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ABSTRACT
Background. Triple-negative breast cancer (TNBC) is a rare and aggressive breast
cancer subtype. Unlike the estrogen receptor-positive subtype, whose recurrence risk
can be predicted by gene expression-based signature, TNBC is more heterogeneous,
with diverse drug sensitivity levels to standard regimens. This study explored the benefit
of gene expression-based profiling for classifying the molecular subtypes of Thai TNBC
patients.
Methods. The nCounter-based Breast 360 gene expression was used to classify Thai
TNBC retrospective cohort subgroups. Their expression profiles were then compared
against the previously established TNBC classification system. The differential char-
acteristics of the tumor microenvironment and DNA damage repair signatures across
subgroups were also explored.
Results. Thai TNBCcohort could be classified into fourmain subgroups, corresponding
to the LAR, BL-2, and M subtypes based on Lehmann’s TNBC classification. The
PAM50 gene set classified most samples as basal-like subtypes except for Group 1.
Group 1 exhibited similar enrichment of themetabolic andhormone response pathways
to the LAR subtype. Group 2 shared pathway activation with the BL-2 subtype. Group
3 showed an increase in the EMT pathway, similar to the M subtype. Group 4 showed
no correlation with Lehmann’s TNBC. The tumor microenvironment (TME) analysis
showed high TME cell abundance with increased expression of immune blockade genes
in Group 2. Group 4 exhibited low TME cell abundance and reduced immune blockade
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gene expressions. We also observed distinct signatures of the DNA double-strand break
repair genes in Group 1.
Conclusions. Our study reported unique characteristics between the four TNBC
subgroups and showed the potential use of immune checkpoint and PARP inhibitors
in subsets of Thai TNBC patients. Our findings warrant further clinical investigation
to validate TNBC’s sensitivity to these regimens.

Subjects Bioinformatics, Drugs and Devices, Oncology, Women’s Health
Keywords Gene expression, Triple-negative breast cancer, Subtype, NanoString nCounter

INTRODUCTION
Breast cancer is a leading cause of cancer death in women worldwide. It is a very
heterogeneous disease and is divided into three major types based on estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2)
status. Targeted therapeutic agents are available for ER+ and HER2+ breast cancers.
Specifically, for ER+ breast cancer, a gene expression-based algorithm can further classify
patients into five molecular subtypes and predict the recurrence risk (Parker et al., 2009).
Unfortunately, there have not been standardized regimens apart from chemotherapy for
the ER-/PR-/HER2- or so-called triple-negative breast cancer (TNBC), the most aggressive
and heterogeneous type. Understanding the molecular distinction among TNBC patients
is vital to developing effective tailored regimens for individual TNBC patients.

The first publication to demonstrate further subtyping of TNBC patients using gene
expression data was by Lehmann et al. (2011). These subtypes were called the Vanderbilt
TNBC subtypes, consisting of basal-like 1 and 2 (BL1, BL2), luminal androgen receptor
(LAR), mesenchymal (M), mesenchymal stem-like (MSL), and immunomodulatory (IM).
Since then, several research groups have further validated these subtypes andnarrowed them
down to four major types (BL1, BL2, LAR, M) (Burstein et al., 2015; Lehmann et al., 2021;
Wang et al., 2019; Yin et al., 2020; Yoo et al., 2022). Other follow-up studies also reported
several new subclasses for TNBC classification (Burstein et al., 2015; Ensenyat-Mendez et
al., 2021). Some subtypes within TNBC patients were sensitive to targeted therapies in
vitro, providing hope for some subgroups of TNBC patients (Lehmann et al., 2011; Yin et
al., 2020).

In this study, we examined the subgroups within our Thai TNBC cohort and
investigated their molecular characteristics using NanoString nCounter® technology-
based gene expression profiling. By mapping the identified subgroups with the prior
TNBC classifications, we validated and identified key activated pathways, characterized
the immunophenotypes, and compared the DNA repair activities across these subgroups.
These results lead to a better understanding of the molecular heterogeneity among Thai
TNBC patients, contributing to developing more tailored regimens for different TNBC
subgroups.
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MATERIALS & METHODS
Patient population
Specimens used in this study were selected from archival frozen tumor tissues in RNAlater™
nStabilization Solution (Thermo Fisher Scientific, Waltham, MA, USA) (Division of
Molecular Genetics, Faculty of Medicine, Siriraj Hospital archival specimens) and our
tissue biobank. A total of 28 samples (with tissue size larger than 3 × 3 × 3 mm3,
known clinical data, histological information, confirmatory immunohistochemistry and
fluorescence in situ hybridization of their ER-negative/PR-negative/HER-negative status)
were selected from the bank. The specimens were collected after the patient signed the
approved participant information sheet and informed consent form. The study’s protocol
was approved by the Siriraj Institutional Review Board (COA number Si 329/2017)
following the international guidelines for human research protection (the Declaration of
Helsinki and the International Conference on Harmonization in Good Clinical Practice).

RNA purification and gene expression analysis using NanoString
nCounter® platform
The frozen tissues were thawed to room temperature 30 min before RNA purification.
The thawed tissues were transferred to new 1.5-ml microcentrifuge tubes containing 1
ml of GENEzol™ Reagent (Geneaid, New Taipei, Taiwan) and were ground using plastic
pastel until homogenized. The ground tissues were incubated at room temperature with
GENEzol™ Reagent for 5 min. Then, 200 µl of chloroform was added into each tube, and
the tubes were vigorously shaken for 15 s and let stand vertically at room temperature
for 2 min. The tubes were centrifuged at 12,000 × g for 15 min at 4 ◦C, and the top
RNA-containing clear solution was transferred to new tubes. The same volume of 70%
ethanol was mixed into the clear solution, and 700 µl of the mixed solution was added
into a spin column. The RNA purification process was performed using PureLink™ RNA
Mini Kit (Ambion, Thermo Fisher Scientific) following the manufacturer’s instructions.
Concentrations and purity of the extracted RNA were measured with NanoDrop™ One
Microvolume UV-Vis Spectrophotometer (Thermo Fisher Scientific).

The extracted RNA was subjected to gene expression evaluation with NanoString
nCounter® platform (NanoString Technologies, Seattle, WA, USA). The nCounter®

Breast Cancer 360™ Panel was used in this study, including breast cancer subtypes
signatures, immune response and tumor microenvironment signatures, and key breast
cancer pathways such as DNA damage repair, cell cycle, hormone receptor signaling, and
cancer metabolism. In short, 100 ng of RNA, at A260/280 more than 1.7, was hybridized
with Reporter Codeset and Capture ProbeSet at 65 ◦C for 18 h. The hybridized RNA was
then transferred into the cartridge in the nCounter® Prep Station, and the number of
probed mRNA was quantified with the nCounter® FLEX Digital Analyzer.

Data analysis
Subgroup and pathway analyses were done usingR software (version 4.0.3) and theRosalind
program. ThemRNA counts were normalized with the NanoStringNorm package (Waggott
et al., 2012) for further analysis. For subpopulation analysis, the normalized gene expression
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data was reduced in its dimensions and computed group centroids by principal component
analysis (PCA) and unsupervised k-means clustering to determine the optimal clustering
groups, respectively. To specify the proper number of clusters, an elbowmethodwas utilized
for assessing the total within the sum of square values at various k values. The selected
k should be the point where the area under the curve sharply decreases before the total
within the sum of squares stabilizes (the sharpest elbow). Moreover, we also analyzed the
average silhouette width values for different values of k to confirm the appropriate number
of clusters. To understand the similarity between our TNBC groups and the previously
defined TNBC, we also determined the relation between our subgroups and the TNBC data
set from Lehmann’s subtypes (Lehmann et al., 2021) using the subclass mapping (SubMap)
algorithm following themethod fromHoshida et al. (2007)with a significant value p< 0.05.
We acquired gene expression data of TNBC tumors with clinical information from TCGA
and subtype calling from Lehmann’s publication. To combine the two genomic data sets
from different transcriptomic technologies, we used the ComBat function (Johnson, Li
& Rabinovic, 2006) in the R software to minimize the nonbiological batch effect among
these data sets. For the breast cancer intrinsic subtyping identification, our gene expression
profiles were predicted by the PAM50 classifier (Parker et al., 2009), molecular.subtyping
function (genefu library version 2.28.0) on the R software. To establish reference profiles,
we used published NanoString gene expression data from Bustamante Eduardo et al. (2019)
with known molecular subtypes and data from our archival specimens from ER-positive
and HER2-positive patients as the reference specimens for our intrinsic subtype analysis.
For pathway analysis, we utilized the Rosalind Platform for nCounter Data Analysis with a
cut-off threshold of 1.5 fold-change and the adjusted p-value less than 0.05 to examine the
activation of different cancer hallmark gene sets following the MSigDB Hallmark Pathway
database (Liberzon et al., 2015). For the statistical analysis, the one-sided Wilcoxon Rank
Sum test and the Kruskal–Wallis test were used for mean comparisons of two and multiple
groups, respectively. A significant level of p-value was less than 0.05.

Immune infiltration analysis
Tumor immune estimation resource (TIMER) is the public database used for investigating
the relationship between cancer and immune cell infiltration using gene expression data. To
determine the impact of immune cell infiltration in TNBC subgroups, the TIMER2.0 (Li et
al., 2020; Sturm et al., 2019) with immune cell estimation using the Microenvironment Cell
Population (MCP) Counter algorithm (Becht et al., 2016) was used to estimate immune
infiltration. Such a tool enables the arbitrary unit approximation of tumor-associated
immune cells (CD8+ T cells, B cells, myeloid dendritic cells, neutrophils), cancer-associated
fibroblasts, and endothelial cells. The results are presented as a heatmap.

RESULTS
Demographic information of the TNBC patients
Our study includes 28 samples with adequate tissues together with complete clinical
and histological information. These specimens were selected from our archival breast
cancer specimens frozen in RNAlater® solution based on negative immunohistochemical
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Table 1 Clinical and histopathological information of selected specimens.

Characteristics Number of
patients (n (%))

Average age at diagnosis (years±SD) 51.39± 12.86
Histologic type
–Invasive Ductal Carcinoma 25 (89.29)
–Invasive Lobular Carcinoma 2 (7.14)
–Others: Inflammatory Breast Cancer 1 (3.57)
Histologic grade
–Well-Differentiated 0 (0)
–Moderately-Differentiated 1 (3.57)
–Poorly-Differentiated 27 (96.43)
Lymph node metastasis
–Yes 7
–No 4
–Unknown 17
Ki67 (%±SD) 60.44± 16.8
Lymphovascular Invasion (n (%))
–Yes 11 (39.29)
–No 14 (50)
–Unknown 3 (10.71)

staining for ER, PR, and HER2, according to pathology reports. For samples with equivocal
HER2 stain, only those with negative fluorescence in situ hybridization (FISH) results were
included in our study. Our patient cohort’s average age at diagnosis was 51.39± 12.86 years
old. Most samples were invasive-ductal carcinoma, with poorly differentiated cancer with
an average Ki67 staining of 60.44%. Demographic information of these specimens is shown
in Table 1.

Mapping Thai TNBC subgroups with previously established TNBC
classifiers
We used the NanoString Breast 360 gene panel to profile gene expressions of samples from
our cohort. This assay includes genes related to breast cancer molecular subtypes, TNBC
signature, immunophenotypes, and DNA-repair functions. Results from unsupervised
(k-means) clustering with the elbow method showed that the optimum number of groups
was k = 4, which created the sharpest elbow and could explain up to 79.22% variance.
We also determined silhouette scores and created silhouette coefficient plots. The results
demonstrated that the silhouette scores at k = 4 and k = 5 were equal (0.45). However,
the coefficients of the plot at k = 4 were all positive, while the coefficients of two samples
at k = 5 were less than 0, indicating the possible incorrectly assigned samples in the
clusters (Fig. 1A and see more in Fig. S1). As a result, we selected k = 4 to classify our 28
TNBC samples into fourmajor subgroups, which we refer to from this point onwards as the
SiSPTNBCGroup1-4 (Figs. 1A–1B).We then attempted to classify our specimen subgroups
to understand the similarity to the TNBC classification defined by Lehmann et al. (2021),
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which we refer to from this point onwards as Lehmann’s subtypes. The matching result is
presented as a Subclass Association (SA) matrix with a significant p-value for each SA, as
shown in Fig. 1C. After performing normalization, batch analysis, and subclass mapping,
we showed that our SiSPTNBC Groups 1–3 were highly correlated with LAR, BL2, and
M of Lehmann’s subtypes. Specifically, the SiSPTNBC Group 1 (seven samples (25%))
and Group 3 (10 samples (35.7%)) showed significant subclass matching with the LAR
(p= 0.02) and M (p= 0.04) subtypes, respectively. Group 2 (six samples (21.4%)) aligned
well with the BL2 (p= 0.02) subtype. Interestingly, the SiSPTNBC Group 4 (five samples
(17.9%)) exhibited unique and uncorrelated expression patterns with any Lehmann’s
subtypes. The correlations with Lehmann’s subtypes were confirmed, as illustrated in
the heatmap (Fig. 1E). Samples with advanced stages (large tumor size and lymph node
metastasis) were equally distributed among these four gene expression-based subgroups,
showing no bias of patients’ demographic in this study cohort (Fig. 1E). This finding thus
emphasized that clinical information alone may not be adequate for the stratification of
TNBC patients. Molecular data from the tumors provided more in-depth information
about the disease for each patient, hence, better for further developing prognostic or
predictive biomarkers in TNBC patients.

We also examined the similarity of our SiSPTNBC subgroups to the PAM50 molecular
subtypes. The reference profiles were established from published data with known
molecular subtypes (Bustamante Eduardo et al., 2019), together with gene expression
data from our archival specimens (SiSP-ER+ samples and SiSP-HER2+ samples). Most
SiSPTNBC samples were classified as a basal-like molecular subtype (Figs. 1D–1E). Other
molecular subtypes (HER2-enriched, Luminal B, and Normal-like) were also detected
in the TNBC samples. The molecular subtypes of SiSP-HER2+ (HER2-enriched) and
SiSP-ER+ (Luminal A and B) samples matched their respective IHC subtypes, confirming
that our normalization was accurate.

Interestingly, the second-most PAM50 subtype in our TNBC samples, the HER2-
enriched subtype, came from the SiSPTNBC Group 1. Group 1 also showed similarity
to the LAR Lehmann’s subtype. Specimens with Luminal B and normal-like subtypes
were found in SiSPTNBC Group 1 and Group 2, respectively. Our results agreed with the
prior findings, showing that most TNBC was classified as the basal-like PAM50 molecular
subtype. Additionally, the high number of HER2-enriched specimens within Group 1 was
consistent with prior reports showing that most samples with HER2-enriched and Luminal
subtypes also fell within the LAR TNBC subtype (Ahn et al., 2016; Lehmann et al., 2021).

Differential cancer hallmark activation among different TNBC
subgroups
The molecular uniqueness of different SiSPTNBC subgroups was examined following
the MSigDB Hallmark Pathway database (Liberzon et al., 2015). The top-10 signature
hallmarks of each SiSPTNBC group are shown in Fig. 2. We realized that some of the
signature hallmarks, especially those in Group 1 and Group 3, such as estrogen response
and EMT, seemed to be at lower significance. This could be due to the low number of
samples and low RNA counts of some genes in the hallmarks. Nonetheless, we referred
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a) b) c)

e)

d)

Figure 1 Classification of TNBC subgroup (SiSPTNBCGroups 1-4) using gene expression data from
NanoString nCounter® Breast Cancer 360 panel. (A) An elbow plot was analyzed for selecting the opti-
mal number of clusters for the k-means algorithm. K-means with cluster number equal 4, which gave the
sharpest elbow with the stabilized total within the sum of squares after k = 4, was selected. (B) Principal
Component Analysis (PCA) plot of the SiSPTNBC samples at k = 4 was annotated as clustered subgroups
projected onto their first two principal components. (continued on next page. . . )

Full-size DOI: 10.7717/peerj.15350/fig-1
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Figure 1 (. . .continued)
(C) Subclass Mapping (SubMap) analysis between SiSPTNBC groups and Lehmann’s TNBC subtypes.
Significant correlations were shown between SiSPTNBC Groups 1, 2, and 3 and Lehmann’s LAR, BL2,
and M subtypes, respectively. (D) PCA according to PAM50 subtypes of our breast tissue samples (filled
symbols) and published data (unfilled symbols) from Bustamante Eduardo et al. (2019) was analyzed. The
ER+, HER2+, and TNBC samples are annotated by square, triangle, and circle symbols, respectively. The
majority of TNBC samples were basal-like PAM50 subtype, and the second-most frequent PAM50 sub-
type among TNBC samples was HER2-enriched. e) Heatmap of gene expression data from SiSPTNBC and
TCGA samples clustered by Lehmann’s subtypes SiSPTNBC subgroups was analyzed with PAM50 sub-
types, age at diagnosis, gross tumor sizes, and lymph node status annotations (PC, principal component;
LN, lymph node; Pos, positive; Neg, negative).

to these hallmarks since they are consistently found in Lehmann’s subtypes. Regardless of
the low significance, we only observed those hallmarks in certain groups. The signature
hallmarks for SiSPTNBC Group 1 include cell proliferation and differentiation-related
pathways (MYC targets, NOTCH signaling, WNT-β catenin), metabolic-related pathways
(cholesterol homeostasis, pancreas β cell), and estrogen response pathway (Fig. 2). The
enrichment in the hormone response and metabolic pathways agreed well with the
molecular signatures of Lehmann’s LAR subtype. Similar to previous publications, we
found higher expression of AR (3.35-fold), encoding the androgen receptor and a vital
hallmark gene of LAR subtype, in SiSPTNBC Group 1 compared with other groups (Fig.
S3). Overall, the molecular characteristics of the Group 1 demonstrated the upregulation
of hormone signaling and metabolic-related pathways.

SiSPTNBC Group 2 showed upregulated hallmark genes representing proliferation and
cell cycle-associated pathways (PI3K/AKT/mTOR signaling, mitotic spindle, MYC targets,
spermatogenesis, E2F targets, and G2M checkpoint), as well as apoptosis (Fig. 2). Some
of these signatures (PI3K/AKT/MTOR signaling) were concordant with those found in
Lehmann’s BL2 subtype. Our results did not show the EMT signature typically found in
the BL2 subtype. Interestingly, the IL-6/JAK/STAT3 and complement pathways were the
most highly upregulated genes in Group 2 (Fig. S3), inferring an association with immune
activation and cancer metastasis control, which is not reported in the BL2 subtype. The
upregulation of immune-related pathways may thus infer its higher immune infiltration
than other groups.

The critical hallmarks for SiSPTNBC Group 3 were stemness-related pathways
(Hedgehog signaling, EMT), survival response such as ER stress response and detoxification
(unfolded protein response, xenobiotic metabolism, peroxisome), as well as metabolic-
related pathways (heme metabolism, fatty acid metabolism, bile acid metabolism) (Fig.
2). Enrichment of the stemness-related pathways is consistent with Lehmann’s M subtype
(Aburjania et al., 2018; Lehmann et al., 2021; Lizarraga et al., 2016; Yin et al., 2020; Zhang
et al., 2018). However, the other hallmarks were not previously reported in the M subtype.
Hence, in addition to the pathways related to stemness regulation, Group 3 also showed
significant molecular signatures of metabolic and survival response pathways.

The most important molecular signature for SiSPTNBC Group 4 was mainly associated
with immune-regulation pathways, especially those involved with immune cell recruitment
and inflammatory responses (complement, IL2-STAT5 signaling, TNF- α via NF- κB
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Figure 2 Gene set enrichment analysis of SiSPTNBCGroups 1–4. The left panel showed the top 10
hallmarks of each SiSPTNBC subgroup ranked by p-values. The size of the circle is proportional to the
number of genes in each pathway. The right panel showed levels of p-values ascendingly reordered. Three
thresholds indicated p-values at 0.1, 0.05 and 0.001.

Full-size DOI: 10.7717/peerj.15350/fig-2

signaling, IFN- α response, inflammatory response, allograft rejection, IFN- γ response).
Other molecular hallmark signatures observed in Group 4 include the cancer progression-
related pathways (coagulation and KRAS signaling) (Fig. 2). We also observed an increase
in the gene expression of ECMproteins and E2F targets (Fig. S3), which are usually involved
in cell migration and cell cycle control. Overall, SiSPTNBC Group 4 exhibited molecular
characteristics of immune regulation and cancer progression-related pathways. We did not
find a correlation between Group 4 and any of Lehmann’s subtypes, and the signatures
found in this group did not show similarities to any of Lehmann’s subtypes.

Comparison of immune cell composition and immunoblockade-related
gene activation across different TNBC subgroups
Immune checkpoint inhibitors have been increasingly used in breast cancer patients,
especially the TNBC subtype. Typical predictive biomarkers for immune checkpoint
inhibitors (ICIs) include the IHC staining of immune checkpoint receptors such as PD-L1
and MMR IHC or NGS-based scoring of tumor mutational burden. Since the nCounter
Breast 360 panel includes immune-associated genes, we were interested in comparing
the difference of these immunomodulatory genes among the different SiSPTNBC groups
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to examine their potential differences in immune cell infiltration and the activation of
immunoblockade-related genes.

Group 1 specimens showed fewer cancer-associated fibroblasts (CAFs), endothelial
cells, and neutrophils than Group 2 and Group 3 (Fig. 3; top). Interestingly, Group 1
tissues with HER2-enriched PAM50 subtype (BC149, BC032, BBT860) showed a lower
amount of CD8+ T cells, myeloid dendritic cells, B cells, and cytotoxic lymphocytes than
those with basal-like subtype (BC090, BBT136) (average ±SD arbitrary MCPCounter unit
of HER2-enriched vs. basal-like samples: 40 ±21.46 vs. 166 ±92.24 for CD8+ T cells; 16
±10.35 vs. 134±59.53 for B cells; 8.06±5.34 vs. 48±13.76 formyeloid dendritic cells; 57.28
±25.24 vs. 392.14 ±213.2 for cytotoxic lymphocytes). Group 1 showed down-regulation
of most immunomodulatory genes, except for the PDCD1 (PD1-encoding gene), which
exhibited upregulation in most samples. CD274 (PD-L1-encoding gene) overexpressed in
two basal-like tumors compared with the rest of the group (Fig. 3 and Fig. S4).

SiSPTNBC Group 3 showed the highest consistent signature with the M subtype, known
for its low immune cell infiltration. However, we found that almost all tumors in Group
3 showed an increase in CAFs, endothelial cells, and neutrophils. Half of the tumors
in this subgroup showed a high number of myeloid dendritic cells and CD8+ T cells,
although not as high as Group 2. Tissues that were predicted to have a higher number
of CD8+ T cells and myeloid dendritic cells consistently showed higher expression of the
inflammatory cytokine and chemokine genes (IL-6, CXCL8 (IL-8), CCL2, CCL7) with
significant expressions in CCL2 (p= 0.00096) and IL-6 (p= 0.0074) (Fig. S4) than those
with lower T cells and dendritic cells. CCL2 and CCL7 encode monocyte chemotactic
proteins 1 and 3, respectively, known to be strong recruiters of myeloid-derived cells,
including monocytes, macrophages, dendritic cells, myeloid-derived suppressor cells, and
lymphocytes, regulating tumor microenvironment. (Jin et al., 2021; Liu et al., 2018; Zhang
et al., 2020). IL-6 and CXCL8, important autocrines in TNBC, were known to activate
neutrophils and NK cells migration to the tumor (Baggiolini & Clark-Lewis, 1992; Wu et
al., 2019). The upregulation ofCCL2 andCCL7 implies the high number of immune cells in
the tumor. However, not all the recruited immune cells are cytotoxic cells. Studies reported
that CCL2 and CCL7 upregulation also increased infiltration of suppressive immune cells,
e.g., MDSC, and caused a blockade of cytotoxic cell functioning (Takacs et al., 2022).

Interestingly, we observed anti-correlated immunophenotypic characteristics between
Group 2 and Group 4. Group 2 showed a higher abundance of TME cells than the other
groups. The higher immune cells in the Group 2 were concordant with its enrichment in
immune-associated gene expressionhallmarks.We also foundhigher cytotoxic lymphocytes
in the samples within Group 2. On the contrary, Group 4 showed the lowest abundance
of TME cells (Fig. 3; top). Group 4 also obtained fewer endothelial cells and CAFs.
When examining the expression levels of genes associated with immune blockade (Fig. 3;
bottom and Fig. S4), we found a significant increase in leukocyte and endothelial surface
molecule-encoding gene ICAM1 (p= 0.03), immune cell recruitment and regulation-
related genes CCL2 (p= 0.00096), HGF (p= 0.00032) and inflammatory cytokine gene
IL-6 (p= 0.0074) in immune cells-abundant Group 2 samples. We also found increased
expressions of immune blockade genes PDCD1 (PD-1) (p= 0.03) and CD274 (PD-L1)
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Cytotoxic lymphocytes

(PD1)

(PD-L1)

(IL8)

Figure 3 Tumormicroenvironment cell abundance and immune-associated genes in SiSPTNBC
Groups 1–4. A hierarchical clustering heatmap of the immune and stromal cell proportions from the
MCPcounter algorithm and an expression profile of genes involved in an immunoblockade process is
shown in the top and bottom panels, respectively. Annotations consist of SiSPTNBC subgroups and
PAM50 prediction results (TME, tumor microenvironment).

Full-size DOI: 10.7717/peerj.15350/fig-3

(p= 0.013) in Group 2. In the low immune cells-abundant Group 4, we observed consistent
down-regulation of almost all the leukocytemembranemolecule, immune cell recruitment,
and inflammatory cytokine genes (ICAM1, CCL2, CCL8, and IL-6) as well as the immune
blockade genes PDCD1 and CD274. However, most samples in Group 4 had higher MYC
expressions than those in other groups (p= 0.042). This observation is consistent with the
negative correlation between MYC gene expression levels and overall immune infiltration
(Lee et al., 2022). However, due to our limited sample size, the benefits of ICIs to Group 2
patients still require further clinical validation.
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Comparison of DNA damage repair signature among different TNBC
subgroups
Tumors with defects in HRRmechanisms are more sensitive to DNA-damaging drugs such
as platinum-based chemotherapy and PARP inhibitors. Studies also showed that patients
with impaired DNA double-strand break (DSB) repair pathways other than HRR might
benefit from PARP inhibitors due to the synthetic lethality effect (Liao et al., 2021; Wang
et al., 2019). It has been shown that over 21% of Thai TNBC patients carry the BRCAness
genomic signature (Niyomnaitham et al., 2019). Thus, we were interested in investigating
from gene expression profiles whether patients in our cohort exhibit molecular signatures
of DNA damage repair defects that may infer sensitivity to PARP inhibition.

Specifically, we examined the expression of genes that function in homologous
recombination repair (HRR), Fanconi anemia (interstrand cross-link repair), and non-
homologous end-joining (NHEJ) repair pathways. Genes involved in the DNA replication
and cell cycle controls, and other pathways that also influence DNA damage repair
response were also included since prior studies reported their strong association with
HRR deficiency (HRD) (Friedberg et al., 2006; Lange, Takata & Wood, 2011; Liao et al.,
2021; Peng et al., 2014; Wood et al., 2001; Zhuang et al., 2021) (Fig. 4A). Group 1 showed
reduced expressions of most genes in DSB repair, cell cycle regulation, and DNA replication
pathways compared with other groups. The upregulated genes in Group 1 were involved
with increased metabolism and survival of breast cancer cells (Dobie & Skropeta, 2021;
Inazu, 2014; Kohnz et al., 2016), consistent with our previous cancer hallmark analysis.
Tumors in Group 2 showed upregulations of some genes in HRR pathways (i.e., ATM,
MUS81, and PTEN ). Tumors in Group 3 and Group 4 showed upregulation of the DNA
repair mechanisms and cell cycle control genes across all samples (Fig. 4A), implying intact
DSB repair processes of samples in these groups (Peng et al., 2014). When comparing the
expressions of genes involved in the DSB pathways among the four subgroups (Kruskal–
Wallis Test for global analysis and one-sided Wilcoxon rank-sum test for two-independent
sample analysis) (Figs. 4B–4D), we observed dramatic differences at the single-gene level
between some subgroups. The expressions of important genes in the HRR pathway,
ATM, MUS81, and PTEN, were significantly higher in Group 2 (p= 0.0071, p= 0.0043,
and p= 0.016, respectively). Two genes in the HRR pathway, RAD51, and XRCC2, cell
cycle regulation (CHEK2), and Fanconi Anemia (UBE2T) were significantly upregulated in
Groups 3 and 4 (p= 0.042, p= 0.0042, p= 0.021, and p= 0.023, respectively). Collectively,
expressions of genes involved with HRR, Fanconi anemia, and NHEJ pathways were
remarkably higher in Groups 2, Group 3, and Group 4. Group 1 showed consistently
reduced expression of DNA damage repair and cell cycle regulatory genes.

Studies have shown that breast tumors with genomic HRD may show expression
changes in DNA repair genes. Specifically, downregulation of KIF2C, POLQ, POLD1,
CCNE1, ATM, RAD54L, BLM, NETO2, FZD9, CXCL5, and VIT and upregulation of
ADM, BTG2, C5orf38, CDKN1C, CYP4F3, ST6GALNAC2, and SLC44A4 are the reported
signatures of HRD breast cancer (Liao et al., 2021; Peng et al., 2014). While not definitive,
the gene expression patterns in our Groups 1 and 2 showed similar down-regulation of
KIF2C, POLQ, CCNE1, RAD54L, BLM, NETO2, FZD9, CXCL5, and VIT and upregulation
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b) Homologous Recombination Repair
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Figure 4 Analysis of gene expression profiles associated with DNA double-strand break repair pro-
cesses in SiSPTNBCGroups 1–4. (A) Heatmap demonstrates DSB repair-related gene expression from
the SiSPTNBC samples. The genes on the y-axis were grouped according to their associated pathways.
The SISPTNBC samples on the x-axis were grouped with annotated PAM50 subtypes. (B) Box plots com-
pared the expressions of genes in a homologous recombination repair (HRR) pathway between the four
SiSPTNBC groups. (C) Box plots compared the expressions of genes in Fanconi anemia pathway between
the four SiSPTNBC groups. (D) Box plots compared the expression of a gene in a non-homologous end
joining (NHEJ) pathway between the four SiSPTNBC groups. (E) Box plots compared the expressions of
genes in cell cycle regulation between the four SiSPTNBC groups. The p-values of global and independent
analyses were calculated by the Kruskal–Wallis test and the one-sided Wilcoxon Rank Sum test, respec-
tively (not significant (ns): p> 0.05, ∗,p≤ 0.05, ∗∗,p≤ 0.01, and ∗∗∗,p≤ 0.001).

Full-size DOI: 10.7717/peerj.15350/fig-4
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of BTG2, C5orf38, CDKN1C, ST6GALNAC2, and SLC44A4, implying that tumors from
these two subgroups may exhibit HR loss-of-function. Nonetheless, genomic profiling and
a larger sample size are required to confirm the benefit of PARP inhibitors for SiSPTNBC
Group 1 and 2 patients.

DISCUSSION
The aggressive TNBC is attributed to approximately 15% of breast cancer cases in Thailand,
also diagnosed at a younger age than other populations (Ding et al., 2019; Niyomnaitham
et al., 2019). Current treatments for all TNBC patients are similar, mainly relying on
anthracycline- and taxane-based chemotherapy, despite known heterogeneity within the
tumor and between patients. Even though some targeted therapies, such as ICIs and PARP
inhibitors, have been approved for TNBC patients, reimbursement of such advanced
regimens is still limited in Thailand, and many TNBC patients also responded poorly to
such treatments (Lehmann et al., 2011; Lehmann et al., 2021;Wang et al., 2019).

In this study, we attempted to characterize themolecular subtypes of Thai TNBCpatients
based entirely on gene expression data from the NanoString nCounter® technology.
Previous work that aimed to characterize the molecular subtypes of TNBC utilized
other methodologies, including histology staining, gene-expression profiles from RNA
sequencing or microarrays, and mutational analysis. The nCounter technology offers
advantages over RNA sequencing and microarrays, such as the lack of reverse transcription
and cDNA amplification steps, direct hybridization of mRNA to probes, and using a
lower amount of RNA (Narrandes & Xu, 2018). We used a medium-size genes panel,
Breast Cancer 360, to robustly classify subtypes on our TNBC cohort and gain insight
into their signature hallmarks, immune abundance and immunoblockade-associated gene
expressions, and signatures of DNA damage-related pathways, all done without DNA
information. Despite the limitation on sample size, our study offers a practical approach to
implementing gene expression-based information for the stratification of TNBC patients
in the clinical setting.

Our study identified four subgroups from Thai TNBC patients, with only 3 subgroups
showing similar profiles with Lehmann’s subtypes. This finding is consistent with prior
studies showing that TNBC patients from different ethnicities had particular molecular
subtypes and were not necessarily the same as Lehmann’s classification (Ding et al.,
2019; Jiang et al., 2019). Since Lehmann’s classification does not include immune-related
subtypes (Lehmann & Pietenpol, 2015), we also compared our SiSPTNBC subgroups with
the Burstein classification system (Burstein et al., 2015). SiSPTNBC Groups 2 and 3 showed
correlated patterns with the MES and BLIS subtypes. Although Group 1 and Group
4 showed no similarity to other Burstein’s subtypes (Fig. S2), we believe profiling the
immune cell composition and the related immunomodulatory pathways is crucial for
accurately predicting ICI benefits in TNBC patients.

Despite our small sample size, we demonstrated that investigating the underlying driver
pathways could offer insights into specific treatment strategies among the different TNBC
subgroups. For instance, patients in Group 1, like the LAR subtype, showed over 3-fold
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upregulation of AR, implicating the possible sensitivity to AR inhibitors in this group. It
has been shown that TNBC patients with LAR signature showed resistance to standard
chemotherapy but sensitivity to enzalutamide (AR inhibitor) (Yin et al., 2020). Group
2 patients showed enrichment of genes involved in cell proliferation, similar to the BL2
subtype. Group 2 patients also showed enrichment of genes involved in cell cycle regulation
and high immune cell abundance. Hence, Group 2 patients may have better responses to
chemotherapy or ICIs. ICI treatment may not be recommended for patients in Group 4,
where we observed low immune cell abundance.

Current treatment guidelines for ICI and PARP inhibitors rely on companion diagnostics
that utilize standard IHC or DNA sequencing. For TNBC, the study by Jiang et al. (2019)
compared HRD scores among Burstein’s subtypes and PARP inhibitor response. BLIS
subtype patients showed high HRD scores and sensitivity to PARP inhibitors with longer
relapse-free survival intervals (Burstein et al., 2015; Jiang et al., 2019; Marra et al., 2020).
Nonetheless, a broad comparison of PARP inhibitor response across all TNBC subgroups is
still under clinical trials, such as the FUSCC Refractory TNBC Umbrella (FUTURE) study
(NCT 03805399) (Zhao et al., 2020). Moreover, a prospective phenotypic-based study is
needed to confirm the correlation between subtypes and responses to ICIs and PARP
inhibitors.

Our investigation of TME cell composition and expression of immunoblockade-related
genes implies that patients from different SiSPTNBC subgroups may exhibit a differential
response to ICIs. Typically, TNBCpatients contain highermutations andmore pronounced
immune cell infiltration than other breast cancers (Dieci, Miglietta & Guarneri, 2021), and
over 20% of TNBC patients showed upregulation of PD-L1 (Oner et al., 2021). Hence,
using ICIs in combination with standard chemotherapy has been of interest to improve
the clinical outcome for TNBC patients (Kim, Choi & Lee, 2022; Qureshi et al., 2022).
Our study observed that Groups 1 and 4 and four showed fewer CAFs, endothelial cells,
neutrophils, and CD8+ T cells. The increase inMYC expression in Group 4 was correlated
with increased expression of genes involved in the cell cycle and reduced overall immune
cell infiltration and antigen presentation. These implied that Group 4 patients might
respond poorly to ICIs treatment. On the other hand, Group 2 showed more TME cells
than other subgroups. This result concords with the upregulation of immune cell regulation
genes IL-6, CCL21, and CD36 in Group 2 samples. Specifically, high endothelial venule
strongly predicted T and B cell infiltration (Martinet et al., 2011). Group 2 also exhibited
increased expressions of immunoblockade-associated genes. Hence, the patients in Group
2 may benefit from the blockade of immune checkpoint receptors.

We also investigated expression signatures of genes involved in DSB repair pathways.
Consistent expression patterns of HRD repair-related genes with HRD tumors from
previous studies were observed in Groups 1 and 2, suggesting DNA repair deficiency.
However, HRD status confirmation requires genomic HRD signatures, i.e., HRD scores or
Signature 3, which we could not calculate due to the lack of whole genome sequencing data.
Our study focuses primarily on gene expression using nCounter® technology to classify
TNBC. Additional studies, includingWGS and PARP inhibitor response in patient-derived
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models, will therefore be necessary to confirm DSB repair impairment and the benefits of
PARP inhibitors to patients in each group.

The small sample size and inferences from bulk gene expression undoubtedly limit
our study. While immune abundance analysis was predicted from gene expression using
the MCPCounter algorithm, it still lacked the validation of cell location in the tumor
microenvironment, which was shown as an essential marker for predicting treatment
outcome (Tsujikawa et al., 2020). Nonetheless, the multiplex immune-staining process is
more time-consuming and requires personnel with more advanced expertise than gene
expression profiling. More in-depth analysis of gene expression profiles across different
TME locations will be needed to characterize the heterogeneity of the hallmark signatures
and immune cell infiltration in the other tumor locations.

CONCLUSION
We used nCounter-based gene expression data to classify 28 Thai TNBC samples into four
main subgroups (SiSPTNBCGroup1-4) and to identify biomarkers predictive of innovative
treatment regimens such as ICIs and PARP inhibitors. We showed a significant correlation
of SiSPTNBC Groups 1, 2, and 3 to LAR, BL2, and M subtypes by Lehmann’s TNBCtype-4
classification, respectively. Our results implicated that SiSPTNBC Group 1 patients may
benefit from AR and PARP inhibitors, and those in Group 2 could benefit from ICIs. Our
study provides preliminary evidence in utilizing nCounter-based gene expression profiling
for stratifying TNBC patients and selecting appropriate treatment regimens in the clinical
setting. Further clinical studies with larger cohort are needed to confirm the efficacy of
PARP inhibitors and ICIs in TNBC patients of different subgroups.
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