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ABSTRACT
Genomic instability is an important hallmark of cancer and more recently has been
identified in others like neurodegenrative diseases. Chromosomal instability, as a
measure of genomic instability, has been used to characterize clinical and biological
phenotypes associated with these diseases by measuring structural and numerical
chromosomal alterations. There have been multiple chromosomal instability scores
developed across many studies in the literature; however, these scores have not been
compared because of the lack of a single tool available to calculate and facilitate
these various metrics. Here, we provide an R package CINmetrics, that calculates six
different chromosomal instability scores and allows direct comparison between them.
We also demonstrate how these scores differ by applying CINmetrics to breast cancer
data from The Cancer Genome Atlas (TCGA). The package is available on CRAN
at https://cran.rproject.org/package=CINmetrics and on GitHub at https://github.com/
lasseignelab/CINmetrics.

Subjects Computational Biology, Genomics, Oncology
Keywords Chromosomal instability, R package, Genomic instability, Cancer, CINmetrics, Copy
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INTRODUCTION
Genomic instability, one of the hallmarks of cancer and aging, is measured in many forms
such as chromosomal instability, microsatellite instability, and instability characterized
by increased frequency of base-pair mutations (Bakhoum & Cantley, 2018; Pikor et
al., 2013; Negrini, Gorgoulis & Halazonetis, 2010; López-Otín et al., 2013). Particularly,
chromosomal instability (CIN) is associated with cancer progression, tumor immunity, and
inflammation (Pikor et al., 2013; Bach, Zhang & Sood, 2019). Recently, CIN has been shown
to contribute to diseases other than cancer, including neurodegenerative diseases (Hou et
al., 2017; Yurov, Vorsanova & Iourov, 2019).

CIN is broadly defined as the change in number and structure of chromosomes (Vargas-
Rondón, Villegas & Rondón-Lagos, 2017). Since CIN involves simultaneous and
ongoing copy number changes, it is a dynamic phenotype that leads to intratumoral
heterogeneity. In many published studies, CIN has been measured in proxy by capturing
errors during anaphase segregation in tumor specimens or indirectly by measuring

How to cite this article Oza VH, Fisher JL, Darji R, Lasseigne BN. 2023. CINmetrics: an R package for analyzing copy number aberra-
tions as a measure of chromosomal instability. PeerJ 11:e15244 http://doi.org/10.7717/peerj.15244

https://peerj.com
mailto:bnp0001@uab.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.15244
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://cran.rproject.org/package=CINmetrics
https://github.com/lasseignelab/CINmetrics
https://github.com/lasseignelab/CINmetrics
http://doi.org/10.7717/peerj.15244


numerical and structural chromosomal alterations across cell populations (segmental
aneuploidy) (Baumbusch et al., 2013; Davison et al., 2014; Roylance et al., 2011; Bonnet et
al., 2012). However, they do notmeasure the state or rate of chromosomal change, which is a
limitation of array based and comparative genomic hybridization (CGH)methods (Geigl et
al., 2008; Lepage et al., 2019). There have been various CIN scores developed acrossmultiple
studies involving different cancers which calculate numerical and structural alterations in
the chromosome (McGranahan et al., 2012). The differences in calculation of these scores
have been associated with different clinical and biological phenotypes (Baumbusch et al.,
2013;Davison et al., 2014;Roylance et al., 2011;Bonnet et al., 2012); however, there has been
no systematic comparison of different CIN scores and how they vary across and within
different cancers. The primary reason being lack of availability of computational framework
to calculate these CIN scores. While other packages are available to calculate chromosomal
instability (Song et al., 2017), they are limited to a single chromosomal instability score
and do not provide a framework to calculate and compare other CIN scores. Here, we
provide an R package that provides a unified framework to calculate multiple CIN metrics
to quantify segmental aneuploidy accumulations in a sample on same dataset. This package
will accelerate chromosomal instability studies by facilitating score comparisons across
cancers or other diseases.

METHODS
The chromosomal instability metrics were mined from the cancer literature and
implemented as functions in our CINmetrics R package, based on their ability to detect
either structural, numerical, orwhole genome instability. The six functions (tai, taiModified,
cna, countingBreakPoints, countingBaseSegments, fga) are outlined below based on the
similarity of the algorithms used to calculate them.

Total aberration index (tai) and modified total aberration index
(taiModified)
Total Aberration Index (TAI) was proposed by Baumbusch et al. (2013) to measure
the genomic aberrations in serous ovarian cancers. TAI calculates absolute area under
the curve for a copy number segment profile generated by piecewise constant fitting
(PCF) algorithm (Baumbusch et al., 2008). Biologically, TAI can be interpreted as absolute
deviation from the normal copy number state averaged over all genomic locations. TAI
provides a numerical measure in terms of both prevalence as well as the genomic size
of copy number variations in tumors. One of the limitations of TAI is that since it was
designed for studying advanced stage ovarian tumors, short aberrations found in early
stage tumors have low impact on TAI. Therefore, TAI should be used to study the global
scale genomic disorganization most likely to occur in late stage tumors.

tai implemented in CINmetrics takes into account only those sample values that are in
aberrant copy number state, i.e., has a mean segment value of less than or equal to −0.2
and greater than or equal to +0.2, without taking into account whether it is a deletion or
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amplification.

Total Aberration Index =
∑R

i=1di · |ySi |∑R
i=1di

(1)

where ySi ≤−0.2 and ySi ≥+0.2 represents the mean segment value, di represents the
segment length, and R represents the total number of segments. Alternatively, taiModfied
takes into account all the mean segment values and thus preserves the ‘‘directionality’’
of the score. In other words, taiModified retains the ‘‘directionality’’ of amplification or
deletion. Negative modified tai value means there are more large deletions in the sample
since the negative segment mean values are driving the metric.

Modified Total Aberration Index =
∑R

i=1di ·ySi∑R
i=1di

(2)

where ySi represents the mean segment value, di represents the segment length, and R
represents the total number of segments.

Copy number abnormality (CNA) and number of break points
(countingBreakPoints)
Copy number abnormality (CNA) was developed by Davison et al. (2014) for studying
aneuploidy in superficial gastroesophageal adenocarcinoma. An individual CNA is defined
as the segment with copy number outside the predefined range of 1.7 to 2.3 where two
indicates no loss or gain (assuming that the tumor is diploid) as determined by the Partek
segmentation algorithm (Grayson & Aune, 2011). Total CNA for the sample can thus be
defined as total number of individual CNAs. CNA represents a measure of segmental
aneuploidy. cna implemented in CINmetrics is similar except we define individual CNA
as the segment with copy number less than or equal to −0.2 and greater than or equal to
+0.2 with segment mean of 0 indicating no loss or gain. We chose ±0.2 as a conservative
cutoff for TCGA data as described in Laddha et al. (2014). The users can modify the cutoff
by modifying segmentMean parameter.

Total Copy Number Abnormality =
R∑
i=1

ni (3)

where ni represents number of segments with ySi ≤−0.2 and ySi ≥+0.2, R represents the
total number of segments with the minimum segment length di greater than or equal to
10.

countingBreakPoints is similar to the total breakpoints implemented in Lee et al. (2011).
Segments with mean less than or equal to −0.2 and greater than or equal to +0.2 and that
contain a number of probes above the user defined threshold, are counted and then the
value is doubled to account for 3′ and 5′ ends. This metric yields similar relative distribution
results to cna, however there is no minimum segment length (di) filter so the actual metric
values differ (they will be higher for countingBreakPoints).

Number of Break Points=
R∑
i=1

(ni ·2) (4)
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where ni represents number of segments with ySi ≤−0.2 and ySi ≥+0.2 and R represents
the total number of segments.

Counting altered base segments (countingBaseSegments) and the
fraction of the genome altered (fga)
Counting altered base segments and fraction of the genome altered are modified
implementations of the Genome Instability Index (GII) as described in Chin et al. (2007).
The GII was computed in two different ways, both based on calculating common regions
of alteration (CRA). These approaches show high concordance.

Number of Altered Bases=
R∑
i=1

di (5)

where di represents length of segments with ySi ≤−0.2 and ySi ≥+0.2 and R represents the
total number of segments.

fga implemented in our package is based on identifying CRAs as fraction of the genome
altered. Therefore, the fga values are normalized by dividing it by the length of the genome
covered. countingBaseSegments on the other hand calculates the CRAs.

Fraction Genome Altered =
∑R

i=1di
G

(6)

where di represents length of segments with ySi ≤−0.2 and ySi ≥+0.2, G represents
genome length covered, and R represents the total number of segments. The default
value is calculated by adding length of each probe on Affymetrix 6.0 array file
(snp6.na35.remap.hg38.subset.txt.gz) found here (GDC, 2023) after excluding the sex
chromosomes. One important difference to note is that in the original GII calculations,
the algorithm merges the overlapping regions between samples, whereas fga and
countingBaseSegements implemented in CINmetrics package do not merge overlapping
regions, since TCGA segments are not overlapping. However, if the user is using their own
segmentation algorithm, they should make sure that the segments are not overlapping
otherwise it will lead to erroneous results.

RESULTS
We used harmonized masked copy number segment data for breast cancer (BRCA) from
The Cancer Genome Atlas (Cancer Genome Atlas Network, 2012; Cerami et al., 2012) to
visualize and compare the chromosomal instability metrics implemented in the CINmetrics
package. We chose the breast cancer data as it has been shown to exhibit chromosomal
instability and thus provides a robust dataset for applying CINmetrics e.g., (Duijf et al.,
2019; Voutsadakis, 2021). Figure 1A shows the distribution of CINmetrics in BRCA data
for normal and tumor samples. The metrics have been log10 scaled to allow for comparison
between them. cna, countingBreakPoints, fga, and countingBaseSegments show an overall
pattern of increased genomic instability in tumor samples compared to normal. However,
the difference in mean and standard deviation between the two classes(normal and tumor)
is very different between these metrics. tai and taiModified scores show greater overlap
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Figure 1 CINmetrics applied to the BRCA dataset from TCGA, (A) the distribution of metrics between
normal (red) and tumor (grey) samples, where the black dot indicates the mean and the black line indi-
cates the standard deviation and (B) heatmap of the spearman correlation and complete linkage clus-
tering of the metrics in normal and tumor samples.

Full-size DOI: 10.7717/peerj.15244/fig-1

between normal and tumor samples compared to other metrics. As mentioned earlier, tai
and taiModified are best suited for late stage cancers (Baumbusch et al., 2013), thus should
be used as a measure for studying overall genomic disorganization in individual patients
with advanced tumors and not as a measure of genomic instability comparison between
normal and tumor samples, as we further demonstrate here.

To further understand and characterize the relationship between various metrics
implemented in CINmetrics, we performed spearman correlation (Spearman, 1904),
followed by complete linkage clustering (Vijaya, Sharma & Batra, 2019) as shown in
Fig. 1B. This clustering further demonstrated that cna, countingBreakPoints, fga, and
countingBaseSegments are more similar and therefore highly correlated compared to tai
and taiModified. Furthermore, this relationship is preserved in both normal and tumor
samples indicating the four metrics show consistent results and can be used for comparing
genomic instability between the two conditions.

We also looked at how the metrics are affected by potential confounders such as tumor
purity (defined as the fraction of cancerous cells in tumor samples) and ploidy levels in
tumor samples in the BRCA dataset. We obtained the purity and ploidy data for BRCA
calculated using ABSOLUTE algorithm (Carter et al., 2012) from the NIH Genomic Data
Commons Portal (The Pan-Cancer Atlas, 2022). ABSOLUTE jointly infers tumor purity
and ploidy levels from allele-specific copy number levels from a large sample collection
and precomputed models of recurrent cancer karyotypes (Carter et al., 2012).

For purity, the purity score had a range between 0 and 1 for each sample, with 1 being
the highest purity (Fig. 2A). We divided the score in four quantiles and plotted the density
of the samples in each quantile against the CINmetrics scores (Fig. 2). All CINmetrics had
relatively lower scores for samples with less purity (1st Quantile). Interestingly, tai showed
a distinct increase in the score with the increase in purity of samples. These can be due
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Figure 2 Distribution of sample purity scores and CINmetrics applied to BRCA dataset from TCGA
compared to sample purity, (A) sample purity score quantile distribution (B) tai, (C) taiModified, (D)
cna, (E) countingBreakPoints, (F) fga, and (G) countingBaseSegments.

Full-size DOI: 10.7717/peerj.15244/fig-2

to more purer samples having higher segmental aneuploidy and therefore more segments
having mean segment value of greater than 0.2. taiModified showed the same distribution
across the four quantiles.

For ploidy, we looked at the density of samples with different ploidy numbers against the
CINmetrics scores (Fig. 3). Samples that were diploid (2n) had the lowest score across cna,
countingBreakPoints, fga, and countingBaseSegments; however not in tai and taiModified.
cna and countingBreakPoints were developed to study aneuploidy (Davison et al., 2014; Lee
et al., 2011), and they show higher scores corresponding to higher ploidy levels.
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Full-size DOI: 10.7717/peerj.15244/fig-3

CONCLUSIONS
CIN has been one of the most important factors in understanding disease etiology and
progression in cancer (Pikor et al., 2013; Bach, Zhang & Sood, 2019) and is becoming
increasingly recognized for others like neurodegenerative diseases (Hou et al., 2017; Yurov,
Vorsanova & Iourov, 2019). Also, genomic instability has been associated with biological
variables such as sex, age, and tissue (Fischer & Riddle, 2018). Numerous methods have
been developed to quantitate and characterize the role of chromosomal instability in
specific cancers, however, lack of comprehensive tools that calculates these metrics has
limited direct comparison between them. Here, we have collected chromosomal instability
metrics from the literature and provide them as an R package and associated vignette that
allows for reproducible calculations and comparisons. Further, we used BRCA data from
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The Cancer Genome Atlas to show how the metrics relate to each other. One limitation of
these scores is that if the aneuploidy arose at the outset of cancer, these scores might give
high scores even in absence of CIN. The advent of next generation sequencing and single
cell technologies allows for better measurement of the state of chromosomal change as
well as cell-to-cell variability which is often masked in traditional chromosomal instability
scores (Geigl et al., 2008; Lepage et al., 2019). Another limitation of the package is that it
relies on array based intensity scores for the calculations of copy number variation and
therefore cannot be used with next generation sequencing data. This package nevertheless,
provides a useful framework to better characterize and understand genomic instability in
cancer.
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