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ABSTRACT
The reference evapotranspiration (ETo) is considered one of the primary vari-
ables for water resource management, irrigation practices, agricultural and hydro-
meteorological studies, and modeling different hydrological processes. Therefore, an
accurate prediction of ETo is essential. A large number of empirical methods have
been developed by numerous scientists and specialists worldwide to estimate ETo from
different climatic variables. The FAO56 Penman-Monteith (PM) is the most accepted
and accurate model to estimate ETo in various environments and climatic conditions.
However, the FAO56-PM method requires radiation, air temperature, air humidity,
and wind speed data. In this study in Adana Plain, which has a Mediterranean climate
for the summer growing season, using 22-year daily climatic data, the performance of
the FAO56-PMmethod was evaluated with different combinations of climatic variables
when climatic data weremissing. Additionally, the performances of Hargreaves-Samani
(HS) and HS (A&G) equations were assessed, and multiple linear regression models
(MLR) were developed using different combinations of climatic variables. The FAO56-
PM method could accurately estimate daily ETo when wind speed (U) and relative
humidity (RH) data were unavailable, using the procedures suggested by FAO56
Paper (RMSEs were smaller than 0.4 mm d−1, and percent relative errors (REs) were
smaller than 9%). Hargreaves-Samani (A&G) and HS equations could not estimate
daily ETo accurately according to the statistical indices (RMSEs = 0.772-0.957 mm
d−1; REs (%) = 18.2–22.6; R2

= 0.604–0.686, respectively). On the other hand, MLR
models’ performance varied according to a combination of different climatic variables.
According to t-stat and p values of independent variables for MLR models, solar
radiation (Rs) and sunshine hours (n) variables hadmore effect on estimating ETo than
other variables. Therefore, themodels that used Rs and n data estimated daily ETomore
accurately than the others. RMSE values of the models that used Rs were between 0.288
to 0.529 mm d−1; RE(%) values were between 6.2%–11.5% in the validation process.
RMSE values of the models that used n were between 0.457 to 0.750 mm d−1; RE(%)
values were between 9.9%–16.3% in the validation process. The models based only on
air temperature had the worst performance (RMSE = 1.117 mm d−1; RE(%) = 24.2;
R2
= 0.423).
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INTRODUCTION
Evapotranspiration plays a crucial role in the hydrological cycle and is a significant
cause of worldwide water loss. Almost 62% of the precipitation that falls on continents
returns to the atmosphere through evapotranspiration (Dingman, 2002). Therefore,
accurate evaluation of evapotranspiration is essential from various aspects: irrigation
scheduling, water resource management, irrigation system design and management, crop
yield simulation, hydrological design, and accurate quantification of hydrological water
balance (Izadifar, 2010).

ETo can be multiplied by a crop-specific coefficient for estimating crop evapotran-
spiration (ETc) (Allen et al., 1998). Many studies worldwide have shown the FAO56-PM
equation to be the most accurate ETo method under various climatic conditions (Allen
et al., 1998; Todorović, Karic & Pereira, 2013; Kisi, 2016). However, the main restriction of
using this method is that it requires weather data, some of which can only be acquired
from major weather stations. The absence of these measurements in rural areas, especially
in developing countries, limits the usability of the FAO56-PM equation. However, this has
encouraged studies in estimating ETo values from easily obtainable climatic measurements,
such as temperature and wind speed (Zouzou & Citakoglu, 2021).

Many empirical and semi-empirical equations have been developed to estimate ETo,
which most require one or more weather data sets (Turc, 1961; Snyder, 1992; Hargreaves
& Samani, 1985). Since the performances of these equations in different environments
are varied, FAO has suggested using missing climatic data procedures in the FAO56-PM
method instead of these equations (Allen et al., 1998).

Many publications have referred to testing alternative equations with FAO56-PM ETo
calculated with complete weather data sets (Sentelhas, Gillespie & Santos, 2010; Todorović,
Karic & Pereira, 2013). Under climatic data-limited conditions, the Hargreaves–Samani
(HS) equation which requires air temperature only, has frequently been used to estimate
ETo (Hargreaves & Samani, 1985). Another approach suggested by Allen et al. (1998) is
to use only a set of temperature data, often referred to in the literature as a reduced set
FAO56-PM equation (FAO56-PMT).

Several studies have evaluated the accuracy of the FAO56-PM equation using only
maximum and minimum temperature data (FAO56-PMT) by comparing it with results of
FAO56-PM, which has complete data and other ETo equations, mainly HS (Stockle,
Kjelgaard & Bellocchi, 2004; Popova, Kercheva & Pereira, 2006; Jabloun & Sahli, 2008;
Todorović, Karic & Pereira, 2013).

Stockle, Kjelgaard & Bellocchi (2004) evaluated the accuracy of the FAO56-PM method
in five locations in the Netherlands, Spain, the Philippines, the USA, and Syria using
the procedure suggested by FAO56 by estimating Rs and vapor-pressure deficit from
temperature data. They found that the daily estimate of Rs and VPD for arid and semi-arid
locations changed between marginal to acceptable and were poor for other areas. Also,
the estimated FAO56-PM ETo appeared suitable for the arid and semi-arid areas weekly,
whereas daily ETo estimations were generally poor in all locations.
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According to a study performed by Popova, Kercheva & Pereira (2006), when solar
radiation data were not observed, the procedures suggested by the FAO56 Paper to
estimate Rs from Tmax and Tmin gave accurate estimates of ETo. When air humidity data
were missing, replacing Tdew (daily dewpoint temperature) with Tmin for computing the
actual vapor pressure (ea) was appropriate. When U data were unavailable, in case the
regional average wind speed was used instead of actual wind speed, accurate ETo estimates
were obtained. When only temperature data were observed, FAO-56 PMT provided better
results than HS.

Jabloun & Sahli (2008) reported similar results for different places in Tunisia. When Rs
data were missing, the Rs procedure using air temperature differences given by FAO56
Paper yielded accurate ETo estimates. Using Tdew = Tmin in the FAO56-PM model
was a good alternative to estimate ea when measured RH data were missed. Using the
regional average wind speed instead of daily data gave accurate estimates of ETo, and the
FAO56-PMT gave more precise results than HS in the study.

Under a monsoon climate, an application to the North China Plain has shown that
FAO56-PMT daily estimates fit the FAO56-PM ETo estimates better and produced more
minor estimation errors than HS (Liu & Pereira, 2001; Pereira, Cai & Hann, 2003).

Annandale et al. (2002) successfully applied FAO56-PMT to varied climates in South
Africa and suggested using 5-day average ETo values instead of daily ETo values.

In Southern Ontario, Sentelhas, Gillespie & Santos (2010) investigated 13 alternatives to
estimate ETo with different availabilities of climate data. When wind speed (U) and relative
humidity (RH) data were unavailable for the FAO56-PM method to calculate ETo, the
following cases gave accurate results: using mean wind speed data in a close area within the
same homogenous region instead of actual wind speed data; replacing Tdew with Tmin for
to be computing the actual vapor pressure.

Benli et al. (2010) evaluated the performance of FAO56-PM in case of missing climatic
parameters in a semi-arid highland environment in Turkey. When wind speeds were not
observed, an average wind speed of 2 m/s for light to moderate wind gave acceptable results
to estimate ETo in this environment. In addition, when air humidity data were missing,
in computing actual vapor pressure (ea), using Tmin instead of Tdew indicated acceptable
results to estimate ETo.

When climatic data are missing, the multiple linear regression (MLR) approaches are
also used to estimate ETo. StandardMLR is a known statistical modeling technique for data
mining and function estimation problems among the data-driven modeling approaches.
Despite the considerable development in data-driven modeling, MLR is still popular
and used for various modeling and model comparison issues due to its simplicity. MLR
approach has been used in a few studies in different parts of the world for modeling the ETo
(Irmak et al., 2003; Dai et al., 2008; Izadifar, 2010; Choi et al., 2018; Mattar & Alazba, 2019;
Yirga, 2019; Mohsin & Lone, 2021; Kim, Bae & Jang, 2022; Dimitriadou & Nikolakopoulos,
2022). Results have shown that obtained models by the MLR approach estimated ETo
successfully.

Irmak et al. (2003)modeled ETo byMLR technique in North-Central Florida, which has
a humid climate using 21 years of daily climate data. Their study derived two models based
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on the first Rs, Tmax, and Tmin, and the second Rn, Tmax, and Tmin. The study used the
fifteen-year dataset (1980–1994) to calibrate the model parameters. The six-year dataset
(1995–2000) was used to validate the models. The models’ daily, weekly, and annual total
ETo estimations were very close to those obtained from the FAO56-PM method.

Dai et al. (2008) estimated ETo using MLR and artificial neural network (ANN) models
with four and three inputs in China’s arid, semi-arid, and sub-humid areas. Both four
and three-input MLR and ANN models gave similar results for the sub-humid regions. In
comparison, ANN models outperformed MLR models for arid and semi-arid areas.

Izadifar (2010) investigated data-driven modeling techniques for estimating the hourly
actual evapotranspiration mechanism. Genetic programming (GP) and MLR data-driven
modeling techniques performed similarly and better than the ANN model concerning the
ability to generalize.

Choi et al. (2018) tested the neural network models and MLR algorithms. They reported
that the performance of the MLR model was not inferior as long as there was no derivation
of negative values.

Mattar & Alazba (2019) used MLR models and gene expression programming (GEP) to
estimate the mean monthly ETo with limited climatic data in Egypt. In the study, MLR
model ETo estimates indicated the same results trend with GEP models in the training and
testing subset.

Yirga (2019) modeled ETo by MLR approach for the Megecha catchment. The results
showed that the model with five variables (U, Tmax, Tmin, N, RH) estimated monthly
ETo with excellent performance.

Mohsin & Lone (2021) developed models using by MLR approach to estimate ETo for
Kashmir Valley. R2 values for the developed models were greater than 0.96.

Kim, Bae & Jang (2022) used MLR and PR algorithms to estimate ETo under climatic
data-limited conditions with data obtained from 62 climate stations across South Korea.
In the study, the best R2 were as follows: 0.62, 0.69 (daily), 0.77, 0.81 (monthly), and 0.40,
0.49 (annual) for MLR and PR algorithms, respectively. Models applicability was different
inland and coastal areas. So it was recommended to apply the most suitable model for
each region by examining other training data and learning models, considering regional
characteristics in the study.

Dimitriadou & Nikolakopoulos (2022) investigated the utility of MLR in estimating ETo
in the Peloponnese-Greece, for two typical winter and summer months during 2016–2019.
The results of the study indicated that MLR could produce outstanding predictive models.

The procedures suggested by Allen et al. (1998) for predicting missing climatic
parameters require assessment in different environments and climates to test their
applicability because the results vary according to climatic conditions (Valle Júnior et
al., 2021). No studies have addressed assessing the performance of FAO56-PM with
missing climatic data to estimate daily ETo in this region of Turkey. In this study, MLR
models were also used to estimate ETo because the added value of MLR models is the
simplicity and comprehensibility of the method and the equations produced. MLR models
give us the formula or relationship and have acceptable accuracy. The advantage of this
method is the easy interpretation of the coefficients generated in the model with low
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computational effort compared to more complex techniques, such as artificial intelligence
algorithms (Dimitriadou & Nikolakopoulos, 2022). No previous study modeled ETo using
daily climate data by MLR approach in this region of Turkey. So, this study intends to close
these gaps in the literature. Also, daily ETo estimation instead of monthly ETo estimation
would help professionals in real-time irrigation scheduling, where daily ETo values are
needed.

According to this, the specific objectives of this study are:
(1) To assess the performance of the FAO56-PMmethod using the missing climatic data

procedure with different combinations of climatic variables to estimate daily ETo.
(2) To assess the performance of HS and HS (A&G) equations to estimate daily ETo.
(3) To develop MLR models using available climatic variables and compare their

performance with the FAO56-PM method with full data to estimate the daily ETo.
(4) To identify the most critical climatic variables affecting the ETo process and to

identify, using the statistical criteria, the supremacy of one modeling approach over the
other models.

MATERIALS & METHODS
Study area
TheAdana Plain is located in theMediterraneanRegion and consists of two parts, Çukurova
Plain and Upper Plain. This study selected the Adana plain because It is Turkey’s most
extensive and fertile delta plain. Moreover, several crops can be planted in the same crop
year in Adana, where fertile cultivated land occupies a large area due to the suitable climate.
Cereal, fruit, vegetable, and citrus are grown in the region, and their production efficiency
is high (KafalıYılmaz, 2019). In Turkey, Adana Plain ranks first in citrus, watermelon,
soybean, and peanut production (Kadeş, 2019). Rainfall amounts and distribution are
insufficient during the growing season, so irrigation is indispensable in crop production
in Adana Plain. This study includes April to October, covering the growing season of the
main crops in the Adana Plain. Long-dated daily climate variables covering the period
from 1998 to 2019 were used in the study.

This study used theAdanaweather station in the center of Adana, operated by the Turkish
State Meteorological Service (TSMS) (Fig. 1). Adana has a hot-summer Mediterranean
climate. According to the Köppen-Geiger classification, Adana has a warm temperate
climate with dry summer and hot summer (classified as Csa). (Öztürk, Çetinkaya &
Aydın, 2017). The annual average (1929-2021) precipitation is 668.7 mm, of which about
50% of rainfall occurs in December, January, and February. The yearly average (1929–
2021) sunshine hours and temperature are 7.5 h and 19.2 ◦C, respectively (Turkish State
Meteorological Service, 2022).

FAO56-Penman-Monteith (PM) method
FAO recommends the FAO56-PM method as the sole standard approach to estimating
ETo and validating other models, and It is expressed as (Allen et al., 1998):

ETo=
0.408×1×(Rn−G)+γ × 900

Tmc+273
×U2× (es−ea)

1+γ × (1+0.34×U2)
(1)
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Figure 1 Location of the Adana weather station in Adana Plain in Turkey.Map data: Google,
CNES/Airbus, Landsat/Copernicus, Maxar Technologies, 2023.

Full-size DOI: 10.7717/peerj.15252/fig-1

es=
0.6108×exp

[
17.27×Tmaxc
Tmaxc+237.3

]
+0.6108×exp

[
17.27×Tminc
Tminc+237.3

]
2

(2)

ea=
RH
100
×es (3)
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1=
4098×

[
0.6108×exp( 17.27×Tmc

Tmc+237.3
)
]

(Tmc+237.3)2
(4)

The wind speed data measured at 10 m was converted to a standard height of 2 m using
Eq. (5) (Allen et al., 1998) (Eq. (5)).

U2=UZ ×

[
4.87

ln(67.8×Z−5.42)

]
. (5)

Where ETo = reference evapotranspiration (mm d−1); Rn = net radiation (MJ m−2 d−1);
G = soil heat flux density (MJ m−2 d−1), considered zero for daily estimates;1 = slope of
vapor pressure curve (kPa. ◦C−1); γ = psychrometric constant (0.0672 kPa K−1); Tmc =

mean air temperature (◦C); TmaxC =maximum air temperature (◦C); TminC =minimum
air temperature (◦C); U2 = wind speed at 2 m height (m s−1); Z= height of the wind speed
measurement (10 m); es = saturation vapor pressure (kPa); ea = actual vapor pressure
(kPa); (es − ea) = saturation vapor pressure deficit (kPa); RH = mean relative humidity
(%).

Rn=Rns−Rnl (6)

Rns= 0.77×Rs (7)

Rnl = [σ×
(
Tmax4K +Tmin4K

2

)
×
(
0.34−0.14×

√
ea
)
×

(
1.35×

Rs

Rso
−0.35

)
(8)

Rso= 0.75xRa (9)

where Rns = net solar radiation (MJ m−2 d−1); Rnl = net longwave radiation (MJ
m−2 d−1); Rs = solar radiation (MJ m−2 d−1); Rso = clear-sky solar radiation; Ra =
extraterrestrial radiation (MJ m−2 d−1); Tmaxk = maximum absolute temperature (K);
Tmink = minimum absolute temperature (K).

Daily values of Ra were computed using the equations given in the FAO56 Paper by
Allen et al. (1998).

Procedures for estimating missing climatic data
The FAO56-PMmethod can only be used when a full climatic dataset is available. However,
Allen et al. (1998) suggested the following procedures for estimating absent Rs, U,1e data:

Estimating missing solar radiation (Rs) data with the Angstrom for-
mula
Rs is often estimated from sunshine data using the Angstrom formula (Eq. (10))

Rs=
(
as+bs×

n
N

)
×Ra (10)

where N= daylight hours (hour); n= actual sunshine duration (hour). as= 0.25; bs= 0.50
are recommended where no actual Rs data are available (Allen et al., 1998). This study used
as as = 0.25 and bs = 0.50. In this study, Rs estimated from sunshine data using the
Angstrom formula is denoted by the symbol Rsn.
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Estimating missing solar radiation (Rs) data with the Hargreaves’ ra-
diation formula
Where sunshine data are lacking, the Hargreaves’ radiation formula can be used to estimate
Rs. (Eq. (11)) (Allen et al., 1998).

Rs=Krs×
√
(TmaxC−Tminc)×Ra (11)

Where Krs = adjustment coefficient (∼=0.16 for inland areas dominated by landmass; ∼=
0.19 for coastal areas adjacent to the coast of a large land mass). This study used 0.16 for
Krs. In this study, Rs estimated from air temperature differences using the Hargreaves’
radiation formula is denoted by the symbol RsT.

Procedure for estimating wind speed (U)
Where wind speed data are not measured, mean wind speed data observed at a close
location within the same homogenous region can be used instead of actual wind speed
data, as proposed byAllen et al. (1998). This study used the closest weather station’s average
wind speed (U2) of 0.95 m s−1 (1998–2019) instead of observed data.

Procedure for estimating vapor pressure deficit (es − ea = 1e)
Where air humidity data are missing, vapor pressure deficit ( 1e) can be calculated based
on temperature data suggested by Allen et al. (1998). ea is obtained by assuming that the
dew point temperature (Tdew) is close to the daily minimum temperature (Tmin). Then,
ea iscalculated by Eq. (12).

ea= 0.6108×exp(
17.27×Tminc
Tminc+237.3

) (12)

Hargreaves-Samani (HS) and HS (A & G) equations
FAO suggests that when Rs, RH, and U data are missing, ETo can be estimated with the
Hargreaves-Samani equation only using Tmax and Tmin (Hargreaves & Samani, 1985)
and is expressed by Eq. (13):

ETo= 0.0023×Ra×(Tmaxc−Tminc)0.5× (Tmc+17.8). (13)

In this study, a modified HS equation developed by Almorox & Grieser (2016) for a
warm temperate climate with dry summer (as classified Cs) was also used to estimate ETo
(Eq. (14)).

ETo= 0.00419×Ra×(Tmaxc−Tminc)0.2342×(Tmc+17.8)−0.0208. (14)

Multiple linear regression (MLR) models
MLR is a statistical model that includes multiple predictive variables. The general form of
the MLR model is:

Y =β0+β1X1+β2X2+ ...+βnXn (15)
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where Y is the dependent variable; X1, ..., and Xn are independent variables; ß0 is the
unknown intercept; ß1, . . . , ßn are partial regression coefficients of the function.

Multiple regression analysis was performed to develop linear models to estimate daily
ETo values frommeteorological variables, using ETo results based on calculations made by
the FAO-56 PM equation (Tmax, Tmin, RH, U, Rs). The FAO56-PM ETo was employed
as the dependent variable, while meteorological parameters were used as independent
variables. The t-stat and p-values were examined to determine whether the best-fit line
adequately fits the data. In several previous studies (Irmak et al., 2003; Noi, Degener &
Kappas, 2017; Mattar & Alazba, 2019), one of the most common validation methods is
dividing sample data into calibration and a validation dataset (for example, 70% and 30%,
respectively). This study developed the model parameters using fifteen years (70%) of daily
climatic data (April 1, 1998–October 31, 2012). Seven years (30%) of daily climatic data
(April 1, 2013–October 31, 2019) were used to validation of the models.

Data analysis
The ETo estimated using the MLR models and FAO56-PM with missing data were
compared with the ETo data computed using the FAO56-PM equation with complete
datasets. The performance of the methods and models was determined by regression
analysis. The performances of ETo estimates were also evaluated using the following
equations below, suggested by Willmott (1981), Karunanithi et al. (1994), and Jacovides &
Kontoyiannis (1995). All the statistical indices were calculated daily.

d = 1−

[ ∑n
i=1(Pi−Oi)2∑n

i=1(
∣∣Pi−O∣∣+ ∣∣Oi−O

∣∣)2
]
,(0≤ d ≤ 1) (16)

RMSE =

√√√√1
n

n∑
i=1

(Pi−Oi)2 (17)

RE =
RMSE
O

(18)

MBE =
1
n

n∑
i=1

(Pi−Oi) (19)

MAE =
1
n

n∑
i=1

|Pi−Oi| (20)

where n= the total number of data; Pi= estimated ETo values (mmd−1); Oi= FAO56-PM
ETo values (mm d−1); O = the mean of FAO56-PM ETo values (mm d−1); d = the index
of agreement; RMSE = root mean square errror; RE = relative error; MBE = mean bias
error; MAE = mean absolute error.

In this study, the criteria given below, suggested by Stockle, Kjelgaard & Bellocchi (2004),
were used to interpret the performance statistics of the methods in conjunction with the
RMSE, MAE, MBE, b (slope), and a (intercept). The score is very good if d ≥ 0.95 and
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RE ≤ 0.10. The score is good if d ≥ 0.95 and 0.10 <RE ≤ 0.15. The score is acceptable if
d ≥ 0.95 and 0.15 <RE ≤ 0.20. The score is marginal if d ≥ 0.95 and 0.20 <RE ≤ 0.25.
Other combinations of d and RE values and R2 <0.85 indicate poor performance.

RESULTS & DISCUSSION
Estimating daily ETo with missing data, using the FAO56-PM method,
HS and HS(A&G) equations
The relationships between the ETo values estimated by the FAO56-PM method with
complete data and those with the FAO56-PM method with missing data, HS, HS(A&G)
equations are given in Fig. 2. It can be seen from Fig. 2 that the FAO56-PM ETo with
missing U data correlated well with the FAO56-PM method with complete climatic
data. Concerning regression equations, FAO56-PM with missing Rs data (Rsn) gave the
best-predicted values: a slope close to unity (0.9825) and intercept close to zero (0.25),
and coefficient of determination close to one (R2

= 0.9224). The FAO56-PM with missing
ea data gave the second-best values: (b= 0.9941, a= 0.2573, and R2

= 0.8475). It is clear
from Fig. 2 that all methods underestimated and overestimated ETo values during the
growing season. However, the FAO56-PMT method using only a set of temperature data
referred to in the literature as a reduced set FAO56-PM equation generally overestimated
ETo for more days. HS(A&G) equations gave similar results, as well. The FAO56-PMT
method overestimated the ETo during 2,907 days and underestimated the ETo during
1,801 days. These overestimates and underestimates were 3,696 days and 1,012 days for the
HS equation, whereas 3,356 and 1,352 days for HS(A&G) equation, respectively.
Table 1 shows the performance statistics between ETo calculated by the FAO56-PM with
a complete dataset and estimated by the FAO56-PM with missing data and estimated by
the HS and HS(A&G) equations. The daily methods’ ranking was made, considering all
statistical indices in Table 1. As shown in Table 1, when U data were missing, the closest
weather station’s average wind speed of 0.95 m s−1 was a perfect option for the FAO56-PM
method because of minor errors. This method’s score was accepted as very good according
to the criteria given by Stockle, Kjelgaard & Bellocchi (2004), and had the lowest RMSE,
MAE, RE, and MBE values among the methods and ranked first (RMSE = 0.372 mm d−1,
MAE = 0.248 mm d−1, RE = 0.088, and MBE = 0.009 mm d−1). Sentelhas, Gillespie &
Santos (2010) found similar results in Southern Ontario, Canada. When just U data were
missing, the standard U data from a nearby weather station was a perfect option for the
FAO56-PMmethod due to minor errors. Allen et al. (1998) also suggest using a wind speed
value of 2 m s−1 when wind speed data are unavailable. However, in our research, 98% of
data from measurements showed U values below 2 m s−1. The studies by Popova, Kercheva
& Pereira (2006) in South Bulgaria and Córdova et al. (2015) in the high Andes of southern
Ecuador presented that the results of RMSE and MBE were near zero when using a wind
speed value of 2 m.s−1. Djaman et al. (2016) reported that the performance of FAO56-PM
was unsuitable in dry conditions when U was considered as 2 m s−1. However, when using
the daily average U in the same conditions, FAO56-PM estimated ETo accurately with
MBE values between −0.05 to 0.04.
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Table 1 Statistical performances of daily ETo estimating methods tested against the FAO56-PM equation with full data.

Methods FAO56-PMmethod with missing data FAO56-
PMT

HS (A&G) HS

Missing
data

-U -Rs Rs(n) -ea -Rs Rs(T) -U, -ea -ea, -Rs
Rs(T)

-U, -Rs
Rs(T)

-ea, -U, -Rs
Rs(T)

– –

Parameters
Used

Tmax,
Tmin, ea, es,
Rs, Ra

Tmax,
Tmin, ea, es,
U, Ra, n

Tmax,
Tmin, e s,
Rs, Ra, U

Tmax,
Tmin, e a, e
s, U, Ra

Tmax,
Tmin, Rs, e
s, Ra

Tmax,
Tmin, e s,
Ra, U

Tmax,
Tmin, e a, e
s, Ra

Tmax,
Tmin, e s,
Ra

Tmax,
Tmin, Ra

Tmax,
Tmin, Ra

Ranking 1 2 3 4 5 6 7 8 9 10

d 0.974 *(2) 0.975 *(1) 0.950 *(3) 0.936 *(4) 0.934 *(5) 0.921 *(6) 0.877 *(7) 0.866 *(9) 0.872 *(8) 0.830 *(10)
R2 0.908 *(2) 0.922 *(1) 0.850 *(4) 0.819 *(5) 0.854 *(3) 0.733 *(6) 0.667 *(7) 0.674 *(9) 0.686 *(8) 0.604 *(10)
RMSE (mm
d−1)

0.372 *(1) 0.390 *(2) 0.564 *(5) 0.552 *(3) 0.559 *(4) 0.662 *(6) 0.724 *(7) 0.735 *(8) 0.772 *(9) 0.957 *(10)

RE 0.088 *(1) 0.092 *(2) 0.133 *(5) 0.130 *(3) 0.132 *(4) 0.156 *(6) 0.171 *(7) 0.174 *(8) 0.182 *(9) 0.226 *(10)
MAE (mm
d−1)

0.248 *(1) 0.272 *(2) 0.421 *(4) 0.414 *(3) 0.447 *(5) 0.462 *(6) 0.558 *(7) 0.566 *(8) 0.595 *(9) 0.750 *(10)

MBE (mm
d−1)

0.009 *(1) 0.176 *(5) 0.232 *(7) −0.158 *(4) 0.268 *(8) 0.151 *(2) −0.153 *(3) 0.184 *(6) 0.360 *(9) 0.550 *(10)

b (slope) 0.8735 *(3) 0.9825 *(2) 0.9941 *(1) 0.7398 *(5) 0.7345 *(6) 0.8318 *(4) 0.6096 *(9) 0.5700 *(10) 0.6571 *(8) 0.7076 *(7)
a (intercept) 0.5451 *(3) 0.2500 *(1) 0.2573 *(2) 0.9435 *(5) 1.3922 *(6) 0.8632 *(4) 1.5004 *(7) 2.0049 *(10) 1.8119 *(9) 1.7887 *(8)

Notes.
HS (A&G)A modified HS equation developed by Almorox & Grieser (2016).

An asterisk (*) indicates daily estimation rank number for each statistical indices.
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Figure 2 Scatter plots between calculated FAO56-PM ETo with complete dataset and estimated
FAO56-PM ETo with missing data (N = 4,708 days).

Full-size DOI: 10.7717/peerj.15252/fig-2

When ea, usually obtained from relative humidity, was missing; in the case of estimating
ea by assuming that dew point temperature (Tdew) is close to the daily minimum
temperature (Tmin), the agreement between ETo calculated with the complete data
and ETo estimated with missing data indicated good performance due to low errors
(RMSE = 0.564 mm d−1, MAE = 0.421 mm d−1, RE = 0.133, and MBE = 0.232 mm
d−1). Several locations presented similar results when ea was estimated by Tmin (Jabloun &
Sahli, 2008; Popova, Kercheva & Pereira, 2006; Djaman et al., 2016). The study by Jabloun
& Sahli (2008) obtained good results for sub-humid and semi-arid locations of Tunisia
when ea was estimated by Tmin. Excluding Tunis, for all other locations, the RMSE and
MBE values ranged from 0.233 to 0.303 mm d−1 and from −0.212 to −0.078 mm d−1.
In the study performed by Popova, Kercheva & Pereira (2006) in the Trace plain of south
Bulgaria, when ea was estimated by Tmin, regression coefficients (R2) were found close to
1, the slope of simple linear regression (b) ranged from 0.93 to 0.97, and the values of the
standard error of estimates (SEE) ranged from 0.15 to 0.27 mm d−1. Similarly, Djaman et
al. (2016) obtained good results in different agro-ecological zones of Burkina Faso. In the
study, the values of b varied from 0.90 to 1.14, R2 ranged from 0.77 to 0.92, and RMSE and
MBE varied from 0.07 to 0.22 mm d−1 and from −0.45 to 0.22 mm d−1, respectively.

When Rs data were missing, using the Angstrom formula to estimate Rs was a perfect
option, with very low errors (RMSE= 0.390 mm d−1, MAE= 0.272 mm d−1, RE= 0.092,
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and MBE = 0.176 mm d−1). Its score can be accepted as very good. If sunshine hours
were not measured, using Hargreaves’ radiation formula to estimate Rs was unacceptable
due to d < 0.95 and R2 <0.85. So, Its score can be accepted as poor. In addition, the
slopes of regression and intercept between ETo calculated with the complete data and
those estimated with missing Rs data, b= 0.7398 and a= 0.9435, are not good values.
However, when Hargreaves’ radiation formula calculates the Rs (RsT), the ETo estimates
were more accurate than the FAO56-PMTmethod, HS, and HS(A&G) equations according
to all statistical indices (Table 1). Different studies using sunshine and temperature-based
models to estimate Rs observed similar results to our research. The study by Jahani,
Dinpashoh & Nafchi (2017) in Iran showed that sunshine-based models had more accurate
estimations than temperature-based ones. The study by Trnka et al. (2005) in Central
European lowlands presented that the Angstrom-Prescott model was the best method for
estimating Rs. Aladenola & Madramootoo (2014) recommended the Hargreaves’ radiation
formula for estimating Rs in Canada’s absence of solar radiation and sunshine data, unlike
our research. More research is needed to find the best model for estimating Rs for different
locations.

As seen in Table 1, for conditions in which U and ea data were missing (-U, -ea),
the ETo estimates were very similar to those estimating ea from minimum temperature
(−ea). However, when U and ea data were missing, the slope was not so close to the
unity ( b= 0.7345), and the intercept was not so close to zero ( a= 1.3922). In addition,
due to d < 0.95, this combination indicated poor performance. The other combinations
were unacceptable according to statistical indices and presented poor performance. As
shown in Table 1, when RE is expressed as a percentage, these values range from 8.8% to
22.6% according to methods. The HS method showed the highest error at 22.6%, and the
FAO56-PM method with missing U data showed the lowest error at 8.8% in estimating
daily ETo. HS equation gave the highest MBE (0.550 mm d−1), whereas the FAO56-PM
method with missing U data gave the lowest MBE (0.0009 mm d−1).

A study in a semi-arid highland environment by Benli et al. (2010) evaluated the
performance of the FAO56-PM method for cases where RH, U, Rs, or all three parameters
would be missing, comparing with weighing lysimeter measurements. They estimated Rs
using Hargreaves’ radiation formula and estimated ea accepting Tdew = Tmin. They used
the average wind speed of U2 = 2 m s−1 instead of actual wind speed data because this
value is the average wind speed of 2000 weather stations around the globe. The FAO56-PM
with complete data ranked first in the study (RMSE = 1.32 mm d−1), FAO56-PM with
missing U data ranked second (RMSE = 1.36 mm d−1), and FAO56-PM with missing
ea data ranked third (RMSE = 1.34 mm d−1). Similar to our research, the FAO56-PM
method with missing U data estimated ETo accurately in their study. However, the HS
equation (RMSE = 1.40 mm d−1; MAE = 54 mm) estimated ETo slightly better than the
FAO56-PMT method (RMSE = 1.40 mm d−1; MAE = 55 mm) in their study, unlike our
study.

A study in Southern Ontario, Canada, by Sentelhas, Gillespie & Santos (2010) evaluated
the performance of FAO56-PM and alternativemethods when data weremissing. They used
mean wind speed data observed in a close area. Using the procedure given in FAO56 Paper,
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they estimated Rs as a function of air temperature and also estimated vapor pressure deficit
based on temperature data. The results proved that the FAO56-PMmethod estimated daily
ETo accurately when wind speed and relative humidity data or all two parameters were
missing. However, estimating Rs from temperature differences was not accurate enough
in Southern Ontario because this approach resulted in poor ETo estimation. These results
are in agreement with our study.

In our study, the FAO56-PMT method, using only a set of temperature data, could not
accurately estimate daily ETo (Table 1). However, It provided more accurate results than
HS and HS (A&G) equations. Similar results have been found in the studies performed
by Trajkovic (2005) in Serbia, Popova, Kercheva & Pereira (2006) in the Trace plain area
of south Bulgaria, Jabloun & Sahli (2008) in Tunisia, and López-Moreno, Hess & White
(2009) in Pyrenees. However, Martinez & Thepadia (2010) reported that the HS equation
produced more minor overestimation errors than the FAO56-PMT method. In their
study, the FAO56-PMT method indicated the greatest errors in coastal areas, while the
HS equation showed the greatest errors inland and island locations in Florida. Todorović,
Karic & Pereira (2013) reported that where aridity prevails, the HS equation’s results were
likely better than those of PMT. In contrast, PMT results were better for less arid climates,
from semi-arid to humid.Martinez-Cob & Tejero-Juste (2004) determined that in windless
locations of a semi-arid region in Spain, the HS equation gave unreliable estimates for
daily ETo, and they recommended that the HS equation be used for 10-day periods. Torres,
Walker & McKee (2011) reported that simple methods give less accurate results for daily
ETo estimates than weekly and monthly ETo estimates.

Estimating daily ETo using MLR models
Table 2 presents the MLR models developed for the thirteen combinations. The regression
analysis (t -stat, p-value) was made to determine independent variables significantly
affecting ETo at a 95% confidence level (Table 3). The values of the t-stat should be greater
than 1.96 or less than −1.96 to verify the statistical goodness of the regression coefficients.
The absolute values of the t-stat for all MLR models were greater than 1.96, except for
Tmin in the MLR-2 model and Tmax in the MLR-9 model; the p-values confirmed this.
The most significant variable in the MLR-4, MLR-8, and MLR-11 models is Rs, with the
highest t-stat values. The most significant variable in the MLR-6, MLR-10, and MLR-13
models is Rsn, with the highest t-stat values. This indicates that Rs and n variables have
more effect on estimating ETo than other variables in Adana Plain conditions. Similarly,
Pereira et al. (2015) reported that Rs could dominate ETo estimation in mostly humid and
sub-humid climates during summer, where the relative power of the vapor pressure deficit
and wind term of the FAO56-PM is small compared to the radiation term. Several studies
observed similar results to our research (Dimitriadou & Nikolakopoulos, 2022; Yirga, 2019;
Perugu, Singam & Kamasani, 2013; Choi et al., 2018). In a study in Peloponnese, Greece,
by Dimitriadou & Nikolakopoulos (2022), sunshine hours (n) and net radiation (Rn)
significantly affected ETo more than the other variables. Among one-input models, the
MLR model with n as the input variable exhibited the best performance (RMSE = 0.409
mm d−1, MAE = 0.320 mm d−1, R2

= 0.960). In contrast, the MLR model with U as the
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Table 2 Linear regressionmodels.

Model Regression equation

MLR-1 ETo=−0.149+ 0.117× Tmax+ 0.031× Tmin
MLR-2 ETo=−1.581+ 0.157× Tmax−0.003× Tmin+ 1.055×

U
MLR-3 ETo= 1.457+ 0.076× Tmax+ 0.070× Tmin−0.017×

RH
MLR-4 ETo=−1.235+ 0.009× Tmax+ 0.075× Tmin+ 0.183

× Rs
MLR-5 ETo=−1.904−0.046× Tmax+ 0.162× Tmin+ 0.224×

Rs T

MLR-6 ETo=−1.110+ 0.024× Tmax+ 0.049× Tmin+ 0.166
× Rs n

MLR-7 ETo=−2.164+ 0.173× Tmax−0.017× Tmin+ 1.108×
U+ 0.005× RH

MLR-8 ETo=−2.240+ 0.044× Tmax+ 0.048× Tmin+ 0.780
× U+ 0.173× Rs

MLR-9 ETo=−3.080−0.005× Tmax+ 0.127× Tmin+ 0.919×
U+ 0.214× Rs T

MLR-10 ETo=−2.100+ 0.059× Tmax+ 0.023× Tmin+ 0.771
× U+ 0.156× Rs n

MLR-11 ETo=−2.059+ 0.039× Tmax+ 0.053× Tmin−0.002×
RH+ 0.763× U+ 0.174× Rs

MLR-12 ETo=−1.256−0.063× Tmax+ 0.181× Tmin−0.018×
RH+ 0.737× U+ 0.226× Rs T

MLR-13 ETo=−1.227+ 0.035× Tmax+ 0.045× Tmin−0.008×
RH+ 0.687× U+ 0.158× Rs n

sole explanatory variable had the poorest performance in their research (RMSE = 2.001
mm d−1, MAE = 1.953 mm d−1, R2

= 0.030). In a study by Yirga (2019), for the Megecha
catchment in Ethiopia to model ETo with MLR, the results of the multiple correlations
showed that n was a strong positive correlation with ETo (r = 0.82), and the effect of n on
ETo was more than other variables. Perugu, Singam & Kamasani (2013) performed a study
in India, and the correlation analysis indicated that n, T, and U influenced the ETo more
than other variables.

RH data in the five models (MLR-3, MLR-7, MLR-11, MLR-12, and MLR-13) had less
impact on the estimation of ETo with small t -stat values (Table 3). In a study in South
Korea by Choi et al. (2018), Tmean, Tmin, Tmax, and n had strong positive correlations
with ETo. In contrast, RH negatively correlated and had less effect on ETo, similar to
our research. According to a study in China by Gong et al. (2006), FAO56-PM ETo was
most sensitive to RH among the four climate variables, which vary by season and region
and are affected by regional wind speed patterns, and followed this by Rs, T, and U. In
the study by Nandagiri & Kovoor (2006), factor analysis indicated that U appears to be an
essential variable in the arid climate. In contrast, n seems more dominant in subhumid and
humid climates. Mohsin & Lone (2021) observed in the temperate Kashmir Valley for all
the stations the strongest correlation of ETo with Tmin. In Egypt,Mattar & Alazba (2019)
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Table 3 t -stat and p values of independent variables for MLRmodels.

Model Intercept Independent variables

Tmax Tmin U RH Rs Rs T Rs n

MLR-1
t -stat −1.331 21.174 5.773
p-value 0.183 3.04× 10−93 8.54× 10−09

MLR-2
t -stat −14.185 30.643 −0.588 28.639
p-value 2.43× 1044 4.3× 10−181 0.556 8.1× 10−161

MLR-3
t -stat 7.074 10.737 10.378 −9.227
p-value 1.84× 10−12 1.92× 10−26 7.68× 10−25 4.9× 10−20

MLR-4
t -stat −25.495 3.414 32.796 120.119
p-value 1× 10−130 0.0006 1.1× 10−203 0
MLR-5
t -stat −24.677 −10.665 40.731 66.337
p-value 3× 10−123 4.06× 10−26 1.1× 10−292 0
MLR-6
t -stat −18.074 7.505 16.837 87.978
p-value 1.3× 10−69 7.93× 10−14 5.09× 10−61 0
MLR-7
t -stat −9.432 23.570 −2.481 26.947 2.905
p-value 7.49× 10−21 2.1× 10−113 0.013 2.5× 10−144 0.004
MLR-8
t -stat −66.160 26.151 32.121 69.480 178.820
p-value 0 8.3× 10−137 1.7× 10−196 0 0
MLR-9
t -stat −45.720 −1.318 38.918 42.866 79.509
p-value 0 0.188 1.1× 10−271 0 0
MLR-10
t -stat −38.741 22.077 9.645 42.755 102.365
p-value 1.2× 10−269 1.2× 10−100 1.02× 10−21 0 0
MLR-11
t -stat −29.728 16.698 24.754 60.724 −2.991 178.808
p-value 1× 10−171 4.35× 10−60 6.1× 10−124 0 0.003 0
MLR-12
t -stat −9.782 −12.682 39.941 31.568 −16.431 84.232
p-value 2.76× 10−22 5.37× 10−36 1.8× 10−283 1.1× 10−190 2.6× 10−58 0
MLR-13
t -stat −11.134 9.259 13.305 34.194 −9.064 103.871
p-value 2.82× 10−28 3.68× 10−20 2.34× 10−39 9.7× 10−219 2.13× 10−19 0
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Table 4 Performance statistics of MLRmodels in the calibration process.

Model RMSE
(mm d−1)

MAE
(mm d−1)

RE (%) R2 d

MLR-1 0.915 0.750 22.5 0.3498 0.979
MLR-2 0.816 0.681 18.6 0.4822 0.985
MLR-3 0.903 0.749 22.3 0.3666 0.824
MLR-4 0.390 0.283 9.6 0.8818 0.980
MLR-5 0.594 0.444 14.6 0.7259 0.946
MLR-6 0.495 0.381 12.2 0.8096 0.965
MLR-7 0.815 0.679 20.1 0.4836 0.875
MLR-8 0.246 0.184 6.1 0.9528 0.999
MLR-9 0.474 0.342 11.7 0.8258 0.995
MLR-10 0.395 0.306 9.7 0.8787 0.997
MLR-11 0.246 0.183 6.1 0.9530 0.999
MLR-12 0.455 0.331 11.2 0.8394 0.995
MLR-13 0.390 0.302 9.6 0.8818 0.997

Table 5 Performance statistics of MLRmodels in the validation process.

Model RMSE
(mm d−1)

MAE
(mm d−1)

RE (%) R2 d

MLR-1 1.117 0.940 24.2 0.4234 0.984
MLR-2 0.855 0.710 18.5 0.5826 0.992
MLR-3 1.097 0.930 23.8 0.4234 0.674
MLR-4 0.529 0.370 11.5 0.8860 0.954
MLR-5 0.881 0.710 19.1 0.7111 0.847
MLR-6 0.750 0.580 16.3 0.8479 0.894
MLR-7 0.851 0.700 18.4 0.5839 0.829
MLR-8 0.289 0.210 6.3 0.9514 0.999
MLR-9 0.581 0.420 12.6 0.8132 0.996
MLR-10 0.457 0.330 9.9 0.9084 0.998
MLR-11 0.288 0.210 6.2 0.9515 0.999
MLR-12 0.581 0.440 12.6 0.8225 0.996
MLR-13 0.463 0.340 10.0 0.9111 0.998

modeled ETo from climatic variables using GEP and MLR models. The results showed
that using RH, U, or both in the models increased the performance of GEP and MLR
models. Niaghi, Hassanijalilian & Shiri (2021) applied MLR models to Red River Valley
with a subhumid climate to estimate ETo from climatic variables. They grouped input
combinations into air temperature-based (Tmax, Tmin), mass-transfer-based (Tmax,
Tmin, U), and radiation-based (Rs, Tmax, Tmin). Similar to our research, the radiation-
based MLR model performed better than other combinations in their study (RMSE = 0.
68 mm d−1, MAE= 0.51 mm d−1, and R2

= 88%). In our study, as shown in Tables 4 and
5, the MLR-4 model (Tmax, Tmin, Rs) showed better performance than the MLR1 model
(Tmax, Tmin) and MLR2 model (Tmax, Tmin, U).
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Figure 3 ETo values estimated by the FAO56-PMmethod against the MLRmodels for calibration and
validation processes.

Full-size DOI: 10.7717/peerj.15252/fig-3

In Fig. 3, MLR model estimates were compared to the FAO56- PM method via scatter
plots for the calibration and validation processes. The b (slope) values are close to one, and a
(intercept) values are close to zero inMLR-8 andMLR-11 models with R2 of 0.9528, 0.9530
in the calibration process, and R2 of 0.9514, 0.9515 in the validation process, respectively.
Also, MLR-4, MLR-10, and MLR-13 models performed well according to their b, a, and
R2 values.

The values of RMSE, MAE, RE, R2, and d for MLR models during the calibration and
validation process are presented in Tables 4 and 5. Among all models, the MLR1 model,
estimating ETo with only Tmax and Tmin, showed the lowest performance with the values
of RMSE of 0.915, 1.117 mm d−1, MAE of 0.750, 0.940 mm d−1, RE (%) of 22.5, 24.2,
R2 of 0.3498, 0.4234 in the calibration and validation process, respectively. When Rs data
were added to the MLR-1 model, the ETo prediction accuracy of the new model (MLR-4)
increased by more than 52% for RMSE, MAE, and RE in the calibration and validation
processes. In the MLR-6 model, Rs was estimated by n data using the Angstrom formula,
and the MLR-6 model was designed with Tmax, Tmin, and Rsn. MLR-6 model estimated
daily ETo with more than 32% accuracy than the MLR-1 model for RMSE, MAE, and RE
values in the calibration and validation processes. Similarly, in a study by Yamaç (2021) in
a semi-arid highland environment, when Rs data were added to the ANN1 model, which
has Tmax and Tmin, the ETo estimation accuracy of the new model (ANN2) for MSE,
RMSE, and MAE values increased by more than 30% in training and testing subsets.
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In the MLR-5 model, Rs was estimated by Tmax and Tmin data using the Hargreaves
radiation formula, and the MLR-5 model was designed with Tmax, Tmin, and RsT. The
results indicated that the MLR-5 model predicted daily ETo with more than 21% accuracy
than the MLR-1 model, based on RMSE, MAE, RE, and R2 values in the calibration and
validation processes. When RH data were added to the MLR-1 model, the ETo estimation
accuracy of the new model (MLR-3) slightly improved with a range of 0.8% to 1.7% in the
calibration and validation processes for RMSE, MAE, RE, and R2 values.

Only five models, MLR-4, MLR-8, MLR-10, MLR-11, andMLR-13, accurately predicted
the daily ETo in the calibration and validation processes (Tables 4 and 5). The results
showed that the MLR-11 model had the smallest RMSE (0.246−0.288mm d−1), MAE
(0.183−0.210mm d−1), and RE values (6.1−6.2%) and the highest R2 (0.9530−0.9515)
and d (0.999−0.999) for the calibration and validation processes, respectively. The
statistical results of the MLR-8 model were nearly the same as the MLR-11 model
(RMSE = 0.246−0.289 mm d−1; MAE = 0.184−0.210 mm d−1; RE = 6.1−6.3%;
R2
= 0.9528−0.9514; d = 0.999−0.999). According to this, MLR-8 and MLR-11 models’

score was very good according to the criteria given by Stockle, Kjelgaard & Bellocchi (2004)
for the calibration and validation processes. Therefore, the MLR-8 model is recommended
in this study because it uses lesser climate data than the MLR-11 model. The MLR-8
model, which does not use RH data, can be successfully used to predict daily ETo in the
study area. MLR-10 and MLR-13 models’ scores for the validation process according to
mentioned criteria were very good, and the MLR-4 model’s score was good. Generally, the
results of the models agree with the literature (Tabari et al., 2012; Dai et al., 2008; Yamaç,
2021), concluding that more climatic variables commonly increase model estimation
accuracy. Tabari et al. (2012) evaluated MLR models’ different input combinations in a
semi-arid highland environment in Iran. Similar to our study, the lowest performance
was observed in the MLR model that only used Tmean (RMSE = 0.765 mm d−1, MAE =
0.621 mm d−1, R2

= 0.92) while the MLR model that used Tmean, Rs, RH, and U had the
best performance (RMSE = 0.552 mm d−1, MAE = 0.442 mm d−1, R2

= 0.96) in their
study. Dai et al. (2008) assessed the MLR models in northern China’s arid, semi-arid, and
sub-humid areas. In the sub-humid area, the MLR models with four inputs (Tmean, RH,
n, and U) and three inputs (Tmean, RH, n) gave similar results to the ANNmodel with the
same inputs. MLR models predicted ETo accurately with RMSE = 0.202−0.273mm d−1,
RE = 5.2−6.9%, R2

= 0.961−0.930, respectively. Yamaç (2021), in a semi-arid highland
environment, evaluated ANN and kNN models. The results showed that more climatic
variables increased the models’ predictive abilities, and the models with 6 inputs gave the
best results in the study.

The main implication of our study is that MLR models developed for Adana Plain
for estimating ETo have very satisfactory performance. The findings from our study are
significant because agriculture accounts for 69% of global water withdrawals, mainly used
for irrigation. This ratio can reach 95% in some developing countries (FAO, 2011). The
FAO estimates that the world will need about 60% more food by 2050 and that irrigated
food production will increase by more than 50% over the same period (FAO, 2017). To
ensure sustainable development and water supply, particularly in arid environments,
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irrigation professionals need tools to estimate ETo at a large scale (Khoshravesh, Sefidkouhi
& Valipour, 2017). Our study’s findings are significant for the agricultural managers and
irrigation engineers in a region with similar climatic conditions to estimate ETo.

CONCLUSIONS
One of the main goals of our study was to assess the FAO56-PM method using FAO56
procedures when climatic data were missing and evaluate HS and HS (A&G) equations.
When wind speed data were missing, the use of the closest weather station’s average wind
speed; when RH data were missing, the use of Tdew = Tmin; and when Rs data were
missing, using the Angstrom formula for estimating Rs proved to be a great alternative
to estimate ETo in Adana Plain. These approaches are strongly recommended for use in
Adana Plain when missing climatic data. In contrast, Hargreaves’ radiation formula for
estimating Rs did not perform well in estimating daily ETo. In addition, FAO56-PMT
(a reduced set FAO56- PM), HS, and HS (A&G) equations could not estimate daily ETo
accurately.

MLRwas also employed to estimate ETowith different combinations of climatic variables
in this study. Thirteen MLR models showed statistically significant results (p< 0.05). Rs
and n were the most dominant climatic variables in estimating ETo in Adana Plain. These
variables increased the models’ predictive abilities significantly. However, adding RH data
to the models had a negligible effect on ETo estimates. The model using only Tmax and
Tmin (MLR1) displayed the lowest performance. The models using RsT (MLR5, MLR9,
and MLR12) did not perform well, while those using Rsn (MLR10, MLR13, except MLR6)
performed well in estimation daily ETo. The models using Rs (MLR4, MLR8, and MLR11)
exhibited the best performance in estimating daily ETo. Especially the models using Rs and
n data indicated a very satisfactory performance, so they may conveniently be applied in
Adana Plain and other regions with similar climatic conditions with a reasonable degree
of accuracy in the ETo estimation. Also, these results can guide irrigation engineers and
agriculturists on which approaches and models will better predict ETo. So, it will help
improve this region’s water resource management and irrigation scheduling. However,
Our study’s limitation is that the MLR technique needs extensive data to avoid errors.

We recommend that the FAO56 procedures for estimating ETo when missing climate
data should also be tested in the other region of Turkey. In addition, it is recommended
that the MLR technique be studied in ETo modeling in other regions of Turkey. Since
evapotranspiration is a complex and nonlinear phenomenon that depends on several
climatic elements, future studies in this region should focus on artificial intelligence
algorithms, and nonlinear models, such as MFP and MARS.
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Yamaç SS. 2021. Reference evapotranspiration estimation with kNN and ANN models
using different climate input combinations in the semi-arid environment. Journal of
Agricultural Sciences 27(2):129–137 DOI 10.15832/ankutbd.630303.

Yirga SA. 2019.Modelling reference evapotranspiration for Megecha catchment by
multiple linear regression.Modeling Earth Systems and Environment 5:471–477
DOI 10.1007/s40808-019-00574-2.

Zouzou Y, Citakoglu H. 2021. Reference evapotranspiration prediction from limited
climatic variables using support vector machines and Gaussian processes. European
Journal of Science and Technology 28:346–351 DOI 10.31590/ejosat.999319.
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