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ABSTRACT
Background: Emergence of Vibrio parahaemolyticus pandemic strain O3:K6 was
first documented in 1996. Since then it has been accounted for large outbreaks of
diarrhea globally. In Thailand, prior studies on pandemic and non-pandemic
V. parahaemolyticus had mostly been done in the south. The incidence and
molecular characterization of pandemic and non-pandemic strains in other parts of
Thailand have not been fully characterized. This study examined the incidence of
V. parahaemolyticus in seafood samples purchased in Bangkok and collected in
eastern Thailand and characterized V. parahaemolyticus isolates. Potential virulence
genes, VPaI-7, T3SS2, and biofilm were examined. Antimicrobial resistance (AMR)
profiles and AMR genes (ARGs) were determined.
Methods: V. parahaemolyticus was isolated from 190 marketed and farmed seafood
samples by a culture method and confirmed by polymerase chain reaction (PCR).
The incidence of pandemic and non-pandemic V. parahaemolyticus and VPaI-7,
T3SS2, and biofilm genes was examined by PCR. AMR profiles were verified by a
broth microdilution technique. The presence of ARGs was verified by genome
analysis. V. parahaemolyticus characterization was done by multilocus sequence
typing (MLST). A phylogenomic tree was built from nucleotide sequences by
UBCG2.0 and RAxML softwares.
Results: All 50 V. parahaemolyticus isolates including 21 pathogenic and 29
non-pathogenic strains from 190 samples had the toxRS/old sequence, indicating
non-pandemic strains. All isolates had biofilm genes (VP0950, VP0952, and
VP0962). None carried T3SS2 genes (VP1346 and VP1367), while VPaI-7 gene
(VP1321) was seen in two isolates. Antimicrobial susceptibility profiles obtained
from 36 V. parahaemolyticus isolates revealed high frequency of resistance to colistin
(100%, 36/36) and ampicillin (83%, 30/36), but susceptibility to amoxicillin/
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clavulanic acid and piperacillin/tazobactam (100%, 36/36). Multidrug resistance
(MDR) was seen in 11 isolates (31%, 11/36). Genome analysis revealed ARGs
including blaCARB (100%, 36/36), tet(34) (83%, 30/36), tet(35) (42%, 15/36), qnrC
(6%, 2/36), dfrA6 (3%, 1/36), and blaCTX-M-55 (3%, 1/36). Phylogenomic andMLST
analyses classified 36 V. parahaemolyticus isolates into 5 clades, with 12 known and
13 novel sequence types (STs), suggesting high genetic variation among the isolates.
Conclusions: Although none V. parahaemolyticus strains isolated from seafood
samples purchased in Bangkok and collected in eastern Thailand were pandemic
strains, around one third of isolates were MDR V. parahaemolyticus strains.
The presence of resistance genes of the first-line antibiotics for V. parahaemolyticus
infection raises a major concern for clinical treatment outcome since these resistance
genes could be highly expressed under suitable circumstances.

Subjects Aquaculture, Fisheries and Fish Science, Food Science and Technology, Microbiology,
Molecular Biology
Keywords V. parahaemolyticus, Seafood, Antimicrobial resistance, Genetic diversity, Multilocus
sequence typing, Thailand

INTRODUCTION
Seafood is generally a good source of high-quality proteins, essential amino acids, and
healthy fats for a lower calorie intake per portion compared to other animal meats. Due to
the increase in global consumption of seafood products, oversight of seafood quality is a
priority to prohibit contamination from seafood-borne pathogens (FAO, 2020; Choudhury
et al., 2022). Vibrio parahaemolyticus is a Gram-negative bacterium commonly found in
seawater, seafood (particularly oysters), and aquatic products (Nakaguchi, 2013; Odeyemi,
2016). It is a leading cause of human gastroenteritis following consumption of raw or
improperly cooked contaminated seafood (Martinez-Urtaza & Baker-Austin, 2020).
Pathogenicity of V. parahaemolyticus infection has been attributed to the expression of
virulent determinant genes including tdh (thermostable direct hemolysin, TDH), trh
(TDH-related hemolysin, TRH), pathogenicity islands (PAIs), type III secretion system
(T3SS1 and T3SS2), and biofilm formation genes (Raghunath, 2015; Klein, Pipes & Lovell,
2018; Li et al., 2019; Sharan et al., 2022). V. parahaemolyticus strains are classified into
pathogenic, non-pathogenic, pandemic, and non-pandemic strains (Okura et al., 2003;
Meador et al., 2007; Chao et al., 2009; Lopez-Joven et al., 2015). Pathogenic strains harbor
tdh and/or trh genes while non-pathogenic strains lack both tdh and trh genes. Pandemic
strains harbor both tdh gene and toxRS/new gene (the pandemic marker gene containing
the unique base changes in the regulatory gene, toxRS). Non-pandemic strains lack both
tdh and toxRS/new genes genes (Okura et al., 2003; Meador et al., 2007; Chao et al., 2009;
Lopez-Joven et al., 2015).

The first pandemic strain of V. parahaemolyticus O3:K6 was documented in February
1996 in Kolkata, India (Okuda et al., 1997). Infections caused by the O3:K6 strain and
related serovariants, collectively called pandemic strains, were responsible for several large
gastroenteritis outbreaks in humans (Nair et al., 2007). V. parahaemolyticus new/
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pandemic O3:K6 strains isolated since 1996 produced only TDH while the old O3:K6
strains isolated before 1996 produced only TRH (Okuda et al., 1997; Honda, Ni &
Miwatani, 1988). Several studies have detected pandemic V. parahaemolyticus serovariants
not only in clinical samples (Li et al., 2014; Pazhani et al., 2014; Ueno et al., 2016), but also
in seafood and other environmental samples (Arakawa et al., 1999; Deepanjali et al., 2005;
Quilici et al., 2005; Caburlotto et al., 2010; Haley et al., 2014; Jingjit et al., 2021), indicating
that the pandemic strains have established ecological niches around the world. Although
tdh and trh are associated with pathogenic strains, several studies have reported about 10%
of clinical strains do not contain tdh and trh suggesting that pathogenicity could be caused
by additional virulence factor(s) (Jones et al., 2012; Li et al., 2014; Pazhani et al., 2014).

The pathogenic potentials of V. parahaemolyticus are also associated with increased
resistance to antimicrobials because of excessive use and misuse of antimicrobials in
humans, agriculture, and aquaculture systems (Mazel & Davies, 1999; Cabello, 2006;
Igbinosa, 2016). In recent reports, V. parahaemolyticus strains isolated from seafood,
clinical, and environmental samples were highly resistant to multiple antibiotics including
amoxicillin, ampicillin, ciprofloxacin, cefazolin, ceftazidime, cefotaxime, cefuroxime
sodium, colistin, gentamicin, penicillin, spectinomycin, tetracycline and doxycycline (Tan
et al., 2020; Ashrafudoulla et al., 2021; Dutta et al., 2021). Among antibiotic-resistant
profiles, tetracycline, doxycycline, a 3rd-generation cephalosporin, and quinolone
including ciprofloxacin are recommended for the treatment of severe or prolonged
V. parahaemolyticus infection (Ashrafudoulla et al., 2021; Dutta et al., 2021; Rezny &
Evans, 2022). Several studies demonstrated that seafood is a potential reservoir for the
dissemination of multidrug resistant (MDR) V. parahaemolyticus (Letchumanan et al.,
2015; Jeamsripong, Khant & Chuanchuen, 2020; Li et al., 2020).

In Thailand, V. parahaemolyticus is the major causative agent of human gastroenteritis,
occurring in about 50–60% of gastroenteritis cases (DDC, 2020). Incidence of human
gastroenteritis in Thailand has increased every year and has been linked to consumption
and mishandled of seafood contaminated with V. parahaemolyticus (DDC, 2020). The first
report of the O3:K6 pandemic strain was obtained from patients at Hat Yai Hospital
located in southern Thailand in 1988 (Matsumoto et al., 2000). Since then the studies of
pandemic and non-pandemic V. parahaemolytics strains have been mainly conducted in
southern parts of the country (Vuddhakul et al., 2000; Laohaprertthisan et al., 2003;
Vuddhakul et al., 2006; Wootipoom et al., 2007; Bhoopong et al., 2007; Thongjun et al.,
2013; Han et al., 2016; Jingjit et al., 2021). Molecular fingerprinting methods have
suggested possible epidemiological linkage between the clinical and the environmental
strains in southern Thailand (Vuddhakul et al., 2006). Very limited information on
occurrence and molecular characterization of pandemic and non-pandemic strains is
available in other areas of Thailand with high concentration of seafood sources. This study
aimed to investigate the occurrence of V. parahaemolyticus pandemic and non-pandemic
strains, the characterization of V. parahaemolyticus isolates, the presence of pathogenic
potential genes including VPaI-7, T3SS2 and biofilm formation genes, and AMR profiles of
V. parahaemolyticus isolated from raw seafood in Bangkok and eastern Thailand (highly
populated areas). These findings will add to the body of knowledge and surveillance
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information of V. parahaemolyticus that would be useful for relevant stakeholders to make
informed-decision in the aquaculture management, food safety, and public health
strategies.

MATERIALS AND METHODS
Sample collection and V. parahaemolyticus isolation
Sample size estimation was based on the assumption of previous prevalence of 59% of
V. parahaemolyticus contamination in seafood collected in Bangkok, Thailand (Atwill &
Jeamsripong, 2021). The formula (n = Z2P(1−P)/d2), 95% confidence level and 7% margin
of error were used in this study to obtain the representative sample with a less expensive
survey (Daniel, 1999; Pourhoseingholi, Vahedi & Rahimzadeh, 2013). In this formula, n is
the sample size, Z is the statistic for a level of confidence, P is expected prevalence, and d is
precision or margin of error. The required samples were 190 samples which were collected
from different sources, time, and locations. Of 190 samples, 143 and 31 samples were
purchased in Bangkok, Thailand in 2018 and 2021 to 2022, respectively and 16 samples
were collected from different shrimp farms in eastern Thailand in 2013. Among 174 of
samples purchased in Bangkok, Thailand, 84 and 90 samples were purchased from fresh
markets and supermarkets, respectively. Of 90 samples purchased from supermarkets, 40
samples were frozen seafood. One hundred and ninety samples comprised of crabs (n = 20;
blue swimming crabs, red swimming crabs, and mud crabs), fish (n = 50; groupers,
mackerels, ornate threadfin bream, and giant seaperch), mollusc shellfish (n = 50; blood
cockles, green mussels, oysters, short-necked clams, and spiral babylon snails), shrimp
(n = 50; giant tiger prawns and Pacific white shrimp) and squids (n = 20; splendid squids,
Dollfus’ octopuses, and giant squid tentacle).

For sample purchasing, markets were chosen based on geography to ensure complete
coverage of Bangkok and each market was visited only once. After purchasing from
markets or collecting from farms, samples were individually packed in a sterilized
plastic bag and transported on ice to the laboratory and processed within 2 h. For
V. parahaemolyticus isolation from marketed and farmed samples, a 2.5-g portion of
seafood sample was aseptically transferred into a stomacher bag containing 22.5 mL of
tryptic soy broth (TSB) supplemented with 2% NaCl, mixed thoroughly by hand for 1 min
and kept at room temperature for 30 min. Thereafter, the sample was removed from the
broth which was incubated at 37 �C for 16 h before culturing on selective media of
thiosulfate citrate bile salts sucrose agar (TCBSA, Difco Laboratories, Franklin Lakes, NJ,
USA). V. parahaemolyticus colonies were opaque and blue-green color with 2–3 mm in
diameter on the TCBS agar plates. V. parahaemolyticus colonies were further confirmed
using CHROMagarTM Vibrio (CHROMagar, Paris, France) of which the positive colonies
gave mauve color and were collected for further characterization (Ahmmed et al., 2019).

Polymerase chain reaction (PCR)
The isolates obtained from CHROMagarTM Vibrio were further confirmed for
V. parahaemolyticus by PCR using species-specific PCR primers targeting toxR gene (Kim
et al., 1999). To identify the pandemic O3:K6 strain and its serovariants, PCR primers
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targeting tdh and toxRS/new genes were used (Tada et al., 1992; Matsumoto et al., 2000).
PCR primers targeting toxRS/old were used for determining the O3:K6 strains isolated
before 1996 (Okura et al., 2003). PCR primers targeting one VPaI-7 open reading frame
(ORF), two TSSS2 genes, and three biofilm genes, were used to identify genes involved in
pathogenesis (Chao et al., 2009; Chao et al., 2010). PCR primers and conditions used in this
study were summarized in Table 1. Briefly, the PCR reaction was performed in a 25-mL
reaction volume, containing 12.5 mL GoTaq� Green Master Mix solution (Promega,
Madison, WI, USA), 2 mL of DNA template (50 to 70 ng) and milli-Q water for adjusting
final volume up to 25 mL. Gene-specific primer sets were added to corresponding PCR
reactions: 0.1 mM of each primer for tdh gene; 0.6 mM of each primer for three biofilm
genes; 0.8 mM of each primer for toxR, toxRS/old, and toxRS/new genes; and 1 mM of each
primer for VPaI-7 and T3SS2 genes. PCR amplifications were performed in triplicate for
each sample. PCR products were analyzed by electrophoresis at 75 V for 40 min in 1.5%
agarose (Vivantis Technologies, Malaysia) with a 1X TAE (Tris-Acetate + EDTA) buffer.
Agarose gels were stained in SYBRTM Safe DNA Gel Stain (Thermo Fisher Scientific,
Waltham, MA, USA). Amplicon bands were observed under UV light.

Antimicrobial susceptibility testing
The minimum inhibitory concentrations (MICs), the lowest drug concentration inhibiting
visible growth, of different antimicrobial drugs were determined by the broth
microdilution technique utilizing a semi-automatic procedure (Sensititre, Trek Diagnostic
Systems Ltd., West Sussex, UK) according to Clinical and Laboratory Standards Institute
(CLSI) recommendations (CLSI, 2021). Two sets of dehydrated 96-well microtiter plates,
including THAN2F and CMV4AGNF were used. In all, 27 antibiotics of different drug
classes and action mechanisms were tested in varied concentration as summarized in
Table S1. Most of the tested antimicrobial agents in this study are recommended by
Centers for Disease Control and Prevention (CDC) for the therapeutics of Vibrio spp.
infections including fluoroquinolones (ciprofloxacin and levofloxacin), 3rd-generation
cephalosporins (cefotaxime, ceftazidime, and ceftriaxone), aminoglycosides (gentamicin
and amikacin), tetracycline, folate synthesis inhibitors (trimethoprim/sulfamethoxazole)
(Daniels & Shafaie, 2000; Shaw et al., 2014). The MIC analysis conditions were done as
specified by manufacturer’s guidelines with slight adaptation. Briefly, isolates were
cultured overnight on tryptic soy agar (TSA) with 2% NaCl at 37 �C in 5% CO2 incubator
(Ahmmed et al., 2019). Selected colonies were suspended in Sensititre cation-adjusted
Mueller-Hinton broth (CAMHBT) and adjusted to a 0.5 McFarland standard. Thereafter,
a 10-mL aliquot of suspension was transferred into a tube of CAMHBT to get an inoculum
density of 5 × 105 CFU/mL. THAN2F and CMV4AGNF panels were reconstituted by
adding 50 mL/well and were enclosed with an adhesive seal and incubated at 35 ± 2 �C in
Sensititre ARISTM 2X for 20–24 h. The MIC value was determined automatically on the
Sensititre ARISTM 2X and visualized using a manual viewbox in accordance with
instructions in Sensititre SWIN software. Escherichia coli ATCC 25922 was used as an
antimicrobial-susceptible control strain. Results were interpreted according to CLSI,
National Antimicrobial Resistance Monitoring System (NARMS), and European
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Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (CLSI, 2021;
NARMS, 2021; EUCAST, 2022). Strains were classified as “non-susceptible” when they
were resistant to at least one antimicrobial. Multidrug resistance (MDR) was defined as
non-susceptible to at least one agent in three or more antimicrobial classes according to the
definition proposed for other bacterial groups (Magiorakos et al., 2012). The Multiple
Antibiotic Resistance (MAR) index was determined for each isolate using the formula
MAR = a/b, where “a” is the number of antibiotics to which the test isolate is resistant, and
“b” is the total number of antibiotics tested. MAR index values greater than 0.2 indicated
that the isolates were obtained from a high-risk source of contamination where antibiotics
are often used (Krumperman, 1983).

Table 1 PCR primers and conditions used in this study.

Primer
name

Primer sequence (5′ to 3′) Target gene Amplicon size
(bp)

Reference PCR condition

toxR-F
toxR-R

GTCTTCTGACGCAATCGTTG
ATACGAGTGGTTGCTGTCATG

toxR 368 Kim et al. (1999) 95 �C-30 s; 63 �C-30 s; 72 �C-30
s

toxRS/old-F
toxRS/old-
R

TAATGAGGTAGAAACG
ACGTAACGGGCCTACG

toxRS of the
old
O3:K6 clone

651 Matsumoto et al.
(2000)

96 �C-1 min; 47.1 �C-2 min;
72 �C-3 min

toxRS/new-F
toxRS/new-
R

TAATGAGGTAGAAACA
ACGTAACGGGCCTACA

toxRS of the
new
O3:K6 clone

651 Matsumoto et al.
(2000)

94 �C-30 s; 52.3 �C-30 s;
72 �C-1 min

tdh-F
tdh-R

CCACTACCACTCTCATATGC
GGTACTAAATGGCTGACATC

tdh 251 Tada et al. (1992) 94 �C-1 min; 55 �C-1 min;
72 �C-1 min

VP1321-F
VP1321-R

CCTTGGAAGACAAATGTGGAT
ATGGCTTACCAATGTCAAACTAT

VPaI-7 261 Chao et al. (2009) 94 �C-40 s; 54.3 �C-40 s;
72 �C-30 s

VP1346-F
VP1346-R

TACCATCAGAGGATACAACC
ACAATGAGAACATCAAACA

VPaI-7
(T3SS2)

262 Chao et al. (2009) 94 �C-40 s; 51.2 �C-40 s;
72 �C-30 s

VP1367-F
VP1367-R

CTATGGCGTGCTGGTAGAC
TCACTCGTAAGATGTTGGG

VPaI-7
(T3SS2)

209 Chao et al. (2009) 94 �C-40 s; 56.6 �C-40 s;
72 �C-30 s

VP0950-F
VP0950-R

GCCAAACTTCTCAAACAACA
ATGAAACGCAATTTACCATC

Biofilm 298 Chao et al. (2010) 94 �C-55 s; 50 �C-50 s;
72 �C-2 min

VP0952-F
VP0952-R

TATGATGGTGTTTGGTGC
TGTTTTTCTGAGCGTTTC

Biofilm 276 Chao et al. (2010) 94 �C-55 s; 50 �C-50 s;
72 �C-2 min

VP0962-F
VP0962-R

GACCAAGACCCAGTGAGA
GGTAAAGCCAGCAAAGTT

Biofilm 358 Chao et al. (2010) 94 �C-55 s; 50 �C-50 s;
72 �C-2 min
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Whole-genome sequencing (WGS), genome assembly and annotation
To determine the presence of antimicrobial resistance gene (ARG), a pure culture of
V. parahaemolyticus was grown overnight on TSA with 2% NaCl at 37 �C in 5% CO2.
Subsequently, colonies were selected and suspended in 5 mL TSB with 2% NaCl. The broth
culture was incubated at 37 �C in 5% CO2 for 16 h. Thereafter, bacterial cells were collected
by centrifugation and used for genomic DNA (gDNA) preparation. V. parahaemolyticus
gDNA was extracted with phenol-chloroform DNA extraction (Green & Sambrook, 2017).
The purity and quantity of gDNA was determined by measuring OD260/280 and OD260/230

values with a NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). The integrity of intact gDNA was verified with agarose gel electrophoresis.
Whole-genome sequencing analysis of 36 high quality gDNA samples with OD260/OD280

of ≥1.8 and OD260/OD230 of ≥2.0 were performed using Illumina� DNA sequencing with
HiSeq 2X150 paired-end (PE) configuration (serviced by GeneWiz Inc., Chelmsford, MA,
USA). Raw sequencing reads were trimmed prior to genome assembly using the JGI bbduk
tool (k = 27, ktrim = 1, hdist = 1, minlength = 50). The genome assembly and scaffolding
were performed using SPAdes version 3.15 (Prjibelski et al., 2020). The genome annotation
was performed using Prokka version 1.13 (Seemann, 2014). V. parahaemolyticus RIMD
2210633 (accession no. GCA_000196095.1) was used as the reference genome. Sequence
data of 36 V. parahaemolyticus genomes were deposited in DDBJ/EMBL/GenBank.
The GenBank accession numbers are shown in Table S2.

Detection of antimicrobial resistance genes (ARGs)
To detect ARGs in each annotated genome, nucleotide sequences of CDS genes of each
annotated genomes were analyzed using ResFinder version 4.1 with minimum sequence
alignment coverage = 0.6 and minimum threshold for sequence identity = 0.8 (Florensa
et al., 2022).

Multi-locus sequence typing (MLST) analysis
Molecular typing using MLST was done with 7 conserved housekeeping genes dnaE, gyrB,
recA, dtdS, pntA, pyrC, and tnaA. Briefly, ORF and scaffold sequences of each isolate were
BLASTN searched against the V. parahaemolyticus typing allele sequence database
downloaded from PubMLST.org (2022-05-09) (Jolley, Bray & Maiden, 2018) to obtain
sequence types (STs). The genome sequences of new ST profiles identified in this study
were submitted to PubMLST.org databases.

Phylogenomic tree construction
A maximum-likelihood phylogenomic tree was inferred using UBCG2.0 (version Feb,
2021) (Kim et al., 2021) and RAxML (version 8.2.12) (Stamatakis, 2014) softwares with a
default parameter setting, a GTR + CAT substitution model on a nucleotide alignment of
81 bacterial universal core genes from 36 V. parahaemolyticus genomes. These universal
core genes previously identified by UBCG2 method as single-copy core genes covering
3,508 species of 43 bacterial phyla are suitable for phylogenomic tree analyses (Kim et al.,

Changsen et al. (2023), PeerJ, DOI 10.7717/peerj.15283 7/25

http://www.ncbi.nlm.nih.gov/nuccore/GCA_000196095.1
http://dx.doi.org/10.7717/peerj.15283/supp-2
https://pubmlst.org/
https://pubmlst.org/
http://dx.doi.org/10.7717/peerj.15283
https://peerj.com/


2021). The phylogenomic tree from the maximum likelihood analysis was visualized with
MEGA X software.

RESULTS
Detection of V. parahaemolyticus potential virulence genes
Among 174 samples purchased from fresh markets and supermarkets, 34
V. parahaemolyticus were isolated. A total 50 V. parahaemolyticus isolates, 34 isolates from
markets and 16 isolates from shrimp farms, were used in this study. Of 50 isolates, 21 and
29 were pathogenic and non-pathogenic strains, respectively (A. Lamalee, 2023,
unpublished data) (Table S3). All 50 V. parahaemolyticus isolates exhibited positive PCR
amplification to toxR, toxRS/old (a non-pandemic gene marker), and biofilm formation
genes (VP0950, VP0952, and VP0962) (Table 2). None of 50 isolates showed positive PCR
amplification for both pandemic gene markers (both tdh positive and toxRS/new positive)
and for two T3SS2 genes (VP1346 and VP1367) (Table 2). VPaI-7 (VP1321 ORF) was
detected in two isolates (F2CK02 and F3CK01) accounting for 4% (2/50) (Tables 2 and S3).
Altogether, the results indicated that all isolates were non-pandemic strains. Based on the
presence or absence of genetic markers, 50 V. parahaemolyticus isolates could be classified
as follows: 21 were non-pandemic and pathogenic strains (tdh− or toxRS/new−; toxRS/old+;
tdh+ or trh +) of which two isolates carried VPaI-7 genes, and 29 were non-pandemic and
non-pathogenic strains (tdh− or toxRS/new−; toxRS/old+; tdh− and trh−).

Antimicrobial susceptibilities
Of 50 V. parahaemolyticus isolates, 14 isolates were not examined for antimicrobial
susceptibilities due to poor recovery from glycerol stocks. Thus, antimicrobial
susceptibility tests were performed on 36 isolates against 27 agents from five antimicrobial
categories (Table S1). Based on the results, the susceptibility rate of 36 V. parahaemolyticus
strains was 100% (36/36) to fluoroquinolones, carbapenems, amikacin, gentamicin,
netilmicin, tetracyclines chloramphenicol, azithromycin, amoxicillin/clavulanic acid,
ampicillin/sulbactam, piperacillin/tazobactam, and trimethoprim/sulfamethoxazole
(Tables 3 and S4). The susceptible rate was 97% (35/36) to cefoxitin, cefotaxime,
ceftazidime, ceftriaxone, and cefepime, 92% (33/36) to sulfisoxazole, and 83% (30/36) to
streptomycin. A high number of intermediate susceptibility was observed for cefuroxime
(81%, 29/36). The low resistance rate was observed for cefuroxime and sulfisoxazole (8%,
3/36) and for cefotaxime, ceftazidime, ceftriaxone, and cefepime (3%, 1/36). In contrast,

Table 2 Distribution of pandemic and non-pandemic strains, and potential pathogenicity genes of 50 Vibrio parahaemolyticus isolates.

No. V. parahae-
molyticus
isolate

Number positive

toxR 1Non-pandemic 2Pandemic VPaI-7
VP1321

VPaI-7 (T3SS2) Biofilm

VP1346 VP1367 VP0950 VP0952 VP0962

50 50 50 0 2 0 0 50 50 50

Notes:
1 Determined by the presence of toxRS/old genes.
2 Determined by the presence of both tdh and toxRS/new.
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high resistance pattern was observed for ampicillin (83%, 30/36) and colistin (100%, 36/36)
(Tables 3 and S4).

AMR patterns of 36 V. parahaemolyticus isolates could be classified into six patterns in
which pattern No. 2 (AMP/COL) was predominant (53%, 19/36) (Table 4). MDR
V. parahaemolyticus was observed in 11 isolates (31%,11/36) and all of them exhibited
resistance to ampicillin and colistin. Interestingly, one MDR isolate, VP42 isolated from
Pacific white shrimp, exhibited additional resistance to cefuroxime, cefotaxime,
ceftazidime, ceftriaxone, and cefepime. All 36 V. parahaemolyticus isolates exhibited MAR
index range of 0.04 to 0.3, indicating that V. parahaemolyticus isolates were resistant to 1–8
types of tested antibiotics (Table S5). VP42 showed resistant to 8/27 antimicrobial agents,
which corresponded to the highest MAR index (0.3). The MAR index value greater than

Table 3 Minimum inhibitory concentration (MIC) value, MIC50 andMIC90 values, and resistance rates of 36 Vibrio parahaemolyticus isolates.

Antibiotic drugs MIC breakpoints, µg/mL MIC values (µg/mL)a MIC50 MIC90 S
(%)

I
(%)

R
(%)

MIC
ranges

S I R 0.015 0.03 0.06 0.12 0.25 0.50 1 2 4 8 16 32 64 128 256 512

Amikacin ≤16 32 ≥64 36 0| 0∣ ≤8 ≤8 100.0 0.0 0.0 ≤8

Amoxicillin-
clavulanic acid

≤8/4 16/8 ≥32/16 1 31 4 0| 0∣ 0 2 4 100.0 0.0 0.0 ≤1–4

Ampicillin ≤8 16 ≥32 0 0 0 0| 6∣ 18 12 32 >32 0.0 16.7 83.3 16–>32

Ampicillin-sulbactam ≤8/4 16/8 ≥32/16 35 1| 0∣ ≤4 ≤4 100.0 0.0 0.0 ≤4–8

Azithromycin ≤4 – >4 26 10 0 0∣ 0 0 0 0 ≤0.25 0.5 100.0 – 0.0 ≤0.25–0.5

Cefepime ≤2 4-8 ≥16 35 0| 0 0∣ 0 1 ≤1 ≤1 97.2 0.0 2.8 ≤1–>32

Cefotaxime ≤1 2 ≥4 35| 0∣ 0 0 0 1 ≤1 ≤1 97.2 0.0 2.8 ≤1–>32

Cefoxitin ≤8 16 ≥32 0 0 0 7 28| 1∣ 0 8 8 97.2 2.8 0.0 4–16

Ceftazidime ≤4 8 ≥16 35 0 0| 0∣ 1 0 ≤1 ≤1 97.2 0.0 2.8 ≤1–16

Ceftriaxone ≤1 2 ≥4 35 0 0| 0∣ 0 0 0 0 1 ≤0.25 ≤0.25 97.2 0.0 2.8 ≤0.25–>64

Cefuroxime (sodium) ≤8 16 ≥32 4| 29∣ 3 16 16 11.1 80.6 8.3 ≤8–>16

Chloramphenicol ≤8 16 ≥32 36 0 0| 0∣ 0 ≤2 ≤2 100.0 0.0 0.0 ≤2

Ciprofloxacin ≤1 2 ≥4 4 24 8 0 0| 0∣ 0 0.12 0.25 100.0 0.0 0.0 0.06–0.25

Colistin ≤2 – >2 0∣ 0 2 2 32 >8 >8 0.0 – 100.0 4–>8

Doripenem ≤1 2 ≥4 36 0| 0∣ 0 0 0 ≤0.5 ≤0.5 100.0 0.0 0.0 ≤0.5

Ertapenem ≤0.5 1 ≥2 36| 0∣ 0 0 ≤0.5 ≤0.5 100.0 0.0 0.0 ≤0.5

Gentamicin ≤4 8 ≥16 0 0 7 26 3| 0∣ 0 2 2 100.0 0.0 0.0 1–4

Imipenem ≤1 2 ≥4 36 0| 0∣ 0 0 0 ≤0.5 ≤0.5 100.0 0.0 0.0 ≤0.5

Levofloxacin ≤2 4 ≥8 4 28 4 0 0 0| 0∣ 0 0.12 0.25 100.0 0.0 0.0 ≤0.06–0.25

Meropenem ≤1 2 ≥4 36 0 0 0 0| 0∣ 0 0 0 ≤0.06 ≤0.06 100.0 0.0 0.0 ≤0.06

Nalidixic acid ≤16 – ≥32 25 10 1 0 0 0| 0∣ ≤0.5 1 100.0 – 0.0 ≤0.5–2

Netilmicin ≤8 16 ≥32 36| 0∣ ≤8 ≤8 100.0 0.0 0.0 ≤8

Piperacillin-
tazobactam

≤16/
4

32/4-64/4 ≥128/4 36 0| 0 0∣ ≤8 ≤8 100.0 0.0 0.0 ≤8

Streptomycin ≤16 – ≥32 0 0 0 30∣ 6 0 16 32 83.3 – 16.7 16–32

Sulfisoxazole ≤256 – ≥512 2 9 15 5 2∣ 3 64 256 91.7 – 8.3 ≤16–>256

Tetracycline ≤4 8 ≥16 36| 0∣ 0 0 ≤4 ≤4 100.0 0.0 0.0 ≤4

Trimethoprim-
sulfamethoxazole

≤2/
38

– ≥4/76 35 0 1 0 0∣ 0 ≤0.12 ≤0.12 100.0 – 0.0 ≤0.12–0.5

Note:
a White cells indicate the tested range. Thin and thick vertical lines respectively describe the susceptible and resistant clinical breakpoints recommended by the CLSI
(2021) for most of the antibiotic drugs, NARMS (2021) for streptomycin, and EUCAST (2022) for azithromycin and colistin. MICs are interpreted as susceptible (S),
intermediate (I), and resistant (R). MIC50 is the MIC which inhibits 50% of the isolates tested; MIC90 is the MIC which inhibits 90% of the isolates tested.
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0.2 suggested that VP42 was isolated from a high-risk source of antimicrobial
contamination (Krumperman, 1983).

Analysis of antimicrobial resistance genes (ARGs)
Among 36 V. parahaemolyticus genomes, 13 AMR genotypes and six ARGs were detected.
Of six ARGs observed, blaCARB (100%, 36/36), tet(34) (83%, 30/36) and tet(35) (42%,
15/36) were the most common, followed by qnrC (6%, 2/36), dfrA6 (3%, 1/36), and
blaCTX-M-55 (3%, 1/36) (Figs. 1 and 2). All 36 V. parahaemolyticus genomes carried
at least one blaCARB gene (encoding for β-lactamase enzyme), causing resistance to
amoxicillin, ampicillin, and piperacillin. Interestingly, VP42 carried blaCTX-M-55 gene
encoding for extended spectrum β-lactamase (ESBL) conferring resistance to amoxicillin,
ampicillin, piperacillin, cefepime, cefotaxime, ceftazidime, ceftriaxone, aztreonam, and
ticarcillin.

Of 36 V. parahaemolyticus isolates, 35 and 15 isolates harbored ARG of tetracycline and
doxycycline, respectively. Of 35 isolates with tetracycline ARG, 20 isolates harbored tet
(34), 5 isolates harbored tet(35), and 10 isolates harbored tet(34) and tet(35). All 15 isolates
with doxycycline ARG harbored tet(35). SS4-099 isolated from Pacific white shrimp
carried dfrA6 gene giving resistance to trimethoprim. SS4-016-and SS4-017 isolated from
Pacific white shrimp carried qnrC gene giving resistance to ciprofloxacin (Fig. 2).

Multilocus sequence type (MLST) analysis
MLST analysis revealed 25 different sequence types (STs) of 36 V. parahaemolyticus
isolates (Table S6). Twelve STs (48%, 12/25) of 20 isolates were previously reported in
pubMLST Database, whereas 13 novel STs (ST2916-ST2928, 52%, 13/25) of 16 isolates
obtained in this study were submitted to PubMLST/V. parahaemolyticus database (http://
pubmlst.org/vparahaemolyticus). GenBank accession numbers of 36 V. parahaemolyticus
genomes are shown in Table S2. Among the novel STs (16 isolates), ST2926 was
predominant (three isolates), followed by ST2920 (two isolates). Most of the novel STs
were identified from marketed seafood (10 STs) and the rest three novel STs (ST2918,
ST2922, and ST2927) were identified from shrimp farms. The most common STs detected

Table 4 Antimicrobial resistance (AMR) patterns of 36 Vibrio parahaemolyticus isolates.

Resistance pattern Number of
V. parahaemolyticus isolate

Percentage (%)

1. COL 6 16.7

2. AMP/COL 19 52.8

3. AMP/COL/S 6 16.7

4. AMP/COL/SIX 2 5.6

5. AMP/COL/FUR 2 5.6

6. AMP/CPM/CTX/CAZ/CRO/FUR/COL/SIX 1 2.8

Note:
AMP, Ampicillin; CPM, Cefepime; CTX, Cefotaxime; CAZ, Ceftazidime, CRO, Ceftriaxone; FUR, Cefuroxime (sodium);
COL, Colistin; S, Streptomycin, and SIX, Sulfisoxazole.
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in this study were ST1925 (20%, 5/25), ST197 (12%, 3/25), ST2926 (12%, 3/25), ST413 (8%,
2/25), ST2137 (8%, 2/25), and ST2920 (8%, 2/25) (Table S6).

Phylogenomic analysis
A phylogenomic tree from maximum likelihood analyzes of 81 bacterial core genes in 36
V. parahaemolyticus genomes exhibited five distinct clades (Fig. 2). All four isolates in
clade 1 were identified as novel STs, ST2926 (VP17, VP31, and VP46) and ST2917 (VP16)
and the other 11 novel STs were distributed to clade 2–5 (12 isolates). ST2926, ST2137, and
ST2920 were identified in three isolates of clade 1, 2 isolates of clade 2 and 2 isolates of
clade 3, respectively. ST197, ST413, ST1925, and ST818 were identified in 3, 2, 5, and 1
isolates of clade 5, respectively. These results exhibited a close relationship among
V. parahaemolyticus strains which were identified from the same seafood types collected in
the same year and from the same location. A close association among the strains isolated
from the same seafood types collected in the same year but from different locations was also
found in clade 4 (VP39 and VP10/5). Additionally, a close relationship among the strains
isolated from different types of seafood in different years and different locations was
exhibited in clade 3 (SS4-012 and VP23/1 as well as VP11 and SS4-014 isolates). SS4-016
and SS4-017 with the same ST2137 carrying qnrC isolated from farmed shrimp in eastern
Thailand and VP42 (ST2923), carrying blaCTX-M-55 isolated from shrimp sold in Bangkok
were in the same clade 2. These results indicated the association between these isolates from
different geographical regions. Moreover, SS4-099 isolate carrying dfrA6 was in clade 5 and
is distinct from SS4-016 and SS4-017 isolates carrying qnrC in clade 2. These three isolates
were isolated from farmed shrimp in eastern Thailand indicating a distance relationship
among these strains isolated from the same region.

DISCUSSION
In this study, all V. parahaemolyticus strains isolated from seafood purchased in Bangkok
and collected in eastern Thailand belonged to the old O3:K6 strains or non-pandemic
strains. In contrast, 12 strains isolated from 302 seafood samples purchased in southern

Figure 1 Antimicrobial resistance gene (ARG) profiles of 36 Vibrio parahaemolyticus genomes detected with ResFinder.
Full-size DOI: 10.7717/peerj.15283/fig-1
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Figure 2 A phylogenomic tree from maximum likelihood analyzes of 81 bacterial core genes in Vibrio parahaemolyticus genomes and MLST
types shows the relationship among 36 V. parahaemolyticus isolates. Antimicrobial resistance gene (ARG) profiles: (1) blaCARB gene causing
resistance to amoxicillin, ampicillin and piperacillin; (2) blaCTX-M-55 gene causing resistance to amoxicillin, ampicillin, piperacillin, cefepime,
cefotaxime, ceftazidime, ceftriaxone, aztreonam, and ticarcillin; (3) dfrA6 gene giving resistance to trimethoprim; (4, 5 and 6) tet(34), tet(35), and tet
(34) and tet(35) genes, respectively, causing resistance to tetracycline and doxycycline; (7) qnrC gene conferring ciprofloxacin resistance; (8) AMR
patterns No. 1–6, as shown in Table 4. A filled box in column 1–7 specifies the identification of the particular gene. The sequence type (ST) with the
underline represents the novel ST. The location column written eastern Thailand indicates the samples obtained from shrimp farms.

Full-size DOI: 10.7717/peerj.15283/fig-2
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Thailand were pandemic strains (Vuddhakul et al., 2006). Jingjit et al. (2021) also identified
15 pandemic V. parahaemolyticus strains from 51 seafood-isolated V. parahaemolyticus
strains obtained from southern Thailand (Jingjit et al., 2021). These pandemic strains were
detected from hard clams, mussels, and cockles (Vuddhakul et al., 2006; Jingjit et al., 2021)
Mussels, and cockles were also purchased from markets in this study. The discrepancies in
pandemic strain occurrences are likely due to the differences in geographical regions for
seafood sample collection. All seafood samples in this study were purchased from fresh
markets and supermarkets in Bangkok and collected from farms in the upper Gulf of
Thailand (central and eastern Thailand), while seafood samples in previous studies were
collected from the lower Gulf of Thailand (southern Thailand). The O3:K6 pandemic
strain had been firstly identified in 1998 at Hat Yai Hospital in southern Thailand
(Matsumoto et al., 2000), later pandemic V. parahaemolyticus strains were reported from
seafood samples in the same area (Vuddhakul et al., 2006; Jingjit et al., 2021) indicating that
pandemic strains have established ecological niches in this region.

The incidence of V. parahaemolyticus in this study is somewhat low at 20%, compared
to previous reports which seafood samples were also purchased in Bangkok, Thailand at
58% (Thitipetchrakul, Somyoonsup & Hatayananont, 2016) and at 59% (Atwill &
Jeamsripong, 2021). This is likely due to the differences in seafood types, market types and
sample storage condition between this study and previous studies. V. parahaemolyticus
contamination was found more often in seafood purchased from fresh markets than those
from supermarkets (Zhang et al., 2016; Martinez-Urtaza & Baker-Austin, 2020) and in
refrigerated products more than frozen products (Caburlotto et al., 2016). In this study,
more different seafood types were purchased from fresh markets and supermarkets of
which some samples were frozen seafood whereas the study by Atwill & Jeamsripong
(2021) used chilled seafood samples consisting of Pacific white shrimp, oysters, blood
cockles, and Asian seabass purchased form open-air retail fresh markets (Atwill &
Jeamsripong, 2021). Boiled crab meats from fresh and fair markets were used for
V. parahaemolyticus surveillance (Thitipetchrakul, Somyoonsup & Hatayananont, 2016).
Thus, the incidence of V. parahaemolyticus in this study was likely lower than those of
previous reports.

Our results showed that none of 50 V. parahaemolyticus isolates harbored T3SS2 genes
while VPaI-7 gene (VP1321) was present in two isolates. The absence of T3SS2 genes in
two isolates positive for VPaI-7 is probably due to the partial loss of T3SS2 genes as
previously reported (Chao et al., 2009). VPaI-7 on chromosome two typically encodes for
two tdh (tdh1 and tdh2) genes and a set of T3SS2 genes which are virulence genes (Makino
et al., 2003; Matsuda et al., 2020). V. parahaemolyticus harboring T3SS2 genes has been
linked to clinical cases of inflammatory gastroenteritis (Makino et al., 2003; Hiyoshi et al.,
2011). Although most previous studies reported the presence of T3SS2 only in highly
virulent strains; however, T3SS2 has also been observed in a non-virulent strain (Meador
et al., 2007). This study focused on VP1321 ORF of VPaI-7 and two T3SS2 genes (VP1346
and VP1367) as they were observed in all the pandemic strains reported previously (Chao
et al., 2009). Although, none of tested seafood samples purchased in Bangkok and collected
in eastern Thailand were pandemic strains, detection of VPaI-7 in non-pandemic-
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pathogenic V. parahaemolyticus strains provided the importance of seafood safety through
consumer health awareness and practices. Strong biofilm formation ability has been linked
to environmental survival ability, infectivity, and transmissibility of antibiotic-resistance
microorganisms to humans (Elexson et al., 2014; Mizan, Jahid & Ha, 2015). Our results
indicated that all 50 V. parahaemolyticus isolates consisting of 21 pathogenic and 29
non-pathogenic strains harbored three biofilm-associated genes (VP0950, VP0952, and
VP0962). Under proper circumstances, these genes could be activated and expressed
leading to biofilm formation in V. parahaemolyticus contaminated seafood that could
cause a great threat to human health and economic values.

Our study demonstrated a high prevalence of AMR phenotypes among the 36
V. parahaemolyticus isolates for ampicillin (83%, 30/36) and colistin (100%, 36/36), which
was in consistent with the frequent outbreaks of ampicillin- and colistin-resistant
V. parahaemolyticus isolates reported in the past 5 years (Lopatek, Wieczorek & Osek,
2018; Dahanayake et al., 2020; Mok et al., 2021; Nishino et al., 2021; Vu et al., 2022).
The blaCARB gene was present in all 36 V. parahaemolyticus isolates, confirming
ampicillin-resistant phenotypes and susceptible phenotypes to amoxicillin/clavulanic acid,
ampicillin/sulbactam, and piperacillin/tazobactam. The high distribution of blaCARB gene
is similar to a previous study which found that all 30 V. parahaemolyticus isolates obtained
from shrimp samples harbored blaCARB (Hossain et al., 2020). Consistently with our
findings, a report by Chiou, Li & Chen (2015) suggested an intrinsic resistance of ampicillin
in V. parahaemolyticus. The observed amoxicillin resistance phenotypes in all isolates and
the higher prevalence of tet(34), conferring resistance to oxytetracycline (Nonaka &
Suzuki, 2002), than that of tet(35) are in agreement with the excessive uses of amoxicillin
and oxytetracycline in aquaculture. These two antimicrobial agents have been permitted
for use in Asian aquaculture industries including Thailand (Yano et al., 2014; AAHRDD,
2022). Based on this finding, we recommend that antimicrobial use in aquaculture should
follow guidelines recommended by Food and Drug Administration (FDA) of Thailand
including using antimicrobials based on clinical diagnosis and using narrow-spectrum
antimicrobials. Rotation of permitted antimicrobials should also be done to decrease the
antimicrobial pressure due to the dominant use. The blaCTX-M-55 gene was identified in
VP42 isolate confirming phenotypic resistance against cefuroxime, cefotaxime,
ceftazidime, ceftriaxone, and cefepime. The low distribution of blaCTX-M-55 is in
agreement with a study conducted in China which blaCTX-M-55 was found in 2% (2/116)
of V. parahaemolyticus strains isolated from shrimp samples (Zheng et al., 2019). Detection
of cephalosporins resistant isolates causes concern as cephalosporins are among the β-
lactams currently used as the last line of antibiotics to treat V. parahaemolyticus infections
(Ashrafudoulla et al., 2021; Dutta et al., 2021). Our results showed significant correlations
between phenotypes and genotypes that conferred resistance to ampicillin (blaCARB) and
cephalosporins (blaCTX-M-55). No genotypic resistance was observed for colistin,
sulfisoxazole, and streptomycin. It is possible that ARGs are mobile genetic elements which
may not be detected by a short-read sequencing method (Christaki, Marcou & Tofarides,
2020; Dutta et al., 2021). No phenotypic resistance was observed despite genotypic
resistance for trimethoprim, ciprofloxacin, doxycycline, and tetracycline. It is plausible that
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these genes were silenced or expressed at low resistance level below the interpretive
breakpoint utilized. Under suitable circumstances, these genes could be highly expressed
and/or transferred horizontally among bacteria posing the risk of AMR and/or MDR
phenotypes (Dutta et al., 2021). The discrepancy between phenotypic and genotypic
resistance observed here was similar to the previous finding of pathogenic
V. parahaemolyticus in seafood samples (Lou et al., 2016). Antibiotic misuse, warm
temperature, acid-base and organic contamination can directly activate the expression of
ARGs and virulence genes and also affect horizontal gene transfer (Guijarro et al., 2015;
Deng et al., 2020). Thus, the occurrence of tetracycline, doxycycline and ciprofloxacin
resistance genes is a major concern since they are the antibiotics of choice for treatment of
severe or prolonged illnesses of V. parahaemolyticus infection (Tan et al., 2020;
Ashrafudoulla et al., 2021; Dutta et al., 2021). The high resistance for ampicillin and
colistin observed here suggests an alarming trend of widespread ampicillin and colistin
resistance which compromise treatment efficacy for V. parahaemolyticus infection. It is
important to note that due to limited number of isolates, specific locations, and samples
per seafood species, years and market types in this study, it might be very challenging to
conclude the current AMR situation of V. parahaemolyticus in Thailand. However, the
high resistance to ampicillin and high susceptibility to cephalosporins found in seafood
V. parahaemolyticus confirms previous findings from studies conducted in Thailand and
other Asian countries (Elmahdi, DaSilva & Parveen, 2016; Palamae et al., 2022).

MLST analysis demonstrated a high number (25) of STs and particularly 13 novel STs
among the 36 isolates suggesting a high genetic variation of Thai V. parahaemolyticus
isolates. The relationship among the strains with specific ST found in the same seafood
type collected from the same location in the same year revealed a close relationship among
these strains suggesting cross-contamination during harvesting or handling seafood at the
same processing site due to poor hygiene practices. Thus, local interventions should be
addressed including using disinfected seawater or potable water to wash and process.
seafood, wearing gloves during processing and keeping seafood at ≤10 �C during
distribution and storage (Hara-Kudo & Kumagai, 2014). A close association among the
V. parahaemolyticus strains isolated from the same type of seafood from different locations
in the same year or different types of seafood from distinct locations and sampling years
could indicated either the possibility of cross-contamination during food processing steps
of supply chains or persistence of these strains in the environment. Overall, MLST analysis
revealed that V. parahaemolyticus strains in Thailand were geographically distinct and
genetically diverse. The strains isolated from marketed samples were more diverse than
those from shrimp farms. These observations suggest the potential cross-contamination
of V. parahaemolyticus during seafood processing steps and distribution chains
including a contaminated container for transporting and improper handling. In contrast,
V. parahaemolyticus in farmed shrimp is mainly derived from environmental
contamination including estuarine water and water sediment at the cultivation site (Lovell,
2017). Several decontamination techniques are available to effectively reduce the number
of V. parahaemolyticus without compromising the flavor, texture, and nutritional of
seafood products. The decontamination techniques comprise chemical techniques
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(antibiotics, disinfectants and natural organic treatments), physical techniques (high-
pressure processing, ozonation, irradiation, refrigeration and seafood suspension), and
biological techniques (bacteriophage and probiotic treatments) (Ramos et al., 2012;
Hara-Kudo et al., 2013; Wang et al., 2013; Ronholm, Lau & Banerjee, 2016; Zhang et al.,
2018; Kontominas et al., 2021).

CONCLUSIONS
Our findings reveal that all V. parahaemolyticus isolates obtained from seafood in Bangkok
and eastern Thailand are non-pandemic strains; some of them contain pathogenic
potential genes. The presence of the first-line antimicrobial resistance genes of
tetracyclines, doxycycline and ciprofloxacin raises a major concern of inducible gene
expression and/or horizontal gene transfer among bacteria. The widespread of MDR
V. parahaemolyticus confirms the emergence of AMR problems in seafood. Thus,
monitoring of AMR of V. parahaemolyticus in seafood is highly recommended to tackle
AMR problem and provide useful information for therapeutic treatment in humans. Based
on our findings, antimicrobial use to treat V. parahaemolyticus infection in aquaculture
should restrictedly follow guidelines recommended by FDA of Thailand to avoid AMR and
MDR problems. Moreover, most of V. parahaemolyticus strains possess new STs
suggesting high genetic diversity of the isolates. V. parahaemolyticus diversity in marketed
samples suggests the cross-contamination possibility among samples in seafood
production chains. Overall, our findings highlight the importance of a surveillance
program to help strengthen safety guidelines of seafood production and promote public
health awareness among health professional and consumers.
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