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ABSTRACT
Background. In farmland, microbes in soils are affected by exogenous carbon, nitro-
gen, and soil depth and are responsible for soil organic carbon (SOC) mineralization.
The cherry industry has been evolving rapidly in northwest China and emerged as a
new source of income for local farmers to overcome poverty. Accordingly, it is highly
imperative to probe the effect of defoliation and nitrogen addition on carbon dioxide
(CO2) emissions and microbial communities in soils of dryland cherry orchards.
Methods. CO2 emissions and microbial communities were determined in soil samples
at three depths, including 0–10 cm, 10–30 cm, and 30–60 cm, from a 15-year-old
rain-fed cherry orchard. The samples were respectively incubated with or without 1%
defoliation under three input levels of nitrogen (0 mg kg−1, 90 mg kg−1, and 135 mg
kg−1) at 25◦C in the dark for 80 days.
Results. Defoliation and nitrogen addition affected CO2 emissions and microbial
communities and increased microbial biomass carbon (MBC), the activity of soil
catalase, alkaline phosphatase, and cellulase in soils of the dryland cherry orchard. The
culture with defoliation significantly promoted CO2 emissions in soils at the three
depths mainly by increasing the MBC, catalase, alkaline phosphatase, and cellulase
activities, resulted in positive priming index. Nitrogen addition elevated the MBC
and changed soil enzymes and reduced CO2 emissions in soils at the three depths.
Moreover, the priming index was higher in deep soils than in top and middle soils
under the condition of defoliation and nitrogen addition. No significant differences
were observed in the soil bacterial diversity (Chao1, Shannon, and Simpson) among
all treatments. Meanwhile, the relative abundance of Proteobacteria was markedly
increased and that of Acidobacteria was substantially diminished in soils at the three
depths by defoliation and nitrogen addition. The results sustained that defoliation and
nitrogen can regulate SOC dynamics by directly and indirectly affecting soil microbial
activities and communities. As a result, the combination of defoliation return and
nitrogen fertilizationmanagement is a promising strategy to increase SOC and promote
soil quality in dryland cherry orchards.
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INTRODUCTION
Soil respiration is the primary mode of carbon dioxide (CO2) exchange between the
soil carbon pool and atmosphere and one of the largest fluxes in the carbon cycle of
terrestrial ecosystems (78–98 Gt C per year) (Bond-Lamberty et al., 2018; Tang et al., 2020).
Accordingly, soil respiration can alter CO2 in the atmosphere and carbon storage in soils,
thus affecting the global carbon cycle (Wang et al., 2019). As a vital component of land
respiration in agricultural and forestry ecosystems, soil respiration is readily influenced by
vegetation types, cultivation, fertilization, and other active jamming factors (Buchmann,
2000; Raich & Tufekcioglu, 2000; Mo et al., 2021). Reportedly, exogenous carbon inputs
affect soil nutrient availability, increase microbial activities and quantity, and change
the activity of soil enzymes, thus contributing to the priming effect of CO2 emissions
(Blagodatskaya & Kuzyakov, 2008; Chen et al., 2015; Li et al., 2018; Liang et al., 2022). Most
of the existing studies focused on the association of soil carbon dynamics and microbial
communities with labile carbon inputs (Blagodatskaya et al., 2007; Tian et al., 2016a; Li
et al., 2017; Shahbaz et al., 2018; Zhou et al., 2021). In addition, the effects of complex
polymerized organism inputs (such as straw and litter) on soil carbon dynamics and
microbial communities have been analyzed mainly in farmland and forestry ecosystems
(Moorhead, Sinsabaugh & Moorhead, 2006; Aye et al., 2018; Fang et al., 2018b; Mo et al.,
2021) but rarely in orchard ecosystems (Zhou et al., 2021). Therefore, the study of
defoliation inputs to orchard soils can objectively and truly reflect the characteristics
of soil CO2 emissions and microbes in the orchard industry.

Nitrogen fertilizer plays a pivotal role in themanagement of orchards, which can increase
soil nutrients and change microbial activities and communities (Neff et al., 2002; Malhi et
al., 2003; Leff et al., 2015;Wang, Liu & Bai, 2018), and affect soil respiration (Razanamalala
et al., 2018; Sawada, Inagaki & Toyota, 2021; Na et al., 2022). Of note, some hypotheses
have been proposed on the mechanism of nitrogen. For instance, the theory of ‘‘Microbial
stoichiometric decomposition’’ (Hessen et al., 2004; Chen et al., 2014; Cui et al., 2020)
demonstrates that exogenous substance inputs can contribute to high microbial activities
and organic matter decomposition, which simulate high CO2 emissions, by meeting
the carbon/nitrogen demand of soil microbes, indicating that high nitrogen availability
(abundant nutrients) may favor soil organic matter (SOM) decomposition. The ‘‘microbial
nitrogen mining’’ theory shows that soil microbes decompose SOM with labile carbon
as an energy source to obtain the required nitrogen and then induce carbon priming
effects under low nitrogen conditions (Moorhead, Sinsabaugh & Moorhead, 2006; Borrajo
et al., 2011; Mason-Jones, Schmücker & Kuzyakov, 2018; Na et al., 2022; Craine, Morrow &
Fierer, 2007), illustrating that low nitrogen availability (poor nutrients) stimulates SOM
decomposition. Despite the obvious odds between the two theories, their mechanisms
are closely related to organic carbon, which suggests an inherently critical association of
soil carbon respiration with carbon and nitrogen inputs. In this context, there is a need
to explore the impacts of exogenous defoliation inputs on CO2 emissions and microbial
mechanisms under different nitrogen levels, thus providing more data and theoretical
support for understanding the soil carbon cycle.
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Responses of soil CO2 emissions to different environments are variable because of
different soil environments and physicochemical characteristics in soils at varying depths
(De Graaff et al., 2014; Tian et al., 2016b; Liao et al., 2020). In top soils (≤10 cm), large
amounts of SOC are produced and CO2 emissions are increased because of litter,
fertilization, soil fungi, bacteria, and animals (Blanco-Canqui & Lal, 2008; Tian et al.,
2016b; Banfield et al., 2018). Conversely, deep soils can sequestrate more exogenous carbon
than top soils because of low SOC (Fontaine et al., 2007; Wang et al., 2014). Consequently,
it is urgent to investigate whether soil respiration in soils at different depths is affected by
defoliation and nitrogen additions, thereby providing data to support the development of
soil carbon sequestration science.

The cherry industry is highly economically profitable, which has contributed to its
rapid growth in northwest China. In this context, this industry has become a new source
of income for local farmers to shake off poverty. Accordingly, it is necessary to explore
microbial mechanisms of CO2 emissions in dryland cherry orchards with defoliation
and nitrogen addition, thus providing more data and theoretical support for sustainable
development of cherry industry.

In this study, soils at different depths were collected from a rain-fed cherry orchard
in northwest China for an indoor incubation experiment was performed to ascertain the
microbial mechanism regulating CO2 emissions under defoliation and nitrogen addition.
Then, the following three hypotheses were proposed: (1) defoliation and nitrogen addition
promoted CO2 emissions; (2) CO2 emissions were strongly associated with microbial
activities and community; (3) microbial communities varied in soils at different depths.

MATERIAL AND METHODS
Soil collection
Soil samples were obtained at three depths (0–10 cm [top soils], 10–30 cm [middle soils],
and 30–60 cm [deep soils]) of the botanical garden test site at Tianshui Normal University
(Tianshui, Gansu, China; 34◦34′10′′N and 105◦41′47′′E) in 2021. The test site was built in
2002, where the cherry rootstock was Gisela 5 and the cherry variety was Provence. The
basic physical and chemical properties of top, middle, and deep soils were as follows: pH:
6.7, 7.8, and 8.1; total organic carbon: 14.74 g kg−1, 12.54 g kg−1, and 7.92 g kg−1; total
nitrogen: 0.74 g kg−1, 0.69 g kg−1, and 0.46 g kg−1; available phosphorus: 4.93 mg kg−1,
5.08 mg kg−1, and 3.07 mg kg−1; available potassium: 153.0 mg kg−1, 148.0 mg kg−1, and
100.6 mg kg−1.

Experimental design
The incubation experiment was conducted as a complete factorial experiment of soils at
three depths (top,middle, anddeep soils) * two kinds of defoliation addition (no-defoliation
[C0] and defoliation [CA, 1%]) * addition of three levels of nitrogen (0 mg kg−1 [N0], 90
mg kg−1 [NL], and 135 mg kg−1 [NH]) in three replicates with a fully randomized design.
Total organic carbon was 451 g kg−1 and total nitrogen was 12.47 g kg−1 in defoliation.

Incubation tanks (1 L) were respectively added with 100 g soils (dry weight) at different
depths for 7 days of pre-incubation at 25 ◦C (Mo et al., 2021). After that, soils were
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fully mixed with defoliation according to different treatments. Nitrogen and phosphate
fertilizers were dissolved in distilled water and added to soils as a solution. Next, the soils
were incubated at 25 ◦C with the moisture of 60% and the bulk density of 1.2 g cm−3 in
the dark for 80 days.

Gas collection and soil sampling
For each treatment, three tanks were taken out at 1, 4, 13, and 80 days. The soils in the
incubation tanks were stored at −20 ◦C for detecting microbial biomass carbon (MBC),
soil enzyme activities, and microbial communities. Specifically, MBC was measured with
the chloroform-fumigation extraction method (Vance, Brookes & Jenkinson, 1987). The
activity of alkaline phosphatase was examined with the method of Tabatabai and Bremner
(Tabatabai & Bremner, 1969) as described in a prior study (Miralles et al., 2012). The
activity of cellulase was detected using the method of Xu and Zheng (Xu & Zheng, 1986).
The activity of catalase was determined by titrating 0.1 mol L−1 KMnO4 (Guan, Zhang &
Zhang, 1986).

DNA extraction and high-throughput sequencing
Total DNA was extracted from soils with the Fast DNA SPIN Kit for Soil and FastPrep-24
nucleic acid Extraction instrument (MP Biomedicals, Santa Ana, CA, USA) on the 4th
day. The DNA was examined with 1% agarose gel electrophoresis, and its concentration
was measured with NanoDrop 2000. The DNA was stored in a refrigerator at −20 ◦C for
subsequent use. The stock solution of the DNA was diluted to about 5 mg/L as the template
of polymerase chain reaction (PCR) amplification. Afterward, the 16S rRNA variable
regions V3-V4 of bacteria were subjected to PCR amplification with the following primers:
CCTAYGGGRBGCASCAG (341F) and GGACTACNNGGGTATCTAAT (806R). The PCR
was conducted with a system of 50 µL, including 5 µL of 10 * buffer, 4 µL of dNTP, 0.5 µL
of RTAQ (Takara), 1 µL of 10 µmol L−1 each front and rear primers, 36.5 µL of ddH2O,
and 2 µL of template DNA, and the detection of each sample was repeated three times.
The amplification conditions were as follows: pre-denaturation at 98 ◦C for 30 s, 30 cycles
of chain disassembly at 98 ◦C for 10 s, annealing at 55 ◦C for 15 s, and extension at 72 ◦C
for 1 min, and final extension at 72 ◦C for 10 min. The products obtained by three repeats
of DNA amplification were mixed and tested with 1% agarose gel electrophoresis. The
concentration of the obtained bacterial PCR products was measured with the PicoGreen
kit. After the products were evenly mixed, DNA was purified and recovered with the DNA
purification kit (TIANGEN Biotech, Beijing, China). Bacterial 16S rDNA was sequenced by
Shenzhen Weicomeng Technology Group Co., Ltd. (Shenzhen, China) with the Novaseq
6000 PE 250 platform.

According to corresponding barcodes, the samples were subjected to paired reading,
and then their barcode and primer sequence were removed. The reads at both ends were
combined with the FLASH (V1.2.7) software. The QIIME data analysis package was
utilized to remove low-quality raw sequences (length < 250 bp, ambiguous base ‘‘N’’,
and the average base quality score less than 20). The chimeric sequence was discarded
with the MAARJAM database (https://maarjam.ut.ee/). The valid readings were assigned
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to operational taxon units or virtual taxa with an identity threshold of 97%, and the
representative sequences were identified with SILVA (V128, http://www.arb-silva.de) and
MAARJAM databases.

Calculation
CO2 emissions (mg CO2 kg−1soil) were calculated as per the titration results of hydrochloric
acids.

CO2=
(V0−V )×CHCl

2
×12×

1
m(1−a)

×1000.

In this formula, V0 was the volume of titration by standard hydrochloric acid
during blank calibration (mL), while V represented the volume of titration by standard
hydrochloric acid during samples (mL). CHCl was the concentration of standard
hydrochloric acid (1 mol L−1), m was soil mass (g), and a was soil water content (%).

The CO2 efflux rate (mg CO2 kg−1soil d
−1) was calculated with the following formula:

CO2 efflux rate = CO2 emission/t.
In this formula, t represented the day when the NaOH solution was placed in the

incubation tanks.
The cumulative CO2 emission (g CO2 kg−1soil) was the cumulative CO2 emission from

each treatment over a given incubation time.
For a given incubation time (80 days), the priming index (PI) induced by exogenous

substance addition was normalized to the proportion of added non-exogenous substances
to cumulative CO2 emissions based on the following formula:

Priming index (PI) = (CO2 add−CO2 non-add)/ CO2 non-add.
In this formula, CO2 add represented cumulative CO2 emissions after 80 days of

defoliation and nitrogen treatment, and CO2 non-add indicated cumulative CO2 emissions
after 80 days of treatment without defoliation and nitrogen.

The PI represented the intensity of the priming effect. The PI value of 1 suggested that
the amount of organic carbon mineralization was not affected by exogenous substance
addition. The PI value of>1 indicated that the addition of exogenous substances caused the
priming effect of organic carbon mineralization, and the larger value was associated with
a stronger priming effect. The PI value of <1 represented that the addition of exogenous
substances reduced the mineralization of organic carbon and produced a negative priming
effect, and the smaller value illustrated the stronger negative priming effect.

Statistical analysis
All statistical analyses were performed with the SPSS 18.0 statistical and R programming
software. The effects of the CO2 efflux rate, cumulative CO2 emission, PI, MBC, catalase,
alkaline phosphatase, cellulase, Chao1, Shannon, and Simpson and the relative abundance
of Proteobacteria and Acidobacteria were analyzed with three-way analysis of variance
combined with Duncan’s multiple range test. Partial least squares discrimination analysis
was conducted to analyze the distribution of soil microbial communities in soils at
different depths. The Spearman correlation analysis was used to clarify the correlations of
defoliation, nitrogen, and soil depth with CO2 emissions, soil microbial activity parameters,
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Figure 1 CO2 efflux rate (mg CO2 kg−1
soild

−1) from the top soil, middle soil, and deep soil in each treat-
ment over the entire incubation period. C0, no-defoliation addition; CA, defoliation addition; N0, no-
nitrogen input; NL, low-nitrogen input; NH, high-nitrogen input. The different colored bars show least
significant differences (at 5% level) between nitrogen input levels within same defoliation addition at each
sampling point.

Full-size DOI: 10.7717/peerj.15276/fig-1

Figure 2 Cumulative CO2 emission (g CO2 kg−1
soil) from the top soil, middle soil, and deep soil in each

treatment over the entire incubation period. C0, no-defoliation addition; CA, defoliation addition; N0,
no-nitrogen input; NL, low-nitrogen input; NH, high-nitrogen input. The different colored bars show least
significant differences (at 5% level) between nitrogen input levels within same defoliation addition at each
sampling point.

Full-size DOI: 10.7717/peerj.15276/fig-2

Proteobacteria and Acidobacteria. Significance was defined at P < 0.05. Additionally,
Origin18.0 and R programming software were utilized for mapping.

RESULTS
CO2 emissions
The CO2 efflux rate and cumulative CO2 emissions were increased under defoliation
addition, which was extremely significantly affected by the soil depth, defoliation, and
nitrogen, as well as interaction among these three factors (Figs. 1 and 2, and Table 1).
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Table 1 Statistical significance (P value) of the soil depth, defoliation addition, nitrogen input level, and their interaction on the concerned
variables.

Soil depth
(S)

Defoliation
(C)

Nitrogen
(N)

S× C S×N C×N S× C×N

CO2 efflux rate (mg CO2 kg−1soil d
−1) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Cumulative CO2 emission (g CO2 kg−1soil) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
PI index (80 days) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
MBC (4th day) <0.001 <0.001 <0.001 <0.001 0.096 <0.001 0.01
Catalase (4th day) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Alkaline phosphatase (4th day) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Cellulase (4th day) <0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.07
Chao1 index (4th day) <0.001 0.14 0.80 0.97 0.22 0.21 0.14
Shannon (4th day) 0.016 0.204 0.090 0.787 0.003 0.330 0.450
Simpson (4th day) 0.337 0.507 0.406 0.446 0.073 0.363 0.628
Relative abundance of Proteobacteria (%) <0.001 <0.001 <0.001 <0.001 0.001 0.05 0.003
Relative abundance of Acidobacteria (%) <0.001 0.052 <0.001 <0.001 <0.001 0.001 <0.001

The CO2 efflux rate peaked on the 1st day and then declined with the incubation time
of each treatment (Fig. 1). Among all treatments, the CO2 efflux rate was higher in CA

treatment (65.41 mg CO2 kg−1soil d
−1) than in C0 treatment (26.42 mg CO2 kg−1soil d

−1) and
lower in deep soils (36.1 mg CO2 kg−1soil d

−1) than middle (51.56 mg CO2 kg−1soil d
−1) and

top (50.06 mg CO2 kg−1soil d
−1) soils (Fig. 1). In addition, N0 treatment (52.87 mg CO2 kg−1soil

d−1) resulted in a higher CO2 efflux rate than NL treatment (51.56 mg CO2 kg−1soil d
−1) and

NH (50.06 mg CO2 kg−1soil d
−1) on the 1st day.

After 80 days (Fig. 2), cumulative CO2 emissions were averagely elevated by 2.62, 2.37,
or 2.26 times under treatments of CAN0, CANL, or CANH when compared to under C0N0

treatment. Cumulative CO2 emissions were 30.28% and 28.21% higher in top and middle
soils than in deep soils, respectively. Meanwhile, cumulative CO2 emissions were markedly
lower under NL and NH treatment than under N0 treatment by 7.87% and 15.75%,
respectively.

PI
After 80 days of incubation, defoliation addition alone or in combination with nitrogen
addition resulted in positive PI in soils at the three depths (Fig. 3). PI was extremely
substantially affected by defoliation, nitrogen, and soil depth (Table 1). PI was the highest
in deep soils (2.05 [CAN0], 1.83 [CANL], and 1.76 [CANH]) in defoliation and nitrogen
additions. Moreover, nitrogen addition alone caused reverse PI in soils at three depths.

MBC
MBC was enhanced under defoliation and nitrogen addition, which was significantly or
extremely significantly altered by defoliation, nitrogen and soil depth (Fig. 4 and Table 1).
Moreover, defoliation addition alone or combined with nitrogen addition contributed to
higher MBC than C0N0 treatment. On the 4th day, MBC in top soils was markedly higher
under CAN0, CANL, and CANH treatment than under C0N0 treatment by 66.49%, 87.82%,
and 97.81%. In contrast, nitrogen addition alone diminished MBC in soils at the three
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Figure 3 PI index from the top soil , middle soil, and deep soil in each treatment after 80days incuba-
tion. C0, no-defoliation addition; CA, defoliation addition; N0, no-nitrogen input; NL, low-nitrogen input;
NH, high-nitrogen input.

Full-size DOI: 10.7717/peerj.15276/fig-3

Figure 4 Soil microbial biomass C(MBC) at 4th, 13th, and 80th days after the start of the incubation
in the top soil, middle soil, and deep soil. C0, no-defoliation addition; CA, defoliation addition; N0, no-
nitrogen input; NL, low-nitrogen input; NH, high-nitrogen input. Different lowercase letters over the bar
indicate significant difference at p5 0.05 in the same incubation time.

Full-size DOI: 10.7717/peerj.15276/fig-4

depths. MBC in top and middle soils was higher than that in deep soils by 127.07% and
104.31%, respectively.

Soil enzymes
The activity of soil catalase, alkaline phosphatase, and cellulase was enhanced, which was
markedly changed by defoliation, nitrogen and soil depth, on the 4th day (Fig. 5 and Table
1). The activity of soil catalase was 32.95% and 36.94% higher, that of alkaline phosphatase
was 84.64% and 83.03% higher, and that of cellulase was 174.67% and 251.12% higher
under CANL and CANH treatment than under C0N0. Nitrogen addition alone had different
influences on activity of the tested soil enzymes in soils at the three depths. The activity of
catalase, alkaline phosphatase, and cellulase was higher in top soils than in deep soils.

Wang et al. (2023), PeerJ, DOI 10.7717/peerj.15276 8/21

https://peerj.com
https://doi.org/10.7717/peerj.15276/fig-3
https://doi.org/10.7717/peerj.15276/fig-4
http://dx.doi.org/10.7717/peerj.15276


Figure 5 Soil enzyme activity on 4th day in the top soil, middle soil, and deep soil. C0, no-defoliation
addition; CA, defoliation addition; N0, no-nitrogen input; NL, low-nitrogen input; NH, high-nitrogen in-
put. Different lowercase letters over the bar indicate significant difference at p 5 0.05 in the same soil
depth.

Full-size DOI: 10.7717/peerj.15276/fig-5

Soil bacterial diversity and community structure
During the first 7 days, CO2 emissions rapidly surged after exogenous carbon addition.
Mounting studies (Tian et al., 2016a; Shen et al., 2021; Zhou et al., 2021) reported that
bacterial communities were changed from day 3 to day 15. Moreover, our study
demonstrated that MBC peaked on the 4th day under defoliation and nitrogen addition.
Accordingly, in order to evaluate the effect of defoliation, nitrogen, and soil depth on the
soil microbial community structure in dryland cherry orchards, soil DNA was extracted
on the 4th day of incubation to analyze the bacterial diversity. The results manifested that
defoliation and nitrogen addition exerted no significant effects on the Chao1, Shannon, and
Simpson index of soil bacteria (Fig. 6). However, the relative abundance of Proteobacteria
markedly increased in soils at the three depths under defoliation and nitrogen addition,
and that of Acidobacteria in deep soils was substantially reduced under both defoliation
and nitrogen addition.

In our research, 48 phyla, 133 classes, 209 orders, 260 families, and 480 genera of bacteria
were obtained through high-throughput sequencing of bacterial 16S rRNA. At the level
of bacteria phyla (Fig. 7), the relative abundance of Proteobacteria and Acidobacteria was
greater than 10.0% in communities, which were 37.84%–60.62% and 10.70%–24.53%,
respectively. The relative abundance of Proteobacteria was 15.91% higher under CA

treatment than under C0 treatment and was 12.18% and 11.85% higher under NH and NL

treatment than under N0 treatment in deep soils. The relative abundance of Acidobacteria
in deep soils was lower under CANH treatment than under C0N0 treatment by 96.23%.

DISCUSSION
Effects of defoliation and nitrogen addition on CO2 emissions in soils
at different depths
As previously described (Fontaine, Mariotti & Abbadie, 2003), defoliation alone or both
defoliation and nitrogen was added in our study to assess organsim matter decomposition
and analyze the mechanism of ‘‘microbial mining’’. Our data unveiled that cumulative
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Figure 6 Richness (Chao1) and diversity (Shannon and Simpson) of bacteria in the top, middle, deep
soils on 4th day. C0, no-defoliation addition; CA, defoliation addition; N0, no-nitrogen input; NL, low-
nitrogen input; NH, high-nitrogen input.

Full-size DOI: 10.7717/peerj.15276/fig-6

Figure 7 Relative abundance of bacteria phyla in the top, middle, deep soil on 4th day. C0, no-
defoliation addition; CA, defoliation addition; N0, no-nitrogen input; NL, low-nitrogen input; NH,
high-nitrogen input.

Full-size DOI: 10.7717/peerj.15276/fig-7

CO2 emissions under defoliation addition alone or combined with nitrogen addition were
1.94−2.78 times higher than those under C0N0 treatment, which may be attributable to
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the fact that defoliation and nitrogen addition increased the activity of soil microbes (Figs.
4 and 5), accelerated the conversion of microbial biomass (Blagodatskaya & Kuzyakov,
2008), and facilitated the secretion of extracellular enzymes to decompose soil organsim
matter and then deciduous residues through microbes (Allison et al., 2010; Burns et al.,
2013), thus resulting in CO2 emissions in short-term incubation (Cotrufo et al., 2015; Liu et
al., 2017; Zhou et al., 2021). These results are consistent with hypothesis (1). Additionally,
our findings also elucidated that compared to defoliation addition alone, addition of both
defoliation and nitrogen decreased CO2 emissions and PI, which is ascribed to the ‘‘mining
of nitrogen’’ (Fontaine, Mariotti & Abbadie, 2003). Moreover, nitrogen alone addition also
reduced CO2 emissions and caused negative PI, which is attributed to the ‘‘mining of
nitrogen’’ (Fontaine, Mariotti & Abbadie, 2003). Our data also revealed that in soils with
relatively low total nitrogen contents (0.47−0.74 g kg−1), microbes were stimulated to
decompose organsim matter to acquire the required nitrogen and induce CO2 emissions
under defoliation and nitrogen addition, similar to most research results (Chen et al.,
2014; Li et al., 2017; Fang et al., 2018a; Mason-Jones, Schmücker & Kuzyakov, 2018; Hicks
et al., 2019; Liao, Tian & Liu, 2021). However, our data showed no significant differences
between low and high nitrogen, which indicated that the nitrogen demand of microbes
could be saturated at low nitrogen levels. In addition, nitrogen addition alone reduced CO2

emissions and then caused negative PI, which was concordant with the results of laboratory
culture in the dark (Wang et al., 2014; Fang et al., 2018a) and outdoor testing (Ginting et al.,
2003). Corresponding to the research with the DeNitrification-DeComposition (DNDC)
model (Chi & Chen, 2001), Grant et al. (2004) also used the DNDC model to predict the
impact of 50% CO2 emissions on nitrogen. Therefore, nitrogen addition alone exerts little
effect on soil respiration, whilst combination of nitrogen and organic carbon effectively
promotes the decomposition of exogenous organic substances.

Soil depth is frequently associated with new increases in CO2 emissions (Meyer et
al., 2018; Liao et al., 2020). Throughout the incubation period, the CO2 efflux rates and
cumulative CO2 emissions were higher in top and middle soils than in deep soils, which
might be explained by the following factors: (i) high MBC and activities of soil catalase,
alkaline phosphatase, and cellulase in top and middle soils (Figs. 4 and 5), (ii) relatively
sufficient nutrients in top and middle soils, and (iii) suitable pH and favorable soil
structure and properties in top and middle soils (Wang et al., 2014; Tian et al., 2016b),
which provided advantageous conditions for the decomposition of deciduous residues
by microbes. Conversely, PI was higher in deep soils than in top and middle soils in our
study, concurrent with the result of a prior study (Liao et al., 2020). The proportion of
residual organic carbon was calculated based on the input amount of organic carbon and
emission amount of CO2 in soils at different depths, which exhibited that the proportion
of residual organic carbon was 88.88%, 88.05%, and 80.60% in top, middle, and deep soils,
respectively. This result indicated that top and middle soils can retain a higher proportion
of exogenous carbon than deep soils.
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Effects of defoliation and nitrogen addition on microbial activities and
communities in different soils
Microbes have been extensively recognized to play a key role in soil carbon mineralization
(Herrmann & Bucksch, 2014; Chen et al., 2018; Li et al., 2018). MBC and enzyme activities
are usually considered measurable proxies for microbial decomposition (Dorodnikov et
al., 2009; Jiang et al., 2021) and can be optimized with the shortest incubation time to
minimize microbial growth and enzyme production during the measurement (Shen et
al., 2021). Defoliation addition alone or combined with nitrogen addition elevated MBC,
increased the activity of alkaline phosphatase, and cellulase, and caused positive PI in soils
(Fig. 3). Defoliation shared significantly positive correlations with MBC and the activity
of catalase, alkaline phosphatase, and cellulase in soils (Fig. 8). These data illustrated that
microbes obtained available carbon and nitrogen from defoliation and nitrogen through
various enzymes to meet their stoichiometric requirements (Lashermes et al., 2016). In
our study, nitrogen increased microbial biomass and the activity of the tested enzymes
in defoliation and nitrogen additions (Figs. 4 and 5) as a regulator in organic carbon
mineralization, which was supported by many previous studies (Frey et al., 2004; Cayuela,
Sinicco & Mondini, 2009; Parajuli, Ye & Szogi, 2022). We also observed that at the initial
stage of culture, addition of both defoliation and nitrogen (especially both defoliation
and high nitrogen) markedly enhanced MBC and enzyme activities but diminished
CO2 emissions when compared with defoliation addition alone, further confirming the
‘‘microbial mining’’ mechanism (Fontaine, Mariotti & Abbadie, 2003). Meanwhile, our
results also unraveled that only nitrogen addition significantly decreased soil microbial
biomass and changed the activity of the tested enzymes at the three depths, accompanied
by reduced CO2 emissions and negative PI. These findings illustrated that the effective
combination of nitrogen and organic carbon could accelerate organism decomposition,
improve soil quality and fertility, and provide guidance for production practice.

In our study, Proteobacteria and Acidobacteria were dominant bacteria in soils regardless
of soil depth or exogenous inputs (Fig. 7). Defoliation and nitrogen addition did not
significantly change soil bacterial diversity and abundance (Fig. 6), indicating the
ecological properties of Proteobacteria and Acidobacteria in soils. Defoliation addition
alone or combined with nitrogen addition markedly elevated the relative abundance of
Proteobacteria and reduced the relative abundance of Acidobacteria, thereby causing high
CO2 emissions. This result suggested the association of Proteobacteria and Acidobacteria
with CO2 emissions. As a copiotrophic group, Proteobacteria grows rapidly, and its
abundance is increased by relying on more labile carbon sources under nutrient inputs
(Ramirez, Craine & Fierer, 2012). With increasing stimulation, more Proteobacteria can
participate in the synthesis of exoenzymes to mineralize substrates (Schimel, 2003; Fierer,
Bradford & Jackson, 2007), corresponding to the result that defoliation addition alone or
combined with nitrogen addition substantially augmented MBC and enzyme activities,
which was consistent with hypothesis (2). Our data revealed that CO2 emissions were
significantly positively correlated with Proteobacteria (Fig. 8). In addition, Nottingham
et al. (2009) observed that microbial biomass increased in the first step of plant residue
decomposition, which was caused by labile C rather than macromolecular compounds.
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Figure 8 Spearman correlation relationship among the relative abundance of bacteria symbols coded
on 4th day. Red negative; Blue positive. Darker colors indicate stronger correlationships, asterisks indicate
significant effects (***p< 0.001, **p< 0.01, *p< 0.05).

Full-size DOI: 10.7717/peerj.15276/fig-8

Altogether, these data suggest Proteobacteria as a main participant in organic carbon
mineralization in cherry orchards. However, Acidobacteria (an oligotrophic group) could
be colonized on mineral surfaces under rich nutrient conditions (Nemergut et al., 2010;
Ramirez, Craine & Fierer, 2012).

Furthermore, our PLS-DA analysis (Fig. 9) demonstrated that bacterial communities
were clearly separated in top and deep soils, which can be explained by the fact that nutrient
composition determines the distribution of oligotrophic and hypertrophic bacteria (Fierer,
Bradford & Jackson, 2007;Whitman et al., 2016), consistent with hypothesis (3). Compared
to top soils, deep soils had the highest relative abundance of Proteobacteria under both
defoliation and nitrogen addition, which can be attributed to the highest PI in deep soils that
is related to different microbial products (Kögel-Knabner, 2017), soil pH (Madsen & Munk,
1987; Silveira et al., 2008; Takele, Chimdi & Abebaw, 2014), and soil nutrient (Madsen &
Munk, 1987). Therefore, soil microbial communities may be partially determined by soil
properties. Furthermore, fungi have also been reported to directly participate in organic
carbon mineralization. Accordingly, further research is warranted to determine how fungal
communities respond to defoliation and nitrogen added in soils of cherry orchards in
northwest China.
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Figure 9 PLSDA of the bacterial communities on 4th day. T, top soil; M, middle soil; D, deep soil; C0,
no-defoliation addition; CA, defoliation addition; N0, no-nitrogen input; NL, low-nitrogen input; NH,
high-nitrogen input.

Full-size DOI: 10.7717/peerj.15276/fig-9

CONCLUSION
In the early stages of the incubation period, defoliation and nitrogen addition increased
MBC, the activity of catalase, alkaline phosphatase, and cellulase, and CO2 emissions and
resulted in positive PI in soils at the three depths of dryland cherry orchards. Nitrogen
addition alone contributed to a significant reduction in MBC and CO2 emissions and
negative PI. Meanwhile, defoliation and nitrogen addition markedly elevated the relative
abundance of Proteobacteria and reduced the relative abundance of Acidobacteria in soils
at the three depths, particularly deep soils. Moreover, Proteobacteria was significantly
correlated with defoliation, nitrogen, CO2 emissions, and soil cellulase enzyme activities.
In conclusion, this study unraveled the separate and interactive effects of defoliation
and nitrogen addition on CO2 emissions, soil microbial activities, and soil microbial
communities composition at the soil depth scale. Likewise, this study demonstrated that
both defoliation and nitrogen addition simulated exogenous carbon decomposition,
affected soil microbial communities and improved soil microbial activities, ultimately
enhancing soil quality in dryland cherry orchards.
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