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Anthocyanins are a group of natural pigments acting as stress protectants induced by
biotic/abiotic stress in plants. Although the metabolic pathway of anthocyanin has been
studied in potato, the roles of miRNAs on the metabolic pathway remain unclear. In this
study, a purple tetraploid potato of SD92 and its red mutant of SD140 were selected to
explore the regulation mechanism of miRNA in anthocyanin biosynthesis. A comparative
analysis of small RNAs between SD92 and SD140 revealed that there were 179
differentially expressed miRNAs, including 65 up- and 114 down-regulated miRNAs.
Furthermore, 31 differentially expressed miRNAs were predicted to potentially regulate
305 target genes. KEGG pathway enrichment analysis for these target genes showed that
plant hormone signal transduction pathway and plant-pathogen interaction pathway were
significantly enriched. The correlation analysis of miRNA sequencing data and
transcriptome data showed that there were 140 negative regulatory miRNA-mRNA pairs.
The miRNAs included miR171 family, miR172 family, miR530b_4 and novel_mir170. The
mRNAs encoded transcription factors, hormone response factors and protein kinases. All
these results indicated that miRNAs might regulate anthocyanin biosynthesis through
transcription factors, hormone response factors and protein kinase.
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17 Abstract

18 Anthocyanins are a group of natural pigments acting as stress protectants induced by 

19 biotic/abiotic stress in plants. Although the metabolic pathway of anthocyanin has been studied 

20 in potato, the roles of miRNAs on the metabolic pathway remain unclear. In this study, a purple 

21 tetraploid potato of SD92 and its red mutant of SD140 were selected to explore the regulation 

22 mechanism of miRNA in anthocyanin biosynthesis. A comparative analysis of small RNAs 

23 between SD92 and SD140 revealed that there were 179 differentially expressed miRNAs, 

24 including 65 up- and 114 down-regulated miRNAs. Furthermore, 31 differentially expressed 

25 miRNAs were predicted to potentially regulate 305 target genes. KEGG pathway enrichment 

26 analysis for these target genes showed that plant hormone signal transduction pathway and plant-

27 pathogen interaction pathway were significantly enriched. The correlation analysis of miRNA 

28 sequencing data and transcriptome data showed that there were 140 negative regulatory miRNA-

29 mRNA pairs. The miRNAs included miR171 family, miR172 family, miR530b_4 and 

30 novel_mir170. The mRNAs encoded transcription factors, hormone response factors and protein 

31 kinases. All these results indicated that miRNAs might regulate anthocyanin biosynthesis 

32 through transcription factors, hormone response factors and protein kinase.
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33 Introduction

34 Anthocyanins are flavonoid compounds, which are secondary metabolites. They are natural 

35 food pigments found in edible parts of fruits, vegetables and crops (Chiu et al. 2010). The foods 

36 rich in anthocyanin present bright colors and are popular with people (Bimpilas et al. 2016). 

37 Moreover, anthocyanins also have antioxidant activity and can protect human beings from 

38 disease or reduce the damage of disease. The anthocyanin extracts from purple rice protect 

39 cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and 

40 fibrosis (Chen et al. 2016). Anthocyanins from red potato show anti-hepatotoxity in rats with 

41 toxicity of D-galactosamine (Han et al. 2006). Anthocyanin extracts from bilberries and 

42 blackcurrants have protective activity on acute acetaminophen-induced hepatotoxicity in rats 

43 (Cristani et al. 2016).

44  In anthocyanin biosynthesis, phenylalanine is a primary precursor. Then under the action 

45 of a series of enzymes, the substances of coumaroyl CoA, dihydroflavonols, leucoanthocyanins 

46 and anthocyanins are successively produced. Anthocyanin biosynthesis is regulated by structural 

47 genes and their transcription factors. Some genes regulating anthocyanin biosynthesis have been 

48 isolated and characterized in potato, such as f3�5�h (Jung et al. 2005), dfr (De Jong et al. 2003), 

49 developer (D) locus (Jung et al. 2009), AN1 (D'Amelia et al. 2014) and StMYB44 (Liu et al. 

50 2019). 

51 Small RNAs usually consist of 20-30 nucleotides and widely exist in eukaryotic organisms. 

52 According to their biogenesis modes, small RNAs are distinguished into three major types, 

53 namely miRNA, siRNA and piRNA (Axtell 2013; Chen 2009). Small RNAs guide biological 

54 processes at DNA or RNA level, for example, the cleavage of complementary RNAs. Different 

55 types of small RNAs have similar molecular functions.  Both miRNAs and siRNAs can inhibit 

56 translation of target mRNAs, and both siRNAs and piRNAs can direct chromatin modifications 

57 (Chen 2009). miRNAs regulate target mRNAs through transcript cleavage and/or translational 

58 inhibition. Conserved miRNAs play vital roles in many plant physiological processes, such as 

59 development, stress responses, primary and secondary metabolism (Gou et al. 2011; Jones-

60 Rhoades et al. 2006; Matzke et al. 2009; Xia et al. 2012).

61  So far, miRNAs have been proved to be involved in the regulation of anthocyanin 

62 biosynthesis. miRNA858a and HYPOCOTYL 5 (HY5) can repress the expression of MYB-LIKE 

63 2 (MYBL2), thus leading to the activation of anthocyanin biosynthesis pathway (Wang et al. 

64 2016). Increasing miR156 activity promotes anthocyanin accumulation, while reducing miR156 

65 activity leads to a high level of flavonol (Gou et al. 2011). Both miR828 and miR858 regulate 

66 VvMYB114 to promote anthocyanin biosynthesis in grapes (Tirumalai et al. 2019). The miRNA 

67 involved in anthocyanin biosynthesis pathway are also reported in apple (Hu et al. 2021), tomato 
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68 (Jia et al. 2015), potato (Bonar et al. 2018) and kiwifruit (Li et al. 2019). However, there are few 

69 studies on the post-transcriptional regulation of miRNA in potato anthocyanin biosynthesis. In 

70 the study, a comparative miRNA analysis and the expression analysis of miRNA-mRNA were 

71 performed between purple flesh potato, SD92, and its red flesh mutant, SD140. These results will 

72 shed light on the regulation mechanism of miRNA in potato anthocyanin biosynthesis .

73 Materials & Methods

74 Plant materials

75 SD92, commonly known as Hei Jingang, was a tetraploid potato with purple skin and purple 

76 flesh. SD140 is a mutant of SD92. Its skin and flesh colors were red (Liu et al. 2018; Liu et al. 

77 2015). Two materials were planted in a greenhouse for two months at 20 ± 2 °C with a 

78 photoperiod of 16 h light/8 h dark.

79 Sample library construction and sequencing

80 Fresh tubers (diameter 4-5 cm) from three individual plants were harvested for three 

81 biological replicates, cleaned with sterilized water, frozen in liquid nitrogen and finally stored at 

82 -80˚C. Total RNA extraction of the samples was performed with a modified Trizol reagent (Liu 

83 et al. 2018) for library construction and validation of miRNA sequencing data.

84 Small RNA was isolated and the library was constructed in accordance with the protocol of 

85 Preparing Samples for Analysis of Small RNA (Illumina, USA). The 18-30 nt RNA segments 

86 were separated from total RNA by polyacrylamide gel electrophoresis, then ligated with 3� 

87 adaptor (GAACGACATGGCTACGATCCGACTT) and 5� adaptor 

88 (AGTCGGAGGCCAAGCGGTCTTAGGAAGACAA). The resulting segments were employed 

89 to synthesize first-strand cDNA. The cDNA was amplified and only cDNA with both 3� and 5� 

90 adaptors was enriched. Finally, the fragments of 100~120 bp were separated to constructe the 

91 library. After library quantification and single-stranded DNA cyclization, the library was 

92 sequenced by BGISEQ-500 technology. The raw data was deposited into NCBI BioProject 

93 database (PRJNA824931).

94 miRNA identification and prediction

95 The impurities of raw data, including 5� primer contaminants, no-insert tags, oversized 

96 insertion tags, low quality tags, poly-A tags and the tags without 3� primer, were excluded from 

97 the raw data to obtain clean tags. Low-quality tags were tags whose base quality values were less 

98 than 20, accounting for more than 50% of the total bases. The clean tags were mapped to potato 

99 reference genome PGSC_DM v4.03 (http://solanaceae.plantbiology.msu.edu/data) by Bowtie2 

100 (Langmead et al. 2009) and small RNA databases miRBase (Kozomara & Griffiths-Jones 2014), 

101 snoRNA (Yoshihama et al. 2013) and Rfam (Nawrocki et al. 2015). If a small RNA could be 

102 mapped to more than one database, the small RNA annotation followed the searching priority of 

PeerJ reviewing PDF | (2022:04:72606:3:0:NEW 9 Mar 2023)

Manuscript to be reviewed



103 miRBase > snoRNA > Rfam. One small RNA was only mapped to one category. The small 

104 RNAs mapped to Rfam database were validated by cmsearch (Nawrocki & Eddy 2013). The 

105 novel miRNA was determined by miRA (Evers et al. 2015) according to the characteristic 

106 hairpin structure of miRNA precursor. Small interfering RNA (siRNA), a 22-24 nt double-strand 

107 RNA, was identified by the characteristic of one strand 2 nt shorter than the other (Jagla et al. 

108 2005).

109 miRNA expression and screening of differentially expressed miRNAs (DEMs)

110 The expression level of miRNA was estimated by the transcripts per kilobase million 

111 (TPM) ('t Hoen et al. 2008). The differential expression was calculated by DEGseq (Wang et al. 

112 2010) based on MA-plot method (Yang et al. 2002). The P-value calculated for each gene was 

113 adjusted to Q-value for multiple testing corrections by two alternative strategies. The miRNAs 

114 with expression fold change > 2 and Q-value < 0.001 were defined as differentially expressed 

115 miRNAs. The volcano plot and heatmap of differentially expressed miRNAs were obtained by 

116 Excel 2016 and MeV (Saeed et al. 2003), respectively.

117 Target gene prediction, Gene Ontology (GO) and KEGG pathway enrichment analyses

118 TargetFinder (Fahlgren & Carrington 2010) and psRobot (Wu et al. 2012) were used to 

119 predict the target genes of miRNAs. All target genes were mapped to GO-terms in the database 

120 (http://www.geneontology.org/) and KEGG Orthology (Kanehisa et al. 2008) pathways. The 

121 enrichment analyses of GO terms and KEGG pathways were performed by the hypergeometric 

122 test based on GO::TermFinder (Boyle et al. 2004). The P-values were adjusted by Bonferroni 

123 method (Abdi 2007). The adjusted P-value was defined as Q-value. The terms with Q-value < 

124 0.05 were defined as significantly enriched terms.

125 Expression validation of miRNAs

126 RNAs were digested by DNaseI (Thermo, USA) to remove genome DNA. First-strand 

127 cDNA was synthesized by miRNA First Strand cDNA Synthesis Kit (Sangon Biotech, China) 

128 using tailing reaction method. Real-time quantitative PCR (RT-qPCR) was performed with 

129 UltraSYBR Mixture Kit (CWBIO, China) by using 18S rRNA (GenBank: X67238.1) as a 

130 reference gene. The primers of 18S rRNA and miRNAs were listed in Table 1. The universal 

131 reverse primer for miRNAs was supplied from miRNA First Strand cDNA Synthesis Kit. Three 

132 biological replicates were performed. Significant difference of miRNA expression between 

133 SD92 and SD140 was identified by student�s t-test (p < 0.05).

134 Results

135 Sequencing and classification of potato small RNAs

136 To identify the miRNAs regulating potato flesh color, six small RNA libraries were 

137 constructed and sequenced. The counts of raw tags of six libraries ranged from 28,058,311 to 
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138 30,152,601 (Table 2). Low quality tags, invalid adapter tags, poly-A tags and short valid length 

139 tags (shorter than 18 nt) were removed to obtain clean tags. The percentages of clean tags of six 

140 libraries ranged from 92.10% to 95.22%, which indicated the sequencing data could be used for 

141 subsequent analyses. Of the six libraries, 19-25 nt length tags accounted for 87.9% - 96.4% of 

142 the total tags, and the 24 nt tags were the most abundant (Table S1). More than 85.04% of the 

143 total clean tags from six libraries were mapped to the reference genome (Table S2). Therefore, 

144 the sequencing data should accurately reflect small RNA expression and could be used for 

145 differential expression analysis of small RNA. To classify and annotate small RNAs, the clean 

146 tags were mapped to small RNA databases miRBase, snoRNA and Rfam. The types and 

147 proportion of identified small RNAs were similar within six libraries. The intergenic miRNAs 

148 were the most abundant (Table S3).

149 Identification of known and novel miRNAs

150 There were about 300 known miRNAs and 160 novel miRNAs identified in every library 

151 (Table 3). In total, 356 known miRNAs belonging to 121 miRNA families were identified (Table 

152 S4), and miR172 family was the most abundant family where 21 members were identified. The 

153 nucleotide bias analyses on these non-redundant known miRNAs (Fig. S1A) showed that the first 

154 and 24th nucleotide preferred to be uracil (U), and adenine (A) was the dominant nucleotide in 

155 the 10th nucleotide position. Meanwhile, several nucleotide positions were conserved. For 

156 example, the proportions of four kinds of nucleotides were nearly equal in the 4th, 9th and 16th 

157 nucleotide position (Fig. S1A).

158 Unmapped tags were further used to predict novel small RNAs. Totally, 171 novel miRNAs 

159 were identified for six libraries. The mature sequences, star sequences and precursor sequences 

160 of 171 novel miRNAs were listed in Table S5. The length of the novel miRNAs ranged from 19 

161 to 30 nucleotides. Most of the nucleotide positions preferred to be uracil (U) or adenine (A) (Fig. 

162 S1B). Two exceptions were the 9th and 11th nucleotide where the dominant nucleotides were 

163 guanine (G) and cytosine (C), respectively.

164 Differentially expressed miRNAs between SD92 and SD140

165 To further validate the expression changes of miRNAs between SD92 and SD140, 15 

166 miRNAs from 11 different miRNA families were randomly selected to be tested by RT-qPCR 

167 (Fig. 1). The results of RT-qPCR showed the same expression regulation pattern with miRNA 

168 sequencing data, which suggested that the miRNA sequencing result was reliable. What�s more, 

169 the results showed 6 miRNAs were differentially expressed between SD92 and SD140 (P<0.05). 

170 Different miRNAs from the same miRNA family displayed the same regulation pattern. For 

171 example, both miR166a-3p and miR166d-5p_2 were from miR166 family and exhibited higher 

172 expression levels in SD140 than in SD92.
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173 A total of 179 differentially expressed miRNAs were identified in this study, including 107 

174 known miRNAs and 72 novel miRNAs (Fig. 2A, Table S6). Among the differentially expressed 

175 miRNAs, 65 and 114 were confirmed to be up- and down-regulated in SD140, respectively. 

176 These miRNAs belonged to 49 miRNA families. Of the 49 miRNA families, miR399 and 

177 miR172 family were  the two largest families, which contained 10 and 9 miRNA members, 

178 respectively. Interestingly, the members of miR399 and miR172 families were significantly 

179 down-regulated in SD140, respectively.

180 Target gene prediction of miRNAs

181 To further explore the function of miRNAs, the target genes (mRNAs) of all miRNAs were 

182 predicted by psRobot and TargetFinder. Totally, 7,416 target genes were identified for 450 

183 miRNAs where 897 target genes were confirmed as targets of 116 miRNAs by both softwares. 

184 Among these 897 target genes, 305 genes were regulated by 31 differentially expressed miRNAs 

185 (Table S7).

186 GO and KEGG pathway enrichment analysis of target genes

187 GO enrichment analysis of the above 305 target genes showed that the biological process 

188 ontology included 47 GO terms. �Cellular macromolecule metabolic process� and 

189 �macromolecule metabolic process� were the most abundant GO terms, containing 77 genes, 

190 respectively.

191 The cellular component ontology included 16 GO terms, and the most abundant terms were 

192 �cell� and �cell part�, which contained 115 genes, respectively. The molecular function ontology 

193 included 10 GO terms. The GO term �binding� contained 126 genes, which was the most 

194 abundant term in molecular function (Fig. 3).

195 To explore the possible function of target genes, KEGG pathway enrichment analysis was 

196 performed. The 305 target genes of 31 DEMs were distributed in 6 first-level and 33 second-

197 level KEGG pathways, respectively. The first-level KEGG pathway term �metabolism� was the 

198 most abundant, including 10 second-level KEGG pathway terms. Thirty-eight target genes were 

199 assigned in the second-level KEGG pathway term �signal transduction�, which was the most 

200 abundant second-level KEGG pathway term (Fig. 4).

201 Among the enriched top 20 pathways, only two pathways, �plant hormone signal 

202 transduction� and �plant-pathogen interaction�, were defined as significantly enriched pathways 

203 (p < 0.05), which comprised 24 target genes, respectively (Fig. 5 and Table S8). This indicated 

204 that the DEMs between SD92 and SD140 might be involved in plant-pathogen interaction and 

205 hormone signal transduction.

206 Target genes of miRNAs involved in regulation of anthocyanin biosynthesis

207 Generally, plant miRNAs regulate target mRNAs through two major mechanisms, transcript 

208 cleavage and translational inhibition (Chen 2009), thus there are negative regulation relationship 
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209 in the expressions of miRNA and corresponding target genes. In our previous study, a 

210 comparative transcriptome analysis was performed between SD92 and SD140 (Liu et al. 2018). 

211 By combining transcriptome sequencing data (SRA accession number: SRP125987) and miRNA 

212 sequencing data of present study, 31 differentially expressed miRNAs and corresponding target 

213 mRNAs were identified and listed in Table S9. Among them, the differentially expressed 

214 miRNAs negatively regulating target mRNAs were screened, and 140 miRNA-mRNA pairs were 

215 confirmed. In these miRNAs-mRNAs pairs, miRNAs contained 5 known miRNA families and 

216 12 novel miRNAs. These mRNAs corresponded to 71 genes (Table 4). These genes mainly 

217 encoded transcription factors, quamosa promoter binding protein, hormone response factors, 

218 protein kinases and disease resistance protein.

219 Transcription factors affect anthocyanin biosynthesis by regulating the expressions of 

220 structural genes (D'Amelia et al. 2014; Liu et al. 2016). In this study, we focused on the 

221 regulation of miRNA on transcription factors in anthocyanin biosynthesis (Table 4). 

222 PGSC0003DMG400006604, PGSC0003DMG400011046 and PGSC0003DMG400012038, 

223 which were regulated by miR172b, encoded AP2 transcription factor SlAP2e, RAP2-7-like and 

224 RAP2-7, respectively. The target gene of miR530b_4, PGSC0003DMG400025479, encoded 

225 AP2-like transcription factor TOE3. PGSC0003DMG400011457 encoded WRKY transcription 

226 factor 48 and was regulated by miR172e-5p. Both PGSC0003DMG400004826 and 

227 PGSC0003DMG400018279, which were regulated by novel_mir170,  encoded transcription 

228 factor ERF039-like and MYB35-like, respectively.

229 Hormones improve the biosynthesis of anthocyanins (Zhang et al. 2011; Palma-Silva et al. 

230 2016), so we did research on miRNA regulating hormones in this experiment in order to throw 

231 light on miRNA regulation mechanism on anthocyanins biosynthesis. In this study, RAP2-7 and 

232 RAP2-7-like, which were regulated by miR172b, were ethylene-responsive transcription factors. 

233 TOE3 transcription factor, which was regulated by miR172b and miR530b_4, was also 

234 responsive to ethylene (Table 4). The target gene of miR171b-3p, PGSC0003DMG400012683, 

235 encoded the DELLA protein that was an inhibitor of GA signal transduction.

236 Protein kinases were involved in anthocyanin biosynthesis (Li et al. 2016). Protein kinases 

237 regulated by miRNA were investigated in this study. Both PGSC0003DMG400018811 and 

238 PGSC0003DMG400024795, which were regulated by novel_mir170, encoded LRR receptor-like 

239 serine/threonine protein kinase ERECTA and RCH1, respectively. PGSC0003DMG400026383 

240 encoded receptor-like protein kinase and was regulated by novel_mir117.

241 There were also significant changes in the expression of target genes regulated by other 

242 miRNAs, such as PGSC0003DMG402007414, which was target gene of novel_mir105 and 

243 novel_mir143, but the gene function was unknown.
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244 Discussion

245 Generally, miRNAs play an important role in some kinds of plant biological processes such 

246 as growth, development and stress response (Jones-Rhoades et al. 2006). The functions of 

247 miRNAs in plant anthocyanin biosynthesis have been reported in some species, including 

248 Arabidopsis (Gou et al. 2011; Wang et al. 2016), apple (Hu et al. 2021), grape (Tirumalai et al. 

249 2019), tomato (Jia et al. 2015), sweet potato (He et al. 2019) and kiwi fruit (Li et al. 2019).

250 In this study, miR399 and miR172 families were the two largest differentially expressed 
251 miRNA families. The expressions of miR399 family (miR399a_6, miR399i, miR399j_2) and 
252 miR172 family (miR172e-5p, miR172b) were down-regulated in SD140. miR172 inhibits 
253 flavonoid biosynthesis through suppressing the expression of an AP2 transcription factor that 
254 positively regulates MdMYB10 (Ding et al. 2022). In SD140, miR172b was down-regulated, and 
255 its target gene encoding AP2-like factor was up-regulated, indicating that miR172b regulated the 
256 change in anthocyanin biosynthesis from petunidin to pelargonidin through AP2-like factor. Both 
257 miR399 expression and anthocyanin accumulation are increased under Pi-deficiency conditions 
258 (Chen et al. 2018; Hsieh et al. 2009). miR399 is related to anthocyanin accumulation. However, 
259 the target gene of miR399 was unknown in SD92 and SD140, so the regulation mechanism of 
260 miR399 in anthocyanin biosynthesis remains unclear and needs further study.

261 miR171 family (miR171a-3p, miR171b-3p, miR171b-3p_2) was up-regulated in SD140 

262 (Table S6). miR171 is down-regulated and anthocyanin accumulation is up-regulated under 

263 water deficit (Ghorecha et al. 2014). miR171 is related with anthocyanin accumulation. The 

264 target gene of miR171b-3p, PGSC0003DMG400012683, encoded DELLA protein. DELLA 

265 proteins are important repressors of GA signaling (Chai et al. 2022; Sukiran et al. 2022). Plant 

266 hormones are involved in anthocyanin biosynthesis, such as auxin (Ji et al. 2015; Liu et al. 2014), 

267 abscisic acid (ABA) (Balint & Reynolds 2013; Leão et al. 2014) and gibberellic acid (GA) 

268 (Loreti et al. 2008). GA represses the sucrose accumulation in anthocyanin synthesis (Loreti et al. 

269 2008) and decreases anthocyanin accumulation under low temperature or phosphate starvation 

270 (Jiang et al. 2007; Zhang et al. 2011). Moreover, the KEGG pathway �plant hormone signal 

271 transduction� comprising of 24 target genes was significantly enriched in this study, which 

272 suggested that plant hormones were involved in the anthocyanin biosynthesis in SD92 and 

273 SD140. Thus, it indicated that miR171b-3p probably regulated the change of anthocyanin 

274 biosynthesis in SD92 and SD140 through DELLA protein.

275 miR828 were frequently reported to be involved in anthocyanin biosynthesis regulation 

276 (Bonar et al. 2018; Tirumalai et al. 2019). In potato, miR828 is associated with purple tuber skin 

277 and flesh color rich in anthocyanin. One member of miR828 family, miR828a_1, was identified 

278 in SD92 and SD140, but was not significantly expressed differentially between SD92 and 
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279 SD140. These results indicated that miR828a_1 might not regulate the change of anthocyanin 

280 biosynthesis between SD92 and SD140.

281 The accumulation of anthocyanin was reported to be related with miR156 (Gou et al. 2011). 

282 In this study, miRNA156 was differentially expressed between SD92 and SD140. Its target gene 

283 mainly encoded squamosa promoter binding protein and cell cycle checkpoint protein RAD17. 

284 These target genes regulated by miR156a-5p need further study in anthocyanin biosynthesis.

285 A novel miRNA, novel_mir170, was down-regulated in SD140 (4.81 vs 0.14). It regulated a 

286 number of target genes, which mainly encoded protein kinase, ethylene responsive transcription 

287 factor ERF039-like and transcription factor MYB35-like. Protein kinases play an important role 

288 in anthocyanin biosynthesis. Plant sucrose-nonfermenting 1 (SNF1)-related protein kinase was 

289 involved in anthocyanin accumulation regulated by MdbHLH3 (Liu et al. 2017; Shen et al. 

290 2017). Anthocyanin biosynthesis was regulated by mitogen-activated protein kinase (Luo et al. 

291 2017; Wersch et al. 2018). In this experiment, the two target genes of novel_mir170 encoding 

292 LRR receptor-like serine/threonine-protein kinase were up-regulated, which were consistent with 

293 the metabolism data (Liu et al. 2022). These results showed that novel_mir170 regulated the 

294 change of anthocyanin biosynthesis through LRR receptor-like serine/threonine-protein kinase in 

295 SD92 and SD140. MYB transcription factor can regulate the biosynthesis of anthocyanin by 

296 regulating the expression of structural genes (D'Amelia et al. 2014). Target gene of 

297 novel_mir170, which encoded MYB transcription factor, was up-regulated. These results showed 

298 that novel_mir170 regulated the anthocyanin biosynthesis by regulating the expression of MYB. 

299 Ethylene is closely related to the biosynthesis of anthocyanin (Chen et al. 2022; Jeong et al. 

300 2010). In this study, the target gene of novel_mir170 encoding ethylene responsive transcription 

301 factor ERF039 was up-regulated. These results indicated that novel_mir170 regulated 

302 anthocyanin biosynthesis by up-regulating the expression of ethylene responsive transcription 

303 factor. In conclusion, novel_mir170 was an important novel miRNA identified in this study and 

304 might be an important miRNA for regulation of anthocyanin biosynthesis.

305 Conclusions

306 A comparative small RNA sequencing analysis between purple potato and its mutant 

307 revealed that there were 179 differentially expressed miRNAs, consisting of 65 up- and 114 

308 down-regulated miRNAs, respectively. miR399 and miR172 families were the two largest 

309 differentially expressed miRNA families. 31 differentially expressed miRNAs were predicted to 

310 potentially regulate 305 target genes. The miRNA sequencing data and the transcriptome data 

311 showed that miR171 family and miR172 family regulated the change in anthocyanin 

312 biosynthesis from petunidin to pelargonidin through DELLA protein and AP2-like transcription 
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313 factor, respectively. A novel miRNA, novel_mir170, regulated anthocyanin biosynthesis by 

314 serine/threonine-protein kinase and MYB transcription factor.
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1

2 Table 1 Primer sequences of miRNAs for real-time quantitative PCR

Primer Direction Sequence (5�-3�)

18S rRNA Forward CCTGGTCGGCATCGTTTA

18S rRNA Reverse CGAACAACTGCGAAAGCAT

miR156a-5p Forward TGACAGAAGAGAGTGAGCAC

miR166a-3p Forward TCGGACCAGGCTTCATTCC

miR166d-5p_2 Forward GGAATGTTGTCTGGCTCGAGG

miR171b-3p Forward TTGAGCCGTGCCAATATCAC

miR171b-3p_2 Forward TTGAGCCGCGTCAATATCTCT

miR172b Forward GGAATCTTGATGATGCTGCA

miR172e-5p Forward GCAACATCATCAAGATTCACA

miR399a_6 Forward GCCAAAGGAGAATTGCCCTG

miR399i Forward CCAAAGGAGAGCTGCCCTG

miR399j_2 Forward TGCCAAAGGAGAGTTGCCCTA

miR530a Forward TGCATTTGCACCTGCACCTT

miR828a_1 Forward CGCTGTCTTGCTCAAATGAGTATTC

novel_mir32 Forward ATTAACTTTGGCCAGCATC

novel_mir105 Forward GGACCCTTGGCGAAGTCACC

novel_mir143 Forward CACTGAGTTGGACCCTTGGC

novel_mir170 Forward GCGAGCGAATTAGATTCATTGTTTGA

3
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Summary of sequencing data for each sample
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1

2 Table 2 Summary of sequencing data for each sample

Sample 

name

Raw tag 

count

Low 

quality 

tag

Invalid 

adapter tag

Poly 

A tag

Tag length

< 18
Clean tag

Q20 of 

clean 

tag(%)

Percentage 

of clean 

tag(%)

SD140_1 30,152,601 521,573 1,211,217 765 296,890 28,122,156 99.30 93.27

SD140_2 29,662,224 559,145 642,637 1,307 285,077 28,174,058 99.20 94.98

SD140_3 29,108,569 439,201 1,438,318 979 420,200 26,809,871 99.20 92.10

SD92_1 28,058,311 476,281 601,154 814 262,128 26,717,934 99.00 95.22

SD92_2 28,907,701 462,036 684,333 2,174 265,810 27,493,348 99.30 95.11

SD92_3 29,706,600 544,647 816,486 1,600 341,405 28,002,462 99.20 94.26

3
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Summary of detected small RNAs for each sample
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2 Table 3 S������ o� d������d small RNAs �o� eace sams	�

Sample 

name

Known 

miRNA

Novel 

miRNA

Known 

siRNA

Novel 

siRNA

SD140_1 290 151 0 12,518

SD140_2 293 161 0 13,671

SD140_3 284 145 0 12,447

SD92_1 275 166 0 13,373

SD92_2 304 161 0 11,225

SD92_3 311 168 0 13,147

3
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1 Table 4 Differentially expressed miRNAs and negatively regulated target genes

miRNA Target Gene Gene Annotation

miR156a-5p PGSC0003DMG400022824 squamosa promoter-binding protein 1-like

miR156a-5p PGSC0003DMG400023962 uncharacterized protein

miR156a-5p PGSC0003DMG400029156 cell cycle checkpoint protein RAD17

miR156a-5p PGSC0003DMG400032817 squamosa promoter-binding protein 1-like

miR156a-5p PGSC0003DMG400034310 squamosa promoter-binding-like protein 12

miR171b-3p PGSC0003DMG400009015 DEAD-box ATP-dependent RNA helicase 24

miR171b-3p PGSC0003DMG400012683 DELLA protein

miR172b PGSC0003DMG400004006 floral homeotic protein APETALA 2

miR172b PGSC0003DMG400006604 AP2 transcription factor SlAP2e

miR172b PGSC0003DMG400011046
ethylene-responsive transcription factor RAP2-7-

like

miR172b PGSC0003DMG400012038 ethylene-responsive transcription factor RAP2-7

miR172b PGSC0003DMG400027904 floral homeotic protein APETALA 2-like

miR172b PGSC0003DMG400030080
phosphatidylinositol/phosphatidylcholine 

transfer protein SFH4

miR172b 

miR530b_4
PGSC0003DMG400025479

AP2-like ethylene-responsive transcription factor 

TOE3

miR172e-5p PGSC0003DMG400010386 malate dehydrogenase, glyoxysomal

miR172e-5p PGSC0003DMG400011457 probable WRKY transcription factor 48

miR172e-5p PGSC0003DMG400011477 putative lysine-specific demethylase JMJ16

miR172e-5p PGSC0003DMG400021020 uncharacterized protein

miR172e-5p 

novel_mir32
PGSC0003DMG400014214 uncharacterized protein

miR482e-5p 

novel_mir117
PGSC0003DMG400030780 uncharacterized protein

miR530a PGSC0003DMG400010027 dof zinc finger protein DOF3.5-like

miR530a PGSC0003DMG400022193 pirin-like protein

miR530a PGSC0003DMG400030421 transcription initiation factor IIA large subunit

miR530a PGSC0003DMG400038860 uncharacterized protein

miR530b_4 PGSC0003DMG400001126 uncharacterized protein

miR530b_4 PGSC0003DMG400030587 non-specific lipid-transfer protein 2-like

novel_mir32 PGSC0003DMG400003436 uncharacterized protein

novel_mir32 PGSC0003DMG400007187 probable protein S-acyltransferase 1

novel_mir32 PGSC0003DMG400009055 uncharacterized protein

novel_mir32 PGSC0003DMG400011113 putative disease resistance protein RGA3

novel_mir32 PGSC0003DMG400012875 protein disulfide isomerase-like 1-3

novel_mir32 PGSC0003DMG400016798 polyadenylate-binding protein 2-like

novel_mir32 PGSC0003DMG400017569 protein disulfide-isomerase-like

novel_mir32 PGSC0003DMG400027301 caffeic acid 3-O-methyltransferase-like

novel_mir32 PGSC0003DMG400032155 linoleate 13S-lipoxygenase 2-1, chloroplastic

novel_mir32 PGSC0003DMG400043688 uncharacterized protein
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novel_mir42 PGSC0003DMG400008897
L-type lectin-domain containing receptor kinase 

IV.1-like

novel_mir54 PGSC0003DMG400032120 UPF0496 protein At3g19330-like

novel_mir61 PGSC0003DMG400004296 late blight resistance protein homolog R1B-16

novel_mir61 PGSC0003DMG400004756 late blight resistance protein homolog R1A-10

novel_mir61 PGSC0003DMG400007867 disease resistance protein RGH3

novel_mir61 PGSC0003DMG400007870 late blight resistance protein homolog R1A-3

novel_mir61 PGSC0003DMG400007872 late blight resistance protein homolog R1C-3

novel_mir61 PGSC0003DMG400031244 THUMP domain-containing protein 1 homolog

novel_mir61 PGSC0003DMG402007871 disease resistance protein RGH3

novel_mir67 PGSC0003DMG400008560 uncharacterized protein

novel_mir67 PGSC0003DMG400017053 uncharacterized protein

novel_mir67 PGSC0003DMG400030551 multicopper oxidase LPR2

novel_mir75 PGSC0003DMG400003887 uncharacterized protein

novel_mir75 PGSC0003DMG400009731
probable S-adenosylmethionine-dependent 

methyltransferase

novel_mir75 PGSC0003DMG400017312 RING finger protein 44

novel_mir75 PGSC0003DMG400025978 uncharacterized protein

novel_mir78 PGSC0003DMG400000774 RNA-binding protein 2

novel_mir89 PGSC0003DMG400006945 senescence-associated carboxylesterase 101-like

novel_mir105 

novel_mir143
PGSC0003DMG402007414 uncharacterized protein

novel_mir117 PGSC0003DMG400020645 ycf54-like protein

novel_mir117 PGSC0003DMG400026383 probable receptor-like protein kinase

novel_mir117 PGSC0003DMG400031180 uncharacterized protein

novel_mir128 PGSC0003DMG400034633 uncharacterized protein

novel_mir128 PGSC0003DMG400037457 uncharacterized protein

novel_mir128 PGSC0003DMG400043850 uncharacterized protein

novel_mir170 PGSC0003DMG400000513 galactinol-sucrose galactosyltransferase 5

novel_mir170 PGSC0003DMG400002541 60S ribosomal protein L37-3

novel_mir170 PGSC0003DMG400004826
ethylene-responsive transcription factor ERF039-

like

novel_mir170 PGSC0003DMG400007189 proteasome subunit alpha type-3-like, partial

novel_mir170 PGSC0003DMG400008432 uncharacterized protein

novel_mir170 PGSC0003DMG400012159 KAT8 regulatory NSL complex subunit 3

novel_mir170 PGSC0003DMG400018279 transcription factor MYB35-like

novel_mir170 PGSC0003DMG400018811
LRR receptor-like serine/threonine-protein 

kinase ERECTA

novel_mir170 PGSC0003DMG400024795
LRR receptor-like serine/threonine-protein 

kinase RCH1

novel_mir170 PGSC0003DMG400033933 hypothetical protein SDM1_41t00024

2

PeerJ reviewing PDF | (2022:04:72606:3:0:NEW 9 Mar 2023)

Manuscript to be reviewed



Figure 1
Expression analysis of miRNAs by RT-qPCR.

The values are represented by mean ± standard deviation (n = 3). Student’s t-test, P < 0.05.
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Figure 2
Identification of differentially expressed miRNAs between SD92 and SD140.

(A) Volcano plot of differentially expressed miRNAs between SD92 and SD140. The cutoff
values of fold change and Q-value are > 2 and < 0.001, respectively. Up-regulated and
down-regulated miRNAs are indicated by red and blue dots. (B) Heatmap of differentially
expressed miRNAs in three biological replicates. Hierarchical clustering was performed by
complete linkage method and Euclidean distance.
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Figure 3
GO classification of predicted target genes of the differentially expressed miRNAs.
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Figure 4
First-level and second-level KEGG pathway classification of predicted target genes of
the DEMs.

Six different first-level KEGG pathway were distinguished in different colors.
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Figure 5
Scatterplot of enriched KEGG pathways of predicted target genes of the DEMs.

X axis indicates the rich factor. The rich factor is the ratio of DEMs target gene numbers
annotated in the pathway term to all gene numbers annotated in the pathway. Y axis
indicates KEGG pathways.
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