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ABSTRACT
Anthocyanins are a group of natural pigments acting as stress protectants induced
by biotic/abiotic stress in plants. Although the metabolic pathway of anthocyanin
has been studied in potato, the roles of miRNAs on the metabolic pathway remain
unclear. In this study, a purple tetraploid potato of SD92 and its red mutant of
SD140 were selected to explore the regulation mechanism of miRNA in anthocyanin
biosynthesis. A comparative analysis of small RNAs between SD92 and SD140 revealed
that there were 179 differentially expressed miRNAs, including 65 up- and 114 down-
regulated miRNAs. Furthermore, 31 differentially expressed miRNAs were predicted
to potentially regulate 305 target genes. KEGG pathway enrichment analysis for these
target genes showed that plant hormone signal transduction pathway and plant-
pathogen interaction pathway were significantly enriched. The correlation analysis of
miRNA sequencing data and transcriptome data showed that there were 140 negative
regulatorymiRNA-mRNApairs. ThemiRNAs includedmiR171 family,miR172 family,
miR530b_4 and novel_mir170. The mRNAs encoded transcription factors, hormone
response factors and protein kinases. All these results indicated that miRNAs might
regulate anthocyanin biosynthesis through transcription factors, hormone response
factors and protein kinase.

Subjects Agricultural Science, Molecular Biology, Plant Science
Keywords Purple potato, Red mutant, Small RNA, Anthocyanin

INTRODUCTION
Anthocyanins are flavonoid compounds, which are secondary metabolites. They are
natural food pigments found in edible parts of fruits, vegetables and crops (Chiu et al.,
2010). The foods rich in anthocyanin present bright colors and are popular with people
(Bimpilas et al., 2016). Moreover, anthocyanins also have antioxidant activity and can
protect human beings from disease or reduce the damage of disease. The anthocyanin
extracts from purple rice protect cardiac function in STZ-induced diabetes rat hearts by
inhibiting cardiac hypertrophy and fibrosis (Chen et al., 2016). Anthocyanins from red
potato show anti-hepatotoxity in rats with toxicity of D-galactosamine (Han et al., 2006).
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Anthocyanin extracts from bilberries and blackcurrants have protective activity on acute
acetaminophen-induced hepatotoxicity in rats (Cristani et al., 2016).

In anthocyanin biosynthesis, phenylalanine is a primary precursor. Then under the
action of a series of enzymes, the substances of coumaroyl CoA, dihydroflavonols,
leucoanthocyanins and anthocyanins are successively produced. Anthocyanin biosynthesis
is regulated by structural genes and their transcription factors. Some genes regulating
anthocyanin biosynthesis have been isolated and characterized in potato, such as f3’5’h
(Jung et al., 2005), dfr (De Jong et al., 2003), developer (D) locus (Jung et al., 2009), AN1
(D’Amelia et al., 2014) and StMYB44 (Liu et al., 2019).

Small RNAsusually consist of 20-30 nucleotides andwidely exist in eukaryotic organisms.
According to their biogenesis modes, small RNAs are distinguished into three major
types, namely miRNA, siRNA and piRNA (Axtell, 2013; Chen, 2009). Small RNAs guide
biological processes at DNA or RNA level, for example, the cleavage of complementary
RNAs. Different types of small RNAs have similar molecular functions. Both miRNAs and
siRNAs can inhibit translation of target mRNAs, and both siRNAs and piRNAs can direct
chromatin modifications (Chen, 2009). miRNAs regulate target mRNAs through transcript
cleavage and/or translational inhibition. Conserved miRNAs play vital roles in many plant
physiological processes, such as development, stress responses, primary and secondary
metabolism (Gou et al., 2011; Jones-Rhoades, Bartel & Bartel, 2006; Matzke et al., 2009; Xia
et al., 2012).

So far, miRNAs have been proved to be involved in the regulation of anthocyanin
biosynthesis. miRNA858a and HYPOCOTYL 5 (HY5) can repress the expression of
MYB-LIKE 2 (MYBL2), thus leading to the activation of anthocyanin biosynthesis pathway
(Wang et al., 2016). Increasing miR156 activity promotes anthocyanin accumulation,
while reducing miR156 activity leads to a high level of flavonol (Gou et al., 2011). Both
miR828 and miR858 regulate VvMYB114 to promote anthocyanin biosynthesis in grapes
(Tirumalai et al., 2019). The miRNA involved in anthocyanin biosynthesis pathway are
also reported in apple (Hu et al., 2021), tomato (Jia et al., 2015), potato (Bonar et al., 2018)
and kiwifruit (Li et al., 2019). However, there are few studies on the post-transcriptional
regulation of miRNA in potato anthocyanin biosynthesis. In the study, a comparative
miRNA analysis and the expression analysis of miRNA-mRNA were performed between
purple flesh potato, SD92, and its red flesh mutant, SD140. These results will shed light on
the regulation mechanism of miRNA in potato anthocyanin biosynthesis.

MATERIALS & METHODS
Plant materials
SD92, commonly known as Hei Jingang, was a tetraploid potato with purple skin and
purple flesh. SD140 is a mutant of SD92. Its skin and flesh colors were red (Liu et al., 2018;
Liu et al., 2015). Two materials were planted in a greenhouse for two months at 20 ± 2 ◦C
with a photoperiod of 16 h light/8 h dark.
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Sample library construction and sequencing
Fresh tubers (diameter 4–5 cm) from three individual plants were harvested for three
biological replicates, cleaned with sterilized water, frozen in liquid nitrogen and finally
stored at−80 ◦C.Total RNAextraction of the sampleswas performedwith amodifiedTrizol
reagent (Liu et al., 2018) for library construction and validation ofmiRNA sequencing data.

Small RNA was isolated and the library was constructed in accordance with the
protocol of Preparing Samples for Analysis of Small RNA (Illumina, San Diego, CA,
USA). The 18-30 nt RNA segments were separated from total RNA by polyacrylamide gel
electrophoresis, then ligatedwith 3′ adaptor (GAACGACATGGCTACGATCCGACTT) and
5′ adaptor (AGTCGGAGGCCAAGCGGTCTTAGGAAGACAA). The resulting segments
were employed to synthesize first-strand cDNA. The cDNA was amplified and only cDNA
with both 3′ and 5′ adaptors was enriched. Finally, the fragments of 100–120 bp were
separated to construct the library. After library quantification and single-stranded DNA
cyclization, the library was sequenced by BGISEQ-500 technology. The raw data was
deposited into NCBI BioProject database (PRJNA824931).

miRNA identification and prediction
The impurities of raw data, including 5′ primer contaminants, no-insert tags, oversized
insertion tags, low quality tags, poly-A tags and the tags without 3′ primer, were
excluded from the raw data to obtain clean tags. Low-quality tags were tags whose
base quality values were less than 20, accounting for more than 50% of the total
bases. The clean tags were mapped to potato reference genome PGSC_DM v4.03
(http://solanaceae.plantbiology.msu.edu/data) by Bowtie2 (Langmead et al., 2009) and
small RNA databases miRBase (Kozomara & Griffiths-Jones, 2014), snoRNA (Yoshihama,
Nakao & Kenmochi, 2013) and Rfam (Nawrocki et al., 2015). If a small RNA could be
mapped to more than one database, the small RNA annotation followed the searching
priority of miRBase> snoRNA> Rfam. One small RNA was only mapped to one category.
The small RNAs mapped to Rfam database were validated by cmsearch (Nawrocki & Eddy,
2013). The novel miRNA was determined by miRA (Evers et al., 2015) according to the
characteristic hairpin structure of miRNA precursor. Small interfering RNA (siRNA), a
22–24 nt double-strand RNA, was identified by the characteristic of one strand 2 nt shorter
than the other (Jagla et al., 2005).

miRNA expression and screening of differentially expressed miRNAs
(DEMs)
The expression level of miRNAwas estimated by the transcripts per kilobase million (TPM)
(’t Hoen et al., 2008). The differential expression was calculated by DEGseq (Wang et al.,
2010) based on MA-plot method (Yang et al., 2002). The P-value calculated for each gene
was adjusted to Q-value for multiple testing corrections by two alternative strategies. The
miRNAs with expression fold change> 2 andQ-value< 0.001 were defined as differentially
expressed miRNAs. The volcano plot and heatmap of differentially expressedmiRNAs were
obtained by Excel 2016 and MeV (Saeed et al., 2003), respectively.
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Table 1 Primer sequences of miRNAs for real-time quantitative PCR.

Primer Direction Sequence (5′–3′)

18S rRNA Forward CCTGGTCGGCATCGTTTA
18S rRNA Reverse CGAACAACTGCGAAAGCAT
miR156a-5p Forward TGACAGAAGAGAGTGAGCAC
miR166a-3p Forward TCGGACCAGGCTTCATTCC
miR166d-5p_2 Forward GGAATGTTGTCTGGCTCGAGG
miR171b-3p Forward TTGAGCCGTGCCAATATCAC
miR171b-3p_2 Forward TTGAGCCGCGTCAATATCTCT
miR172b Forward GGAATCTTGATGATGCTGCA
miR172e-5p Forward GCAACATCATCAAGATTCACA
miR399a_6 Forward GCCAAAGGAGAATTGCCCTG
miR399i Forward CCAAAGGAGAGCTGCCCTG
miR399j_2 Forward TGCCAAAGGAGAGTTGCCCTA
miR530a Forward TGCATTTGCACCTGCACCTT
miR828a_1 Forward CGCTGTCTTGCTCAAATGAGTATTC
novel_mir32 Forward ATTAACTTTGGCCAGCATC
novel_mir105 Forward GGACCCTTGGCGAAGTCACC
novel_mir143 Forward CACTGAGTTGGACCCTTGGC
novel_mir170 Forward GCGAGCGAATTAGATTCATTGTTTGA

Target gene prediction, Gene Ontology (GO) and KEGG pathway
enrichment analyses
TargetFinder (Fahlgren & Carrington, 2010) and psRobot (Wu et al., 2012) were used to
predict the target genes of miRNAs. All target genes were mapped to GO-terms in the
database (http://www.geneontology.org/) and KEGG Orthology (Kanehisa et al., 2008)
pathways. The enrichment analyses of GO terms and KEGG pathways were performed by
the hypergeometric test based on GO::TermFinder (Boyle et al., 2004). The P-values were
adjusted by Bonferroni method (Abdi, 2007). The adjusted P-value was defined as Q-value.
The terms with Q-value < 0.05 were defined as significantly enriched terms.

Expression validation of miRNAs
RNAswere digested byDNaseI (Thermo,USA) to remove genomeDNA. First-strand cDNA
was synthesized by miRNA First Strand cDNA Synthesis Kit (Sangon Biotech, China) using
tailing reaction method. Real-time quantitative PCR (RT-qPCR) was performed with
UltraSYBR Mixture Kit (CWBIO, China) by using 18S rRNA (GenBank: X67238.1) as a
reference gene. The primers of 18S rRNA and miRNAs were listed in Table 1. The universal
reverse primer for miRNAs was supplied from miRNA First Strand cDNA Synthesis Kit.
Three biological replicates were performed. Significant difference of miRNA expression
between SD92 and SD140 was identified by Student’s t -test (P < 0.05).
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Table 2 Summary of sequencing data for each sample.

Sample
name

Raw tag
count

Low quality
tag

Invalid
adapter tag

Poly A
tag

Tag length
< 18

Clean
tag

Q20 of clean
tag (%)

Percentage of
clean tag (%)

SD140_1 30,152,601 521,573 1,211,217 765 296,890 28,122,156 99.30 93.27
SD140_2 29,662,224 559,145 642,637 1,307 285,077 28,174,058 99.20 94.98
SD140_3 29,108,569 439,201 1,438,318 979 420,200 26,809,871 99.20 92.10
SD92_1 28,058,311 476,281 601,154 814 262,128 26,717,934 99.00 95.22
SD92_2 28,907,701 462,036 684,333 2,174 265,810 27,493,348 99.30 95.11
SD92_3 29,706,600 544,647 816,486 1,600 341,405 28,002,462 99.20 94.26

RESULTS
Sequencing and classification of potato small RNAs
To identify the miRNAs regulating potato flesh color, six small RNA libraries were
constructed and sequenced. The counts of raw tags of six libraries ranged from 28,058,311
to 30,152,601 (Table 2). Low quality tags, invalid adapter tags, poly-A tags and short valid
length tags (shorter than 18 nt) were removed to obtain clean tags. The percentages of clean
tags of six libraries ranged from 92.10% to 95.22%, which indicated the sequencing data
could be used for subsequent analyses. Of the six libraries, 19-25 nt length tags accounted
for 87.9%–96.4% of the total tags, and the 24 nt tags were the most abundant (Table S1).
More than 85.04% of the total clean tags from six libraries were mapped to the reference
genome (Table S2). Therefore, the sequencing data should accurately reflect small RNA
expression and could be used for differential expression analysis of small RNA. To classify
and annotate small RNAs, the clean tags were mapped to small RNA databases miRBase,
snoRNA and Rfam. The types and proportion of identified small RNAs were similar within
six libraries. The intergenic miRNAs were the most abundant (Table S3).

Identification of known and novel miRNAs
There were about 300 known miRNAs and 160 novel miRNAs identified in every library
(Table 3). In total, 356 known miRNAs belonging to 121 miRNA families were identified
(Table S4), and miR172 family was the most abundant family where 21 members were
identified. The nucleotide bias analyses on these non-redundant knownmiRNAs (Fig. S1A)
showed that the first and 24th nucleotide preferred to be uracil (U), and adenine (A) was
the dominant nucleotide in the 10th nucleotide position. Meanwhile, several nucleotide
positions were conserved. For example, the proportions of four kinds of nucleotides were
nearly equal in the 4th, 9th and 16th nucleotide position (Fig. S1A).

Unmapped tags were further used to predict novel small RNAs. Totally, 171 novel
miRNAs were identified for six libraries. The mature sequences, star sequences and
precursor sequences of 171 novel miRNAs were listed in Table S5. The length of the novel
miRNAs ranged from 19 to 30 nucleotides. Most of the nucleotide positions preferred to
be uracil (U) or adenine (A) (Fig. S1B). Two exceptions were the 9th and 11th nucleotide
where the dominant nucleotides were guanine (G) and cytosine (C), respectively.

Liu et al. (2023), PeerJ, DOI 10.7717/peerj.15349 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.15349#supp-1
http://dx.doi.org/10.7717/peerj.15349#supp-2
http://dx.doi.org/10.7717/peerj.15349#supp-3
http://dx.doi.org/10.7717/peerj.15349#supp-4
http://dx.doi.org/10.7717/peerj.15349#supp-11
http://dx.doi.org/10.7717/peerj.15349#supp-11
http://dx.doi.org/10.7717/peerj.15349#supp-5
http://dx.doi.org/10.7717/peerj.15349#supp-11
http://dx.doi.org/10.7717/peerj.15349


Table 3 Summary of detected small RNAs for each sample.

Sample
name

Known
miRNA

Novel
miRNA

Known
siRNA

Novel
siRNA

SD140_1 290 151 0 12,518
SD140_2 293 161 0 13,671
SD140_3 284 145 0 12,447
SD92_1 275 166 0 13,373
SD92_2 304 161 0 11,225
SD92_3 311 168 0 13,147

Differentially expressed miRNAs between SD92 and SD140
To further validate the expression changes of miRNAs between SD92 and SD140, 15
miRNAs from 11 different miRNA families were randomly selected to be tested by RT-
qPCR (Fig. 1). The results of RT-qPCR showed the same expression regulation pattern
with miRNA sequencing data, which suggested that the miRNA sequencing result was
reliable. What’s more, the results showed 6 miRNAs were differentially expressed between
SD92 and SD140 (P < 0.05). Different miRNAs from the same miRNA family displayed
the same regulation pattern. For example, both miR166a-3p and miR166d-5p_2 were from
miR166 family and exhibited higher expression levels in SD140 than in SD92.

A total of 179 differentially expressed miRNAs were identified in this study, including
107 known miRNAs and 72 novel miRNAs (Fig. 2A, Table S6). Among the differentially
expressed miRNAs, 65 and 114 were confirmed to be up- and down-regulated in SD140,
respectively. These miRNAs belonged to 49 miRNA families. Of the 49 miRNA families,
miR399 andmiR172 family were the two largest families, which contained 10 and 9miRNA
members, respectively. Interestingly, the members of miR399 and miR172 families were
significantly down-regulated in SD140, respectively.

Target gene prediction of miRNAs
To further explore the function of miRNAs, the target genes (mRNAs) of all miRNAs were
predicted by psRobot and TargetFinder. Totally, 7,416 target genes were identified for
450 miRNAs where 897 target genes were confirmed as targets of 116 miRNAs by both
softwares. Among these 897 target genes, 305 genes were regulated by 31 differentially
expressed miRNAs (Table S7).

GO and KEGG pathway enrichment analysis of target genes
GO enrichment analysis of the above 305 target genes showed that the biological process
ontology included 47 GO terms. ‘‘Cellular macromolecule metabolic process’’ and
‘‘macromolecule metabolic process’’ were the most abundant GO terms, containing
77 genes, respectively.

The cellular component ontology included 16 GO terms, and the most abundant
terms were ‘‘cell’’ and ‘‘cell part’’, which contained 115 genes, respectively. The molecular
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Figure 1 Expression analysis of miRNAs by RT-qPCR. The values are represented by mean± standard
deviation (n= 3). Student’s t -test, P < 0.05.

Full-size DOI: 10.7717/peerj.15349/fig-1

function ontology included 10 GO terms. The GO term ‘‘binding’’ contained 126 genes,
which was the most abundant term in molecular function (Fig. 3).

To explore the possible function of target genes, KEGG pathway enrichment analysis was
performed. The 305 target genes of 31 DEMs were distributed in 6 first-level and 33 second-
level KEGG pathways, respectively. The first-level KEGG pathway term ‘‘metabolism’’ was
the most abundant, including 10 second-level KEGG pathway terms. Thirty-eight target
genes were assigned in the second-level KEGG pathway term ‘‘signal transduction’’, which
was the most abundant second-level KEGG pathway term (Fig. 4).

Among the enriched top 20 pathways, only two pathways, ‘‘plant hormone signal
transduction’’ and ‘‘plant-pathogen interaction’’, were defined as significantly enriched
pathways (P < 0.05), which comprised 24 target genes, respectively (Fig. 5 and Table
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S8). This indicated that the DEMs between SD92 and SD140 might be involved in plant-
pathogen interaction and hormone signal transduction.

Target genes of miRNAs involved in regulation of anthocyanin
biosynthesis
Generally, plantmiRNAs regulate targetmRNAs through twomajormechanisms, transcript
cleavage and translational inhibition (Chen, 2009), thus there are negative regulation
relationship in the expressions of miRNA and corresponding target genes. In our previous
study, a comparative transcriptome analysis was performed between SD92 and SD140
(Liu et al., 2018). By combining transcriptome sequencing data (SRA accession number:
SRP125987) and miRNA sequencing data of present study, 31 differentially expressed
miRNAs and corresponding target mRNAs were identified and listed in Table S9. Among
them, the differentially expressed miRNAs negatively regulating target mRNAs were
screened, and 140 miRNA-mRNA pairs were confirmed. In these miRNAs-mRNAs pairs,
miRNAs contained 5 known miRNA families and 12 novel miRNAs. These mRNAs
corresponded to 71 genes (Table 4). These genes mainly encoded transcription factors,
quamosa promoter binding protein, hormone response factors, protein kinases and disease
resistance protein.

Transcription factors affect anthocyanin biosynthesis by regulating the expressions
of structural genes (D’Amelia et al., 2014; Liu et al., 2016). In this study, we focused on
the regulation of miRNA on transcription factors in anthocyanin biosynthesis (Table 4).
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PGSC0003DMG400006604, PGSC0003DMG400011046 and PGSC0003DMG400012038,
which were regulated by miR172b, encoded AP2 transcription factor SlAP2e, RAP2-7-like
and RAP2-7, respectively. The target gene of miR530b_4, PGSC0003DMG400025479,
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encoded AP2-like transcription factor TOE3. PGSC0003DMG400011457 encoded WRKY
transcription factor 48 and was regulated by miR172e-5p. Both PGSC0003DMG400004826
and PGSC0003DMG400018279, which were regulated by novel_mir170, encoded
transcription factor ERF039-like and MYB35-like, respectively.

Hormones improve the biosynthesis of anthocyanins (Zhang et al., 2011; Palma-Silva et
al., 2016), so we did research onmiRNA regulating hormones in this experiment in order to
throw light on miRNA regulation mechanism on anthocyanins biosynthesis. In this study,
RAP2-7 and RAP2-7-like, which were regulated by miR172b, were ethylene-responsive
transcription factors. TOE3 transcription factor, which was regulated by miR172b and
miR530b_4, was also responsive to ethylene (Table 4). The target gene of miR171b-3p,
PGSC0003DMG400012683, encoded the DELLA protein that was an inhibitor of GA signal
transduction.

Protein kinases are involved in anthocyanin biosynthesis (Li et al., 2016). Protein kinases
regulated by miRNA were investigated in this study. Both PGSC0003DMG400018811
and PGSC0003DMG400024795, which were regulated by novel_mir170, encoded
LRR receptor-like serine/threonine protein kinase ERECTA and RCH1, respectively.
PGSC0003DMG400026383 encoded receptor-like protein kinase and was regulated by
novel_mir117.
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There were also significant changes in the expression of target genes regulated by other
miRNAs, such as PGSC0003DMG402007414, which was target gene of novel_mir105 and
novel_mir143, but the gene function was unknown.

DISCUSSION
Generally, miRNAs play an important role in some kinds of plant biological processes
such as growth, development and stress response (Jones-Rhoades, Bartel & Bartel, 2006).
The functions of miRNAs in plant anthocyanin biosynthesis have been reported in some
species, including Arabidopsis (Gou et al., 2011; Wang et al., 2016), apple (Hu et al., 2021),
grape (Tirumalai et al., 2019), tomato (Jia et al., 2015), sweet potato (He et al., 2019) and
kiwi fruit (Li et al., 2019).
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Table 4 Differentially expressed miRNAs and negatively regulated target genes.

miRNA Target gene Gene annotation

miR156a-5p PGSC0003DMG400022824 Squamosa promoter-binding protein 1-like
miR156a-5p PGSC0003DMG400023962 Uncharacterized protein
miR156a-5p PGSC0003DMG400029156 Cell cycle checkpoint protein RAD17
miR156a-5p PGSC0003DMG400032817 Squamosa promoter-binding protein 1-like
miR156a-5p PGSC0003DMG400034310 Squamosa promoter-binding-like protein 12
miR171b-3p PGSC0003DMG400009015 DEAD-box ATP-dependent RNA helicase 24
miR171b-3p PGSC0003DMG400012683 DELLA protein
miR172b PGSC0003DMG400004006 Floral homeotic protein APETALA 2
miR172b PGSC0003DMG400006604 AP2 transcription factor SlAP2e
miR172b PGSC0003DMG400011046 Ethylene-responsive transcription factor RAP2-7-like
miR172b PGSC0003DMG400012038 Ethylene-responsive transcription factor RAP2-7
miR172b PGSC0003DMG400027904 Floral homeotic protein APETALA 2-like
miR172b PGSC0003DMG400030080 Phosphatidylinositol/phosphatidylcholine transfer protein SFH4
miR172b & miR530b_4 PGSC0003DMG400025479 AP2-like ethylene-responsive transcription factor TOE3
miR172e-5p PGSC0003DMG400010386 Malate dehydrogenase, glyoxysomal
miR172e-5p PGSC0003DMG400011457 Probable WRKY transcription factor 48
miR172e-5p PGSC0003DMG400011477 Putative lysine-specific demethylase JMJ16
miR172e-5p PGSC0003DMG400021020 Uncharacterized protein
miR172e-5p & novel_mir32 PGSC0003DMG400014214 Uncharacterized protein
miR482e-5p & novel_mir117 PGSC0003DMG400030780 Uncharacterized protein
miR530a PGSC0003DMG400010027 Dof zinc finger protein DOF3.5-like
miR530a PGSC0003DMG400022193 Pirin-like protein
miR530a PGSC0003DMG400030421 Transcription initiation factor IIA large subunit
miR530a PGSC0003DMG400038860 Uncharacterized protein
miR530b_4 PGSC0003DMG400001126 Uncharacterized protein
miR530b_4 PGSC0003DMG400030587 Non-specific lipid-transfer protein 2-like
novel_mir32 PGSC0003DMG400003436 Uncharacterized protein
novel_mir32 PGSC0003DMG400007187 Probable protein S-acyltransferase 1
novel_mir32 PGSC0003DMG400009055 Uncharacterized protein
novel_mir32 PGSC0003DMG400011113 Putative disease resistance protein RGA3
novel_mir32 PGSC0003DMG400012875 Protein disulfide isomerase-like 1-3
novel_mir32 PGSC0003DMG400016798 Polyadenylate-binding protein 2-like
novel_mir32 PGSC0003DMG400017569 Protein disulfide-isomerase-like
novel_mir32 PGSC0003DMG400027301 Caffeic acid 3-O-methyltransferase-like
novel_mir32 PGSC0003DMG400032155 Linoleate 13S-lipoxygenase 2-1, chloroplastic
novel_mir32 PGSC0003DMG400043688 Uncharacterized protein
novel_mir42 PGSC0003DMG400008897 L-type lectin-domain containing receptor kinase IV.1-like
novel_mir54 PGSC0003DMG400032120 UPF0496 protein At3g19330-like
novel_mir61 PGSC0003DMG400004296 Late blight resistance protein homolog R1B-16

(continued on next page)
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Table 4 (continued)

miRNA Target gene Gene annotation

novel_mir61 PGSC0003DMG400004756 Late blight resistance protein homolog R1A-10
novel_mir61 PGSC0003DMG400007867 Disease resistance protein RGH3
novel_mir61 PGSC0003DMG400007870 Late blight resistance protein homolog R1A-3
novel_mir61 PGSC0003DMG400007872 Late blight resistance protein homolog R1C-3
novel_mir61 PGSC0003DMG400031244 THUMP domain-containing protein 1 homolog
novel_mir61 PGSC0003DMG402007871 Disease resistance protein RGH3
novel_mir67 PGSC0003DMG400008560 Uncharacterized protein
novel_mir67 PGSC0003DMG400017053 Uncharacterized protein
novel_mir67 PGSC0003DMG400030551 Multicopper oxidase LPR2
novel_mir75 PGSC0003DMG400003887 Uncharacterized protein
novel_mir75 PGSC0003DMG400009731 Probable S-adenosylmethionine-dependent methyltransferase
novel_mir75 PGSC0003DMG400017312 RING finger protein 44
novel_mir75 PGSC0003DMG400025978 Uncharacterized protein
novel_mir78 PGSC0003DMG400000774 RNA-binding protein 2
novel_mir89 PGSC0003DMG400006945 Senescence-associated carboxylesterase 101-like
novel_mir105 & novel_mir143 PGSC0003DMG402007414 Uncharacterized protein
novel_mir117 PGSC0003DMG400020645 ycf54-like protein
novel_mir117 PGSC0003DMG400026383 Probable receptor-like protein kinase
novel_mir117 PGSC0003DMG400031180 Uncharacterized protein
novel_mir128 PGSC0003DMG400034633 Uncharacterized protein
novel_mir128 PGSC0003DMG400037457 Uncharacterized protein
novel_mir128 PGSC0003DMG400043850 Uncharacterized protein
novel_mir170 PGSC0003DMG400000513 Galactinol-sucrose galactosyltransferase 5
novel_mir170 PGSC0003DMG400002541 60S ribosomal protein L37-3
novel_mir170 PGSC0003DMG400004826 Ethylene-responsive transcription factor ERF039-like
novel_mir170 PGSC0003DMG400007189 Proteasome subunit alpha type-3-like, partial
novel_mir170 PGSC0003DMG400008432 Uncharacterized protein
novel_mir170 PGSC0003DMG400012159 KAT8 regulatory NSL complex subunit 3
novel_mir170 PGSC0003DMG400018279 Transcription factor MYB35-like
novel_mir170 PGSC0003DMG400018811 LRR receptor-like serine/threonine-protein kinase ERECTA
novel_mir170 PGSC0003DMG400024795 LRR receptor-like serine/threonine-protein kinase RCH1
novel_mir170 PGSC0003DMG400033933 Hypothetical protein SDM1_41t00024

In this study, miR399 and miR172 families were the two largest differentially expressed
miRNA families. The expressions of miR399 family (miR399a_6, miR399i, miR399j_2) and
miR172 family (miR172e-5p, miR172b) were down-regulated in SD140. miR172 inhibits
flavonoid biosynthesis through suppressing the expression of an AP2 transcription factor
that positively regulates MdMYB10 (Ding et al., 2022). In SD140, miR172b was down-
regulated, and its target gene encoding AP2-like factor was up-regulated, indicating that
miR172b regulated the change in anthocyanin biosynthesis from petunidin to pelargonidin
through AP2-like factor. Both miR399 expression and anthocyanin accumulation are
increased under Pi-deficiency conditions (Chen et al., 2018; Hsieh et al., 2009). miR399 is
related to anthocyanin accumulation. However, the target gene of miR399 was unknown
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in SD92 and SD140, so the regulation mechanism of miR399 in anthocyanin biosynthesis
remains unclear and needs further study.

miR171 family (miR171a-3p, miR171b-3p, miR171b-3p_2) was up-regulated in SD140
(Table S6).miR171 is down-regulated and anthocyanin accumulation is up-regulated under
water deficit (Ghorecha et al., 2014). miR171 is related with anthocyanin accumulation.
The target gene of miR171b-3p, PGSC0003DMG400012683, encoded DELLA protein.
DELLA proteins are important repressors of GA signaling (Chai et al., 2022; Sukiran et al.,
2022). Plant hormones are involved in anthocyanin biosynthesis, such as auxin (Ji et al.,
2015; Liu, Shi & Xie, 2014), abscisic acid (ABA) (Balint & Reynolds, 2013; Leão et al., 2014)
and gibberellic acid (GA) (Loreti et al., 2008). GA represses the sucrose accumulation in
anthocyanin synthesis (Loreti et al., 2008) and decreases anthocyanin accumulation under
low temperature or phosphate starvation (Jiang et al., 2007; Zhang et al., 2011). Moreover,
the KEGG pathway ‘‘plant hormone signal transduction’’ comprising of 24 target genes was
significantly enriched in this study, which suggested that plant hormones were involved
in the anthocyanin biosynthesis in SD92 and SD140. Thus, it indicated that miR171b-3p
probably regulated the change of anthocyanin biosynthesis in SD92 and SD140 through
DELLA protein.

miR828 are frequently reported to be involved in anthocyanin biosynthesis regulation
(Bonar et al., 2018;Tirumalai et al., 2019). In potato,miR828 is associatedwith purple tuber
skin and flesh color rich in anthocyanin. One member of miR828 family, miR828a_1, was
identified in SD92 and SD140, but was not significantly expressed differentially between
SD92 and SD140. These results indicated that miR828a_1 might not regulate the change
of anthocyanin biosynthesis between SD92 and SD140.

The accumulation of anthocyanin is reported to be related with miR156 (Gou et
al., 2011). In this study, miRNA156 was differentially expressed between SD92 and
SD140. Its target gene mainly encoded squamosa promoter binding protein and cell
cycle checkpoint protein RAD17. These target genes regulated by miR156a-5p need further
study in anthocyanin biosynthesis.

A novel miRNA, novel_mir170, was down-regulated in SD140 (4.81 vs 0.14). It regulated
a number of target genes, which mainly encoded protein kinase, ethylene responsive
transcription factor ERF039-like and transcription factor MYB35-like. Protein kinases play
an important role in anthocyanin biosynthesis. Plant sucrose-nonfermenting 1 (SNF1)-
related protein kinase is involved in anthocyanin accumulation regulated byMdbHLH3 (Liu
et al., 2017; Shen et al., 2017). Anthocyanin biosynthesis is regulated by mitogen-activated
protein kinase (Luo et al., 2017; Wersch, Gao & Zhang, 2018). In this experiment, the two
target genes of novel_mir170 encoding LRR receptor-like serine/threonine-protein kinase
were up-regulated, which were consistent with themetabolism data (Liu et al., 2022). These
results showed that novel_mir170 regulated the change of anthocyanin biosynthesis through
LRR receptor-like serine/threonine-protein kinase in SD92 and SD140. MYB transcription
factor can regulate the biosynthesis of anthocyanin by regulating the expression of structural
genes (D’Amelia et al., 2014). The target gene of novel_mir170, which encoded MYB
transcription factor, was up-regulated. These results showed that novel_mir170 regulated
the anthocyanin biosynthesis by regulating the expression of MYB. Ethylene is closely
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related to the biosynthesis of anthocyanin (Chen et al., 2022; Jeong et al., 2010). In this
study, the target gene of novel_mir170 encoding ethylene responsive transcription factor
ERF039was up-regulated. These results indicated that novel_mir170 regulated anthocyanin
biosynthesis by up-regulating the expression of ethylene responsive transcription factor.
In conclusion, novel_mir170 was an important novel miRNA identified in this study and
might be an important miRNA for regulation of anthocyanin biosynthesis.

CONCLUSIONS
A comparative small RNA sequencing analysis between purple potato and its mutant
revealed that there were 179 differentially expressed miRNAs, consisting of 65 up- and 114
down-regulated miRNAs, respectively. miR399 and miR172 families were the two largest
differentially expressed miRNA families. A total of 31 differentially expressed miRNAs were
predicted to potentially regulate 305 target genes. The miRNA sequencing data and the
transcriptome data showed that miR171 family and miR172 family regulated the change
in anthocyanin biosynthesis from petunidin to pelargonidin through DELLA protein
and AP2-like transcription factor, respectively. A novel miRNA, novel_mir170, regulated
anthocyanin biosynthesis by serine/threonine-protein kinase and MYB transcription
factor.
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