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ABSTRACT
Graph or network embedding is a powerful method for extracting missing or
potential information from interactions between nodes in biological networks. Graph
embedding methods learn representations of nodes and interactions in a graph with
low-dimensional vectors, which facilitates research to predict potential interactions
in networks. However, most graph embedding methods suffer from high
computational costs in the form of high computational complexity of the embedding
methods and learning times of the classifier, as well as the high dimensionality of
complex biological networks. To address these challenges, in this study, we use the
Chopper algorithm as an alternative approach to graph embedding, which
accelerates the iterative processes and thus reduces the running time of the iterative
algorithms for three different (nervous system, blood, heart) undirected
protein-protein interaction (PPI) networks. Due to the high dimensionality of the
matrix obtained after the embedding process, the data are transformed into a smaller
representation by applying feature regularization techniques. We evaluated the
performance of the proposed method by comparing it with state-of-the-art methods.
Extensive experiments demonstrate that the proposed approach reduces the learning
time of the classifier and performs better in link prediction. We have also shown that
the proposed embedding method is faster than state-of-the-art methods on three
different PPI datasets.

Subjects Computational Biology, Molecular Biology
Keywords Graph embedding, Machine learning, Link prediction, Protein-protein interaction,
Feature generation

INTRODUCTION
Graphs (networks) have been widely used to model the associations and interactions
(edges) between biomedical entities (nodes). The analysis of biomedical networks provides
great insight into explaining various complex biomedical networks such as, long
non-coding RNA (lncRNA)—protein interaction networks (Zhang et al., 2018) and
drug-disease associations (DDA) networks (Gottlieb et al., 2011; Long et al., 2022).
Network embedding methods, which aim to learn internal continuous hidden
representations of nodes, have been proposed for the analysis of networks (Yue et al.,
2020). They can be used to learn latent vectors in machine learning and data mining
models for various downstream tasks such as node clustering, node classification and link
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prediction (Han et al., 2022). Network embedding methods can simplify the representation
of complex networks, but they are based on traditional methods and suffer from high
computational costs, such as high dimension and high computational complexity. One of
the problems in the analysis of biological networks is the high dimensionality of the
embedding matrix, which indicates the topological properties of the network. Another
problem is that the use of high-dimensional data in predicting interactions leads to high
computational complexity in the machine learning methods for the embedding and
prediction task (Xu, 2021). We first present some background about embedding methods,
protein-protein interaction networks and present its applications in biological research.
There are various studies on embedding methods, which can be divided into three main
categories: random walk-based, neural network-based and matrix factorization-based
methods. Random walk-based methods (e.g., DeepWalk (Perozzi, Al-Rfou & Skiena, 2014),
struct2vec (Ribeiro, Saverese & Figueiredo, 2017), node2vec (Grover & Leskovec, 2016))
have been developed to learn node representations by generating ‘node sequences’ through
random walks in networks (Bojanowski, 2017). Random walk-based methods are very
effective in analyzing complex biological networks. Since these methods use topological
information, they can determine the properties of a complex biological network.
Therefore, random walk-based methods can be used in downstream tasks of network
analysis (Nasiri et al., 2021). Neural network-based methods (SDNE (Wang, Cui & Zhu,
2016) and LINE (Tang et al., 2015)) use graph embedding operations. This type of analysis
can be of great use in various biomedical information processing tasks, such as identifying
drug repositioning candidates, predicting missing interactions in protein-protein
interaction networks and discovering the function of a lncRNA. A growing number of
studies are applying graph embedding (network embedding) techniques to graph
simplification and analysis (Nasiri et al., 2021). Matrix factorization-based methods (e.g.,
Isomap (Balasubramanian & Schwartz, 2002), Locally linear embedding (Saul & Roweis,
2000), GF (Ahmed et al., 2013)) aim to keep the topological properties and structure of the
manifold and factorize a data matrix into lower dimensional matrices latent in the base
data matrix (Nasiri et al., 2021). In biological research, Yue et al. (2020) explored how this
idea can be used in three biomedical link prediction problems: protein-protein interaction,
drug-drug association, and drug-drug interaction. They compile different datasets from
popular biomedical databases and use different graph embedding methods for comparison
(Yue et al., 2020). You et al. (2010) developed a robust embedding method to predict new
interactions by using the topological information of PPI networks. They compare their
proposed method with an existing approach and indicate that their method can achieve
better performance in sparse PPI networks. Morever, their method is described as very
effective for large sparse PPI networks (You et al., 2010). Cannistraci, Alanis-Lobato &
Ravasi (2013) proposed a new solution for link prediction by incorporating network
embedding methods. They shed light on the fact that network embedding methods for
predicting new PPI can play an important role in better understanding biological
associations. They compared their method with other embedding approaches. Their
method outperformed other embedding methods in link prediction (Cannistraci,
Alanis-Lobato & Ravasi, 2013). Ieremie, Ewing & Niranjan (2022) propose a trainable
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approach called TransformerGO that predicts PPIs using information from the GO (Gene
Ontology) graph. They apply the node2vec method to generate feature vectors for GO
terms. Then, they use the Transformer model (Vaswani et al., 2017) to learn the semantic
similarity between groups of GO terms. They concluded that the proposed method
outperforms the classical similarity measures and other models that use a similar method
to encode GO terms (Ieremie, Ewing & Niranjan, 2022). Kuchaiev et al. (2009) proposed an
algorithm for embedding PPI networks. They predicted new protein interactions and
evaluated the confidence in existing interactions. They achieved 90% sensitivity and 85%
specificity, and their method can be applied to large-scale network experiments (Kuchaiev
et al., 2009). Chen et al. (2023) propose a model called AdaPPI, a convolutional graph
network that uses PPI networks to predict functional protein modules. Comprehensive
performance evaluations and case studies show that the proposed method significantly
outperforms state-of-the-art methods (Chen et al., 2023). Balogh et al. (2022) present a
novel approach that uses a machine learning model to perform link prediction in PPI
networks. For graph embedding, they use the node2vec and struc2vec methods developed
by Yue et al. (2020). Using their proposed method, they achieved a value of 91.5%
AUCROC with their proposed method (Balogh et al., 2022).

In this article, we aim to reduce the high dimensionality and time consumption (in
terms of embedding time and classifier learning time) for link prediction in biomedical
networks. In our experiments, different protein-protein interaction datasets are used for
link prediction. First, the proposed embedding algorithm is applied to obtain topological
features of networks. The proposed embedding algorithm significantly reduced the
running time compared to state-of-the-art methods. Second, the dimension of the vector
generated by the embedding algorithm that defines the topological features of networks, is
reduced by applying feature generation methods to reduce the prediction time by the
machine learning algorithm. Third, a classification method is applied to predict missing
interactions and possible interactions between protein-protein interaction data. For link
prediction, extensive experiments were performed on three different tissue samples with
protein-protein interactions. Experimental results show that the proposed method
outperforms state-of-the-art methods in terms of runtime and classification results for
each dataset. We experimentally verified that our models can provide the best performance
for the link prediction problem.

The rest of this article is structured as follows. First, we introduce terminology, graph
embedding, link prediction, feature generation techniques, and the proposed approach.
Subsequently, we give a detailed experimental evaluation of the methods used in this study.
Finally, we draw a conclusion and provide directions for further research.

MATERIALS AND METHODS
Datasets
The dataset used in this study contains interaction information for biological networks
representing human protein-protein interactions (PPI) in a tissue. In the undirected and
unweighted PPI network, nodes represent human proteins that are specifically active in
that tissue, and an edge indicates a biological interaction between a pair of proteins. Here
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we consider the PPI prediction task as a link prediction problem. If there is an interaction
between proteins, it is represented as a positive interaction; otherwise, it is represented as a
negative interaction. Negative interactions were generated by random pairing of proteins.
In this study, we use three different tissue PPI datasets (Nervous System, Blood, Heart)
obtained from Stanford Network Analysis Project (SNAP) compiled by Zitnik & Leskovec
(2017) (http://snap.stanford.edu/ohmnet/). The nervous system tissue dataset contains
3.533 unique proteins with 54.555 positive interactions, the blood tissue dataset contains
3.316 unique proteins with 53.101 positive interactions and the heart tissue dataset
contains 3.201 unique proteins with 48.719 positive interactions. The descriptive statistics
of these datasets are shown in Table 1.

EXISTING METHODS
This study focuses on reducing the embedding time with an effective embedding algorithm
and reducing the learning time of the classifier by reducing the dimension of the
embedding matrices. It also improves the success level in comparison with state-of-the-art
methods by using the information from PPI to exploit the downstream tasks such as link
prediction. In this section, (i) graph embedding, (ii) link prediction, (iii) feature generation
are explained.

Graph embedding
Let G = (V, E) be an unweighted and undirected graph where V symbolizes the set of
vertices (nodes) and E is the set of interactions (edges) in this network. For this network, a
network embedding is defined as a matrix H e RðnxdÞ; where n = jVj. Here, d is a parameter
defining the number of dimensions in the embedding feature space. Each row of this
matrix (H) represents the embedding of u as hu e Rd for each node u e V. The task of graph
embedding is to map this graph into a continuous latent space for a given d dimension
(Coşkun & Koyutürk, 2021).

Baseline graph embedding methods
For baseline graph embedding methods, we use BioNEV (https://github.com/
xiangyue9607/BioNEV) developed by Yue et al. (2020) to learn node embedding for single
value decomposition (SVD) (Dai et al., 2015), graph auto-encoders (GAE) (Kipf &
Welling, 2016), graph representation (GraRep) (Cao, Lu & Xu, 2015), large-scale
information network embedding (LINE) (Tang et al., 2015), graph factorization (GF)
(Ahmed et al., 2013). These methods were preferred because high performance metrics

Table 1 Descriptive statistics of the networks used in the experiments.

Name of tissue # of nodes # of interactions

Nervous system 3.533 54.555

Blood 3.316 53.101

Heart 3.201 48.719
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were obtained using these approaches in BioNEV. In this section, we provide a brief
overview of the different graph embedding methods.

Graph embedding methods are basically divided into three groups. Random walk-based
embedding methods: this method starts with a particular initial node and then randomly
selects one of its neighbors. This process is repeated for all nodes to obtain node sequences.
These sequences are used to uncover hidden information. DeepWalk, struc2vec and
node2vec are the algorithms of this method. Matrix factorization (MF)-based embedding
methods: this method aims to transform large dimensional matrices used as input data
into low dimensional matrices. The topological properties are preserved. SVD, GraRep and
HOPE are the algorithms for this method. Neural network-based methods: various neural
networks such as Graph Convolutional Network, Autoencoder and Generative Adversarial
Network have also been extensively used for graph embedding methods recently.
Embedding is performed using different types of graph information as input and different
neural architectures. LINE, GAE and SDNE are the algorithms for this method (Yue et al.,
2020). GF (graph factorization) learns a low-rank factorization for the adjacency matrix,
minimizing the loss of graph regularization. Instead of using the Laplacian matrix, which
focuses on factorization, GF directly uses the adjacency matrix to capture first-order
proximity (Song et al., 2022). GAE (Graph Autoencoder) encodes both MLP-based and
RNN-based methods and utilizes the GCN structure for this encoding. Also, GAE is an
unsupervised framework that uses both topological and content information (Pan et al.,
2018; Song et al., 2022). LINE is an efficient graph embedding method that transfers
real-world problems into a graph structure while preserving them in a scalable way. It is
optimized with the Kullback-Leibler metric (KL) by combining first and second order
affinities. It uses a sigmoid function for the first order objective and another function for
the second order objective. LINE computes the approximations and factorizes them
comprehensively (Song et al., 2022). GraRep evaluates the high-order proximity of the
network and generates k-step transition probability matrices for factorization. It also uses
the node transition probability matrix to capture the similarity of high value nodes (Song
et al., 2022). SVD is an MF-based embedding method and is described in detail in the
(Lepolesa, Achari & Cheng, 2022).

Proximity matrix generation
Proximity matrices are used to encapsulate information about the node’s closeness to one
another. Various embedding methods use different proximity matrices. A more detailed
overview of the proximity matrices used in the network embedding context, can be found
in Coşkun & Koyutürk (2021).

In this article, we choose the random walk with restart (RWR)-based proximity matrix
as our proximity matrix as it can capture multi-facet relationships among the nodes.
In other words, the RWR-based proximity matrix encodes different path associations
among the nodes. To compute this RWR-based proximity matrix, we have used the
Chopper algorithm (Coskun, Grama & Koyuturk, 2016) (http://compbio.case.edu/
chopper/).
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The Chopper algorithm has been designed to efficiently compute random walk restarts
algorithms. The basic idea behind Chopper is that, in the random walk procedure,
remembering the walk that passes through in each node, i.e., power method based
approaches only rely on the one previous iteration step, while Chopper remembers all
previous iterations (walk). To enable this remembering walk, the Chopper utilizes
Chebyshev Polynomials, please see Coskun, Grama & Koyuturk (2016), for more details.
Overall, Chopper and random walk with restarts algorithms compute the same proximity
matrices, however, Chopper is much more efficient than power method-based iterative
approaches. In essence, the Chopper algorithm computes the same proximity matrix with
random walk restart procedure. The advantage of Chopper is that it computes the
RWR-based proximity matrix much more efficiently than that of iterative methods
(Coskun, Grama & Koyuturk, 2016) by remembering the paths visited by the random
walker. To do so, the Chopper algorithm utilized Chebyshev Polynomials and eventually
computes the following RWR-based proximity matrix:

W ¼ aðI� ð1� aÞD�1AÞ�1; (1)

where I denotes the identity matrix, a is the damping factor, which is set to 0.15 (Coskun,
Grama & Koyuturk, 2016), D is degree matrix that contains degrees of each node in its
diagonal, and A is the adjacency matrix. Overall, in this article, we use this RWR-based
proximity matrix, W, to generate features from it.

Link prediction problem
Link prediction deals with the computation of the likelihood that two given nodes will
obtain an edge (potential interaction). Link prediction is useful for discovering previously
unknown interactions and for identifying missing or spurious interactions. Link prediction
is widely used in various biomedical tasks, such as protein-protein interaction prediction,
drug-disease association prediction, drug response prediction and drug-drug interaction
prediction (Coşkun & Koyutürk, 2021). In this article, the model, trained and developed
using information on protein-protein interactions, is used as an input for link prediction.

Feature generation techniques
The main idea behind the proposed feature generation methods is to determine a small
set of entities (nodes) that can be used to represent the position and topological
properties of nodes in the network. We use feature generation techniques to reduce the
high-dimensional vector and express the information of the graph in smaller dimensions.
In this study, we use the Pearson correlation (Pearson, 1896), Lasso regression (L1 Norm),
Ridge Regression (L2 Norm) (Golub & Von Matt, 1997) and Kullback Leibler (KL)
divergence method (Kullback & Leibler, 1951) as regularization techniques to obtain
topological features of nodes from the original embedding data. The high dimensional
proximity space is represented by these values, which express the topological features of
nodes. In machine learning applications, the Pearson correlation coefficient is a significant
method used to measure the similarity of multiple data variables. Pearson correlation
coefficient is computed as follows:
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qX;Y ¼ covðX;YÞ
rXrY

¼ EððX � lXÞðY � lYÞÞ
rXrY

(2)

where cov(X,Y) is the covariance between the variable node X and node Y, also rX ;rY are
standard deviations of variable node X and node Y. E(X) is the expected value of node X.

L1 norm is defined as the sum of the magnitude of the vectors in a space. One of the
most efficient methods of measuring the distance between vectors is the sum of the
absolute differences of the components of the vectors. The L2 norm is the best-known
norm type. It is defined as the shortest distance between two points and all components of
the vector are squared. The Lp norm can be calculated as follows:

jjxjjp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

jxijpp

s
(3)

L1 norm, written as jjxjj1 for p = 1, is defined as follows:

jjxjj1 ¼
Xn
i¼1

jxi j (4)

L2 norm is defined as follows for p = 2:

jjxjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

jxij2
s

(5)

The Kullback-Leibler (KL) divergence was proposed by Kullback & Leibler (1951).
The KL divergence can be used to measure the difference between two probability discrete
distributions; and calculated as follows:

KLðqXÞ ¼
Z

qYðuÞln
qYðuÞ
qXðuÞ

du (6)

where m-dimensional random vectors X and Y have densities qX and qY in the network,
respectively.

PROPOSED METHOD
Figure 1 summarizes the outline of our proposed method. As shown in Fig. 1, our method
is composed of four main tasks: (i) prepare train and test dataset; (ii) learning of the
embeddings; (iii) apply feature regularization techniques to feature generation; and (iv)
prediction of the links. The contributions of the proposed model can be summarized as
follows.

� Protein-protein interactions are split into test set (30%) and training set (70%). Here, all
known interactions are considered as positive interactions. If there is an interaction
between the node pairs, it is represented as a positive interaction, otherwise as a negative
interaction. Since the number of positive node pairs is much lower than the number of
negative node pairs, negative interactions are randomly selected to be used for testing
phases, with the same number of positive interactions.
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Figure 1 The general approach of the proposed method. It consists of three parts. The first component consists of the input data and the pre-
processing of that data. The second component is the step of applying the embedding algorithm. The third component includes the application of
feature generation. Full-size DOI: 10.7717/peerj-15313/fig-1
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� In order to generate structural proximities, the proposed RWR-based embedding
algorithm (Chopper) is applied to the training set to obtain a faster value for network
proximity values, which reduces the running time. For each pair of nodes we assign the
label ‘1’ if the pair has an edge in the training network. However, we assign the label ‘0’ if
there are no edges between the nodes.

� Feature regularization methods (Pearson correlation, KL divergence, L1 norm and L2
norm) are applied to this network proximity matrix to generate intrinsic features with
much lower dimension. Thus, a N � N dimensional vector (N: number of nodes)
containing the proximity values is reduced to a four-dimensional vector for each node.

� The learned new vectors are utilized as inputs in a logistic regression classifier to predict
new interactions. This classifier divides feature scores into train set (70%) and test set
(30%).

Previous approaches to link prediction typically use RWR-based network proximity
measures to evaluate the interaction between node pairs (Valdeolivas et al., 2019). For the
networks, we evaluate the performance of the algorithms using randomized test and
training sets. The randomized test sets are repeated three times for each algorithm.
For each randomized test set, we select a certain test ratio of interactions (edges) in the
network uniformly at random, remove these interactions from the network, and reserve
them as positive test sets. Then we compute the node embeddings and perform the training
on the remaining network.

Implementation of the proposed method
The proposed method in this study aims to uncover hidden, unknown, and possible
interactions from already known interactions using PPIs. The experiments are performed
using Python and Matlab programming languages. This approach can be used for
interaction analysis between different data types and processes. The damping factor and
restart vector for the Chopper algorithm can be configured by the user. After reading the
entire dataset, non-interaction nodes are generated from known interactions. The data is
split into a training set and a test set, then the test set is removed from the entire data set.
The Chopper algorithm, an embedding algorithm, is applied to the training set to obtain
the proximity values between nodes (proteins). Then, using these proximity values, feature
generation techniques are applied to the interactions in the test set.

RESULTS
In this section, we comprehensively evaluate the performance of the proposed method.
We first present the experimental settings and then compare the proposed method with
state-of-the-art-methods in terms of time consumption (embedding time and learning
time of classification algorithm) and link prediction performance. In the experiments, we
plotted the time-consuming criteria, accuracy, AUC and F1-measure scores to display the
performance of the proposed method.
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Experimental settings
In this section, we perform extensive experiments to verify the proposed method for link
prediction. All experiments mentioned in this article were performed on a machine with
Intel(R) Core(TM) i7-4710HQ 2.50 GHz, 4 core CPU, 16 GB RAM. The Chopper
algorithm is implemented inMatlab programming language, and the feature regularization
techniques and preprocessing steps are implemented in Python programming language
version 3.8. We randomly split all known PPI pairs into the training and testing dataset.
To better train the models, a negative sampling strategy is used. Negative PPI information
was randomly sampled from the unknown PPI informations and an equal number of
negative and positive informations are used for the model training and testing phases of
the model, as proposed in Long et al. (2022). The following parameters are used while
running the Chopper algorithm:

i) The dimension is set to N × N (N: number of nodes)

ii) The damping factor (a) is set to 0.85

iii) The restart vector (rq) is set to 1 at its qth entry and 0 at all other entries

The parameters of the regularization techniques are used as default values. To evaluate
the performance of the proposed method in terms of embedding time and prediction time,
we also use seconds as the unit of time. Logistic regression method was used as the classifier
and experiments were performed with default parameters. To evaluate the performance of
the proposed methods, the area under ROC curve (AUROC) values were also used.
The experiments were performed with test ratios of 30%. Three different AUROC scores
were obtained by repeating the procedures three times.

Performance evaluation
In this section, we evaluate the performance of the proposed method in terms of time
consumption (embedding learning and classification learning) and link prediction
performance. In this evaluation, we use embedding methods such as SVD, GAE, GF,
GraRep, LINE, which are among the traditional methods widely used in the literature.
Graph embedding algorithms are time consuming as they represent high-dimensional data
with graphs and convert these structures into vector form. Therefore, we first evaluate the
superiority of the proposed method in terms of embedding time. After graph embedding,
the proposed approach reduces the size of the input data by creating new features. After
dimensionality reduction with feature generation techniques, the learning time of the
classifier and the performance of machine learning in link prediction are also important.
Therefore, in addition to the graph embedding times, the learning times of the classifier
and the performance of machine learning are also evaluated.

Comparative evaluation in terms of embedding learning time
In the proposed method, the Chopper algorithm is used as the embedding algorithm.
The Chopper algorithm produces a matrix containing the proximity values of nodes to
each other. In experiments, the number of rows represents rows for traditional methods,
and the number of columns is used with the default value of 100 for all datasets and
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methods. In the Chopper algorithm, rows and columns also represent the number of
nodes. We repeat each experiment three times. The comparison of the embedding learning
time of the six methods is summarized in Fig. 2. As can be seen in Fig. 2, the proposed
method achieved the best results, which means that it outperforms the other five state-of-
the-art methods in all datasets. For heart tissue, the performance of the chopper algorithm
is in the range of 0.0039 to 0.0044 s, whereas the SVDmethod comes closest to the chopper
algorithm in the range of 1.22–1.33 s. For blood tissue, the chopper algorithm achieves an
embedding learning time of 0:0043� 0:0012 s, which is nearly 28 times higher than the
second best method, SVD. For nervous system tissue, the performance of the chopper

Figure 2 Comparison of embedding learning times in the training process for three different tissue datasets. The x-axis represents the
embedding algorithms including the proposed method, and the y-axis represents the learning times in seconds.

Full-size DOI: 10.7717/peerj-15313/fig-2
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algorithm ranges from 0.0046 to 0.0059 s, with the SVD method coming closest to the
chopper algorithm in the range of 1.26–1.37 s. Using the appropriate datasets, the longest
learning time in terms of embedding learning time is obtained with the LINE algorithm.
While the learning times for SVD, GF and GAE are approximately the same with the
proposed method, it is highlighted that graph embedding takes a lot of time, especially
when using the LINE algorithm and the GraRep algorithm.

Figure 3 Comparison of learning times of the classifier for three different tissue datasets. The x-axis represents the embedding algorithms and
the y-axis represents the learning time of the classifier in seconds for classification using the logistic regression classification method.

Full-size DOI: 10.7717/peerj-15313/fig-3
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Comparative evaluation in terms of classifier learning time
While conventional methods classify using 100-dimensional embedding matrices, the
proposed method uses four features whose interactions are represented by the embedding
matrix. The proposed method shows superior performance on all tissue samples. The most
successful results were obtained with the proposed method respectively between 0.054 and
0.155 s for nervous tissue, between 0.046 and 0.187 s for blood, and between 0.045 and
0.165 s for heart.

Classification prediction time is also important for our model. Therefore, another
evaluation criterion is the learning time of the classifier. While conventional methods
classify with 100-dimensional embedding matrices as default option, the proposed method
uses four-dimensional ones. The interactions of which are represented by the embedding
matrix. We attempt to shorten the learning time for classification by obtaining
low-dimensional informative data from the high dimensional data. The proposed method
shows superior performance on all tissue samples, as shown in Fig. 3. The most successful
results were obtained with the proposed method respectively between 0.054 and 0.155 s for
nervous tissue, between 0.046 and 0.187 s for blood tissue, and between 0.045 and 0.165 s
for heart tissue. The results closest to the proposed method are obtained using the GF
algorithm for each tissue sample. Among the other methods compared, the SVD, GAE,
LINE and GraRep algorithms are for blood tissue, heart tissue and blood tissue, the SVD,
GAE, GraRep and LINE algorithms are for heart tissue and blood tissue, respectively.

Link prediction performance

In this section, we compare the proposed method in terms of AUC, Accuracy and F1-
measure scores with different embedding algorithms in biomedical networks. Figure 4
compares the link prediction performance of the proposed method with other embedding
algorithms. In Fig. 4, each graph embedding algorithm is represented by a different color.
Accuracy, AUC, and F1-metrics are obtained for each method for each tissue network.
Each column shows a different algorithm, the first row shows the accuracy values, the
second row shows the AUC values, and the third row shows the F1-measure values for
different datasets. The AUC value is used to compare the performance of the proposed
method with other embedding algorithms.

Based on these results, we can make the following observations.

� The proposed method achieves an AUC of about 86–88% for the blood tissue dataset
and an AUC of about 86–89% for the heart tissue dataset. For the nervous system tissue
dataset, AUC values between 86–88% are obtained. The proposed method performs
better than the other tested embedding algorithms.

� The closest link prediction performance values to the proposed method are obtained
using the SVD algorithm, for all tested tissue networks. With the SVD algorithm, an
AUC value of about 85–87% is obtained. Following the SVD algorithm, the next best
results are obtained with the GraRep, GF, GAE, and LINE methods, respectively.

� In addition, the AUC confidence intervals at the 95% level are (0.857, 0.863) for blood
tissue, (0.877, 0.883) for heart tissue, and (0.867, 0.873) for nervous system tissue.
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DISCUSSIONS
In this article, we propose a method based on embedding algorithms and feature
generation methods to solve the link prediction problem in biomedical networks. We have
comparatively analyzed our method with other graph embedding and feature generation
methods for the link prediction problem. The experiments were performed on three
different tissue datasets that contained information about protein-protein interactions in
different tissues. We have extensively tested embedding methods such as Chopper, SVD,

Figure 4 Link prediction performance of graph embedding computed by using different embedding methods. In each figure, the x-axis
represents the algorithms (methods) that use embedding on PPIs, the y-axis represents the accuracy, AUC and F1-measure for link prediction.

Full-size DOI: 10.7717/peerj-15313/fig-4
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GAE, GF, GraRep and LINE in terms of time consumption; and feature regularization
techniques in terms of dimension reduction and learning time of the classification method.
Our experiments show that the proposed method outperforms the state-of-the-art
methods in terms of embedding time and classification learning time. The graph
embedding is achieved in shorter time with the proposed approach, as shown in Fig. 2.
Also, the learning times of different classifiers are compared in Fig. 3. Both time analyzes
demonstrated that the proposed approach outperforms the compared methods. Moreover,
different performance metrics achieved by the proposed approach and by other
approaches are comparatively evaluated in Fig. 4. As this figure implies, our approach
provides better link prediction performance than state-of-the-art methods. With the
proposed approach, more accurate results can be achieved in shorter time. With this
approach, the transition from high-dimensional data to low-dimensional data is achieved.
As a future work we consider the following tasks: (i) The proposed method will be applied
to heterogeneous biological samples (protein-drug, disease-drug, protein-disease); (ii) the
Chopper algorithm will be updated, new technologies will be integrated; (iii) We plan to
create a web tool to retrieve the results simply by uploading the input data, which can
facilitate the usage of the tool by the molecular biologists and geneticists.

CONCLUSION
In this article, we propose a link prediction method based on proximity measures and
feature generation methods that offers lower computational costs. We evaluate this
approach on several biological data. Three different biological tissue data containing PPI
information are extensively compared with the performance of the proposed method using
five different embedding methods. These experiments highlight the better performance of
the proposed method. Therefore, the proposed approach can be used and evaluated in
biomedical studies with complex interaction data. The proposed method will be used in the
diagnosis and treatment of common diseases by integrating its parameters and interacting
structures with current technologies. In this way, this approach is expected to contribute to
low computational cost and high accuracy of diagnosis and treatment time.

ABBREVIATIONS
AUC Area under the ROC Curve

ROC Receiver Operating Characteristic

LR Logistic Regression

PPI Protein-Protein Interaction

RWR Random Walk with Restart

SVD Singular Value Decomposition

GraRep Graph Representation

GAE Graph Auto-Encoders

GF Graph Factorization

LINE Large-scale Information Network Embedding

BioNEV Biomedical Network Embedding Evaluation

KL Kullback-Leibler
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L1 Norm Lasso Regression

L2 Norm Ridge Regression
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