Integrated analysis of IncRNAs, mRNAs, and TFs to

2 identify network modules underlying diterpenoid

3 biosynthesis in Salvia miltiorrhiza

4

5 Lin Wang^{1,2}, Peijin Zou^{1,2}, Fang Liu^{1,2}, Rui Liu^{1,2}, Zhu-Yun Yan^{1,2} and Xin Chen^{1,2}

6

- 7 School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan,
- 8 China
- 9 ² Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu,
- 10 Sichuan, China

11

- 12 Corresponding Author:
- 13 Xin Chen^{1,2}

14

15 Email address: chenxin@cdutcm.edu.cn

16 17

Abstract

- Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides (nt) in length,
- with minimal or no protein-coding capacity. Increasing evidence indicates that lncRNAs play
- 20 important roles in the regulation of gene expression including in the biosynthesis of secondary
- 21 metabolites. Salvia miltiorrhiza Bunge is an important medicinal plant in China. Diterpenoid
- 22 tanshinones are one of the main active components of S. miltiorrhiza. To better understand the
- 23 role of lncRNAs in regulating diterpenoid biosynthesis in S. miltiorrhiza, we integrated analysis
- of lncRNAs, mRNAs, and transcription factors (TFs) to identify network modules underlying
- 25 diterpenoid biosynthesis based on transcriptomic data. In transcriptomic data, we obtained 6,651
- 26 candidate lncRNAs, 46 diterpenoid biosynthetic pathway genes, and 11 TFs involved in
- 27 diterpenoid biosynthesis. Combining the co-expression network and genomic location analysis,
- we obtained 23 candidate lncRNA-mRNA/TF pairs that were both co-located and co-expressed.
- Time-series expression analysis of *S. miltiorrhiza* plants induced by methyl jasmonate (MeJA)
- 30 showed that among the 23 candidate lncRNA-mRNA/TF pairs, 19 genes were differentially
- expressed at least a time-point, and four lncRNAs, two mRNAs, and two TFs formed three
- 32 lncRNA-mRNA and/or TF network modules. This study revealed the relationship among
- 33 lncRNAs, mRNAs, and TFs and provided new insight into the regulation of the biosynthetic
- pathway of *S. miltiorrhiza* diterpenoids.

35 36

Introduction

- 27 Long non-coding RNAs (lncRNAs) are defined as RNA transcripts with little or no potential for
- protein-coding capacity, and with at least 200 nucleotides (nt) in size (Ponting, Oliver & Reik,

2009; Nagano & Fraser, 2011; Palazzo & Koonin, 2020). They are usually transcribed by RNA polymerase II (Rinn & Chang, 2020). Functional analysis of eukaryotic lncRNAs has revealed that they act as molecular scaffolds, guide molecules, molecular sponges and decoys, precursors of microRNAs (miRNAs) and other small RNAs, or as miRNA target mimics (TMs) to regulate gene expression at multiple levels (epigenetic regulation, transcriptional regulation, and posttranscriptional regulation) (Franco-Zorrilla et al., 2007; Mercer, Dinger & Mattick, 2009; Wang & Chekanova, 2017; Rai et al., 2019). LncRNAs can also act on transcription factors (TFs); for example, lncRNA can be used as a TF-binding site to regulate its expression (Yu et al., 2019). LncRNAs are usually expressed at a low level and in a tissue-specific manner (Liu et al., 2012; Palazzo & Koonin, 2020). The subcellular localization of lncRNAs is the primary determinant of

their molecular functions (Carlevaro-Fita & Johnson, 2019).

- There is much evidence suggesting that lncRNAs play key roles in plant secondary metabolism. For example, mLncR8 putatively regulates terpenoid biosynthesis, and mLncR31 is involved in the biosynthesis of the isoprenoid side chain of ubiquinone and plastoquinone in *Digitalis* purpurea (Wu et al., 2012a). LncRNAs might regulate genes in the phenylpropanoid pathway of *Populus tomentosa* (Zhou et al., 2017). LncRNAs were also found to be involved in rubber biosynthesis in *Eucommia ulmoides* (Liu et al., 2018). LncRNAs were possibly involved in the biosynthesis of different fatty acids and lipid metabolism through post-transcriptional regulation in tree peony seeds. (Yin et al., 2018). LncRNAs might be involved in the lignin biosynthetic pathway in *Populus* (Quan et al., 2019).
- Studies have suggested that lncRNAs can act as local regulators, and lncRNA expression is correlated with the expression of nearby genes (Guil & Esteller, 2012; Engreitz et al., 2016). These correlations are attributed to sequence-specific functions of the mature lncRNA transcript, the transcription or splicing of an RNA, or DNA elements within the lncRNA promoter or gene locus, namely *cis*-regulation (Guil & Esteller, 2012; Engreitz et al., 2016; Kopp & Mendell, 2018).
- Co-expressed genes are usually members of the same protein complex or metabolic pathway, and they are functionally controlled by the same transcriptional regulatory program. The genes or proteins within the co-expression network may have the same expression patterns (Liao et al., 2011; Rao & Dixon, 2019).
- The medicinal plant *S. miltiorrhiza* produces a variety of diterpenoids (Ma et al., 2015).

 Tanshinones are the main bioactive compounds of *S. miltiorrhiza*, and they mainly accumulate in the roots of *S. miltiorrhiza* (Xu et al., 2015; Chang et al., 2019). Another diterpenoid in *S. miltiorrhiza* is the plant hormone gibberellin (GA), which is one of the five classic plant hormones (Brockdorff, 1998). In general, the biosynthetic pathway of terpenoids in *S. miltiorrhiza* can be divided into three stages (Ma et al., 2012). The first stage leads to the

synthesis of the universal isoprene precursor isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) through the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway and/or the mevalonate (MVA) pathway. In the second stage, the intermediate diphosphate precursors, including geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and geranylgeranyl diphosphate (GGPP) are synthesized under the catalysis of isoprenyl diphosphate synthases (IDSs), including geranyl diphosphate synthase (GPPS), farnesyl diphosphate synthase (FPPS), and geranylgeranyl diphosphate synthase (GGPPS). The last stage involves the formation of diverse diterpenoids under the catalysis of terpene synthases (TPSs), such as copalyl diphosphate synthase (CPS) and kaurene synthase (KS) catalyze the formation of miltiradiene (Kai et al., 2010, 2011; Lu, 2021), ent-copalyl diphosphate synthase (ent-CPS) (Shimane et al., 2014) and *ent*-kaurene synthase (*ent*-KS) are involved in the conversion of GGPP to the tetracyclic hydrocarbon intermediate *ent*-kaurene (Yamaguchi, 2008; Shimane et al., 2014). Then tanshinones and GAs are formed by cytochrome P450 monooxygenases (P450s) 92 and 2-oxoglutarate-dependent dioxygenases (2ODDs) modification.

93 94

95

96 97

98

99

100 101

79

80

81

82 83

84

85

86

87

88

89

90 91

> Methyl jasmonate (MeJA) is a hormone involved in plant signal transduction, which is considered to play an indispensable role as a second messenger in the induction process leading to the accumulation of secondary metabolites. Therefore, it is often used as an inducer to explore the regulation mechanism of biosynthesis (Gundlach et al., 1992; Wasternack, 2007). MeJA, an effective elicitor, can enhance the accumulation of tanshinones and phenolic acids by inducing the expression of tanshinone biosynthesis- and phenolic acid biosynthesis-related genes in S. miltiorrhiza (Gao et al., 2009; Xiao et al., 2011; Liang et al., 2012; Luo et al., 2014). MeJA is used for genome-wide identification and characterization of novel terpenoid biosynthetic genes in S. miltiorrhiza (Ma et al., 2012).

103 104

105

106 107

108 109

110

102

Previous studies of lncRNAs in S. miltiorrhiza (Li, Shao & Lu, 2015) showed that 3,044 lncRNAs responded to Ag⁺ solution and yeast extract (YE) in the roots of S. miltiorrhiza,15 lncRNAs differentially expressed in leaves under MeJA treatment. Jiang et al. identified the differential expression of natural antisense transcripts (NATs) with polyA tail in different tissues of S. miltiorrhiza, and some cis-NATs of SmKSL1 showed a high co-expression relationship and possible participation in tanshinone synthesis (Jiang et al., 2021). However, although lncRNAs reportedly play important roles in S. miltiorrhiza, the role of lncRNAs in the diterpenoid biosynthetic pathway of S. miltiorrhiza remains largely unclear.

111 112 113

114

115

116

117

118

Based on transcriptomic data from four varieties of S. miltiorrhiza, we carried out among lncRNAs, mRNAs, and TFs expression correlation analysis and genome loci analysis to obtain candidate lncRNA-mRNA/TF pairs, and to construct the co-expression network. To further explore the relationship among the candidate lncRNA-mRNA/TF pairs, we analyzed the timeseries expression patterns of the candidate lncRNA-mRNA/TF pairs in MeJA-induced S. miltiorrhiza.

Materials & Methods

119

120121

128 129

137138

Plant materials and MeJA treatment

- 122 S. miltiorrhiza seedlings were cultured in the greenhouse under 23°C–25°C. The plants were
- sprayed with 200 μM MeJA solution as mentioned in a previous report (Luo et al., 2014). After
- being treated with MeJA solution for 6, 12, 24, and 48 h, the treated and the non-treated (0 h)
- roots were collected and rinsed with water. These roots were dried gently and quickly with
- absorbent paper. The cleaned roots were immediately frozen in liquid nitrogen and stored at
- 127 –80°C until RNA isolation. Three biological replicates were carried out for each experiment.

S. miltiorrhiza genomic and transcriptomic data

- The S. miltiorrhiza genome data were downloaded from the S. miltiorrhiza Genomics Database
- (http://www.ndctcm.org/shujukujieshao/2015-04-23/27.html) (Xu et al., 2016) and NCBI
- 132 (National Center for Biotechnology Information) BioProject: PRJNA682867 (Ma et al., 2021).
- The transcriptomic data were obtained from our previous study (Zhou et al., 2021) with an
- accession number assigned to PRJNA712174. The transcriptomic data were gathered from four
- varieties of S. miltiorrhiza root tissues during the tanshinone accumulation stage and included
- 136 Fragments Per Kilobase Million (FPKM) expression value and annotation information.

Pipeline for IncRNA identification

- The following four filters were used to shortlist the bona fide lncRNAs from the transcriptomic
- data: (1) transcripts with annotation information in one of the Nr (Non-RedundantProtein
- 141 Sequence), Swiss-Prot, and COG/KOG databases were removed; (2) transcripts shorter than 200
- 142 nt with an open reading frame (ORF) longer than 100 as were discarded, found and extracted
- ORFs on getorf (http://emboss.bioinformatics.nl/cgi-bin/emboss/getorf), selection of ORF length
- 144 < 100 as by R (version 4.2.1) script; (3) transcripts were searched against the Pfam database</p>
- (Punta et al., 2012) (http://pfam.xfam.org/) by HMMER to remove transcripts possibly
- 146 containing known protein domains; and (4) the protein-coding potential of each transcript was
- calculated using PLEK (Li, Zhang & Zhou, 2014) and Coding Potential Calculator 2 (CPC2,
- http://cpc2.cbi.pku.edu.cn) (Kang et al., 2017), and these with PLEK and CPC2 scores > 0 were
- discarded. Through the above process, identified lncRNAs were obtained. FPKM value less than
- 150 0.05 was used as the standard for low expression levels (Li et al., 2016). The transcripts that
- remained were regarded as candidate lncRNAs.

Characterization and conservation analysis of S. miltiorrhiza IncRNAs

- To gain more understanding of these lncRNAs in *S. miltiorrhiza*, we compared several different
- 155 features of the lncRNAs and mRNAs: GC content and transcript length. GC content and
- transcript length were determined by R (version 4.2.1), and statistical analysis was carried out by
- 157 Excel.

152

153

- We aligned the lncRNA sequences identified here with BLAST+ (Camacho et al., 2009) (blast-
- 2.11.0+) against the genome sequences of the Lamiaceae family: Salvia splendens, Salvia
- 161 hispanica, Mentha longifolia, Scutellaria baicalensis, Pogostemon cablin, and Sesamum
- indicum, of which Salvia splendens and Salvia hispanica both belong to the Salvia genus;
- Solanaceae family: Nicotiana tabacum, Brassicaceae family: Brassica napus and Arabidopsis
- thaliana; and Selaginellaceae family: Selaginella moellendorffii. A cutoff E-value < 1e-10 was
- used. The genomes were downloaded from the NCBI databases: GCF_004379255.1 (SspV2),
- 166 GCF_023119035.1 (UniMelb_Shisp_WGS_1.0), GCA_001642375.2 (Mlong_CMEN585_v),
- 167 GCA 005771605.1 (ASM577160v1), GCA 023678885.1 (GZUCM PCab 1.0),
- 168 GCF_000512975.1 (S_indicum_v1.0), GCF_000715135.1 (Ntab-TN90), GCF_020379485.1
- 169 (Da-Ae), GCF_000001735.4 (TAIR10.1), and GCF_000143415.4 (v1.0). The lncRNAs that had
- 170 coverage of > 20% of matched regions were defined as conserved lncRNAs.

171

172

173

191

192

Precursors of miRNA and miRNA target prediction in *S. miltiorrhiza* IncRNAs

- The candidate lncRNAs may act as the precursors of miRNAs, the *S. miltiorrhiza* miRNAs in
- miRBase (Kozomara, Birgaoanu & Griffiths-Jones, 2019) (Release 22.1,
- http://www.mirbase.org/) and PmiREN2.0 (Guo et al., 2022) (https://pmiren.com/) were aligned
- to the sequences of the candidate lncRNAs. The secondary structure of lncRNAs was predicted
- by RNAfold (Gruber et al., 2008) (http://rna.tbi.univie.ac.at/). LncRNAs with classical stem-loop
- hairpins were regarded as the putative precursors of miRNA (Zhou et al., 2017). Given that
- 180 miRNA targets and lncRNAs have highly similar miRNA-binding sites, miRNA can be
- sequestered by lncRNA (Paschoal et al., 2017). Three kinds of prediction software were used to
- determine the miRNAs targeted to candidate lncRNAs. The first was TAPIR (Bonnet et al.,
- 2010) (http://bioinformatics.psb.ugent.be/webtools/tapir); this server offers the possibility to
- search for plant miRNA targets using a fast and precise algorithm (score ≤ 4 , free energy ratio \geq
- 185 0.7). The second was psRobot (Wu et al., 2012b) (Version 1.2) with default parameters, which is
- a widely used online miRNA target prediction tool. The third was psRNATarget (2017 release)
- with default settings, and psRNATarget was developed to identify plant sRNA targets by (i)
- analyzing complementary matching between the sRNA sequence and target mRNA sequence
- using a predefined scoring schema and (ii) by evaluating target site accessibility (Dai, Zhuang &
- Zhao, 2018), targets with an E value less than 5.0 were retained as potential miRNA targets.

Subcellular localization of IncRNAs

- The subcellular localization of *S. miltiorrhiza* lncRNAs was predicted by lncLocator (Cao et al.,
- 194 2018). LncLocator is an ensemble classifier-based predictor, which adopts both *k-mer* features
- and high-level abstraction features generated by unsupervised deep models and constructs four
- 196 classifiers by feeding these two types of features to support vector machine and random forest,
- 197 respectively. The current lncLocator can predict five subcellular localizations of lncRNAs,
- 198 namely, cytoplasm, nucleus, cytosol, ribosome, and exosome.

Predicted IncRNAs related to the diterpenoid biosynthesis in *S. miltiorrhiza*

Diterpenoid biosynthetic genes and the genes encoding TFs involved in diterpenoid biosynthesis were screened from the transcriptomic annotation data of *S. miltiorrhiza*. Our research focused on the downstream of the diterpenoid biosynthetic pathway (Fig. S1).

The functions of lncRNA can be performed on diterpenoid biosynthetic genes/TFs in a *cis* manner (Kopp & Mendell, 2018), and the lncRNAs and their target genes are considered lncRNA-mRNA/TF pairs. Pearson correlation coefficient (PCC) of the expression of lncRNA and its target gene pair was calculated using the psych (Revelle, 2022) package in R, requiring co-expressed gene pairs with $|PCC| \ge 0.4$ and $p \le 0.05$. The basis for predicting *cis*-regulation was related to the positional relationship of lncRNA genes and coding genes on the genome (Liu et al., 2019). It was determined to be *cis*-regulatory if the lncRNA gene was within 100 kilobases (kb) upstream or downstream regions of the target genes used (Huang et al., 2018; Wang et al., 2021). used. For genomic location analysis, the co-expressed gene pairs were aligned against two *S. miltiorrhiza* genomes (Xu et al., 2016; Ma et al., 2021) by BLAST+ (BLAST-2.11.0+) with a cutoff of E value < 1e-5. Finally, the candidate lncRNA-mRNA/TF pairs related to the diterpenoid biosynthesis of *S. miltiorrhiza* were obtained.

Construction of the diterpenoid biosynthesis-related IncRNA-mRNA-TF networks and identification of hub genes

Cytoscape 3.2 (Shannon et al., 2003) was utilized to draw the putative lncRNA-mRNA-TF coexpression network with $|PCC| \ge 0.8$ ($p \le 0.05$). Genes with a degree ≥ 10 were considered hub genes.

Candidate IncRNA-mRNA/TF pairs expression profile in MeJA-induced *S. miltiorrhiza*

MeJA is an effective elicitor for the production of diterpenoid tanshinones in *S. miltiorrhiza* (Luo et al., 2014). To further explore whether candidate lncRNA-mRNA/TF pairs have a response to the diterpenoid biosynthetic pathway, we performed the quantitative real-time polymerase chain reaction (qRT-PCR) to analyze expression patterns of the detected lncRNA-mRNA/TF pairs under MeJA induction in *S. miltiorrhiza*. Plant materials treated with MeJA dissolving media were used as a control (0 h), and three biological replications were carried out. The 2(-delta-delta CT) method was used for calculating the relative expression levels of genes. ANOVA was calculated using SPSS (Version 23.0, IBM, USA), and p < 0.05 and p < 0.01 were considered statistically significant. The hub genes were identified by using the cytoHubba (Chin et al., 2014) plug-in of Cytoscape 3.2. To increase the sensitivity and specificity, we proposed Maximal

Clique Centrality (MCC) to discover featured nodes. Subsequently, we constructed a network module of these hub genes.

238239240

237

RNA extraction and qRT-PCR

- Total RNA was extracted from plant tissues using the RNeasy plant kit (No.PH-01013-B,
- Foregene, Chengdu, China). RNA degradation and contamination were monitored using 1%
- 243 RNase-free agarose gel electrophoresis, and the RNA purity was analyzed using a
- NanoPhotometerTM-N60 ultra-micro spectrophotometer. The reverse transcription reaction was
- used RT EasyTM II (With gDNase) kit (Version Number: 1.0-1904, Foregene, Chengdu, China)
- 246 following the instruction manual. qRT-PCR was performed in a 20 μL reaction volume
- 247 containing primers by Real-Time PCR EasyTM-SYBR Green I kit (Cat. No. QP-
- 248 01011/01012/01013/01014, Foregene, Chengdu, China) following the instruction manual. qRT-
- PCR was carried out in triplicate reactions in the LineGene K Plus real-time PCR detection
- 250 system (Bioer, Hangzhou, China). Primers were designed using the Primer-BLAST (Ye et al.,
- 251 2012). Primer sequences were listed in Table S1. β -actin (Yang et al., 2010) gene was selected as
- a reference since it showed stable expression in the *S. miltiorrhiza* tissues analyzed compared to
- others. The reaction program was as follows: 3 min at 95°C, 10 s at 95°C, 30 s at 60°C, and 40
- 254 cycles. The temperature was then gradually increased to produce melting curves for
- amplification specificity verification. The mean value of three replicates was normalized using β -
- actin as the endogenous control. The 2(-delta-delta CT) method was used for calculating the
- relative expression of genes.

258259

260

Results

Identification of candidate IncRNAs

- On the basis of the strict lncRNA identification pipeline, a total of 30,347 transcripts with no
- annotation information were obtained. A total of 21,742 transcripts with length > 200 nt and
- ORF < 100 as were obtained. Subsequently, a total of 21,468 identified lncRNAs were obtained
- 264 from the intersection of PLEK and CPC2 software prediction results (Fig. 1, Table S2, Table
- S3). Expression transcripts with FPKM \leq 0.05 were filtered, and a total of 6,651 candidate
- 266 lncRNAs were selected for further analysis (Table S4).

267

- The 21,468 identified lncRNAs ranged from 201 nt to 4,340 nt in length, the majority of which
- 269 (approximately 68.95%) were 200–400 nt. The mean length was 392 nt, which was lower than
- 270 the values observed in S. miltiorrhiza mRNAs (mean length = 1,515 nt). The GC content of
- 271 lncRNAs was mainly concentrated at 31.28%–37.28% (accounting for 46.32%), whereas
- 272 mRNAs were mainly concentrated at 39.28%–41.28% (accounting for 36.00%). The mean GC
- 273 content of lncRNAs was approximately 36.86%, which was slightly lower than that of mRNA
- sequences (approximately 43.42%) (Fig. 2, Table S5).

275276

Characterization and conservation of IncRNAs in S. miltiorrhiza

Conservation analysis showed that 21.02% and 15.40% of S. miltiorrhiza lncRNAs (6.651 candidate lncRNAs) were conserved compared with Salvia splendens and Salvia hispanica of the same genus, respectively. However, in the same family of the different genera of Mentha longifolia, Scutellaria baicalensis, Pogostemon cablin, and Sesamum indicum, 6.54%, 0.96%, 0.83%, and 0.51% of S. miltiorrhiza lncRNAs were conserved, respectively. Among plants of different families, only 0.05%, 0.02%, and 0.02% of S. miltiorrhiza lncRNAs were conserved in Nicotiana tabacum, Arabidopsis thaliana, and Brassica napus, respectively. There was no match in Selaginella moellendorffii. The results of the conservation analysis are presented in Table S6.

LncRNAs might be used as precursors or target mimics of *S. miltiorrhiza* miRNAs

In this study, a total of 17 lncRNAs were identified as potential precursors of 41 *S. miltiorrhiza* miRNAs (Table S7). To improve the prediction accuracy, the intersection of three kinds of software prediction results was selected. A total of 14 lncRNAs were identified as potential targets of 66 *S. miltiorrhiza* miRNAs from 18 families according to PmiREN2.0 (Table S7).

Subcellular localization predictions indicated that most *S. miltiorrhiza* IncRNAs were found in the cytoplasm and nucleus

Subcellular localization of lncRNA is closely related to its function. At present, many studies have indicated that lncRNA contains specific RNA motifs with nuclear localization (Zhang et al., 2014). Meanwhile, in the subcellular localization of lncLocator (Cao et al., 2018), a total of 3,381 cytoplasms, 3,316 nucleus, 83 exosomes, 51 cytosols, and 20 ribosomes were obtained from 6,651 candidate lncRNAs. Among our candidate lncRNA-mRNA/TF pairs, 13 lncRNAs were found in the nucleus, 9 lncRNAs were found in the cytoplasm, and 1 lncRNA was found in the exosome (Table. S8).

Genes and TFs involved in diterpenoid biosynthesis from transcriptome data

To investigate the potential lncRNAs involved in diterpenoid biosynthesis, we predicted the potential targets of lncRNAs in *cis*-regulatory relationships. In transcriptomic annotation, we obtained 46 diterpenoid biosynthetic genes: GPPS (Van Schie et al., 2007), FPPS, GGPPS, CPS, *ent*-CPS, KS, *ent*-KS, CYP76AH1 (Guo et al., 2013; Ma et al., 2016), CYP76AK2, CYP76AK3 (Li et al., 2021), CYP76AK5 (PU Xiangdong & WANG Lizhi, 2017), *ent*-kaurene oxidase (KO) (Hedden & Thomas, 2012), *ent*-kaurenoic acid oxidase (KAO) (Helliwell et al., 2001), GA 2-oxidase (GA2ox), GA 3-oxidase (GA3ox), GA 20-oxidase (GA2ox) (Hedden & Thomas, 2012; Du et al., 2015), and 11 TFs: bHLH148, ERF6, GRAS1, MYB36 and WRKY2 (Li & Lu, 2014; Zhang et al., 2015; Li et al., 2015, 2019; Ji et al., 2016), belonging to five TF families: bHLH, ERF, GRAS, MYB, and WRKY. The list of the above genes is shown in Table S9.

LncRNAs related to the diterpenoid biosynthetic pathway

- We detected 6455 lncRNAs that were co-expressed with 46 genes and 11 TFs involved in
- 318 diterpenoid biosynthesis. In the PCC matrix, we obtained 45,198 correlation gene pairs with
- 319 $|PCC| \ge 0.4$ ($p \le 0.05$), of which 47,946 pairs were positively correlated and 5,775 pairs were
- 320 negatively correlated. At the positional level, combining the results from the two S. miltiorrhiza
- genomes (Xu et al., 2016; Ma et al., 2021), a total of 180 pairs of lncRNA-mRNA/TF were
- located adjacent to each other within 100 kb (including \pm 3 kb), of which 23 pairs were co-
- located and co-expressed. A total of 23 candidate lncRNA-mRNA/TF pairs were obtained (Table
- 324 S10).

325 326

316

LncRNA-mRNA-TF networks and hub genes

- The gene co-expression network was constructed with $|PCC| \ge 0.8$ ($p \le 0.05$) as the threshold,
- 328 the visualization is shown in Fig. S2A. We obtained 1,402 gene pairs with $|PCC| \ge 0.8$. We
- obtained 24 mRNAs with a degree > 10, which were considered hub genes (Table S11). In the 23
- gene pairs of lncRNA-mRNA/TF, 8 mRNAs were present in these hub genes. Only two gene
- 331 pairs *Smlnc0032870-Sm0012648* (*GA2OX*) and *Smlnc0018769-Sm0037093* (*KS2*) existed in the
- network with high expression correlation of 0.85 and 0.80, respectively. The hub genes
- 333 Sm0012648 and Sm0037093 in these two gene pairs were used to construct the subnetworks (Fig.
- 334 S2B, Fig. S2C).

335336

Tissue specificity of IncRNA expression

- Using the qRT-PCR, expression patterns of lncRNAs in the candidate lncRNA-mRNA/TF pairs
- were analyzed in roots, stems, leaves, and flowers of 2-year-old field greenhouse-grown *S*.
- 339 *miltiorrhiza* plants. Of them, 11 lncRNAs were detected in at least one tissue and showed tissue-
- specific expression. The other lncRNAs were undetected, suggesting that they could be not
- expressed or expressed at a low level in the tissues analyzed. Smlnc0012647, Smlnc0032870,
- 342 Smlnc0042160, Smlnc0063419, and Smlnc0070114 exhibited the highest expression in root
- 343 tissue. Smlnc0000154, Smlnc0008477, Smlnc0019429, and Smlnc0052170 were more stem-
- specific. Smlnc0018769 was expressed mainly in flowers and stems. Smlnc0008662 showed high
- expression in roots, flowers, and leaves and low expression in stems (Fig. 3). Thus, lncRNAs
- 346 showed obvious differential expression in different tissues, which may be related to their
- regulatory function. These results suggest that the expression of lncRNAs may be limited to
- specific tissue types or regulated by development in *S. miltiorrhiza*.

349350

351

Time-series expression pattern of candidate IncRNA-mRNA/TF pairs induced by MeJA and module detection in *S. miltiorrhiza*

- To validate whether the candidate lncRNA-mRNA/TF pairs are related to diterpenoid
- 353 biosynthesis, we analyzed the time-series expression patterns of candidate gene pairs in response
- 354 to MeJA treatment. MeJA treatment significantly changed the expression of 19 genes in S.
- 355 *miltiorrhiza* at least a time-point of MeJA treatment (Fig. S3). As shown in Fig. 4, the expression

- of most genes showed a downward trend at the 6 h time point, and only the Smlnc0018769-Sm0037093 pair and Smlnc0008662-Sm0063385 pair had an upward trend. The Smlnc0008477-Sm0056000 pair and Smlnc0012647-Smlnc0032870 pair had the same expression trend. The Smlnc0042160-Sm0028870 pair had the same expression trends at 6, 12, and 24 h. The Smlnc0018769-Sm0037093, Smlnc0008662-Sm0063385, and Smlnc0052170-Sm0067296 pairs had opposite expression trends at 48 h, whereas the Smlnc0019429-Sm0026208 pair had opposite trends at 24 and 48 h. Interestingly, the two gene pairs in the co-expression network, Smlnc0032870-Sm0012648 and Smlnc0018769-Sm0037093, which were positively correlated, showed complex expression correlation under the induction of MeJA, even showed opposite expression trends after 24 h. The hub genes: Sm0056000, Sm0037097, Sm0063385, and Sm0067296 in the co-expression network showed significantly differential expression in MeJA-induced S. miltiorrhiza.
- The data in Fig. 5A showed that Smlnc0063419, Sm0026208, and Sm0067296 had similar expression patterns, which formed the lncRNA-mRNA-TF module. Sm0026208 and Sm0067296 were annotated with TF WRKY2 and mRNA GA3ox2, respectively. Smlnc0012647, Smlnc0032870, and Sm0009433 had similar expression patterns, as shown in Fig. 5B. Sm0009433 was annotated with TF MYB36. Smlnc0042160 and Sm0037093 had similar expression patterns, as shown in Fig. 5C. Sm0037093 was annotated with mRNA KS2. Through the plug-in cytoHubba, we calculated the top 10 hub genes (Table S12 and Fig. 5D). The modules of Smlnc0063419-Sm0026208-Sm0067296 and Smlnc0012647-Smlnc0032870-Sm0009433, in which all genes were present in the top 10 hub genes.

Discussion

In this study, the transcriptomic data of *S. miltiorrhiza* during the tanshinone accumulation stage were used for exploring the lncRNAs and their target transcripts involved in the diterpenoid biosynthetic pathway. A total of 6,651 lncRNAs were obtained by a strict bioinformatic pipeline. We found some common features of lncRNAs, which may be related to their function. Among the candidate lncRNAs, diterpenoid biosynthetic genes/TFs in *S. miltiorrhiza*, we detected 23 candidate lncRNA-mRNA/TF pairs with a *cis*-regulatory relationship. To further verify their relationship, we used MeJA as an inducer to observe the gene expression of these candidate lncRNA-mRNA/TF pairs with MeJA treatment for 6, 12, 24, and 48 h. Through the expression data of time series, which provided an exploratory method for the role of lncRNA, three lncRNA-mRNA and/or TF network modules were finally obtained.

In the present study, the identified lncRNAs of *S. miltiorrhiza* were found to be shorter in length compared with protein-coding transcripts, which was consistent with the previous reports (Hao et al., 2015; Liu et al., 2018; Shen et al., 2018). The mean GC content of lncRNAs was slightly lower than that of mRNAs, which has also been reported in *Populus tomentosa* (Zhou et al., 2017). Conservation analysis showed that plants of the same genus are more conservative than

those of different families. A previous study also showed that the majority of lncRNAs have high sequence conservation at the intra-species and sub-species levels (Deng et al., 2018). Polymerase C-terminal domain (CTD) modifications [e.g., CTD modification threonine 4 phosphorylation (CTD-T4P)] are on the promoters of lncRNAs, which leads to the decrease in the polymerase pause and the advance of the termination in the whole lncRNA genome. The transcription rate of lncRNAs is very fast, which means that they can quickly act on the regulatory target and respond to the signal. Therefore, transcription accuracy and sequence conservation were low (Rinn & Chang, 2020). The lncRNA function was maintained across large evolutionary distances even when the lncRNA sequence substantially diverged (Ulitsky, 2016). Another possible explanation for this is that RNA secondary structures may be the units of lncRNA words rather than the primary sequence, and disparate sequences form similar structure–function relationships to transmit symbolic language like hieroglyphics, thereby forming the molecular grammar of lncRNAs (Rinn & Chang, 2020).

LncRNAs have been proposed to carry out their functions by *cis* or *trans*, transcriptional regulation *cis*-acting lncRNAs influence the expression and/or chromatin state of nearby genes. We predicted lncRNA-mRNA pairs in the *cis*-acting relationship. The results of our study showed that 45,198 and 180 lncRNA-mRNA/TF pairs were co-expressed ($|PCC| \ge 0.4$) or co-

localized, respectively, and 23 lncRNA-mRNA/TF pairs were both co-localized and co-

expressed (Table S10). The results indicated that most lncRNAs were not co-expressed with their nearby coding genes and were transcribed independently in *S. miltiorrhiza* (Liao et al., 2011).

417 Two pairs were both co-expressed and co-localized in the high correlation co-expression network

with $|PCC| \ge 0.8$. Thus, the modes of action of lncRNAs were not limited to local regulators.

Another possible explanation is that the strength of the required gene co-expression may depend on the stability or toxicity of the metabolites, and strong co-expression should only be required for unstable monomers (Obayashi & Kinoshita, 2009).

Although advances have been made in the miRNA and miRNA target prediction fields, the precision of miRNA target prediction needs to be improved (Akgül et al., 2022). To reduce false positives, we used three kinds of prediction software to predict miRNA targets. Although many miRNA databases and prediction software are published for plants, few of them are available (de Amorim, Pedro & Paschoal, 2022). This limitation reduced our chance to find miRNAs associated with the lncRNA-mRNA/TF pairs in the diterpenoid biosynthetic pathway. On the basis of the relationship between miRNAs and lncRNAs, we predicted that 14 lncRNAs were potential targets or TMs of 66 miRNAs in *S. miltiorrhiza*, and no one existed in the candidate lncRNA-mRNA/TF pairs. However, all the results were predicted preliminarily based on bioinformatic analyses and need to be further validated.

Building gene regulatory networks from transcriptomic studies often results in a static view of gene expression, which can make it difficult to disentangle the regulatory pathway structure

436 response to a stimulus. Time-series expression analysis may uncover the temporal transcriptional 437 logic for plant response systems, and provide more accurate predictions for targeted breeding 438 (Greenham & McClung, 2018). By studying the time-series expression of some candidate regulatory pairs inducted by MeJA, we observed a more detailed landscape. We found that some 439 440 lncRNAs were downregulated in the early stage. The expression of the corresponding mRNAs 441 was upregulated in the later stage between the regulatory pairs, and plants' response to the signal 442 had a time delay. For example, in response to vernalization, *COOLAIR* is transiently induced by prolonged cold, reaching a maximum expression level after 2 weeks (Swiezewski et al., 2009). 443 444 Meanwhile, we found that some genes showed different expression patterns within a period, namely, both upregulated and downregulated, this phenomenon may be because gene regulatory 445 446 networks are inherently complex, with multiple feedback and feedforward loops (Wils & 447 Kaufmann, 2017).

448 449

450 451

452

453 454

455

456

457 458

459

460

461 462

463

Nineteen genes were differentially expressed significantly under MeJA-induced, and some of them were present in hub genes of the co-expression network. These results indicated that these genes might participate in the biosynthesis of secondary terpenoids such as tanshinone and also play an important role in the defense response of S. miltiorrhiza. Our results indicated that the expression levels of Sm0056000 (CPS) and Sm0037093 (KS) were upregulated under MeJA induction, which was also observed in the previous report (Luo et al., 2014). However, the levels of these two genes Sm0056000 (CPS) and Sm0037093 (KS) started to increase at 12 h and 24 h in our study, respectively. The response of TFs to MeJA was also observed in this study (Luo et al., 2014), which was consistent with the TF WRKY we studied. For MeJA treatment, the expression of CYP76AH1 was up-regulated over time and reached a peak at 12 h in the previous study (Li et al., 2021), however, after peaking at 6h, our Sm0063385 (CYP76AHI) expression was downregulated, and then it began to up-regulate at 12h and peaked at 48 h. Previous research has suggested that WRKYs might regulate the development of bast fiber in response to GA₃ stress in jute (Corchorus capsularis) (Zhang et al., 2020), the Smlnc0063419-Sm0026208-Sm0067296 module (Sm0026208: TF WRKY2, Sm0067296: GA3ox2) in our study may form a similar response module in S. miltiorrhiza.

464 465

466 The tissue specificity and subcellular localization of lncRNAs may suggest their function. We 467 obtained 3 lncRNA-mRNA and/or TF modules: Smlnc0063419-Sm0026208 (TF)-Sm0067296, 468 Smlnc0012647-Smlnc0032870-Sm0009433 (TF), and Smlnc0042160-Sm0037093, among of 469 lncRNAs: Smlnc0063419, Smlnc0012647, Smlnc0032870, and Smlnc0042160 mainly expressed 470 in roots (Fig. 3 and Fig. 5), which was consistent with the place where tanshinones accumulated 471 of S. miltiorrhiza (Chang et al., 2019). In the prediction of subcellular localization, 472 Smlnc0012647, Smlnc0042160, and Smlnc0063419 were predicted to be located in the 473 cytoplasm, this suggests that these predicted cytoplasmic lncRNAs may interfere with protein post-translational modifications or regulate mRNA export (Chen, 2016). Although 475

474

Smlnc0012647 and Smlnc0032870 existed in the same module, Smlnc0032870 was predicted to

be located in the nucleus, a possible explanation for this result may be that some lncRNAs are located in both the nucleus and cytoplasm (Cabili et al., 2015).

Conclusions

This study set out to investigate the possible functions of the lncRNAs of *S. miltiorrhiza* related to diterpenoid biosynthesis, we predicted the potential targets of lncRNAs in *cis*-regulatory relationships, a summarizing figure is shown in Fig. S4. Through a strict bioinformatic pipeline, we identified 6,651 candidate lncRNAs, and obtained three lncRNA-mRNA and/or TF network modules. This study revealed the possible roles of the lncRNAs of *S. miltiorrhiza* related to diterpenoid biosynthesis. These findings indicated that lncRNA is generally complex in regulating mRNA and/or TF. This study provides useful information to deepen our understanding of the function and regulatory mechanisms of lncRNAs in the diterpenoid biosynthetic pathway of *S. miltiorrhiza*.

References

- Akgül B, Stadler PF, Hawkins LJ, Hadj-Moussa H, Storey KB, Ergin K, Çetinkaya R, Paschoal AR, Nachtigall PG, Tutar Y, Yousef M, Allmer J. 2022. 44 Current Challenges in miRNomics. In: 423–438. DOI: 10.1007/978-1-0716-1170-8_19.
- de Amorim TS, Pedro DLF, Paschoal AR. 2022. MicroRNA Databases and Tools. In: 131–166. DOI: 10.1007/978-1-0716-1170-8_7.
- Bonnet E, He Y, Billiau K, van de Peer Y. 2010. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. *Bioinformatics* 26:1566–1568. DOI: 10.1093/bioinformatics/btq233.
- Brockdorff N. 1998. The role of Xist in X-inactivation. *Current Opinion in Genetics & Development* 8:328–333. DOI: 10.1016/S0959-437X(98)80090-7.
- Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A, Rinn JL, Raj A. 2015. Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. *Genome Biology* 16:20. DOI: 10.1186/s13059-015-0586-4.
 - Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. *BMC Bioinformatics* 10:421. DOI: 10.1186/1471-2105-10-421.
 - Cao Z, Pan X, Yang Y, Huang Y, Shen H-B. 2018. The IncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. *Bioinformatics* 34:2185–2194. DOI: 10.1093/bioinformatics/bty085.
 - Carlevaro-Fita J, Johnson R. 2019. Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. *Molecular Cell* 73:869–883. DOI: 10.1016/j.molcel.2019.02.008.
- Chang Y, Wang M, Li J, Lu S. 2019. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in *Salvia miltiorrhiza*. *Scientific Reports* 9:14929. DOI: 10.1038/s41598-019-51535-9.

Chen L-L. 2016. Linking Long Noncoding RNA Localization and Function. *Trends in Biochemical Sciences* 41:761–772. DOI: 10.1016/j.tibs.2016.07.003.

- Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. 2014. cytoHubba: identifying hub objects and sub-networks from complex interactome. *BMC Systems Biology* 8:S11. DOI: 10.1186/1752-0509-8-S4-S11.
 - Dai X, Zhuang Z, Zhao PX. 2018. psRNATarget: a plant small RNA target analysis server (2017 release). *Nucleic Acids Research* 46:W49–W54. DOI: 10.1093/nar/gky316.
 - Deng P, Liu S, Nie X, Weining S, Wu L. 2018. Conservation analysis of long non-coding RNAs in plants. *Science China Life Sciences* 61:190–198. DOI: 10.1007/s11427-017-9174-9.
 - Du Q, Li C, Li D, Lu S. 2015. Genome-wide analysis, molecular cloning and expression profiling reveal tissue-specifically expressed, feedback-regulated, stress-responsive and alternatively spliced novel genes involved in gibberellin metabolism in *Salvia miltiorrhiza*. *BMC Genomics* 16:1087. DOI: 10.1186/s12864-015-2315-5.
 - Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, McDonel PE, Guttman M, Lander ES. 2016. Local regulation of gene expression by lncRNA promoters, transcription and splicing. *Nature* 539:452–455. DOI: 10.1038/nature20149.
 - Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. *Nature Genetics* 39:1033–1037. DOI: 10.1038/ng2079.
 - Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, Yang B, Peters RJ. 2009. A Functional Genomics Approach to Tanshinone Biosynthesis Provides Stereochemical Insights. *Organic Letters* 11:5170–5173. DOI: 10.1021/ol902051v.
 - Greenham K, McClung CR. 2018. Time to build on good design: Resolving the temporal dynamics of gene regulatory networks. *Proceedings of the National Academy of Sciences* 115:6325–6327. DOI: 10.1073/pnas.1807707115.
 - Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. 2008. The Vienna RNA Websuite. *Nucleic Acids Research* 36:W70–W74. DOI: 10.1093/nar/gkn188.
 - Guil S, Esteller M. 2012. Cis-acting noncoding RNAs: friends and foes. *Nature Structural & Molecular Biology* 19:1068–1075. DOI: 10.1038/nsmb.2428.
 - Gundlach H, Müller MJ, Kutchan TM, Zenk MH. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. *Proceedings of the National Academy of Sciences* 89:2389–2393. DOI: 10.1073/pnas.89.6.2389.
 - Guo Z, Kuang Z, Zhao Y, Deng Y, He H, Wan M, Tao Y, Wang D, Wei J, Li L, Yang X. 2022. PmiREN2.0: from data annotation to functional exploration of plant microRNAs. *Nucleic Acids Research* 50:D1475–D1482. DOI: 10.1093/nar/gkab811.
 - Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L. 2013. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts.

Proceedings of the National Academy of Sciences 110:12108–12113. DOI: 557 10.1073/pnas.1218061110.

- Hao Z, Fan C, Cheng T, Su Y, Wei Q, Li G. 2015. Genome-Wide Identification, Characterization and Evolutionary Analysis of Long Intergenic Noncoding RNAs in *Cucumber. PLOS ONE* 10:e0121800. DOI: 10.1371/journal.pone.0121800.
- Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. *Biochemical Journal* 444:11–25. DOI: 10.1042/BJ20120245.
- Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ. 2001. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. *Proceedings of the National Academy of Sciences* 98:2065–2070. DOI: 10.1073/pnas.98.4.2065.
- Huang L, Dong H, Zhou D, Li M, Liu Y, Zhang F, Feng Y, Yu D, Lin S, Cao J. 2018. Systematic identification of long non-coding RNAs during pollen development and fertilization in *Brassica rapa*. *The Plant Journal* 96:203–222. DOI: 10.1111/tpj.14016.
- Ji AJ, Luo HM, Xu ZC, Zhang X, Zhu YJ, Liao BS, Yao H, Song JY, Chen SL. 2016. Genome-Wide Identification of the AP2/ERF Gene Family Involved in Active Constituent Biosynthesis in *Salvia miltiorrhiza*. *The Plant Genome* 9. DOI: 10.3835/plantgenome2015.08.0077.
- Jiang M, Chen H, Liu J, Du Q, Lu S, Liu C. 2021. Genome-wide identification and functional characterization of natural antisense transcripts in *Salvia miltiorrhiza*. *Scientific Reports* 11:4769. DOI: 10.1038/s41598-021-83520-6.
- Kai G, Liao P, Zhang T, Zhou W, Wang J, Xu H, Liu Y, Zhang L. 2010. Characterization, expression profiling, and functional identification of a gene encoding geranylgeranyl diphosphate synthase from *Salvia miltiorrhiza*. *Biotechnology and Bioprocess Engineering* 15:236–245. DOI: 10.1007/s12257-009-0123-y.
- Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L. 2011. Metabolic engineering tanshinone biosynthetic pathway in *Salvia miltiorrhiza* hairy root cultures. *Metabolic Engineering* 13:319–327. DOI: 10.1016/j.ymben.2011.02.003.
- Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, Gao G. 2017. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. *Nucleic Acids Research* 45:W12–W16. DOI: 10.1093/nar/gkx428.
- Kopp F, Mendell JT. 2018. Functional Classification and Experimental Dissection of Long Noncoding RNAs. *Cell* 172:393–407. DOI: 10.1016/j.cell.2018.01.011.
- Kozomara A, Birgaoanu M, Griffiths-Jones S. 2019. miRBase: from microRNA sequences to function. *Nucleic Acids Research* 47:D155–D162. DOI: 10.1093/nar/gky1141.
- Li W, Bai Z, Pei T, Yang D, Mao R, Zhang B, Liu C, Liang Z. 2019. SmGRAS1 and SmGRAS2 Regulate the Biosynthesis of Tanshinones and Phenolic Acids in *Salvia miltiorrhiza*. *Frontiers in Plant Science* 10. DOI: 10.3389/fpls.2019.01367.
- Li B, Li J, Chai Y, Huang Y, Li L, Wang D, Wang Z. 2021. Targeted mutagenesis of CYP76AK2 and CYP76AK3 in *Salvia miltiorrhiza* reveals their roles in tanshinones

biosynthetic pathway. *International Journal of Biological Macromolecules* 189:455–
 463. DOI: 10.1016/j.ijbiomac.2021.08.112.

- Li C, Li D, Shao F, Lu S. 2015. Molecular cloning and expression analysis of *WRKY* transcription factor genes in *Salvia miltiorrhiza*. *BMC Genomics* 16:200. DOI: 10.1186/s12864-015-1411-x.
- Li C, Lu S. 2014. Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in *Salvia miltiorrhiza*. *BMC Genomics* 15:277. DOI: 10.1186/1471-2164-15-277.
- Li D, Shao F, Lu S. 2015. Identification and characterization of mRNA-like noncoding RNAs in *Salvia miltiorrhiza*. *Planta* 241:1131–1143. DOI: 10.1007/s00425-015-2246-z.
- Li S, Yamada M, Han X, Ohler U, Benfey PN. 2016. High-Resolution Expression Map of the *Arabidopsis* Root Reveals Alternative Splicing and lincRNA Regulation. *Developmental Cell* 39:508–522. DOI: 10.1016/j.devcel.2016.10.012.
- Li A, Zhang J, Zhou Z. 2014. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved *k*-mer scheme. *BMC Bioinformatics* 15:311. DOI: 10.1186/1471-2105-15-311.
- Liang Z-S, Yang D-F, Liang X, Zhang Y-J, Liu Y, Liu F-H. 2012. Roles of reactive oxygen species in methyl jasmonate and nitric oxide-induced tanshinone production in *Salvia miltiorrhiza* hairy roots. *Plant Cell Reports* 31:873–883. DOI: 10.1007/s00299-011-1208-6.
- Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, Skogerbø G, Wu Z, Zhao Y. 2011. Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network. *Nucleic Acids Research* 39:3864–3878. DOI: 10.1093/nar/gkq1348.
- Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua N-H. 2012. Genome-Wide Analysis Uncovers Regulation of Long Intergenic Noncoding RNAs in *Arabidopsis. The Plant Cell* 24:4333–4345. DOI: 10.1105/tpc.112.102855.
- Liu H, Lu Y, Wang J, Hu J, Wuyun T. 2018. Genome-wide screening of long non-coding RNAs involved in rubber biosynthesis in *Eucommia ulmoides*. *Journal of Integrative Plant Biology* 60:1070–1082. DOI: 10.1111/jipb.12693.
- Liu H, Wang R, Mao B, Zhao B, Wang J. 2019. Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis. *BMC Genomics* 20:90. DOI: 10.1186/s12864-019-5442-6.
 - Lu S. 2021. Biosynthesis and Regulatory Mechanisms of Bioactive Compounds in *Salvia miltiorrhiza*, a Model System for Medicinal Plant Biology. *Critical Reviews in Plant Sciences* 40:243–283. DOI: 10.1080/07352689.2021.1935719.
- Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X, Xu Y, He L, Sun W, Xu H, Wang B, Li X, Li C, Liu J, Chen S. 2014. Transcriptional data mining of *Salvia miltiorrhiza* in response to methyl jasmonate to examine the mechanism of bioactive compound

biosynthesis and regulation. *Physiologia Plantarum* 152:241–255. DOI:
 10.1111/ppl.12193.

- Ma Y, Cui G, Chen T, Ma X, Wang R, Jin B, Yang J, Kang L, Tang J, Lai C, Wang Y,
 Zhao Y, Shen Y, Zeng W, Peters RJ, Qi X, Guo J, Huang L. 2021. Expansion within
 the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in *Salvia*miltiorrhiza. Nature Communications 12:685. DOI: 10.1038/s41467-021-20959-1.
 - Ma Y, Ma X-H, Meng F-Y, Zhan Z-L, Guo J, Huang L-Q. 2016. RNA interference targeting CYP76AH1 in hairy roots of *Salvia miltiorrhiza* reveals its key role in the biosynthetic pathway of tanshinones. *Biochemical and Biophysical Research Communications* 477:155–160. DOI: 10.1016/j.bbrc.2016.06.036.
 - Ma X-H, Ma Y, Tang J-F, He Y-L, Liu Y-C, Ma X-J, Shen Y, Cui G-H, Lin H-X, Rong Q-X, Guo J, Huang L-Q. 2015. The Biosynthetic Pathways of Tanshinones and Phenolic Acids in *Salvia miltiorrhiza*. *Molecules* 20:16235–16254. DOI: 10.3390/molecules200916235.
 - Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S. 2012. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in *Salvia miltiorrhiza*. *Journal of Experimental Botany* 63:2809–2823. DOI: 10.1093/jxb/err466.
 - Mercer TR, Dinger ME, Mattick JS. 2009. Long non-coding RNAs: insights into functions. *Nature Reviews Genetics* 10:155–159. DOI: 10.1038/nrg2521.
 - Nagano T, Fraser P. 2011. No-Nonsense Functions for Long Noncoding RNAs. *Cell* 145:178–181. DOI: 10.1016/j.cell.2011.03.014.
 - Obayashi T, Kinoshita K. 2009. Rank of Correlation Coefficient as a Comparable Measure for Biological Significance of Gene Coexpression. *DNA Research* 16:249–260. DOI: 10.1093/dnares/dsp016.
 - Palazzo AF, Koonin E V. 2020. Functional Long Non-coding RNAs Evolve from Junk Transcripts. *Cell* 183:1151–1161. DOI: 10.1016/j.cell.2020.09.047.
 - Paschoal AR, Lozada-Chávez I, Domingues DS, Stadler PF. 2017. ceRNAs in plants: computational approaches and associated challenges for target mimic research. *Briefings in Bioinformatics*. DOI: 10.1093/bib/bbx058.
 - Ponting CP, Oliver PL, Reik W. 2009. Evolution and Functions of Long Noncoding RNAs. *Cell* 136:629–641. DOI: 10.1016/j.cell.2009.02.006.
 - PU Xiangdong, WANG Lizhi. 2017. Cloning and Bioinformatic Analysis of CYP76AK5 Related to Tanshinone Biosynt hesis in *Salvia miltiorrhiza*. *Modern Chinese Medicine* 19:1106–1110. DOI: 10.13313/j.issn.1673-4890.2017.8.011.
 - Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. 2012. The Pfam protein families database. *Nucleic Acids Research* 40:D290–D301. DOI: 10.1093/nar/gkr1065.
 - Quan M, Du Q, Xiao L, Lu W, Wang L, Xie J, Song Y, Xu B, Zhang D. 2019. Genetic architecture underlying the lignin biosynthesis pathway involves noncoding RNAs and

- transcription factors for growth and wood properties in *Populus*. *Plant Biotechnology Journal* 17:302–315. DOI: 10.1111/pbi.12978.
- Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. 2019. Classification and experimental identification of plant long non-coding RNAs. *Genomics* 111:997–1005. DOI: 10.1016/j.ygeno.2018.04.014.
- Rao X, Dixon RA. 2019. Co-expression networks for plant biology: why and how. *Acta Biochimica et Biophysica Sinica* 51:981–988. DOI: 10.1093/abbs/gmz080.
- Revelle W. 2022. psych: Procedures for Psychological, Psychometric, and Personality Research.
 - Rinn JL, Chang HY. 2020. Long Noncoding RNAs: Molecular Modalities to Organismal Functions. *Annual Review of Biochemistry* 89:283–308. DOI: 10.1146/annurev-biochem-062917-012708.
 - Van Schie CCN, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC. 2007. Geranyl diphosphate synthase is required for biosynthesis of gibberellins. *The Plant Journal* 52:752–762. DOI: 10.1111/j.1365-313X.2007.03273.x.
 - Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Research* 13:2498–2504. DOI: 10.1101/gr.1239303.
 - Shen E, Zhu X, Hua S, Chen H, Ye C, Zhou L, Liu Q, Zhu Q-H, Fan L, Chen X. 2018. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid *Brassica napus*. *BMC Genomics* 19:745. DOI: 10.1186/s12864-018-5117-8.
 - Shimane M, Ueno Y, Morisaki K, Oogami S, Natsume M, Hayashi K, Nozaki H, Kawaide H. 2014. Molecular evolution of the substrate specificity of *ent*-kaurene synthases to adapt to gibberellin biosynthesis in land plants. *Biochemical Journal* 462:539–546. DOI: 10.1042/BJ20140134.
 - Swiezewski S, Liu F, Magusin A, Dean C. 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. *Nature* 462:799–802. DOI: 10.1038/nature08618.
 - Ulitsky I. 2016. Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. *Nature Reviews Genetics* 17:601–614. DOI: 10.1038/nrg.2016.85.
 - Wang H-L v., Chekanova JA. 2017. Long Noncoding RNAs in Plants. In: 133–154. DOI: 10.1007/978-981-10-5203-3_5.
- Wang Y, Zhang H, Li Q, Jin J, Chen H, Zou Y, Huang X, Ding Y. 2021. Genome-Wide
 Identification of lncRNAs Involved in Fertility Transition in the Photo Thermosensitive Genic Male Sterile Rice Line Wuxiang S. Frontiers in Plant Science

713 11. DOI: 10.3389/fpls.2020.580050.

Wasternack C. 2007. Jasmonates: An Update on Biosynthesis, Signal Transduction and
 Action in Plant Stress Response, Growth and Development. *Annals of Botany* 100:681–697. DOI: 10.1093/aob/mcm079.

- Wils CR, Kaufmann K. 2017. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. *Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms* 1860:95–105. DOI: 10.1016/j.bbagrm.2016.07.014.
- Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S. 2012a. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in *Digitalis purpurea*. *BMC Genomics* 13:15. DOI: 10.1186/1471-2164-13-15.
- Wu H-J, Ma Y-K, Chen T, Wang M, Wang X-J. 2012b. PsRobot: a web-based plant small RNA meta-analysis toolbox. *Nucleic Acids Research* 40:W22–W28. DOI: 10.1093/nar/gks554.
- Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, Chen W. 2011. The c4h, tat, hppr and hppd Genes Prompted Engineering of Rosmarinic Acid Biosynthetic Pathway in *Salvia miltiorrhiza* Hairy Root Cultures. *PLoS ONE* 6:e29713. DOI: 10.1371/journal.pone.0029713.
- Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X, Zhu Y, Ji A, Zhang B, Hu S, Au KF, Song J, Chen S. 2015. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of *Salvia miltiorrhiza* and tanshinone biosynthesis. *The Plant Journal* 82:951–961. DOI: 10.1111/tpj.12865.
- Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, Sun W, Shen G, Zhang X, Qian J, Ji A, Xu Z, Luo X, He L, Li C, Sun C, Yan H, Cui G, Li X, Li X, Wei J, Liu J, Wang Y, Hayward A, Nelson D, Ning Z, Peters RJ, Qi X, Chen S. 2016. Analysis of the Genome Sequence of the Medicinal Plant *Salvia miltiorrhiza*. *Molecular Plant* 9:949–952. DOI: 10.1016/j.molp.2016.03.010.
- Yamaguchi S. 2008. Gibberellin Metabolism and its Regulation. *Annual Review of Plant Biology* 59:225–251. DOI: 10.1146/annurev.arplant.59.032607.092804.
- Yang Y, Hou S, Cui G, Chen S, Wei J, Huang L. 2010. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of *Salvia miltiorrhiza*. *Molecular Biology Reports* 37:507–513. DOI: 10.1007/s11033-009-9703-3.
- Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics* 13:134. DOI: 10.1186/1471-2105-13-134.
- Yin D-D, Li S-S, Shu Q-Y, Gu Z-Y, Wu Q, Feng C-Y, Xu W-Z, Wang L-S. 2018. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds. *Gene* 666:72–82. DOI: 10.1016/j.gene.2018.05.011.
- Yu T, Tzeng DTW, Li R, Chen J, Zhong S, Fu D, Zhu B, Luo Y, Zhu H. 2019. Genome-wide identification of long non-coding RNA targets of the tomato MADS box

transcription factor RIN and function analysis. Annals of Botany 123:469–482. DOI: 10.1093/aob/mcv178. Zhang B, Gunawardane L, Niazi F, Jahanbani F, Chen X, Valadkhan S. 2014. A Novel RNA Motif Mediates the Strict Nuclear Localization of a Long Noncoding RNA. Molecular and Cellular Biology 34:2318–2329. DOI: 10.1128/MCB.01673-13. Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S. 2015. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Scientific Reports 5:11244. DOI: 10.1038/srep11244.

- Zhang L, Wan X, Xu Y, Niyitanga S, Qi J, Zhang L. 2020. De novo assembly of transcriptome and genome-wide identification reveal GA3 stress-responsive WRKY transcription factors involved in fiber formation in jute (*Corchorus capsularis*). *BMC Plant Biology* 20:403. DOI: 10.1186/s12870-020-02617-8.
- Zhou D, Du Q, Chen J, Wang Q, Zhang D. 2017. Identification and allelic dissection uncover roles of lncRNAs in secondary growth of Populus tomentosa. *DNA Research* 24:473–486. DOI: 10.1093/dnares/dsx018.
- Zhou J, Liu R, Shuai M, Yan Z-Y, Chen X. 2021. Comparative transcriptome analyses of different *Salvia miltiorrhiza* varieties during the accumulation of tanshinones. *PeerJ* 9:e12300. DOI: 10.7717/peerj.12300.