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ABSTRACT
Background. This study evaluated the discordance between Abbott Architect SARS-
CoV-2 IgG and EUROIMMUN SARS-COV-2 ELISA in a seroprevalence study.
Methods. From June 10 to August 15, 2020, 8,246 specimens were dually evaluated by
the Abbott Architect SARS-CoV-2 IgG (Abbott) and the EUROIMMUN SARS-CoV-2
ELISA (EI) assays. Sex-stratified phi correlation coefficients were calculated to evaluate
the concordance between Abbott and EI assay’s quantitative results. Multivariable
mixed-effect logistic models were implemented to evaluate the association between
assay positivity and sex on a low prevalence sample while controlling for age, race,
ethnicity, diabetes, cardiovascular disease, hypertension, immunosuppressive therapy,
and autoimmune disease.
Results. EI positivity among males was 2.1-fold that of females; however, no significant
differences in Abbott positivity were observed between sexes. At the manufacturer-
recommended threshold, the phi correlation coefficient for the Abbott and EI quali-
tative results among females (8= 0.47) was 34% greater than males (8= 0.35). The
unadjusted and fully adjusted models yielded a strong association between sex and
positive EI result for the low prevalence subgroup (unadjusted OR: 2.24, CI: 1.63,
3.11, adjusted OR: 3.40, CI: 2.15, 5.39). A similar analysis of Abbott positivity in
the low prevalence subgroup did not find an association with any of the covariates
examined. Significant quantitative and qualitative discordance was observed between
Abbott and EI throughout the seroprevalence study. Our results suggest the presence
of sex-associated specificity limitations with the EI assay. As these findings may extend
to other anti-S assays utilized for SARS-CoV-2 seroprevalence investigations, further
investigation is needed to evaluate the generalizability of these findings.
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INTRODUCTION
In response to the emergence of sudden acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the urgent need for assessment of population prevalence led to the
release of serological assays with abbreviated validation under the Food and Drug
Association’s Emergency Use Authorization (EUA) (Ainsworth et al., 2020; Karpe et
al., 2018; Rikhtegaran Tehrani et al., 2020). While the initial results demonstrated high
sensitivity and specificity, studies have found evidence suggestive that the clinical
performance for some is much lower than initially anticipated (Prince et al., 2020; Tang
et al., 2020). As the Abbott Architect SARS-CoV-2 immunoglobulin G (IgG) (Abbott)
and EUROIMMUN SARS-COV-2 enzyme-linked immunoassay (ELISA) (EI) have often
been treated as a comparable diagnostic in seroprevalence surveys, understanding their
respective limitations is critical to sero-epidemiological investigations (Prince et al., 2020;
Tang et al., 2020).

The Utah Health and Economic Recovery (HERO) Project is a seroprevalence survey
aimed to improve the understanding of community-based SARS-CoV-2 activity. As a part
of HERO, a sample of Utah residents took part in diagnostic screening and completed a
survey assessing demographic and epidemiologic factors. Serum from most participants
were dually evaluated by both Abbott and EI at the same encounter, thus the data collected
throughout this project provides a unique opportunity to investigate their real-world
performance and the factors contributing to underlying discordance.

While many studies have described sex-dependent differences in immune response and
severity of coronavirus disease 2019 (COVID-19), no studies have previously described
sex-associated discordance between immunoassays (Agrawal et al., 2021; Bunders & Altfeld,
2020; Grzelak et al., 2021; Haitao et al., 2020; Lakbar et al., 2020; Maleki Dana et al., 2020;
Muecksch et al., 2021; Takahashi et al., 2020). This study evaluated discordance between
Abbott Architect SARS-CoV-2 IgG andEUROIMMUNSARS-COV-2 ELISA in a real-world
setting.

MATERIALS & METHODS
From June 10 to August 15, 2020, a total of 8,246 specimens were evaluated by both the
Abbott Architect SARS-CoV-2 IgG (Abbott) and the EUROIMMUN SARS-CoV-2 ELISA
(EI) assays as part of the HERO Project. The Abbott assay detects anti-SARS-CoV-2 IgG
against the nucleocapsid protein (anti-N), and the EI assay detects anti-SARS-CoV-2 IgG
directed against the S1 domain of viral spike protein (anti-S1) (Rychert et al., 2021; Tang
et al., 2020). Of those screened by both diagnostic tests, 99% (n= 8,166) completed the
survey assessing demographic and epidemiologic factors.

The University of Utah Institutional Review Board determined the HERO project to
be non-research public health surveillance and waived the requirement for documented
consent. The review board determined that use of these data for analysis to understand the
dynamics of SARS-CoV-2 was exempt from further review (IRB_00132598).

Summary statistics stratified by Abbott and EI assay results were calculated for sex,
age, race, ethnicity, diabetes, cardiovascular disease, hypertension, immunosuppressive
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therapy, autoimmune disease, self-reported previous positive polymerase chain reaction
(PCR), positive PCR at the time of screening, known exposure to COVID-19 case, and
history of anosmia or ageusia. Fisher’s exact tests were performed to evaluate significant
association between assay results and demographic and epidemiological factors.

Sex-stratified phi correlation coefficients were calculated to quantify the degree of
concordance between Abbott and EI assay’s quantitative results for the total sample
population. Concordance was evaluated at the manufacturer-recommended and adjusted
cut-points for Abbott (quantitative threshold: 1.0 to 1.8) and EI (quantitative threshold:
0.7−2.0). The manufacturer recommended cut-points for positivity were defined as 1.1
for EI and 1.4 for Abbott.

Participants who self-reported a previous positive PCR, had a positive PCR at the time
of screening, claimed anosmia or ageusia after March 1, 2020, or claimed an exposure
with a known case were classified as the high prevalence subgroup. These factors were
utilized as they are potentially predictive of true positivity. The remaining participants
were categorized in the low prevalence subgroup. While we did not know which of the
discordant results was a true positive or false positive, by stratifying the results into these
two subgroups we generated a group with a greater proportion of samples of false positives.
This approach enabled the assumption that the positive predictive value was lower in the
low prevalence subgroup; therefore, a greater proportion of people who tested positive
were false positives. Sex- and subgroup-stratified summary statistics for the low prevalence
subgroup were calculated and reported below. Differences between stratum were evaluated
utilizing Fisher’s exact test.

Multivariable mixed-effect logistic models were implemented to evaluate the association
between assay positivity and sex in the low prevalence subgroup while controlling for
age, race, ethnicity, diabetes, cardiovascular disease, hypertension, immunosuppressive
therapy, and autoimmune disease (Akama-Garren & Li, 2021; Chen et al., 2021a; Fox et al.,
2020; Mouliou & Gourgoulianis, 2021; Nishiga et al., 2020). This analysis was limited to
the variables captured in a self-reported survey as a part of the HERO Project. These
covariates were selected due to their association with severity of illness, immune response,
or known differences in the prevalence of COVID-19 in Utah (Akama-Garren & Li, 2021;
Chen et al., 2021a; Fox et al., 2020; Mouliou & Gourgoulianis, 2021; Nishiga et al., 2020).
Household ID was included in the model as a random intercept to account for clustering.
Authors considered the use of a fixed effect and isotonic regression for this analysis, but
felt a mixed-effect model was better suited to account for variability within and across
participants as multiple participants from the same household may be captured during
the study period. Odds ratios and 95% confidence intervals were evaluated. The variance
inflation factor was evaluated to assess for multicollinearity using the performance v0.10.1
package.

Sensitivity analyses were performed to evaluate the impact of alternate cut points
that yielded the greatest reduction without reducing the positive concordance in the low
prevalence subgroups.
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Statistical analyses were performed with R v4.0.3 (R Core Team, 2020). The mixed
effect logistic regression was implemented with the lme4 v1.1-27 package (https://cran.r-
project.org/web/packages/lme4/index.html).

RESULTS
Total population sample
Significant differences in positivity were observed between EI (3.0% positivity) and
Abbott (1.4% positivity). Factors that reflected exposure or recent infection (i.e., previous
positive PCR, positive PCR at the time of screening, known exposure, or recent history of
anosmia or ageusia) were strongly associated with positivity for both assays. Additionally,
hypertension and ethnicity were associated with Abbott and EI positivity. EI positivity
among males was 2.1-fold that of females; however, no significant differences in Abbott
positivity were observed between sexes. While race was associated with Abbott positivity
in the crude analysis, no association was observed between EI positivity and race. Age,
diabetes, cardiovascular disease, immunosuppressive therapy, and autoimmune disease
were not associated with Abbott or EI positivity (Table 1).

At the manufacturer recommended threshold, the phi correlation coefficient for
the Abbott and EI qualitative results among females (8= 0.47) was 34% greater than
males (8= 0.35). Increasing the EI threshold among females to 1.4 reduced EI positive
discordance by 39% without reducing positive concordance. Among males, an adjustment
in the EI threshold to 1.8 reduced the EI positive discordance by 64% with the loss of a
single positive concordance result. Any reduction in the threshold had a negative impact
on discordance among both sexes. Further, a decrease in correlation was observed among
both sexes and subgroups when classifying EI borderline results as positive (Table 2).

Low and high prevalence subgroups
Of the 8,166 in the study population, 92.5% (n= 7,555) were in the low prevalence
subgroup as defined above. The EI positivity was higher than Abbott’s positivity in both
the high prevalence (EI: n= 78 (12.8%), Abbott: n= 33 (9.5%) and low prevalence (EI:
n= 169 (2.2%), Abbott: n= 22 (0.7%)) subgroups. Of 84 individuals in the high prevalence
subgroup with at least one of the two serology assays testing positive, 52 (61.9%) were
positive in both tests. In contrast, only 17 of 207 (8.2%) individuals in the low prevalence
subgroupwith at least one positive serology assay tested positive for both. Several differences
in demographics were observed between low- and high-prevalence subgroups, including a
highermean age, a greater proportion of white participants, and fewerHispanic participants
in the low prevalence subgroup. No significant differences in sex or comorbidities were
observed between the subgroups (Table 3).

To focus on false positives, the analysis was then restricted to the low prevalence
subgroup. Males comprised 46.5% of this subgroup but contributed to 104 (68.4%) of 152
EI positive discordant results. Additionally, a greater proportion of males claimed diabetes
(7.3%) cardiovascular disease (6.0%) and hypertension (15.1%) than females (6.0%, 2.9%,
and 11.9%, respectively). A higher proportion of females reported immunosuppressive
therapy (1.3%) and autoimmune disease (7.4%) than males (0.6% and 2.6%, respectively).
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Table 1 Demographic and epidemiologic factors by Abbott and EI result. The table shows the demographic and epidemiologic factors by assay
result. EI and Abbott results are displayed at manufacturer recommended thresholds, 1.1 and 1.4, respectively. Fisher’s exact test was used to evalu-
ate null and alternate hypothesis. H0: test result and parameters are independent. H1: test result and parameters are not independent.

Abbott result EuroImmun result

Level Negative Positive p Negative Positive p

N 8,053 113 7,919 247
Sex (%) Female 4302 (53.4) 63 (55.8) 0.69 4269 (53.9) 96 (38.9) <0.001

Male 3751 (46.6) 50 (44.2) 3650 (46.1) 151 (61.1)
Age (mean (SD)) 44.8 (18.9) 44.2 (17.0) 0.743 44.9 (18.9) 41.9 (18.2) 0.015

Race (%) American Indian
or Alaska Native

44 (0.5) 1 (0.9) 0.005 43 (0.5) 2 (0.8) 0.348

Asian 193 (2.4) 1 (0.9) 192 (2.4) 2 (0.8)
Black 37 (0.5) 1 (0.9) 38 (0.5) 0 (0.0)
Multi-racial 173 (2.1) 5 (4.4) 170 (2.1) 8 (3.2)
Native Hawaiian
or Other Pacific
Islander

30 (0.4) 0 (0.0) 29 (0.4) 1 (0.4)

Unknown 197 (2.4) 9 (8.0) 197 (2.5) 9 (3.6)
White 7379 (91.6) 96 (85.0) 7250 (91.6) 225 (91.1)

Ethnicity (%) Hispanic 698 (8.7) 30 (26.5) <0.001 693 (8.8) 35 (14.2) 0.005
Non-Hispanic 7355 (91.3) 83 (73.5) 7226 (91.2) 212 (85.8)

Diabetes (%) No 7529 (93.5) 109 (96.5) 0.28 7402 (93.5) 236 (95.5) 0.24
Yes 524 (6.5) 4 (3.5) 517 (6.5) 11 (4.5)

Cardiovascular Disease (%) No 7714 (95.8) 109 (96.5) 0.907 7587 (95.8) 236 (95.5) 0.968
Yes 339 (4.2) 4 (3.5) 332 (4.2) 11 (4.5)

Hypertension (%) No 6983 (86.7) 106 (93.8) 0.038 6862 (86.7) 227 (91.9) 0.021
Yes 1070 (13.3) 7 (6.2) 1057 (13.3) 20 (8.1)

Immunosuppressive Therapy (%) No 7974 (99.0) 112 (99.1) 1 7840 (99.0) 246 (99.6) 0.546
Yes 79 (1.0) 1 (0.9) 79 (1.0) 1 (0.4)

Autoimmune Disease (%) No 7635 (94.8) 105 (92.9) 0.494 7510 (94.8) 230 (93.1) 0.294
Yes 418 (5.2) 8 (7.1) 409 (5.2) 17 (6.9)

Previous Positive (%) No 8043 (99.9) 77 (68.1) <0.001 7909 (99.9) 211 (85.4) <0.001
Yes 10 (0.1) 36 (31.9) 10 (0.1) 36 (14.6)

Positive PCR (%) Not Detected 8044 (99.9) 92 (81.4) <0.001 9 (0.1) 21 (8.5) <0.001
Detected 9 (0.1) 21 (18.6) 7910 (99.9) 226 (91.5)

Anosmia or Ageusia (%) No 7963 (98.9) 96 (85.0) <0.001 7834 (98.9) 225 (91.1) <0.001
Yes 90 (1.1) 17 (15.0) 85 (1.1) 22 (8.9)

Exposure (%) No 7590 (94.3) 76 (67.3) <0.001 7471 (94.3) 195 (78.9) <0.001
Yes 463 (5.7) 37 (32.7) 448 (5.7) 52 (21.1)

A greater fraction of females in the low prevalence subgroup self-reported Hispanic
ethnicity than males. No significant differences between sexes were observed for age or
race (Table 4).

Summary statistics for the high prevalence subgroup stratified by sex can be found in
the (Table S1).
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Table 2 Phi correlation coefficients of Abbott and EI qualitative results. The table shows the phi correlation coefficients of the Abbott and EI
qualitative results among (A) males (n= 3,801) and (B) females (n= 4,365) in the low prevalence subgroup at manufacturer-recommended and ad-
justed thresholds. The highlighted cell represents the manufacturer recommended cutpoints for Abbott and EI positive results, 1.4 and 1.1, respec-
tively.

Males

EuroImmunQualitative Threshold

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1.0 0.23 0.28 0.31 0.33 0.36 0.35 0.37 0.39 0.40 0.43 0.45 0.45 0.45 0.45
1.1 0.22 0.26 0.29 0.32 0.35 0.35 0.37 0.39 0.41 0.44 0.45 0.45 0.45 0.45
1.2 0.23 0.27 0.30 0.33 0.36 0.37 0.39 0.41 0.43 0.46 0.48 0.48 0.47 0.48
1.3 0.24 0.28 0.31 0.33 0.36 0.37 0.40 0.42 0.43 0.46 0.48 0.50 0.49 0.49
1.4 0.23 0.27 0.30 0.32 0.35 0.37 0.39 0.42 0.44 0.46 0.49 0.50 0.50 0.50
1.5 0.23 0.27 0.30 0.35 0.36 0.37 0.39 0.43 0.44 0.47 0.49 0.51 0.50 0.51
1.6 0.25 0.29 0.32 0.35 0.38 0.39 0.42 0.45 0.47 0.47 0.52 0.54 0.53 0.53
1.7 0.25 0.29 0.32 0.35 0.38 0.39 0.42 0.45 0.47 0.50 0.52 0.54 0.53 0.53A
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1.8 0.25 0.29 0.33 0.35 0.39 0.39 0.42 0.46 0.47 0.51 0.53 0.54 0.54 0.54

Females

EuroImmunQualitative Threshold

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
1.0 0.29 0.34 0.38 0.40 0.42 0.45 0.46 0.49 0.50 0.49 0.52 0.53 0.53 0.59
1.1 0.30 0.35 0.39 0.41 0.43 0.46 0.47 0.50 0.51 0.50 0.53 0.54 0.55 0.60
1.2 0.30 0.35 0.39 0.41 0.43 0.46 0.48 0.50 0.51 0.50 0.54 0.54 0.55 0.61
1.3 0.32 0.37 0.41 0.43 0.46 0.49 0.50 0.53 0.54 0.53 0.57 0.57 0.58 0.64
1.4 0.32 0.37 0.41 0.43 0.47 0.49 0.51 0.54 0.55 0.54 0.58 0.58 0.59 0.65
1.5 0.32 0.37 0.42 0.45 0.49 0.52 0.54 0.56 0.58 0.56 0.60 0.61 0.61 0.68
1.6 0.32 0.37 0.42 0.45 0.49 0.52 0.54 0.56 0.58 0.56 0.60 0.61 0.61 0.68
1.7 0.33 0.38 0.43 0.46 0.50 0.53 0.55 0.58 0.59 0.58 0.62 0.63 0.63 0.70A
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1.8 0.35 0.40 0.45 0.48 0.52 0.55 0.57 0.60 0.62 0.60 0.64 0.65 0.66 0.72

In the low prevalence subgroup, males were significantly associated with a positive
EI result (OR: 2.24, CI: 1.63, 3.09). The model—which adjusted for age, race, ethnicity,
diabetes, cardiovascular disease, hypertension, immunosuppressive therapy, autoimmune
disease, and household clustering—yielded an even stronger association betweenmales and
positive EI result (adjusted OR: 3.12, CI: 2.04, 4.78) (Table 5). Additionally, autoimmune
disease was significantly associated with EI positivity (OR: 3.30, CI: 1.42, 7.67). No other
factors in the model were associated with an EI positive result.

Sensitivity analyses were performed at the alternate EI thresholds for positivity (1.4 and
1.8) yielded similar results (OR: 3.01 and 2.95, respectively).

A similar analysis of Abbott positivity in the low prevalence subgroup did not find an
association with any of the covariates examined. In particular, race and ethnicity were no
longer associated with a positive Abbott test, as observed in the crude results (Table 1).

Neither assay was significantly associated with any covariates examined in crude or
adjusted models in the high prevalence subgroup.
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Table 3 Demographic and epidemiologic factors stratified by prevalence subgroup. The table shows the demographic and epidemiologic factors
stratified by high and lowprevalence subgroups. Participants who self-reported a previous positive PCR, had a positive PCR at the time of screening,
claimed anosmia or ageusia after March 1, 2020, or claimed an exposure with a known case were classified as the high-prevalence subgroup. The re-
maining participants were categorized in the low prevalence subgroup. Fisher’s exact test was used to evaluate null and alternate hypothesis. H0: the
prevalence subgroup and parameters are independent. H1: the prevalence subgroup and parameters are not independent.

Level High prevalence subgroup Low prevalence subgroup p

N 611 7,555
Sex (%) Female 320 (52.4) 4,045 (53.5) 0.607

Male 291 (47.6) 3,510 (46.5)

Age (mean (SD)) 41.9 (16.4) 45.1 (19.1) <0.001
Race (%) American Indian

or Alaska Native
6 (1.0) 39 (0.5) <0.001

Asian 12 (2.0) 182 (2.4)
Black 6 (1.0) 32 (0.4)
Multi-racial 24 (3.9) 154 (2.0)
Native Hawaiian
or Other Pacific Islander

5 (0.8) 25 (0.3)

Unknown 32 (5.2) 174 (2.3)
White 526 (86.1) 6,949 (92.0)

Ethnicity (%) Hispanic 92 (15.1) 636 (8.4) <0.001
Non-Hispanic 519 (84.9) 6,919 (91.6)

Diabetes (%) No 580 (94.9) 7,058 (93.4) 0.171
Yes 31 (5.1) 497 (6.6)

Cardiovascular Disease (%) No 593 (97.1) 7,230 (95.7) 0.133
Yes 18 (2.9) 325 (4.3)

Hypertension (%) No 543 (88.9) 6,546 (86.6) 0.133
Yes 68 (11.1) 1,009 (13.4)

Immunosuppressive Therapy (%) No 604 (98.9) 7,482 (99.0) 0.826
Yes 7 (1.1) 73 (1.0)

Autoimmune Disease (%) No 574 (93.9) 7,166 (94.9) 0.382
Yes 37 (6.1) 389 (5.1)

Concordance (%) Abbott Positive Discordance 6 (1.0) 38 (0.5) <0.001
EI Positive Discordance 26 (4.3) 152 (2.0)
Negative Concordance 527 (86.3) 7,348 (97.3)
Positive Concordance 52 (8.5) 17 (0.2)

DISCUSSION
This study evaluated the side-by-side performance of Abbott and EI in a seroprevalence
survey. A significant qualitative discordance was observed between Abbott and EI. While
several factors were identified to be strongly associated with this discordance, a significant
sex imbalance was identified among EI positives that was not present among Abbott
positives. Discordance between the evaluated assays is well described in the literature;
however, the identification of sex-driven false positivity of EI relative to Abbott provides
potential understanding of factors contributing to the described discordance.
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Table 4 Demographic and epidemiologic factors stratified by sex in the low prevalence subgroup. The table shows demographic and epidemio-
logic factors stratified by sex in the low-prevalence subgroup. The low prevalence subgroup was comprised of participants claiming no previous pos-
itive PCR, negative PCR at the time of screening, no history of anosmia or ageusia after March 1, 2020, no known exposures. Fisher’s exact test was
used to evaluate null and alternate hypothesis. H0: sex and parameters are independent. H1: sex result and parameters are not independent.

Level Female Male p

N 4,045 3,510
Age (mean (SD)) 45.0 (18.8) 45.07 (19.4) 0.960
Race (%) Unknown 103 (2.5) 71 (2.0) 0.099

American Indian
or Alaska Native

23 (0.6) 16 (0.5)

Asian 112 (2.8) 70 (2.0)
Black 14 (0.3) 18 (0.5)
Multi-racial 82 (2.0) 72 (2.1)
Native Hawaiian
or Other Pacific Islander

10 (0.2) 15 (0.4)

White 3701 (91.5) 3248 (92.5)
Ethnicity (%) Hispanic 374 (9.2) 262 (7.5) 0.006

Non-Hispanic 3671 (90.8) 3248 (92.5)
Diabetes (%) No 3804 (94.0) 3254 (92.7) 0.022

Yes 241 (6.0) 256 (7.3)
Cardiovascular Disease (%) No 3929 (97.1) 3301 (94.0) <0.001

Yes 116 (2.9) 209 (6.0)
Hypertension (%) No 3565 (88.1) 2981 (84.9) <0.001

Yes 480 (11.9) 529 (15.1)
Immunosuppressive Therapy (%) No 3994 (98.7) 3488 (99.4) 0.007

Yes 51 (1.3) 22 (0.6)
Autoimmune Disease (%) No 3746 (92.6) 3420 (97.4) <0.001

Yes 299 (7.4) 90 (2.6)
Concordance (%) Abbott Positive Discordance 23 (0.6) 15 (0.4) <0.001

EI Positive Discordance 48 (1.2) 104 (3.0)
Negative Concordance 3964 (98.0) 3384 (96.4)
Positive Concordance 10 (0.2) 7 (0.2)

Table 5 Association betweenmales and assay results in the low prevalence subgroup. The table shows
the association (OR and 95% CI) between males and positive EI and Abbott results in the low prevalence
subgroup. The fully adjusted model included age, race, ethnicity, diabetes, cardiovascular disease, hyper-
tension, immunosuppressive therapy, autoimmune disease, and household.

Crude Adjusted

OR 95%CI OR 95%CI

EuroImmun
Male 2.24 1.63–3.09 3.12 2.04–4.78

Abbott
Male 0.77 0.45–1.32 0.80 0.41–1.58
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As the focus of this investigationwas to evaluate the issue of false positivity, we capitalized
on the low prevalence subgroup, in which the proportion of false positives are likely to be
higher, to evaluate factors contributing to discordant results. Overall, EI was associated
with more false positives than Abbott, with a substantial imbalance between sexes. This
association was isolated to EI and not evident with Abbott. While studies have identified a
rapid decline in anti-N following infection among males (Grzelak et al., 2021), our choice
to restrict our analyses to the low prevalence subgroup reduced the potential of this decline
to impact the results. Further, as sex was not significantly associated with an EI-positive
result in the high prevalence subgroup, our findings suggest a reduced positive predictive
value for the EI assay in low prevalence populations.

Given the sex-centric discordance observed between assays, alternative sex-specific
thresholds for a positive result were evaluated to determine the implications on false
positivity. At the Abbott and EI recommended thresholds, females were associated with
greater concordance than males. While the observed discordance among males was
greater than females at all observed thresholds, a significant improvement in sex-specific
concordance as the EI threshold was increased was observed with a minimal reduction in
the frequency of positive concordant results. Sensitivity analyses of alternate threshold for
EI positivity, (cut point: 1.4 and 1.8), produced similar results, likely due to a reduction
in both male and female discordance. Reductions below the EI recommended cut-point
for positivity were associated with significant reductions in concordance. These results
are consistent with those in previous literature, which described that the classification of
indeterminate results (quantitative value of 0.08−1.0) as positive negatively impacts the
assay’s specificity (Prince et al., 2020; Stocking et al., 2022; Tang et al., 2020). These results
suggest the need to evaluate the benefit of sex-specific positivity threshold to improve the
performance of EI.

Seroprevalence studies are an essential tool for public health responses against infectious
diseases and provide information for estimating transmission intensity and population
susceptibility (Bryant et al., 2020). In the COVID-19 pandemic alone, thousands of
seroprevalence studies have been conducted, withmany used to provide data on the burden
of infection in their respective regions (Chen et al., 2021b). An accurate seroprevalence
estimate includes a correction for test performance, which is almost exclusively reported
in a sex-independent manner. Considering these findings, it is important to evaluate
sex-specific corrections for test performance in seroprevalence estimates.

Our results are consistent with the literature, which has described a variety of specificity
limitations with EI (Prince et al., 2020; Tang et al., 2020). This includes EI’s Information for
Use which suggests potential cross-reactivity with several commonly circulating respiratory
pathogens, including respiratory syncytial virus. While we were unable to control for
cross-reactivity in this analysis, Nawrocki et al. (2021) identified a dramatic decline in
several of these pathogens early in the pandemic due to non-pharmaceutical interventions
aimed at reducing SARS-CoV-2. This nationwide reduction in pathogens of potential
cross-reactivity during the study period and the magnitude of the discordance suggest the
observed association is unlikely to be due to cross-reactivity alone. However, this impact
should be reevaluated as common respiratory pathogens return to pre-pandemic levels.
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This evaluation was limited to the data collected as a part of the HERO Project in Utah.
Due to the racial homogeneity of the population, further investigations are necessary to
evaluate if the findings hold for additional races.

Lastly, investigators had limited resolution into true positivity or time since positivity,
limiting the ability to assess sensitivity in the low prevalence subgroup. Further evaluation
of sex-specific sensitivity and specificity of anti-N and anti-S assays is necessary to provide
insight into the potential limitations and benefits of sex-specific thresholds for EI and
evaluate the generalizability to other anti-S assays. Further, a better understanding of
the effect of sex on the performance of these assays is critical in the post-vaccination era
to effectively measure the population’s immune response to the vaccine and previous
infections.

CONCLUSIONS
Significant quantitative and qualitative discordance was observed between Abbott and
EI throughout the seroprevalence study. Higher positivity was observed in EI than
among Abbot. Investigators observed disproportionately positive EI results among men;
however, this was not observed with Abbott. The association between the male sex and
EI seropositivity was particularly strong in the low-prevalence subgroup. Our results
suggest there may be significant sex-associated specificity limitations with the EI assay. As
these findings may extend to other anti-S assays utilized for SARS-CoV-2 seroprevalence
investigations, further investigation is needed to evaluate the generalizability of these
findings with other manufactures’ assays.
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