However,
interdisciplinary research is often considered overly difficult. Interdisciplinary challenges
in the field of sustained attention remain unresolved, given the differences in conceptual
definitions and research methods across interdisciplinary fields.

Current studies rarely mention sustained attention, which is the basis of other attention
types (for example, selective attention) and plays an irreplaceable role in humans’ daily
lives. For instance, selective attention relates to focus and determines which information
is given priority over others, while sustained attention refers to long-term focus and is
typically related to vigilance (Cohen, 2014). Sustained attention is characterized by the
ability to detect rare and unpredictable signals over a long period of time (Munir, Cornish
& Wilding, 2000). Sustained attention or vigilance refers to the ability to maintain a
consistent behavioral response to task-related stimuli during continuous and repetitive
activity (Robertson et al., 1997). The key to the above definitions is that sustained attention
is focused on the performance of a single task over a period of time. The essential difference
between sustained and transient attention is that transient attention is a transient event-
related state, while sustained attention is a sustained block-level state that shows attentional
fluctuation over a long activity duration (Li et al., 2019).

Human senses can process an enormous amount of information. However, the brain
cannot maintain attention over long periods of time to process the constant influx of
information from the environment. One of the most important characteristics of visual
sustained attention is the ability to make target-present or target-absent decisions rapidly
and accurately (Warm, 1984). The first relevant investigation into the visual sustained
attention phenomenon is Mackworth’s mission of military personnel surveillance radar
during World War II (Mackworth, 1950). At present, the world has entered the era of
informatization and digital multimedia. Diverse and complicated information unrelated to
the current task can easily divert attention. Sustained attention can ensure a more lasting
focus on a task (Chen & Wu, 2015). However, sustained attention is affected by mental
fatigue and is frequently diverted to irrelevant information. Humans are especially prone
to fall into a state of mental fatigue when tasks require them to maintain a high level of
attention for a long time. Furthermore, fatigue often reduces task performance by affecting
vigilance (Thompson et al., 2020a; Thompson et al., 2020b). The ability to detect relevant
information decreases as the time required to maintain sustained attention increases, a
phenomenon known as ‘‘vigilance decrement’’. Humans in a low-vigilance state tend to
experience mind wandering (Jin, Borst & van Vugt, 2020). Humans with low sustained
attention will be unable to complete tasks and may even exhibit symptoms of attentional
disorders such as ADHD. To evaluate the level of sustained attention, several studies in the
past made use of machine learning combined with neuroimaging technology. Aggarwal et
al. (2021) assessed attention levels for students in a massive online open course learning
environment using EEG signals. Shoeibi, Ghassemi & Rajendra Acharya (2022) used a new
deep learning method to build an ADHD intelligent detection model to assess resting-state
functional magnetic resonance imaging (rs-fMRI) data.
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Although sustained attention is vital to humans’ daily lives, several challenges hinder
its exploration in research fields: (1) Previous researchers have often used self-reflection
questionnaires, electrocardiograms, eye movements, and electroencephalograms (EEG) to
evaluate the sustained attention of humans. However, no complete and comprehensive
routine assessment of sustained attention exists due to the different research methods
involved in different disciplines. (2) There have been many attempts to develop guidelines
for human learning and work based on neuroscience findings. Therefore, neural
mechanisms of sustained attention must be introduced to enhance our understanding
of neuroscience-based methods for increasing task efficiency. (3) Sustained attention
evaluation for the large number of existing attention-deficit patients usually requires clinical
diagnosis by clinicians, which is time-consuming and labor-intensive. A large quantity of
data has been produced by advanced neuroimaging techniques and an increasing number of
researchers have utilized computational models to evaluate sustained attention. Therefore,
machine learning, a relatively new advanced computing method, is uniquely suited for
processing large-scale data generated by neuroimaging techniques (Jo, Nho & Saykin,
2019).

Accordingly, the aims of the present article are as follows: (1) to provide a comprehensive
understanding of what sustained attention is and how it can be measured, we review
theoretical models in ‘Sustained attention: state-of-the-art models’ and introduce
paradigms of psychological experiments in ‘Paradigms for psychological experiments
on sustained attention’. (2) To explore how sustained attention can effectively promote
task performance, we review studies on the neural mechanisms of sustained attention
and propose possible visual pathways in ‘Neural mechanisms’. (3) To give a panorama
of computational models for the automatic diagnosis of sustained attention, we review
various computational models for measuring attention in ‘Computational models’. (4)
To illustrate possible directions in the research field of sustained attention, we outline its
applications and future trends in ‘Conclusions’.

SURVEY METHODOLOGY
In our daily lives, we are surrounded by constant visual information, but our visual
processing capacity is limited. Human access to information is dominated by visual
information (Treichler, 1967). A large number of neurons are dedicated to analyzing human
visual information, which makes vision an indispensable sense (Kaewkhaw et al., 2015).
Sustained attention is crucial when a visual task calls for prolonged attention and ongoing
stimulus monitoring (Loetscher et al., 2019). Sustained attention was accompanied by the
flowof top-downvisual spatial attention signals in humanparietal and occipital topographic
cortical areas (Lauritzen et al., 2009). However, the visual pathways of sustained attention
have not been fully clarified in previous studies. Therefore, in this review, we attempt
to cover the neural mechanisms of visual sustained attention and computational models
applied to study attention, especially sustained attention. First, we provide theoretical
models and experimental paradigms related to sustained attention assessment for the
convenience of readers without cognitive science backgrounds. We further explore the
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neural mechanisms and plausible neural circuits of sustained attention. Finally, we review
various computational models of attention.

We used Google Scholar as well as PubMed databases to search for relevant articles in our
publication survey. First, we used the search terms ‘‘visual attention’’, ‘‘visual pathway’’,
‘‘sustained attention’’,‘‘ attention pathway’’, ‘‘machine learning’’, ‘‘deep learning’’,
‘‘sustained attention assessment’’, and ‘‘neural mechanisms of sustained attention’’.
We then expanded our search, including ‘‘attention disorders’’, ‘‘computational models’’,
‘‘attention assessment’’, ‘‘neural mechanisms of attention’’, and ‘‘visual pathways of
attention’’. Second, we expanded our examination of computational models applied to
attention given that there are fewer computational models for sustained attention. We
rigorously searched for publications focusing on the application of computational models
to attention research. Then, the search term was specified as the name of the computational
model described earlier. We consistently excluded irrelevant studies throughout the review
process. For publications that met our criteria, we deeply reviewed their computational
approaches to sustained attention and categorized them into different computational
models. In addition, we compared articles on different computational models with other
relevant studies we found. We removed publications that did not match our approach.

As we attempted to capture all available studies of the neural mechanisms of sustained
attention, the year of our collection of publications is from1948 to the present. Additionally,
to understand machine learning models of sustained attention, we collected research
published after July 2008 based on search criteria.

RESULTS
We found four basic research topics that received sustained attention. These included
theoretical models of sustained attention, experimental paradigms of sustained attention,
neural mechanisms and computational models of sustained attention. We reviewed these
accordingly.

Sustained attention: state-of-the-art models
The purpose of the sustained attention survey is to explain the individual’s internal
fluctuations during the task as well as his or her overall ability to maintain the task
(Esterman & Rothlein, 2019). Moreover, the success of maintaining sustained attention is
dependent onmodulating both external and internal distractions. Therefore,Chun, Golomb
& Turk-Browne (2011) classified attention as external modulation and internal modulation
based on whether the attention goal was sensory stimulation (external) or cognitive
control processes (internal) (see Fig. 1). Under this taxonomy, sustained attention includes
maintaining both external and internal attentional focus as well as persistence over a period
of time.

Several theoretical models were proposed to illustrate sustained attention from various
perspectives (Hancock, 1989; Hancock & Warm, 2003; Blotenberg & Schmidt-Atzert, 2019;
Esterman & Rothlein, 2019). The arousal model modulates sustained attention through the
locus coeruleus (LC), affecting the external signal-to-noise ratio and internal information-
processing ability. This model suggests that the state of arousal is closely related to our
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Figure 1 Models of sustained attention (Chun, Golomb & Turk-Browne, 2011). Task performance
is influenced by various factors, including arousal, attentional allocation, and information processing.
Arousal is the level of physiological and psychological activation, which can be determined by various
factors, including emotions, motivation, and environmental stimuli. Attentional allocation is influenced
by the intrinsic cost of control, motivation, and the degree of arousal. The circles represent the degree
of arousal, and the larger the circle, the higher the degree of arousal. Insufficient attentional state in low
arousal states affects task performance. The optimal arousal ensures sufficient attention for the task. Ex-
cessive arousal states can lead to low task performance due to distraction. Different degrees of arousal are
controlled by internal cognition, such as resource-control and opportunity cost, to regulate the propor-
tion of attentional resources. Higher internal controls can handle multitasking or more difficult tasks (the
more As in bold), and lower internal controls can only handle single or simple tasks. Blue arrows indicate
process of task-unrelated distractors. Red arrows indicate process of task-related targets.

Full-size DOI: 10.7717/peerj.15351/fig-1

perception and sensory stimulation, as external stimuli automatically capture attention
and trigger bottom-up processing. Conversely, top-down control occurs when attention
is voluntarily allocated to the internal mind. Moreover, optimal physiological arousal is
essential for sustained attention. Arousal is also not a static state. Even if humans are not
tired, their arousal levels fluctuate as they become interested, afraid, or surprised. Arousal
is mainly regulated by noradrenaline, a neurotransmitter secreted by the locus coeruleus of
the midbrain, according to molecular neuroscience (Aston-Jones & Cohen, 2005). The LC-
norepinephrine system receives projections from the orbitofrontal cortex and the anterior
cingulate gyrus. By enhancing the activity of specific neurons or inhibiting the activities of
unrelated neurons, the LC-norepinephrine system optimizes individual behavior through
arousal in regular and persistent activities (Lenartowicz, Simpson & Cohen, 2013). In
addition, the acetylcholine system in the dorsal pons and basal forebrain, the serotonin
system in the raphe nucleus, the histaminergic systems in the tuberomammillary nucleus,
and the orexigenic systems in the lateral hypothalamus all contribute to regulating arousal
levels through cortical activation. Therefore, the arousal state involves a series of internal
physiological changes related to externalmodulation via the activity of neurotransmitters to
enhance task-related information-processing ability. Moreover, after the brain receives the
stimulus signal, heart rate, electrophysiological activity, and pupil will change in response
to the competition from participants’ responses to different sources of stimuli (Unsworth,
Robison & Miller, 2018).
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While the arousal model explains neural regulation of sustained attention from a
neurophysiological perspective, it is difficult to explain the decrease in internal vigilance
and the allocation of attention resources. Therefore, a resource-control model (Thomson,
Besner & Smilek, 2015) and an opportunity-cost model (Kurzban et al., 2013) have been
proposed. These models suggest that the level of intrinsic motivation during a specific task,
and the ability to exert influence, diminishes over time (Fortenbaugh, De Gutis & Esterman,
2017). The resource-control model explains the decrease in vigilance over time by the
tendency for attentional resource distraction, which is influenced by task difficulty and time
course (Thomson, Besner & Smilek, 2015). Generally, increasing the difficulty and duration
of a task requires more available attention resources to be used, which increases the demand
for attention resource allocation (See et al., 1995). Attention resources are associated with
the central executive attentional network (Gartenberg et al., 2018). The depletion of central
executive network resources affects sustained attention, leading to errors in information
perception and processing. Moreover, considering time-on-task performance, executive
control decreases with increased mind wandering, resulting in more attention resources
being devoted tomind wandering over time. From the perspective of alternative underload,
mindlessness and goal habituation also cause a decline in vigilance (Helton & Russell, 2012).
Several behavioral and neuroimaging studies support the resource-control model. A study
based on fMRI found that several brain regions associated with vigilance, including the
basal ganglia, the sensorimotor cortex, and a right-sided frontal-parietal attention network,
were activated after the psychomotor vigilance test (Lim et al., 2010). Vigilance activates
the thalamus, as well as the anterior and posterior cortex areas that are potentially related
to norepinephrine during the attention network test (Fan et al., 2005). Additionally,
sustained attention is related to the functional connections between the default network
and the dorsal attention network (Esterman et al., 2017). However, the resource-control
model is primarily based on visual modality studies, and it is still unclear whether it can be
applied universally to other sensory modalities (Terashima et al., 2021).

Although the resource-control model provides a task-related explanation, it does not
elaborate on the effect of subjective experience (mental effort) on task performance
(Esterman & Rothlein, 2019). The opportunity-cost model was proposed to explain the
decrease in vigilance based on the psychological representation of subjects (Kurzban et
al., 2013). It focuses on the expected value of vigilance tasks rather than the proportion
of attention resources consumed by mind wandering. The cost and benefit of ‘‘effort’’ in
task performance are related to psychological representation. The motivation to devote
attention to tasks depends on the effort and psychological expectation of the task execution.
Manipulation of the model can explain the impact of psychological activities, such as
intrinsic motivation, interest, reward, and stress, on time-on-task performance (Esterman
et al., 2016). Attentional engagement and time-on-task performance fluctuations were
associated with motivation (Brosowsky et al., 2020). Moreover, a large-scale brain attention
network was selectively activated in response to the stimulus characteristics of the task
(Long & Kuhl, 2018).

The studies mentioned above suggest that sustained attention models can distinguish
multiple states of optimal attention due to external or internal modulation. Moreover,
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these studies reveal that attention, as a limited resource, can affect task performance over
time. However, the neural mechanisms by which attention affects task performance are
not fully understood (Esterman & Rothlein, 2019). Therefore, more studies are still needed
to investigate the neural basis for theoretical models of sustained attention.

Paradigms for psychological experiments on sustained attention
To explore the neural mechanisms of sustained attention, neuroimaging and
electrophysiological methods are used to reveal the neural activity of basic cognitive
processes in sustained attention. EEG and magnetoencephalography (MEG) have a
high temporal resolution of submilliseconds, allowing them to detect rapid changes
in electrophysiological responses. Functional magnetic resonance imaging (fMRI) uses
endogenous blood oxygenation level-dependent (BOLD) contrast to map human brain
activity. Moreover, rs-fMRI brain networks in sustained attention tasks can predict
differences in individual performance. It can locate brain regions activated by different
tasks or stimuli with a millimeter spatial resolution. While these neuroimaging techniques
can effectively monitor potential neural activity, it is vital to design experimental paradigms
that can genuinely evoke the neural activity associated with sustained attention. Therefore,
many tasks, also called vigilance or sustained attention tasks, have been designed tomonitor
and evaluate sustained attention. In Table 1, we introduce several experimental paradigms
commonly used to measure sustained attention.

Vigilance tasks are used to assess the capacity of sustained attention over long periods.
Among the vigilance tasks, the Mackworth clock task (MCT) was a game changer in the
1940s (Mackworth, 1948). It was developed to assess the vigilance of radar technicians
during World War II. MCT has been shown in many studies to decrease participant
vigilance during tasks (Arsintescu, Mulligan & Flynn-Evans, 2017). Participants monitor
the forward ticks of a clock hand and respond when the tick is twice the usual.

Although MCT has been replicated in various studies, the continuous performance
test (CPT) is the most reliable and well-recognized approach for the clinical evaluation of
vigilance (Arsintescu et al., 2019). The CPT is now applied as a kind of neuropsychological
test to assess humans’ inattentiveness, impulsivity, and vigilance. Moreover, the CPT
has been proven to be sensitive to sustained attention. The CPT has evolved in the last
century into different versions. The Conners’ CPT (Conners & Sitarenios, 2011), also called
the nonX CPT, is the most widely accepted version of the CPT. The Conners’ CPT is
mainly used to assess vigilance task performance and reaction inhibition. The participants
needed to press the space bar when they saw nontarget stimuli (non-X), while they
needed to withhold a response to the target letter X. The stimuli occurred at 1-, 2-, or 4-s
interstimulus intervals (ISIs) during the Conners’ CPT. All Conners’ tests took 14 min to
administer.

In addition to Conners’ CPTs, the test of variables of attention (TOVA) measures the
ability to maintain attention with an additional auditory component. Compared with those
in other CPTs, the reaction time measurement in TOVA is more accurate and sensitive.
Each target (a square near the top edge) or nontarget (a square near the bottom edge)
appeared on a computer screen for 100 ms, and participants were asked to press a spacebar
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Table 1 Paradigms in visual sustained attention.

Paradigms Participants Presentation Blocks Sub-blocks ISIs Respondents Duration

CCPT ≥ 8 years ‘A–X’ letters 6 three 20-trials – ‘non-X’ 12 min
CPT-II ≥ 8 years ‘A–X’ letters 6 three 20-trials 1, 2, or 4 s ‘non-X’ 14 min
CPT-III ≥ 8 years ‘A–X’ letters 6 three 20-trials 1∼4 s ‘non-X’ 14 min
TOVA 4–80 years two grey squares 2 125 trials – bottom square 21 min
ARCPT ≥13 ‘A–X’ letters 10 100 trials adaptive ‘A-X’ sequence 25 min
SART 14–77 years digits 3 18 trials 1 s digit ‘‘3’’ 4-6 min
PVT ≥ 14 years Red millisecond

counter
14 112 trials 2∼10 s Red counter 13 min

GradCPT ≥ 16 years Pictures of cities
and mountains

1 497 trials – city 10 min

MCT adults A white face and
a black pointer

4 100 discrete steps 3
4∼3 min double hops 2 h

Stroop ≥ 8 years Color-word 3 96 trials 1 s Red, yellow, blue, green 20 min

Notes.
ISI, inter stimulus intervals; CCPT, conners’ continuous performance test; CPT, continuous performance test; TOVA, test of variables of attention; ARCPT, adaptive rate
continuous performance test; SART, sustained attention to response task; AVT, abbreviated vigilance task; PVT, psychomotor vigilance task; gradCPT, gradual-onset con-
tinuous performance task; MCT, Mackworth Clock Task.

if the presented stimulus was a target picture. Many experimental studies have shown
that the TOVA is reliable and effective in evaluating ADHD. Most of the results show
that TOVA is helpful in distinguishing subjects who have problems with attention lapses
(Lin et al., 2021). The adaptive rate continuous performance test (ARCPT) differs from
the CCPT and TOVA in that it measures sustained attention on a more demanding rapid
information-processing task (Lohr, 1999). The ISIs of the ARCPT are adaptive and vary
depending on the performance of the subjects. The initial ISI is set to 60 ms. If the response
to the stimulus is correct, the ISI will decrease by 4 ms; otherwise, it will increase by 4 ms
after the error. The changing ISIs enable participants to maintain an accuracy of 80% in
the task.

Although the ISIs of the ARCPT allow participants to maintain a high accuracy level, it is
difficult to solve the reaction errors caused by subjects’ boredom ormind wanderingCohen,
Sparling-Cohen & O’Donnell (1993). Therefore, Manly & Robertson (2005) presented
sustained attention to response tasks (SART) as a measurement of sustained attention. The
SART is a go/no-go vigilance task used to measure sustained attention in short periods
of time. The mechanically continuous response in the SART causes the participant to
endogenously regulate attention. When the subjects saw the frequent stimuli (for example,
digit ‘3’), they had to press the space-bar. However, when they saw the infrequent stimuli,
they had to withhold response. Because of its conciseness, the SART has been utilized
extensively in clinical practice research of sustained attention as well as in a variety of brain
imaging studies (Scheinost et al., 2020). Furthermore, the SART has also been used as an
additional vigilance test in some sleep studies.

In addition to the SART, the psychomotor vigilance test (PVT) is also related to the
measurement of sustained attention in sleep research (Dinges & Powell, 1985). The PVT
aims to assess changes in performance caused by decreased vigilance. Participants were
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instructed to maintain their fastest possible reaction time to a visual stimulus (typically, a
milli-second counter) at random 1–9 s ISIs. It has been widely used in research on fatigue.
The decline in performance during the PVT is primarily due to cognitive slowing and
attention lapses Dinges & Kribbs (1991).

In the experimental paradigms described above, external cues caused by abrupt
onsets and offsets of stimuli cannot be easily eliminated. The gradual-onset continuous
performance task (gradCPT), which uses fade-in and fade-out for stimulus presentation,
can better clarify the behavioral and neural correlates of visual sustained attention (Esterman
et al., 2013). Participants were required to press buttons for city scene images (90% of trials
displaying city scenes, 10% mountain scenes). Each scene image gradually transitioned,
occurring over 800 ms. Several other paradigms are also used to test broader attention-
related problems (Munnik et al., 2020).

In conclusion, the ultimate goal of different experimental paradigms is to evoke cognitive
processes associated with sustained attention during tasks. Moreover, researchers who use
the same paradigm tend to frame their questions similarly.

Neural mechanisms
Exploring the neural mechanisms of sustained attention helps in understanding the human
psychophysiological process during tasks. Traditional research has mainly focused on the
activities of specific brain regions during sustained attention (Sarter, Givens & Bruno, 2001;
Sonuga-Barke & Castellanos, 2007). An increasing number of researchers are beginning to
recognize that brain areas involved in sustained attention are not limited to specific areas
(Klimesch, 2012; Pamplona et al., 2020). In general, the neural mechanisms of sustained
attention include visual, auditory, and other somatosensory pathways (Clayton, Yeung
& Cohen Kadosh, 2015; Helfrich et al., 2018). However, visual attention is probably more
widely known among all cortical systems than auditory and somatosensory attention.
Studies have shown that many brain areas, primarily the occipital, parietal, temporal, and
frontal eye fields, are involved in the human visual attention system (Saygin & Sereno,
2008; Offen et al., 2010; van et al., 2022).

Regarding brain areas involved in sustained attention, Clayton, Yeung & Cohen Kadosh
(2015) addressed this issue by proposing an oscillatory model in which the posterior
medial frontal cortex (pMFC), medial prefrontal cortex (mPFC), posterior cingulate
cortex (PCC), and lateral prefrontal cortex (LPFC) are primarily involved in sustained
attention. Langner & Eickhoff (2013) used functional neuroimaging to identify 14 clusters
that were consistently activated across various tasks involved in sustained attention. These
clusters are primarily found in the frontal cortex, cingulate cortices, and subcortical
structures (see Fig. S1 ).

Sustained attention and the frontal lobe
The frontal lobe is a section of the brain that covers the front part of the cerebral cortex. It is
usually regarded as the executive control center of the brain (Luria, 1973). These executive
functions consist of a number of individual capacities, such as inhibition, goal-directed
behavior, and self-monitoring (Oliveira et al., 2012). These individual capacities control
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and regulate the process of sustained attention. The frontal lobe mainly comprises the
premotor area, primary motor area, and prefrontal lobe. The prefrontal cortex is located
in the anterior region of the frontal lobe. It is linked to higher-order processing abilities
such as attention, working memory, language, and executive function (Raver & Blair,
2016). Frontal lobe system damage often affects sustained attention, resulting in lapses in
sustained attention and attention-executive disorders (Esterman et al., 2013). Moreover,
it was found that patients with injuries in some areas of the prefrontal cortex performed
abnormally in the implementation of sustained attention tasks, whereas they performed
normally in other cognitive ability tests (Sarter, Givens & Bruno, 2001; Langner & Eickhoff,
2013). The frontal cortex has rich functional connections with the posterior brain system as
well as several subcortical systems, including the limbic system, midbrain reticular system,
and thalamic structure.

Many neurophysiology studies have found increased activation in the frontal cortex
during a vigilance task (see Table S1). In addition, Han, Lee & Choi (2019) proposed that
theta and alpha-band (4–12 Hz) EEG activities in the frontal cortex were essential for
sustained attention and goal-related behaviors. In particular, EEG activity of the CPT state
shows the dominance of effective connections going from the prefrontal cortex toward
the parietal lobe at 4 Hz (Francisco-Vicencio et al., 2022). Moreover, sustained attentional
preparation can be indexed by the deployment of a centrally distributed event-related
potential (ERP), named the contingent negative variation (CNV) (Segalowitz, Dywan
& Unsal, 1997; Kropp et al., 2001). CNV and P3 within the frontal cortex appear to be
good candidates to investigate different mechanisms supporting sustained attention and
prediction abilities (Thillay et al., 2015).

Damage to the whole frontal cortex or attention-related brain region (such as, pMFC,
mPFC) affects sustained attention function, manifesting as behavioral disturbances
or functional abnormalities in an individual. For example, rs-fMRI study found
that frontal functional disconnection may underlie the pathogenesis responsible for
defective vigilance/sustained attention (Tu et al., 2020). In addition, increased functional
connectivity in the right frontoparietal network might reflect excessive cognitive fatigue in
patients with traumatic brain injury (TBI) (Shumskaya et al, 2012).

Deficits in sustained attention are the most common disorder caused by frontal cortex
damage (Wilkins, Shallice & McCarthy, 1987). Many studies have shown that abnormal
neuron development in the frontal lobe may cause sustained attention disorders or even
hyperactivity disorders (Rubia et al., 2019). In addition to developmental disorders, stroke
and brain tumors in the frontal cortex can also lead to sustained attention deficits (Torres
et al., 2021). Closed head injuries caused by external impact or sudden violent exercise
can also impair sustained attention (Parasuraman, Mutter & Molloy, 1991). Furthermore,
sustained attention decreases with aging because of frontal lobe degeneration over time
(Mitko et al., 2019). Patients with deficits in sustained attention often suffer from ADHD,
epilepsy, depression, intellectual disability, and other complex neuropsychiatric problems
as well (Malkovsky et al., 2012). Among these symptoms, ADHD is a representative disorder
of deficits in sustained attention (Kass, Wallace & Vodanovich, 2003). It has been linked
to inattention, impulsivity, and negative affect (Barkley, Knouse & Murphy, 2011). Patients
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with ADHD have difficulty maintaining focus and vigilance for extended periods of time,
leading to poor academic performance, careermistakes, and even operator-related train/car
accidents (Fortenbaugh, De Gutis & Esterman, 2017; Zeller, 2022).

Sustained attention and the cingulate cortex
The cingulate cortex consists of two distinct systems: (1) a posterior system that receives
input from dorsal stream areas and projects to some cortical systems, the thalamus, and
(2) an anterior system that receives signals from the thalamus and frontal-parietal lobes
and projects to limbic structures (Jafari, Malayeri & Rostami, 2015). Some studies have
revealed that the cingulate cortex participates in sustained attention tasks (see Table S2).

The anterior cingulate cortex (ACC) receives inputs from the lateral frontal cortex and
the posterior parietal cortex. In addition, it compactly connects with the basal ganglia
(BG). The anterior cingulate cortex, which is part of the limbic system, receives inputs
from the thalamus and neocortex and has large projections to the nucleus accumbens and
amygdala. Many experts have found that the anterior cingulate cortex plays a vital role in
conflict monitoring (Jones et al., 2002). The ACC was found to be associated with cognitive
impairment in rs-fMRI of sustained attention tasks (Loitfelder et al., 2012). Furthermore,
some researchers have confirmed that the anterior cingulate cortex is constantly activated
during tasks related to sustained attention (Fan et al., 2018). Subsequent studies using a
series of Stroop tasks have suggested that strong reactions in the anterior cingulate cortex
mediate attention and conflict resolution (Corlier et al., 2020) (see Table S2). Moreover, in
healthy adults, better sustained attention was associated with more robust activation of the
ACC during SART and gradCPT tasks (Esterman et al., 2013).

The posterior cingulate cortex (PCC) is considered to be a paralimbic cortical structure.
It has rich projections to the frontal, parietal, and temporal cortex, as well as to subcortical
systems such as the thalamic nucleus, pontine, and basal ganglia. Therefore, the PCC is
thought to be involved in several cognitive activities, although its specific functions have
not been clarified. The results of resting functional brain imaging revealed that the PCC
is a critical node in the default mode network (DMN) and plays a vital role in attention
regulation (Kral et al., 2019). It has been confirmed that the PCC is activated and has
strong interactions with other parts of the DMN in both resting state and continuous
working memory tasks (Lau, Leung & Zhang, 2020). Abnormalities of the DMN are
frequently seen in neurological and psychiatric disorders such as ADHD, Alzheimer’s
disease, schizophrenia, autism, and depression. Therefore, PCC has important clinical
significance (Zhou et al., 2020).

The latest neuroimaging research found that there is a selective enhancement of
oscillatory coupling between the ACC and the dorsal attention network (DAN) during
attention tasks (Wong et al., 2022). Human single-neuron recordings during conflict
tasks suggest that the dorsal ACC can be involved in attention-related performance
monitoring (Fu et al., 2022). Resting-state functional connectivity within the DAN can
predict individual performance in spatial attention tasks (Machner et al., 2022).
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Sustained attention and subcortical structures
Subcortical structures are neural structures located deep in the brain that include the
brainstem, midbrain, cerebellum, basal ganglia, thalamus, hypothalamus, and limbic
nuclei. The hypothalamus and the reticular formation coordinate arousal through their
vast array of projections to other brain regions (Rapoport et al., 1978). The basal ganglia and
thalamic nucleus are responsible for processing gating information. They are closely related
to attention and somatic movement (McAlonan, Cavanaugh & Wurtz, 2008). According to
Fan et al. (2008), the basal ganglia appear to be central to executive regulation mechanisms,
error monitoring, and sustained vigilance. Limbic nuclei include the amygdala, septal
nucleus, and nucleus accumbens.

The anterior thalamic nuclei may serve as a site of integration between frontal
areas and the hippocampus to regulate attentional processes (Nelson, 2021). Attention
is also linked to the hippocampus, which is responsible for the storage, conversion,
and orientation of long-term memory (Aly & Turk-Browne, 2016). Evidence from the
reticular formation (Dietrich & Audiffren, 2011), thalamus (Rajab et al., 2014), and limbic
structures (Wang et al., 2013b) suggests that exercise may help to facilitate attentional
processes. The asymmetrical development of the right-lateralization of the frontal lobe
and left-lateralization of the occipital lobe may affect ADHD severity (Chen et al., 2021).
Furthermore, stereo-electroencephalography (SEEG) recordings provide direct evidence
that the anterior nucleus of the thalamus modulates hippocampal gamma activity in
attention and working memory tasks (Piper et al., 2022; Liu et al., 2021).

Based on the information above, attention is a byproduct of regulation from multiple
brain regions rather than a strictly cortical phenomenon. Clinical studies have provided
additional evidence that the nervous system contains the frontal lobe, cingulate cortex, and
subcortical system, which play an appropriate role in sustained attention.

Neural pathways of visual sustained attention
Sustained visual attention is necessary for humans’ visual systems to have incredible
perception and data processing capabilities. Many studies have been dedicated to exploring
the neural pathways of sustained visual attention.

Dynamic causal modeling provides compelling evidence for the regulation of attention
through the PFC↔thalamic, ACC↔thalamic, BG↔thalamic, and PFC↔BG pathways
(Jagtap & Diwadkar, 2016). For example, the modulation of thalamic→PFC pathways
is presumed to reflect ascending attention processes engaged by external sensory inputs
of salient and novel stimuli. In comparison, modulation of frontal→thalamic pathways
represents descending attention processes mediated by voluntary shifts of attention based
on expectations of goals and rewards (Connor, Egeth & Yantis, 2004). Before reaching
the cortex, visual information is filtered by the thalamus. The thalamus, the ‘‘gateway’’
to the cortex, comprises various subnuclei involved in attention gating (Brunia, 1993).
The thalamus affects feedforward and feedback information transmission between the
frontal, parietal and occipital cortex regions (Tokoro et al., 2015). Attention to stimuli
suppresses the neuronal activity of the reticular nucleus over selected relay nuclei, and this
disinhibition gates thalamocortical inputs (Conway, 2014). These functional effects appear
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to be mediated by anatomical connections between the thalamus (and specific thalamic
nuclei) and regions of the frontal lobe, including the LPFC and the cingulate cortex.
The PCC is closely linked to the thalamus (Leech & Sharp, 2014). It receives information
from the visual cortex and sends it to the LPFC (Buschman & Kastner, 2015). Sustained
attention responses also exist in the early visual cortex in the absence of visual stimuli
(Silver, Ress & Heeger, 2007). Several elegant studies have found that the presupplementary
motor area (pre-SMA) is the target of the BG (Akkal, Dum & Strick, 2007; Wiesendanger
& Wiesendanger, 1985). The pre-SMA receives input from the cortex and delivers output
to the thalamus. The BG organizes motivations that lead to the execution of goal-directed
behaviors, for example, pushing a button. When the attention process in the ventral
regions is goal-oriented, information from the visual cortex activates neural activity in the
inferotemporal cortex (IT), which is followed by activation in the LPFC (Hommel et al.,
2019). The anteromedial prefrontal cortex, ACC, anterior insula, and anterior thalamic
nodes form the cingulo-opercular circuit, which is involved in distinguishing potential
mismatches and conflicts (Williams, 2016).

In addition, the arousalmodel shows that the LC-norepinephrine system in the brainstem
plays a critical role in the vigilance of sustained attention. Norepinephrine projections
originating from the LC and ending in the thalamus mediate the attention process (Sarter,
Givens & Bruno, 2001). Projections from the ACC to the LC-norepinephrine system
indicate that the mPFC is involved in the regulation of arousal through low-frequency
phase synchronization with the LPFC (Clayton, Yeung & Cohen Kadosh, 2015; Craigmyle,
2013). Based on the above literature, we propose possible pathways of sustained attention,
as shown in Fig. 2.

In addition, functional brain networks play a crucial role in sustained attention. Recent
research has posited that the visual processes of sustained attention emerge from an array
of large-scale functional networks (Fortenbaugh et al., 2018). In largely independent lines
of research, influential brain network models (Esterman et al., 2013) have suggested that
optimal sustained attention requires cooperation among the task positive network (TPN),
frontoparietal control network (FPN), ventral attention network (VAN), dorsal attention
network (DAN), and DMN, as shown in Fig. 2. Intracranial electroencephalography (iEEG)
in human subjects offers evidence that the DMN interacts negatively with both the DAN
and salience network (SN) (Kucyi et al., 2020). Moreover, researchers who utilized BOLD
of fMRI found that many attention-related brain networks, such as the DMN and DAN,
were activated during the gradCPT task (Mitko et al., 2019). Better sustained attention
is associated with stronger anticorrelations between the DAN and DMN (Chang et al.,
2022). Furthermore, optimal sustained attention is less dependent on the DAN and more
dependent on brain networks related to task automation, such as the DMN (Okabe, 2016).
Therefore, characterizing both anatomic neural pathways and functional connectivity
could allow for a more profound study and eventually provide a panorama of the neural
mechanisms of sustained attention.
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Figure 2 A plausible visual sustained attention pathway. From visual cortex, through LPFC, two ma-
jor routes have been described, a dorsal pathway through subcortical structures (and related areas), and a
ventral pathway through IT cortex. The visual attention dorsal pathway has been implicated in top-down
attention at objects, features, or regions in space for sustained periods of time (the black solid line), while
the ventral pathway represents bottom-up attention is transiently captured (the gray solid line) (Pinto et
al., 2013; Conway, 2014). The brain network of visual sustained attention consists of sub-networks includ-
ing cingulate cortex, LPFC, thalamus, insula, BG, and IT (Jagtap & Diwadkar, 2016). These sub-networks
are responsible for functions including regulation, error monitoring or processing, and sustained vigi-
lance. In addition to forebrain, the midbrain LC can also regulate sustained attention by secreting neuro-
transmitters (the black dashed line). LPFC, lateral prefrontal cortex; pre-SMA, pre-supplementary motor
area; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; IT, inferotemporal; BG, basal gan-
glia; LC, locus-coeruleus.

Full-size DOI: 10.7717/peerj.15351/fig-2

Computational models
The theoretical models used to explain sustained attention are constantly evolving as
cognitive science advances. The arousal and resource-control models mentioned above
describe the complex relationship between multiple processing modules in sustained
attention. However, descriptive models cannot quantitatively analyze the relationship
between these modules. Moreover, descriptive models provide little information about
how the processing modules in sustained attention change under specific conditions.
It is difficult to give a precise measurement of sustained attention. Therefore, cognitive
and computer scientists have introduced many computational models to quantitatively
measure and evaluate sustained attention.

Biomathematical models
Early research on computational models was related to sleep loss and circadian rhythm.
Researchers usually ask subjects to perform a vigilance task after sleep deprivation when
sleep is insufficient or irregular. Then, the subject’s vigilance or sustained attention can
be quantified by using a computational model that is based on task performance. A
diverse set of vigilance tasks will cause a decline in performance as time-on-task increases
(Davies & Parasuraman, 1982). These vigilance tasks proved that the reduction magnitude
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is influenced by various factors, including the event rate, signal probability, stimulus
duration, stimulus modality, and others (Warm, Dember & Hancock, 1996; Greenlee &
Hess, 2019). At present, sleep loss and fluctuations in circadian rhythms are used by
researchers to explain the reasons for decreased vigilance (Walsh, 2014). There appear
to be notable differences in the study of theories about sleep deprivation and vigilance
reduction. However, studies have shown that insufficient sleep and reduced vigilance have
the same effects on cognitive processing (Veksler & Gunzelmann, 2018). Kronauer, Forger
& Jewett (1999) found that ambient light can affect vigilance by influencing the phase and
amplitude of circadian pacemakers. Jewett & Kronauer (1999) proposed a circadian rhythm
neurobehavioral performance and alertness (CNPA) model. Hursh et al. (2004) proposed
a sleep activity, fatigue, and task effectiveness (SAFTE) model. These biomathematical
models predict that an increase in sleep deprivation will lead to a continued decline in
vigilance.

Therefore, early biomathematical models can only provide estimates of vigilance. They
cannot predict potential changes in performance or cognitive processing, nor can they
explain the mechanism of behavioral changes.

Integration models
Researchers integrated predictions of alertness levels, generated by biomathematical
models, with information-processing methods in cognitive architecture model to produce
precise predictions of sustained attention. Cognitive architecture model provides a unified
information-processing framework that is based on decades of empirical evidence and
psychological theories. Thus, the integration model not only helps in understanding the
changes in human performance as vigilance declines but also explains the underlying neural
mechanisms of sustained attention.

Anderson et al. (1998) proposed a cognitive architecture known as adaptive control of
thought-rational (ACT-R). It has been used to provide a quantitative description of human
performance in cognitive tasks.Gunzelmann et al. (2011) introduced the microlapse theory
of fatigue (MTF), which integrated a biomathematical model with ACT-R to model
different sustained attention tasks. MTF, as an instantiation of the computational model,
describes the process of decreased vigilance. Jackson et al. (2013) improved Gunzelmann’s
model by including a time-on-task component. Although Jackson’s model uses the same
mechanism as the original model, it has an impact on sleep deprivation and circadian
rhythm research. Gartenberg et al. (2018) proposed the microlapse theory of fatigue with
replenishment (MTFR), a process model similar to MTF that supplements the mechanisms
related to opportunistic rest periods and internal rewards.

These computational models, when combined with a specific cognitive framework, can
achieve a strong fit between simulated and actual behavioral data to predict behavioral
performance in sustained attention tasks.

Machine learning algorithms
With the advancement of modern science, neuroimaging technology is increasingly being
used to evaluate sustained attention (Zhang et al., 2022). Previously, neuroimaging data
were combined with classical statistical methods to construct a computational model of
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sustained attention. However, as research advances, neuroimaging technology will result
in an explosive increase in data scale. Classical statistical methods cannot handle large
quantities of neuroimaging data, and manually processing these complex neuroimaging
data is time-consuming. Thus, computational models that can automatically and elegantly
process massive quantities of neuroimaging data are urgently needed to meet the demands
of state-of-the-art neuroimaging research. Machine learning, an advanced computing
method, is uniquely suited to address these issues.

In traditional machine learning approaches, handcrafted features are commonly
combined with support vector machines (SVMs), k-nearest neighbors (KNNs), and
Bayesian networks. The classification accuracy is over 70% when solving a binary
classification problem in most EEG-based studies (see Table 2).

SVM is a supervised learningmodel for classification and regression inmachine learning.
It performs well when recognizing small samples with high-dimensional data. By using the
SVMmodel, some studies focused on assessing the attentional state in healthy people. Yeo,
Shen & Wilder-Smith (2009) tested the usefulness of SVM in identifying or distinguishing
between alert and drowsy EEG patterns. Cirett Galán & Beal (2012) used SVM to estimate
sustained attention and cognitive workload while students were solving a series of math
problems. Zhang et al. (2016) used SVM to detect sustained attention load based on passive
brain-computer interface signals from functional near-infrared spectroscopy (fNIRS);
Samaha, Sprague & Postle (2016) used SVM to assess whether the spatial selectivity of
neural responses can be recovered from the topography of alpha-band oscillations during
spatial attention. Batbat, Güven & Dolu (2019) achieved high accuracy by combining EEG
data from visual, auditory, and auditory-visual tasks and using an SVM with a linear
kernel to classify different attentional states. Moreover, SVM is regarded as a relatively fast
classifier. It is practically suitable for cases where the number of features is greater than the
number of instances. However, SVM is difficult to implement in large-scale samples and
to address multilabel classification problems.

The KNN algorithm, unlike the SVM algorithm, is an instance-based learning method.
The KNN classifier is very simple and intuitive. High accuracy was achieved in classifying
clinical patients and nonclinical participants using a combination of features with a KNN
classifier. There are studies that have distinguished between different attentional states. For
example, Chen et al. (2010) classified sustained attention phases using electrocardiograms
(ECG) with KNN. Borji, Sihite & Itti (2011) used KNN to predict human attention in the
training set by implementing a nonlinear mapping from eye position to task state. Hu,
Sun & Ratcliffe (2016) proposed a classification method that combines correlation-based
feature selection (CFS) and a KNN algorithm to identify attentional states during the
learning process. However, KNN depends heavily on training data. The complexity of
KNN increases dramatically as the number of features increases.

The Bayesian model is more adaptable than the two other methods. It is a type of
probabilistic graph model that uses Bayesian inference to compute the probability. The
Bayesian model is fast and has been used for attentional classification problems by many
researchers, such as Larue, Rakotonirainy & Pettitt (2010). In their study, the participants’
reaction time during the SART was used to detect vigilance decline in real time using
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Table 2 Studies of sustained attention with machine learning models.

Author Type of
subjects

Number of
subjects

Research
method

Data
sources

Average
accuracy

Classification

Cirett Galán & Beal (2012) Healthy, age ≥ 18
years

N = 16 (8 males) SVM EEG 73% Engagement and workload

Zhang et al. (2016) Healthy N = 15 SVM fNIRS 80% Three levels of attentional load
Yeo, Shen & Wilder-Smith (2009) Healthy, age 20–25

years
N = 20 (10 males) SVM EEG 99.30% Alert and drowsy state

Samaha, Sprague & Postle (2016) Healthy, age 18–27
years

N = 8 (7 males) SVM EEG 95% Different frequency bands

Batbat, Güven & Dolu (2019) Healthy, age 18–25
years

N = 48 (28 males) SVM EEG 88.89% Selective attention and divided
attention

Öztoprak et al. (2017) ADHD, non-ADHD N = 25 SVM-RFE EEG 100% ADHD and non-ADHD
Miao & Zhang (2017) ADHD age 11.19

± 2.63 years. non-
ADHD age 12.41
± 3.28 years

ADHD (N = 82),
non-ADHD (N =
72)

SVM fMRI 92.16% ADHD and non-ADHD

Ghassemi et al. (2010) ADHD, non-
ADHD, age 29.78
± 6.15 years

ADHD (N = 10) (7
males), non-ADHD
(N = 40) (19 males)

KNN EEG 92% ADHD and non-ADHD

Ghassemi et al. (2012) ADHD, non-
ADHD, age 29.78
± 6.15 years

ADHD (N = 10) (7
males), non-ADHD
(N = 40) (19 males)

KNN ECG 96% ADHD and non-ADHD

Hu, Sun & Ratcliffe (2016) Healthy, age 20–25
years

N = 10 (7 males) CFS+KNN EEG 80.84% Attention on high, neutral, low

Borji, Sihite & Itti (2012a);
Borji, Sihite & Itti (2012b)

Healthy – KNN Behavioral – Mapping from features to saccade
locations

Chen et al. (2010) Healthy, age 18–24
years

N = 28 KNN ECG 98% Attention and non-attention

Larue, Rakotonirainy & Pettitt (2010) Healthy, age 22.6
± 9.2 years

N = 40 (8 males) Bayesian Behavioral 72% Vigilance decline

Weigard, Huang-Pollock & Brown (2016) ADHD, age 9.96
± 1.21 years. non-
ADHD, age 10.18
± 1.31 years

ADHD (N = 66) (39
males), non-ADHD
(N = 66) (36 males)

Bayesian Behavioral 75% Predicting human visual
attention

Pang et al. (2008) Healthy – Bayesian Behavioral – Evaluating the consequences
Luo et al. (2020) Healthy – Bayesian Behavioral – Predicting human visual

attention
Borji, Sihite & Itti (2012a);
Borji, Sihite & Itti (2012b)

Healthy N = 10 Bayesian Behavioral – Predicting human visual
attention

Notes.
SVM, support vector machines; EEG, electroencephalogram; fNIRS, functional near-infrared spectroscopy; ADHD, attention-deficit/hyperactivity disorder; SVM-RFE, support vector machines re-
cursive feature elimination; fMRI, functional magnetic resonance imaging; KNN, k-nearest neighbors; ECG, electrocardiography; CFS, correlation-based feature selection.
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a Bayesian model. They quantified the effect of monotony on overall performance. In
addition, a Bayesian model can also be used to predict the likelihood of humans typically
focusing on a scene (Pang et al., 2008). Luo et al. (2020) developed a hybrid incremental
dynamic Bayesian network and constructed a visual focus detectionmethod based on fusing
drivers’ head and eyemovement data. Borji, Sihite & Itti (2012a); Borji, Sihite & Itti (2012b)
used Bayesian networks to estimate the attentional state of subjects while performing a task
(for example, playing video games) and mapped the state to an eye position. In addition to
the classifiers mentioned above, principal component analysis (Arruda et al., 2007) (PCA),
artificial neural networks (ANNs) (Dowman & Ben-Avraham, 2008), linear discriminant
analysis (LDA) (Ghassemi et al., 2009), K-Means (Gurudath & Bryan Riley, 2014), and
other methods have been used to solve attention-related classification problems.

Classic machine learning algorithms require experts to design elegant, handcrafted
features. However, deep learning can learn feature representations from datasets
automatically. To interpret data, deep learning builds a deep neural network that mimics
the neural mechanisms of the human brain (Zaharchuk et al., 2018). As data acquisition
technology advances in scientific research, computer-aided data analysis based on deep
learning will become more widely accepted. Therefore, we reviewed existing deep learning
methods for attentional state classification (see Table 3), including convolutional neural
networks (CNNs) and recurrent neural networks (RNNs).

CNNs have been proven to be efficient in research areas such as image recognition and
classification. In recent years, many researchers have used CNNs to measure attention
and try to find the neural features that correspond to it. For example, Borhani et al. (2018)
developed an EEG-based classifier that used CNN to investigate underlying subject-specific
features related to early visual attention. Hosseini & Guo (2019) developed a channelwise
deep CNN model to classify features extracted from EEG signals from a focusing state
and mind wandering. Ho et al. (2019) proposed a framework for distinguishing mental
workload by combining hemoglobin concentration features with CNN. Wang, Antonenko
& Dawson (2020) proposed a multiscale convolutional neural network-dynamic graph
convolutional network (AMCNN-DGCN) model that estimated driving fatigue using EEG
data from the driving task.

However, CNNs are not well suited to processing sequential data. Therefore, researchers
developed RNN models in which neural network nodes and connections form a directed
graph along a temporal sequence. As a result, RNNs are suitable for tasks involving
sequential data, such as online handwriting recognition (where features can be extracted
from both the pen trajectory and the resulting image) (Wu et al., 2014) and speech
recognition (Fayek, Lech & Cavedon, 2017). RNNs can also be used to assess the state of
sustained attention over time.Moinnereau et al. (2018) presented a deep RNN architecture
for learning robust features and predicting cognitive load levels from EEG recordings. Jeong
& Jeong (2020) utilized RNNs to distinguish between possible attention states. In addition,
some electrophysiological data with long recording times are also suitable for processing
with RNNs. For example, Phan et al. (2018) proposed a feature learning approach for
single-channel automatic sleep stage classification. This approach is based on a deep
bidirectional RNN with an attention mechanism. Huve, Takahashi & Hashimoto (2018)
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Table 3 Studies of sustained attention with machine learning models.

Author Type of subjects Number of
subjects

Research
method

Data
sources

Average
accuracy

Classification

Borhani et al. (2018) Healthy, age 21–24
years

N = 38 (27 males) CNN EEG 73% 2 classes attentional state

Hosseini & Guo (2019) Healthy, age 25,31
years

N = 2 (1 male) CNN EEG 91.78% Focusing state and mind
wandering

Ho et al. (2019) Healthy N = 16 (8 males) CNN fNIRS 65.43% 3 classes mental workload
Khullar et al. (2021) ADHD, non-

ADHD, age 7–21
years

ADHD (N = 285),
non-ADHD (N =
491)

2D CNN–LSTM fMRI 98.12% ADHD and non-ADHD

Zou et al. (2017) ADHD, non-
ADHD, age 7–21
years

ADHD (N = 286),
non-ADHD (N =
340)

CNN MRI 69.15% ADHD and non-ADHD

Mao et al (2019) ADHD, non-
ADHD, age 7–21
years

ADHD (N = 285),
non-ADHD (N =
491)

4-D CNN fMRI 71.3% ADHD and non-ADHD

Chen et al. (2019) ADHD age 10.44
± 0.75 years, non-
ADHD age 10.92
± 0.69 years

ADHD (N = 50) (41
males). non-ADHD
(N = 57) (53 males)

CNN EEG 90.29% ADHD and non-ADHD

Fouladvand et al. (2018) ADHD, age 13–20
years

N = 11,624 LSTM – 84% Temporal medication
features

Phan et al. (2018) Healthy N = 20 RNN EEG 82.50% 5 sleep stages
Liu & Liu (2017) Healthy N = 27 RNN EEG 74.50% Arousal and valence
Huve, Takahashi & Hashimoto (2018) Healthy – RNN fNIRS 63% Driving under clear weather

and driving under rainy weather
Rasyid & Djamal (2019) Healthy – RNN EEG 89.73% Emotion and attention
Moinnereau et al. (2018) Healthy – RNN EEG 83.2% 3 auditory stimuli
Ming et al. (2018) Healthy N = 16 RRN EEG 89.3% 2 classes attentional state
Kuang & He (2014) ADHD N = 222 DBN fMRI 35.19% 4 classes attentional state
Kuang et al. (2014) ADHD N = 94 DBN fMRI 61.90% 4 classes attentional state
Vahid et al. (2019) ADHD, non-ADHD N = 144 EEGNet EEG 83% ADHD and non-ADHD
Hao & Yin (2015) ADHD, non-ADHD N = 873 – fMRI 64.70% ADHD and non-ADHD
Dubreuil-Vall, Ruffini & Camprodon (2019) ADHD age 43.85

± 14.78 years. non-
ADHD age 29.90
± 10.77 years

ADHD (N = 20) (10
males). non-ADHD
(N = 20) (10 males)

Deep CNN EEG 88% ADHD and non-ADHD

Notes.
CNN, convolutional neural networks; EEG, electroencephalogram; fNIRS, functional nearinfrared spectroscopy; ADHD, attention-deficit/hyperactivity disorder; LSTM, Long short-term memory;
fMRI, functional magnetic resonance imaging; RNN, recurrent neural networks; DBN, deep belief network.
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collected fNIRS signals and then used both a deep neural network (DNN) and an RNN to
evaluate the impact of a driver’s mental state under various environmental conditions.

Here, we reviewed several types of computational models proposed for attention
identification and evaluation. With the advancement of modern neuroimaging technology,
computational models may be able to reduce labor costs while also facilitating the
assessment of sustained attention. Neuroimaging data from these studies could in turn
improve the accuracy of computational models and help researchers find neuromarkers
that can represent the sustained attention cognitive process.

CONCLUSIONS
This study conducted a systematic review of the research on sustained attention. There are
currently only a few studies that comprehensively introduce sustained attention. Therefore,
this article began by illustrating sustained attention using theoretical models, measurement
methods, and neural mechanisms. Moreover, we proposed possible visual pathways of
sustained attention based on the previous literatures. Subsequently, to facilitate evaluating
sustained attention, this study summarized and compared various computational models
related to attention classification.

Sustained attention, a fundamental component of attention, requires more in-depth
research. Although the frontal cortex, cingulate cortex, and subcortex are all involved in
sustained attention activities, clear pathways between these regions have not been identified.
In addition, sustained attention is affected by both internal (such as mind wandering) and
external factors. According to the resource-control model of sustained attention, mind
wandering is unrelated to the task at hand. Although computational methods combined
with neuroimaging data have high potential value, much work still needs to be done by
researchers in this field. Therefore, research on sustained attention is gradually forming its
characteristic framework (see Fig. S2).

There are still some limitations in the quantitative research of sustained attention. The
first is that neuroimaging data are obtained by measuring the brain’s neural activity during
a sustained attention task. It is worth noting, however, that the quantifications for sustained
attention differ slightly across experimental paradigms. For example, the CPT3 measures
inattentiveness, impulsivity, sustained attention, and vigilance (Conners, 2008), whereas
the SART measures sustained attention and inhibitory control (Dinges & Powell, 1985).
Because the research content of different experimental paradigms differs slightly, neural
activity measured by different experimental paradigms may be biased toward different
cognitive content. More research is needed in the future to verify whether the differences
caused by different experimental paradigms can reflect different cognitive processing of
sustained attention. Second, current computational models focus on machine learning
algorithms while ignoring the neural mechanisms of sustained attention, resulting in a
lack of interpretability. Therefore, in the future, more computational models for sustained
attentionmust be designed and developed in combinationwith neuralmechanisms (Theiss,
Bowen & Silver, 2022).

Although many studies have been exploring sustained attention over the past few
decades, future research is still needed to address these unclear issues. Paradigms of
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sustained attention measurements used in neuropsychology are not regularly used in daily
life (Mueller et al., 2017). Research must develop more realistic and accurate paradigms
that consider actual problems in natural settings. The neural mechanisms of sustained
attention play a vital role in improving humans’ attention and task performance. Exploring
the possible neural mechanisms of sustained attention can assist humans in maximizing
the potential of their brains (Unsworth, Robison & Miller, 2018). In addition, analyzing the
causal relationship between the neural mechanism of sustained attention and other factors,
such as sleep (Veksler & Gunzelmann, 2018), working memory (Buehner et al., 2006),
and environment (Kokoç, IIgaz & Altun, 2020), may provide insight into the relationship
between sustained attention and cognitive task performance.

It has been previously found that many methods, such as video game training (Anguera
et al., 2013), yoga courses (Ganpat, Sheela & Nagendra, 2013), mindfulness courses (Ziegler
et al., 2019), neurofeedback (Bagherzadeh et al., 2020), and transcranial direct current
stimulation (tDCS) (Gibson et al., 2021), combined with neural mechanisms can effectively
increase humans’ sustained attention. For example, anodal tDCS of the right inferior
frontal cortex resulted in an increase in attention ability (Coffman, Clark & Parasuraman,
2014). Therefore, exploring neural underpinning of sustained attention and combining
them with attention therapies has a high potential to provide more effective approaches to
improve sustained attention.

Novel machine learning methods that can process multimodal data and measure
sustained attention are eagerly awaited. Machine learning is indispensable in processing
data. The number of papers that used computational models to analyze and classify
sustained attention increased each year from 2012 to 2022, as shown in Fig. 3. Multimodal
data, such as behavioral data and neuroimaging data, can provide complementary
information for measuring sustained attention (Cruz-Garza et al., 2021; Kucyi et al., 2020).
Thus, it is imperative to integrate and analyze these complex data from various recording
devices to accurately and robustly monitor humans’ sustained attention.

In sum, this review combines the theoretical models, neural mechanisms, and
computational models on sustained attention in multiple fields to give a framework
that can help researchers to understand sustained attention in as much detail as possible.
Although many datasets have been obtained from the latest neuroimaging technology in
the field of sustained attention, it is difficult to analyze or predict the obtained results
without using computational models. In addition, rather than judging different levels
of sustained attention impairment, incorporating experimental data with appropriate
theoretical models can accurately interpret the obtained results from a neuroscience
perspective. Therefore, this study presents many tables that analyze and compare different
categories of sustained attention research for a quick overview. Considering that the visual
path for sustained attention has not been fully elucidated, we propose a visual pathway
based on sustained attention from related literature for the reference of researchers in this
field. With the development of the world’s information technology level, future research
on sustained attention will develop from cortical brain areas to deep brain areas, from
single brain areas to brain networks, and from machine learning to deep learning.
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Figure 3 Growth of machine learning and deep learning in sustained attention. Papers involving sus-
tained attention and computational method were identified with a search for ‘‘machine learning’’ or ‘‘deep
learning’’ and ’’sustained attention’’ on Google Scholar.

Full-size DOI: 10.7717/peerj.15351/fig-3
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