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ABSTRACT

Long non-coding RNAs (IncRNAs) are transcripts of more than 200 nucleotides
(nt) in length, with minimal or no protein-coding capacity. Increasing evidence
indicates that IncRNAs play important roles in the regulation of gene expression
including in the biosynthesis of secondary metabolites. Salvia miltiorrhiza Bunge is an
important medicinal plant in China. Diterpenoid tanshinones are one of the main active
components of S. miltiorrhiza. To better understand the role of IncRNAs in regulating
diterpenoid biosynthesis in S. miltiorrhiza, we integrated analysis of IncRNAs, mRNAs,
and transcription factors (TFs) to identify network modules underlying diterpenoid
biosynthesis based on transcriptomic data. In transcriptomic data, we obtained 6,651
candidate IncRNAs, 46 diterpenoid biosynthetic pathway genes, and 11 TFs involved in
diterpenoid biosynthesis. Combining the co-expression and genomic location analysis,
we obtained 23 candidate IncRNA-mRNA/TF pairs that were both co-expressed and
co-located. To further observe the expression patterns of these 23 candidate gene pairs,
we analyzed the time-series expression of S. miltiorrhiza induced by methyl jasmonate
(MeJA). The results showed that 19 genes were differentially expressed at least a time-
point, and four IncRNAs, two mRNAs, and two TFs formed three IncRNA-mRNA
and/or TF network modules. This study revealed the relationship among IncRNAs,
mRNAs, and TFs and provided new insight into the regulation of the biosynthetic
pathway of S. miltiorrhiza diterpenoids.

Subjects Bioinformatics, Genetics, Genomics, Molecular Biology, Plant Science
Keywords LncRNA-mRNA/TF, Diterpenoid pathway, Salvia miltiorrhiza

INTRODUCTION

Long non-coding RNAs (IncRNAs) are defined as RNA transcripts with little or no potential
for protein-coding capacity, and with at least 200 nucleotides (nt) in size (Ponting, Oliver ¢
Reik, 2009; Nagano & Fraser, 2011; Palazzo & Koonin, 2020). They are usually transcribed
by RNA polymerase II (Rinn ¢~ Chang, 2020). Functional analysis of eukaryotic IncRNAs
has revealed that they act as molecular scaffolds, guide molecules, molecular sponges
and decoys, precursors of microRNAs (miRNAs) and other small RNAs, or as miRNA
target mimics (TMs) to regulate gene expression at multiple levels (epigenetic regulation,
transcriptional regulation, and post-transcriptional regulation) (Franco-Zorrilla et al., 2007;
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Mercer, Dinger ¢ Mattick, 2009; Wang & Chekanova, 2017; Rai et al., 2019). LncRNAs can
also act on transcription factors (TFs); for example, IncRNA can be used as a TF-binding
site to regulate its expression (Yu et al., 2019). LncRNAs are usually expressed at a low level
and in a tissue-specific manner (Liu et al., 2012; Palazzo ¢ Koonin, 2020). The subcellular
localization of IncRNAs is the primary determinant of their molecular functions (Carlevaro-
Fita & Johnson, 2019).

There is much evidence suggesting that IncRNAs play key roles in plant secondary
metabolism. For example, mLncR8 putatively regulates terpenoid biosynthesis, and
mLncR31 is involved in the biosynthesis of the isoprenoid side chain of ubiquinone
and plastoquinone in Digitalis purpurea (Wu et al., 2012a). LncRNAs might regulate genes
in the phenylpropanoid pathway of Populus tomentosa (Zhou et al., 2017). LncRNAs were
also found to be involved in rubber biosynthesis in Eucommia ulmoides (Liu et al., 2018).
LncRNAs were possibly involved in the biosynthesis of different fatty acids and lipid
metabolism through post-transcriptional regulation in tree peony seeds (Yin et al., 2018).
LncRNAs might be involved in the lignin biosynthetic pathway in Populus (Quan et al.,
2019).

Studies have suggested that IncRNAs can act aslocal regulators, and IncRNA expression is
correlated with the expression of nearby genes (Guil ¢ Esteller, 2012; Engreitz et al., 2016).
These correlations are attributed to sequence-specific functions of the mature IncRNA
transcript, the transcription or splicing of an RNA, or DNA elements within the IncRNA
promoter or gene locus, namely cis-regulation (Guil ¢ Esteller, 2012; Engreitz et al., 2016;
Kopp & Mendell, 2018).

Co-expressed genes are usually members of the same protein complex or metabolic
pathway, and they are functionally controlled by the same transcriptional regulatory
program. The genes or proteins within the co-expression network may have the same
expression patterns (Liao et al., 2011; Rao ¢ Dixon, 2019).

The medicinal plant S. miltiorrhiza produces a variety of diterpenoids (Ma et al., 2015).
Tanshinones are the main bioactive compounds of S. miltiorrhiza, and they mainly
accumulate in the roots of S. miltiorrhiza (Xu et al., 2015; Chang et al., 2019). Another
diterpenoid in S. miltiorrhiza is the plant hormone gibberellin (GA), which is one of
the five classic plant hormones (Brockdorff, 1998). In general, the biosynthetic pathway of
terpenoids in S. miltiorrhiza can be divided into three stages (Ma et al., 2012). The first stage
leads to the synthesis of the universal isoprene precursor isopentenyl diphosphate (IPP)
and its isomer dimethylallyl diphosphate (DMAPP) through the 2-C-methyl-D-erythritol
4-phosphate (MEP) pathway and/or the mevalonate (MVA) pathway. In the second stage,
the intermediate diphosphate precursors, including geranyl diphosphate (GPP), farnesyl
diphosphate (FPP), and geranylgeranyl diphosphate (GGPP) are synthesized under the
catalysis of isoprenyl diphosphate synthases (IDSs), including geranyl diphosphate synthase
(GPPS), farnesyl diphosphate synthase (FPPS), and geranylgeranyl diphosphate synthase
(GGPPS). The last stage involves the formation of diverse diterpenoids under the catalysis
of terpene synthases (TPSs), such as copalyl diphosphate synthase (CPS) and kaurene
synthase (KS) catalyze the formation of miltiradiene (Kai et al., 2010; Kai et al., 2011; Lu,
2021), ent-copalyl diphosphate synthase (ent-CPS) (Shimane et al., 2014) and ent -kaurene
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synthase (ent-KS) are involved in the conversion of GGPP to the tetracyclic hydrocarbon
intermediate ent-kaurene (Yamaguchi, 2008; Shimane et al., 2014). Then tanshinones
and GAs are formed by cytochrome P450 monooxygenases (P450s) and 2-oxoglutarate-
dependent dioxygenases (20DDs) modification.

Methyl jasmonate (MeJA) is a hormone involved in plant signal transduction, which is
considered to play an indispensable role as a second messenger in the induction process
leading to the accumulation of secondary metabolites. Therefore, it is often used as
an inducer to explore the regulation mechanism of biosynthesis (Gundlach et al., 1992;
Wasternack, 2007). MeJA, an effective elicitor, can enhance the accumulation of tanshinones
and phenolic acids by inducing the expression of tanshinone biosynthesis- and phenolic acid
biosynthesis-related genes in S. miltiorrhiza (Gao et al., 2009; Xiao et al., 2011; Liang et al.,
20125 Luo et al., 2014). MeJA is used for genome-wide identification and characterization
of novel terpenoid biosynthetic genes in S. miltiorrhiza (Ma et al., 2012).

Previous studies of IncRNAs in S. miltiorrhiza (Li, Shao ¢ Lu, 2015) showed that 3,044
IncRNAs responded to Ag * solution and yeast extract (YE) in the roots of S. miltiorrhiza,15
IncRNAs differentially expressed in leaves under MeJA treatment. Jiang et al. identified
the differential expression of natural antisense transcripts (NATs) with polyA tail in
different tissues of S. miltiorrhiza, and some cis-NATs of SmKSL1 showed a high co-
expression relationship and possible participation in tanshinone synthesis (Jiang et al.,
2021). However, although IncRNAs reportedly play important roles in S. miltiorrhiza, the
role of IncRNAs in the diterpenoid biosynthetic pathway of S. miltiorrhiza remains largely
unclear.

Based on transcriptomic data from four varieties of S. miltiorrhiza, we carried out among
IncRNAs, mRNAs, and TFs expression correlation analysis and genome loci analysis to
obtain candidate IncRNA-mRNA/TF pairs, and to construct the co-expression network.
To further explore the relationship among the candidate IncRNA-mRNA/TF pairs, we
analyzed the time-series expression patterns of the candidate IncRNA-mRNA/TF pairs in
MeJA-induced S. miltiorrhiza.

MATERIALS & METHODS

Plant materials and MeJA treatment

S. miltiorrhiza seedlings were cultured in the greenhouse under 23 °C——25 °C. The plants
were sprayed with 200 uM MeJA solution as mentioned in a previous report (Luo et al.,
2014). After being treated with MeJA solution for 6, 12, 24, and 48 h, the treated and the
non-treated (0 h) roots were collected and rinsed with water. These roots were dried gently
and quickly with absorbent paper. The cleaned roots were immediately frozen in liquid
nitrogen and stored at —80 °C until RNA isolation. Three biological replicates were carried
out for each experiment.

S. miltiorrhiza genomic and transcriptomic data

The S. miltiorrhiza genome data were downloaded from NCBI (National Center for
Biotechnology Information) Sequence Read Archive database (SRP051524, SRP051564,
SRP028388) (Xu et al., 2016) and NCBI (National Center for Biotechnology Information)
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BioProject: PRINA682867 (Ma et al., 2021). The transcriptomic data were obtained from
our previous study (Zhou et al., 2021) with an accession number assigned to PRINA712174.
The transcriptomic data were gathered from four varieties of S. miltiorrhiza root tissues
during the tanshinone accumulation stage and included Fragments Per Kilobase Million
(FPKM) expression value and annotation information.

Pipeline for IncRNA identification

The following four filters were used to shortlist the bona fide IncRNAs from the
transcriptomic data: (1) transcripts with annotation information in one of the Nr (Non-
RedundantProtein Sequence), Swiss-Prot, and COG/KOG databases were removed; (2)
transcripts shorter than 200 nt with an open reading frame (ORF) longer than 100 aa were
discarded, found and extracted ORFs on getorf (http:/emboss.bioinformatics.nl/cgi-bin/
emboss/getorf), selection of ORF length <100 aa by R (version 4.2.1) script; (3) transcripts
were searched against the Pfam database (Punta et al., 2012) (http:/pfam.xfam.org/) by
HMMER to remove transcripts possibly containing known protein domains; and (4) the
protein-coding potential of each transcript was calculated using PLEK (Li, Zhang ¢ Zhou,
2014) and Coding Potential Calculator 2 (CPC2, http:/cpc2.cbi.pku.edu.cn) (Kang ef al.,
2017), and these with PLEK and CPC2 scores >0 were discarded. Through the above
process, identified IncRNAs were obtained. FPKM value less than 0.05 was used as the
standard for low expression levels (Li et al., 2016). The transcripts that remained were
regarded as candidate IncRNAs.

Characterization and conservation analysis of S. miltiorrhiza IncRNAs
To gain more understanding of these IncRNAs in S. miltiorrhiza, we compared several
different features of the IncRNAs and mRNAs: GC content and transcript length. GC
content and transcript length were determined by R (version 4.2.1), and statistical analysis
was carried out by Excel.

We aligned the IncRNA sequences identified here with BLAST+ (Camacho et al.,
2009) (blast—2.11.0+) against the genome sequences of the Lamiaceae family: Salvia
splendens, Salvia hispanica, Mentha longifolia, Scutellaria baicalensis, Pogostemon cablin,
and Sesamum indicum, of which Salvia splendens and Salvia hispanica both belong to
the Salvia genus; Solanaceae family: Nicotiana tabacum, Brassicaceae family: Brassica
napus and Arabidopsis thaliana; and Selaginellaceae tamily: Selaginella moellendorffii.

A cutoff E-value <le—10 was used. The genomes were downloaded from the NCBI
databases: GCF_004379255.1 (SspV2), GCF_023119035.1 (UniMelb_Shisp_ WGS_1.0),
GCA_001642375.2 (Mlong_CMEN585_v), GCA_005771605.1 (ASM577160v1),
GCA_023678885.1 (GZUCM_PCab_1.0), GCF_000512975.1 (S_indicum_v1.0),
GCF_000715135.1 (Ntab-TN90), GCF_020379485.1 (Da-Ae), GCF_000001735.4
(TAIR10.1), and GCF_000143415.4 (https:/www.ncbi.nlm.nih.gov/data-hub/genome/
GCF_000143415.4/). The IncRNAs that had coverage of >20% of matched regions were
defined as conserved IncRNAs.
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Precursors of miRNA and miRNA target prediction in S. miltiorrhiza
IncRNAs

The candidate IncRNAs may act as the precursors of miRNAs, the S. miltiorrhiza
miRNAs in miRBase (Kozomara, Birgaoanu ¢ Griffiths-Jones, 2019) (Release 22.1,
http:/www.mirbase.org/) and PmiREN2.0 (Guo et al., 2022) (https:/pmiren.com/) were
aligned to the sequences of the candidate IncRNAs. The secondary structure of IncRNAs
was predicted by RNAfold (Gruber et al., 2008) (http:/rna.tbi.univie.ac.at/). LncRNAs with
classical stem-loop hairpins were regarded as the putative precursors of miRNA (Zhou et al.,
2017). Given that miRNA targets and IncRNAs have highly similar miRNA-binding sites,
miRNA can be sequestered by IncRNA (Paschoal et al., 2017). Three kinds of prediction
software were used to determine the miRNAs targeted to candidate IncRNAs. The first was
TAPIR (Bonnet et al., 2010) (http:/bioinformatics.psb.ugent.befwvebtoolsftapir); this server
offers the possibility to search for plant miRNA targets using a fast and precise algorithm
(score < 4, free energy ratio > 0.7). The second was psRobot (Wu et al., 2012b) (Version
1.2) with default parameters, which is a widely used online miRNA target prediction
tool. The third was psRNATarget (2017 release) with default settings, and psRNATarget
was developed to identify plant SRNA targets by (i) analyzing complementary matching
between the SRNA sequence and target mRNA sequence using a predefined scoring schema
and (ii) by evaluating target site accessibility (Dai, Zhuang & Zhao, 2018), targets with an
E value less than 5.0 were retained as potential miRNA targets.

Subcellular localization of IncRNAs

The subcellular localization of S. miltiorrhiza IncRNAs was predicted by IncLocator (Cao et
al., 2018). LncLocator is an ensemble classifier-based predictor, which adopts both k-mer
features and high-level abstraction features generated by unsupervised deep models and
constructs four classifiers by feeding these two types of features to support vector machine
and random forest, respectively. The current IncLocator can predict five subcellular
localizations of IncRNAs, namely, cytoplasm, nucleus, cytosol, ribosome, and exosome.

Predicted IncRNAs related to the diterpenoid biosynthesis in
S. miltiorrhiza
Diterpenoid biosynthetic genes and the genes encoding TFs involved in diterpenoid
biosynthesis were screened from the transcriptomic annotation data of S. miltiorrhiza. Our
research focused on the downstream of the diterpenoid biosynthetic pathway (Fig. S1).
The functions of IncRNA can be performed on diterpenoid biosynthetic genes/TFs in a
cis manner (Kopp ¢ Mendell, 2018), and the IncRNAs and their target genes are considered
IncRNA-mRNA/TF pairs. Pearson correlation coefficient (PCC) of the expression of
IncRNA and its target gene pair was calculated using the psych (Revelle, 2022) package
in R, requiring co-expressed gene pairs with |[PCC| > 0.4 and p < 0.05. The basis for
predicting cis-regulation was related to the positional relationship of IncRNA genes and
coding genes on the genome (Liu et al., 2019). It was determined to be cis-regulatory if the
IncRNA gene was within 100 kilobases (kb) upstream or downstream regions of the target
genes used (Huang et al., 2018; Wang et al., 2021). used. For genomic location analysis, the
co-expressed gene pairs were aligned against two S. miltiorrhiza genomes (Xu et al., 2016
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Ma et al., 2021) by BLAST+ (BLAST—2.11.0+) with a cutoff of E value <1e—5. Finally, the
candidate IncRNA-mRNA/TF pairs related to the diterpenoid biosynthesis of S. miltiorrhiza
were obtained.

Construction of the diterpenoid biosynthesis-related IncRNA-mRNA-
TF networks and identification of hub genes

Cytoscape 3.2 (Shannon et al., 2003) was utilized to draw the putative IncRNA-mRNA-TF
co-expression network with [PCC| > 0.8 (p < 0.05). Genes with a degree > 10 were
considered hub genes.

Candidate IncRNA-mRNA/TF pairs expression profile in MeJA-induced
S. miltiorrhiza

MeJA is an effective elicitor for the production of diterpenoid tanshinones in S. miltiorrhiza
(Luo et al., 2014). To further explore whether candidate IncRNA-mRNA/TF pairs have a
response to the diterpenoid biosynthetic pathway, we performed the quantitative real-time
polymerase chain reaction (QRT-PCR) to analyze expression patterns of the detected
IncRNA-mRNA/TF pairs under MeJA induction in S. miltiorrhiza. Plant materials treated
with MeJA dissolving media were used as a control (0 h), and three biological replications
were carried out. The 2(-delta-delta CT) method was used for calculating the relative
expression levels of genes. ANOVA was calculated using SPSS (Version 23.0, IBM, USA),
and p < 0.05 and p < 0.01 were considered statistically significant. The hub genes were
identified by using the cytoHubba (Chin et al., 2014) plug-in of Cytoscape 3.2. To increase
the sensitivity and specificity, we proposed Maximal Clique Centrality (MCC) to discover
featured nodes. Subsequently, we constructed a network module of these hub genes.

RNA extraction and qRT-PCR

Total RNA was extracted from plant tissues using the RNeasy plant kit (PH-01013-B,
Foregene, Chengdu, China). RNA degradation and contamination were monitored using
1% RNase-free agarose gel electrophoresis, and the RNA purity was analyzed using

a NanoPhotometer™ -N60 ultra-micro spectrophotometer. The reverse transcription
reaction was used RT Easy™ II (With gDNase) kit (Version Number: 1.0-1904, Foregene,
Chengdu, China) following the instruction manual. QRT-PCR was performed in a 20 uL
reaction volume containing primers by Real-Time PCR EasyTM-SYBR Green I kit (Cat.
No. QP-01011/01012/01013/01014, Foregene, Chengdu, China) following the instruction
manual. qRT-PCR was carried out in triplicate reactions in the LineGene K Plus real-
time PCR detection system (Bioer, Hangzhou, China). Primers were designed using the
Primer-BLAST (Ye et al., 2012). Primer sequences were listed in Table S1. B-actin (Yang
et al., 2010) gene was selected as a reference since it showed stable expression in the

S. miltiorrhiza tissues analyzed compared to others. The reaction program was as follows: 3
min at 95 °C, 10 s at 95 °C, 30 s at 60 °C, and 40 cycles. The temperature was then gradually
increased to produce melting curves for amplification specificity verification. The mean
value of three replicates was normalized using B-actin as the endogenous control. The
2(-delta-delta CT) method was used for calculating the relative expression of genes.
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RESULTS

Identification of candidate IncRNAs

On the basis of the strict IncRNA identification pipeline, a total of 30,347 transcripts with
no annotation information were obtained. A total of 21,742 transcripts with length >200
nt and ORF <100 aa were obtained. Subsequently, a total of 21,468 identified IncRNAs
were obtained from the intersection of PLEK and CPC2 software prediction results (Fig. 1,
Tables S2, S3). Expression transcripts with FPKM < 0.05 were filtered, and a total of 6,651
candidate IncRNAs were selected for further analysis (Table 54).

The 21,468 identified IncRNAs ranged from 201 nt to 4,340 nt in length, the majority
of which (approximately 68.95%) were 200-400 nt. The mean length was 392 nt, which
was lower than the values observed in S. miltiorrhiza mRNAs (mean length = 1,515 nt).
The GC content of IncRNAs was mainly concentrated at 31.28%—37.28% (accounting for
46.32%), whereas mRNAs were mainly concentrated at 39.28%—41.28% (accounting for
36.00%). The mean GC content of IncRNAs was approximately 36.86%, which was slightly
lower than that of mRNA sequences (approximately 43.42%) (Fig. 2, Table S5).

Characterization and conservation of IncRNAs in S. miltiorrhiza
Conservation analysis showed that 21.02% and 15.40% of S. miltiorrhiza IncRNAs (6,651
candidate IncRNAs) were conserved compared with Salvia splendens and Salvia hispanica
of the same genus, respectively. However, in the same family of the different genera of
Mentha longifolia, Scutellaria baicalensis, Pogostemon cablin, and Sesamum indicum, 6.54%,
0.96%, 0.83%, and 0.51% of S. miltiorrhiza IncRNAs were conserved, respectively. Among
plants of different families, only 0.05%, 0.02%, and 0.02% of S. miltiorrhiza IncRNAs were
conserved in Nicotiana tabacum, Arabidopsis thaliana, and Brassica napus, respectively.
There was no match in Selaginella moellendorffii. The results of the conservation analysis
are presented in Table So.

LncRNAs might be used as precursors or target mimics of

S. miltiorrhiza miRNAs

In this study, a total of 17 IncRNAs were identified as potential precursors of 41 S.
miltiorrhiza miRNAs (Table S7). To improve the prediction accuracy, the intersection of
three kinds of software prediction results was selected. A total of 14 IncRNAs were identified
as potential targets of 66 S. miltiorrhiza miRNAs from 18 families according to PmiREN2.0
(Table S7).

Subcellular localization predictions indicated that most S. miltiorrhiza
IncRNAs were found in the cytoplasm and nucleus

Subcellular localization of IncRNA is closely related to its function. At present, many studies
have indicated that IncRNA contains specific RNA motifs with nuclear localization (Zhang
et al., 2014). Meanwhile, in the subcellular localization of IncLocator (Cao et al., 2018), a
total of 3,381 cytoplasms, 3,316 nucleus, 83 exosomes, 51 cytosols, and 20 ribosomes were
obtained from 6,651 candidate IncRNAs. Among our candidate IncRNA-mRNA/TF pairs,
13 IncRNAs were found in the nucleus, 9 IncRNAs were found in the cytoplasm, and 1
IncRNA was found in the exosome (Table S8).
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(A)
Totally 70,357 transcripts
stepl Filter transcripts with Nr, Swissport, KOG annotation
\ 4
s )
30,347 transcripts
\ J
step2 Filter transcripts with ORF > 100 aa, and length < 200 nt
A 4
s )
21,742 transcripts
\ J
stepS Filter transcripts possible containing known protein domain
(Pfam database)
A
e )
21,737 transcripts
\ J
step4 Filter predicted coding gene by PLEK and CPC2 software
A4
s )
21,468 identified IncRNAs
\ J
Filter transcripts with FPKM < 0.05
A
s )
6,651 candidate InNcRNAs
\ J
(B) CPC2

Figure 1 Identification of IncRNAs in S. miltiorrhiza. (A) Pipeline for IncRNAs identification in S. mil-
tiorrhiza. Stepl: transcripts with annotation information in one of the Nr, Swiss-Prot, and COG/KOG
databases were removed; step2: transcripts shorter than 200 nt with an ORF longer than 100 aa were dis-
carded; step3: transcripts were searched against the Pfam database to remove transcripts possibly contain-
ing known protein domains; and step4: the protein-coding potential of each transcript was calculated us-
ing PLEK and CPC2, transcripts with PLEK and CPC2 scores >0 were discarded. nt nucleotide, ORF open
reading frame, aa amino acid. (B) Venn diagram showing the number of IncRNAs identification results in
PLEK and CPC2 software, and their overlap.

Full-size &l DOI: 10.7717/peerj.15332/fig-1
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Figure 2 Characterization of IncRNAs in S. miltiorrhiza. (A) GC% distribution of the identified
IncRNAs and mRNAs in S. miltiorrhiza. (B) Size distribution of the identified IncRNAs and mRNAs in
S. miltiorrhiza.

Full-size & DOI: 10.7717/peerj.15332/fig-2

Genes and TFs involved in diterpenoid biosynthesis from
transcriptomic data

To investigate the potential IncRNAs involved in diterpenoid biosynthesis, we predicted
the potential targets of IncRNAs in cis-regulatory relationships. In transcriptomic
annotation, we obtained 46 diterpenoid biosynthetic genes: GPPS (Van (Schie et al.,
2007), FPPS, GGPPS, CPS, ent-CPS, KS, ent-KS, CYP76AH1 (Guo et al., 2013; Ma et al.,
2016), CYP76AK2, CYP76AK3 (Li et al., 2021), CYP76AKS5 (Xiangdong ¢ Lizhi, 2017),
ent-kaurene oxidase (KO) (Hedden ¢~ Thomas, 2012), ent-kaurenoic acid oxidase (KAO)
(Helliwell et al., 2001), GA 2-oxidase (GA20x), GA 3-oxidase (GA30x), GA 20-oxidase
(GA200x) (Hedden ¢ Thomas, 2012; Du et al., 2015),and 11 TFs: bHLH148, ERF6, GRASI,
MYB36 and WRKY2 (Li & Lu, 2014; Zhang et al., 2015; Li et al., 2015; Li et al., 2019; Ji et
al., 2016), belonging to five TF families: bHLH, ERF, GRAS, MYB, and WRKY. The list of
the above genes is shown in Table S9.

LncRNAs related to the diterpenoid biosynthetic pathway

We detected 6455 IncRNAs that were co-expressed with 46 genes and 11 TFs involved in
diterpenoid biosynthesis. In the PCC matrix, we obtained 45,198 correlation gene pairs
with [PCC|> 0.4 (p < 0.05), of which 47,946 pairs were positively correlated and 5,775
pairs were negatively correlated. At the positional level, combining the results from the two
S. miltiorrhiza genomes (Xu et al., 2016; Ma et al., 2021), a total of 180 pairs of IncRNA-
mRNA/TF were located adjacent to each other within 100 kb (including +3 kb), of which
23 pairs were co-located and co-expressed. A total of 23 candidate IncRNA-mRNA/TF
pairs were obtained (Table S10).
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Figure 3 Tissue specificity of IncRNA expression. Validation of the expression level of 11 IncRNAs in
roots, flowers, stems, and leaves tissues of S. miltiorrhiza. Fold changes of IncRNA levels were shown. The
level of transcripts in roots was arbitrarily set to 1 and the level in other tissues was given relative to this.
Error bars represent the standard deviations of three QRT-PCR replicates.

Full-size B DOIL: 10.7717/peerj.15332/fig-3

LncRNA-mRNA-TF networks and hub genes

The gene co-expression network was constructed with |[PCC| > 0.8 (p < 0.05) as the
threshold, the visualization is shown in Fig. S2A. We obtained 1,402 gene pairs with |PCC|>
0.8. We obtained 24 mRNAs with a degree > 10, which were considered hub genes (Table
S11). In the 23 gene pairs of IncRNA-mRNA/TF, 8 mRNAs were present in these hub genes.
Only two gene pairs Sminc0032870-Sm0012648 (GA20X ) and Smlnc0018769-Sm0037093
(KS2) existed in the network with high expression correlation of 0.85 and 0.80, respectively.
The hub genes Sm0012648 and Sm0037093 in these two gene pairs were used to construct
the subnetworks (Figs. S2B, S2C).

Tissue specificity of IncCRNA expression

Using the qRT-PCR, expression patterns of IncRNAs in the candidate IncRNA-mRNA/TF
pairs were analyzed in roots, stems, leaves, and flowers of 2-year-old field greenhouse-
grown S. miltiorrhiza plants. Of them, 11 IncRNAs were detected in at least one tissue
and showed tissue-specific expression. The other IncRNAs were undetected, suggesting
that they could be not expressed or expressed at a low level in the tissues analyzed.
Sminc0012647, Sminc0032870, Sminc0042160, Sminc0063419, and Sminc0070114 exhibited
the highest expression in root tissue. Sminc0000154, Smlnc0008477, Sminc0019429, and
Smlnc0052170 were more stem-specific. Smlnc0018769 was expressed mainly in flowers
and stems. Smlnc0008662 showed high expression in roots, flowers, and leaves and low
expression in stems (Fig. 3). Thus, IncRNAs showed obvious differential expression in
different tissues, which may be related to their regulatory function. These results suggest
that the expression of IncRNAs may be limited to specific tissue types or regulated by
development in S. miltiorrhiza.
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Figure 4 Time-series expression pattern of candidate IncRNA-mRNA/TF pairs in MeJA-induced

S. miltiorrhiza. Expression of SmInc0008477, Smlnc0018769, Smlnc0008662, Smlnc0000154,

SmInc0012647, SmInc0032870, SmInc0052170, SmIinc0063419, SmInc0042160, Sminc0070114,

Smlnc0019429 and the target gene: $m0056000, S10037093, Sm0063385, Sm0067238, Sm0012648,

S§m0067296, Sm0028870, Sm0009433, Sm0026208 in MeJA-induced S. miltiorrhiza at five time points (0

h, 6 h, 12 h, 24 h, and 48 h). Fold changes of expression levels were shown. The relative expression levels

were normalized against S-actin levels. The level of IncRNA, mRNA, and TF genes in untreated roots (0

h) was arbitrarily set to 1. Error bars represent the standard deviations of three qRT-PCR replicates.
Full-size &l DOI: 10.7717/peerj.15332/fig-4

Time-series expression pattern of candidate IncRNA-mRNA/TF pairs
induced by MeJA and module detection in S. miltiorrhiza

To validate whether the candidate IncRNA-mRNA/TF pairs are related to diterpenoid
biosynthesis, we analyzed the time-series expression patterns of candidate gene pairs in
response to MeJA treatment. MeJA treatment significantly changed the expression of 19
genes in S. miltiorrhiza at least a time-point of MeJA treatment (Fig. S3). As shown in Fig. 4,
the expression of most genes showed a downward trend at the 6 h time point, and only
the Sminc0018769-Sm0037093 pair and Sminc0008662-Sm0063385 pair had an upward
trend. The Smlnc0008477 -Sm0056000 pair and Smlnc0012647 -Sminc0032870 pair had
the same expression trend. The Sminc0042160-Sm0028870 pair had the same expression
trends at 6, 12, and 24 h. The Smlinc0018769-Sm0037093, Sminc0008662-Sm0063385,
and Sminc0052170-Sm0067296 pairs had opposite expression trends at 48 h, whereas the
Sminc0019429-Sm0026208 pair had opposite trends at 24 and 48 h. Interestingly, the two
gene pairs in the co-expression network, Smlnc0032870-5m0012648 and Smlnc0018769-
Sm0037093, which were positively correlated, showed complex expression correlation
under the induction of MeJA, even showed opposite expression trends after 24 h. The hub
genes: Sm0056000, Sm0037097, Sm0063385, and Sm0067296 in the co-expression network
showed significantly differential expression in MeJA-induced S. miltiorrhiza.
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Figure 5 LncRNA-mRNA-TF module, IncRNA-TF module, IncRNA-mRNA module and hub genes

in S. miltiorrhiza. (A—C) Gene expression pattern analysis: three types of network modules, namely,
IncRNA-mRNA-TF module, IncRNA-TF module and IncRNA-mRNA module. (D) Network module
analysis of IncRNAs, mRNAs, and TFs by cytoHubba. The circle node represents IncRNA, the square node
represents mRNA, and the triangle node represents TF gene. Rank 1 indicates the highest rank, and Rank

10 indicates the lowest rank.
Full-size Gl DOI: 10.7717/peerj.15332/fig-5

The data in Fig. 5A showed that Smlnc0063419, Sm0026208, and Sm0067296 had
similar expression patterns, which formed the IncRNA-mRNA-TF module. 5110026208
and Sm0067296 were annotated with TF WRKY2 and mRNA GA3o0x2, respectively.
Smlnc0012647, Sminc0032870, and Sm0009433 had similar expression patterns, as shown
in Fig. 5B. $m0009433 was annotated with TF MYB36. Smlnc0042160 and Sm0037093 had
similar expression patterns, as shown in Fig. 5C. $m0037093 was annotated with mRNA
KS2. Through the plug-in cytoHubba, we calculated the top 10 hub genes (Table S12
and Fig. 5D). The modules of Sminc0063419-Sm0026208-Sm0067296 and Smlnc0012647 -
Sminc0032870-Sm0009433, in which all genes were present in the top 10 hub genes.

DISCUSSION

In this study, the transcriptomic data of S. miltiorrhiza during the tanshinone accumulation
stage were used for exploring the IncRNAs and their target transcripts involved in the
diterpenoid biosynthetic pathway. A total of 6,651 IncRNAs were obtained by a strict
bioinformatic pipeline. We found some common features of IncRNAs, which may be related
to their function. Among the candidate IncRNAs, diterpenoid biosynthetic genes/TFs in
S. miltiorrhiza, we detected 23 candidate IncRNA-mRNA/TF pairs with a cis-regulatory
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relationship. To further verify their relationship, we used MeJA as an inducer to observe the
gene expression of these candidate IncRNA-mRNA/TF pairs with MeJA treatment for 6,
12, 24, and 48 h. Through the expression data of time series, which provided an exploratory
method for the role of IncRNA, three IncRNA-mRNA and/or TF network modules were
finally obtained.

In the present study, the identified IncRNAs of S. miltiorrhiza were found to be shorter in
length compared with protein-coding transcripts, which was consistent with the previous
reports (Hao ef al., 2015; Liu et al., 2018; Shen et al., 2018). The mean GC content of
IncRNAs was slightly lower than that of mRNAs, which has also been reported in Populus
tomentosa (Zhou et al., 2017). Conservation analysis showed that plants of the same genus
are more conservative than those of different families. A previous study also showed
that the majority of IncRNAs have high sequence conservation at the intra-species and
sub-species levels (Deng et al., 2018). Polymerase C-terminal domain (CTD) modifications
[e.g., CTD modification threonine 4 phosphorylation (CTD-T4P)] are on the promoters
of IncRNAs, which leads to the decrease in the polymerase pause and the advance of the
termination in the whole IncRNA genome. The transcription rate of IncRNAs is very fast,
which means that they can quickly act on the regulatory target and respond to the signal.
Therefore, transcription accuracy and sequence conservation were low (Rinn ¢ Chang,
2020). The IncRNA function was maintained across large evolutionary distances even when
the IncRNA sequence substantially diverged (Ulitsky, 2016). Another possible explanation
for this is that RNA secondary structures may be the units of IncRNA words rather than the
primary sequence, and disparate sequences form similar structure—function relationships
to transmit symbolic language like hieroglyphics, thereby forming the molecular grammar
of IncRNAs (Rinn ¢ Chang, 2020).

LncRNAs have been proposed to carry out their functions by cis or trans, transcriptional
regulation cis-acting IncRNAs influence the expression and/or chromatin state of nearby
genes. We predicted IncRNA-mRNA pairs in the cis-acting relationship. The results
of our study showed that 45,198 and 180 IncRNA-mRNA/TF pairs were co-expressed
(|JPCC| > 0.4) or co-localized, respectively, and 23 IncRNA-mRNA/TF pairs were both
co-localized and co-expressed (Table S10). The results indicated that most IncRNAs were
not co-expressed with their nearby coding genes and were transcribed independently in
S. miltiorrhiza (Liao et al., 2011). Two pairs were both co-expressed and co-localized in
the high correlation co-expression network with [PCC| > 0.8. Thus, the modes of action
of IncRNAs were not limited to local regulators. Another possible explanation is that the
strength of the required gene co-expression may depend on the stability or toxicity of the
metabolites, and strong co-expression should only be required for unstable monomers
(Obayashi & Kinoshita, 2009).

Although advances have been made in the miRNA and miRNA target prediction fields,
the precision of miRNA target prediction needs to be improved (Akgiil et al., 2022). To
reduce false positives, we used three kinds of prediction software to predict miRNA targets.
Although many miRNA databases and prediction software are published for plants, few
of them are available (De Amorim, Pedro ¢ Paschoal, 2022). This limitation reduced our
chance to find miRNAs associated with the IncRNA-mRNA/TF pairs in the diterpenoid
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biosynthetic pathway. On the basis of the relationship between miRNAs and IncRNAs, we
predicted that 14 IncRNAs were potential targets or TMs of 66 miRNAs in S. miltiorrhiza,
and no one existed in the candidate IncRNA-mRNA/TF pairs. However, all the results were
predicted preliminarily based on bioinformatic analyses and need to be further validated.

Building gene regulatory networks from transcriptomic studies often results in a static
view of gene expression, which can make it difficult to disentangle the regulatory pathway
structure response to a stimulus. Time-series expression analysis may uncover the temporal
transcriptional logic for plant response systems, and provide more accurate predictions for
targeted breeding (Greenham ¢ McClung, 2018). By studying the time-series expression of
some candidate regulatory pairs inducted by MeJA, we observed a more detailed landscape.
We found that some IncRNAs were downregulated in the early stage. The expression
of the corresponding mRNAs was upregulated in the later stage between the regulatory
pairs, and plants’ response to the signal had a time delay. For example, in response to
vernalization, COOLAIR is transiently induced by prolonged cold, reaching a maximum
expression level after 2 weeks (Swiezewski et al., 2009). Meanwhile, we found that some
genes showed different expression patterns within a period, namely, both upregulated and
downregulated, this phenomenon may be because gene regulatory networks are inherently
complex, with multiple feedback and feedforward loops (Wils ¢~ Kaufmann, 2017).

Nineteen genes were differentially expressed significantly under MeJA-induced, and
some of them were present in hub genes of the co-expression network. These results
indicated that these genes might participate in the biosynthesis of secondary terpenoids
such as tanshinone and also play an important role in the defense response of S. miltiorrhiza.
Our results indicated that the expression levels of $#0056000 (CPS) and Sm0037093 (KS)
were upregulated under MeJA induction, which was also observed in the previous report
(Luo et al., 2014). However, the levels of these two genes Sm0056000 (CPS) and Sm0037093
(KS) started to increase at 12 h and 24 h in our study, respectively. The response of TFs to
MeJA was also observed in this study (Luo et al., 2014), which was consistent with the TF
WRKY we studied. For MeJA treatment, the expression of CYP76AH1 was up-regulated
over time and reached a peak at 12 h in the previous study (Li et al., 2021), however,
after peaking at 6 h, our $m0063385 (CYP76AH]1) expression was down-regulated, and
then it began to up-regulate at 12 h and peaked at 48 h. Previous research has suggested
that WRKYs might regulate the development of bast fiber in response to GA3 stress in
jute (Corchorus capsularis) (Zhang et al., 2020), the Sminc0063419-Sm0026208-5m0067296
module (§m0026208: TF WRKY2, Sm0067296: GA30x2) in our study may form a similar
response module in S. miltiorrhiza.

The tissue specificity and subcellular localization of IncRNAs may suggest their
function. We obtained 3 IncRNA-mRNA and/or TF modules: Sminc0063419-Sm0026208
(TF)-Sm0067296, Sminc0012647 -Sminc0032870-Sm0009433 (TF), and Sminc0042160-
S§m0037093, among of IncRNAs: Sminc0063419, Smlnc0012647, Smlnc0032870, and
Sminc0042160 mainly expressed in roots (Figs. 3 and 5), which was consistent with
the place where tanshinones accumulated of S. miltiorrhiza (Chang et al., 2019). In the
prediction of subcellular localization, Smlnc0012647, Sminc0042160, and Smlnc0063419
were predicted to be located in the cytoplasm, this suggests that these predicted cytoplasmic
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IncRNAs may interfere with protein post-translational modifications or regulate mRNA
export (Chen, 2016). Although Smlnc0012647 and Sminc0032870 existed in the same
module, Smlnc0032870 was predicted to be located in the nucleus, a possible explanation
for this result may be that some IncRNAs are located in both the nucleus and cytoplasm
(Cabili et al., 2015).

CONCLUSIONS

This study set out to investigate the possible functions of the IncRNAs of S. miltiorrhiza
related to diterpenoid biosynthesis, we predicted the potential targets of IncRNAs in
cis-regulatory relationships, a summarizing figure is shown in Fig. S4. Through a strict
bioinformatic pipeline, we identified 6,651 candidate IncRNAs, and obtained three IncRNA-
mRNA and/or TF network modules. This study revealed the possible roles of the IncRNAs
of S. miltiorrhiza related to diterpenoid biosynthesis. These findings indicated that IncRNA
is generally complex in regulating mRNA and/or TF. This study provides useful information
to deepen our understanding of the function and regulatory mechanisms of IncRNAs in
the diterpenoid biosynthetic pathway of S. miltiorrhiza.
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