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ABSTRACT
Substantial evidence has shown that most exogenous substances are metabolized by
multiple cytochrome P450 (P450) enzymes instead of by merely one P450 isoform.
Thus, multi-P450 inhibition leads to greater drug-drug interaction risk than specific
P450 inhibition. Herein, we innovatively established an artificial neural network cas-
cade (NNC) model composed of 23 cascaded networks in a ladder-like framework to
identify potential multi-P450 inhibitors among natural compounds by integrating 12
molecular descriptors into a P450 inhibition score (PIS). Experimental data report-
ing in vitro inhibition of five P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6,
and CYP3A4) were obtained for 8,148 compounds from the Cytochrome P450 In-
hibitors Database (CPID). The results indicate significant positive correlation between
the PIS values and the number of inhibited P450 isoforms (Spearman’s ρ = 0.684,
p < 0.0001). Thus, a higher PIS indicates a greater possibility for a chemical to in-
hibit the enzyme activity of at least three P450 isoforms. Ten-fold cross-validation of
the NNC model suggested an accuracy of 78.7% for identifying whether a compound
is a multi-P450 inhibitor or not. Using our NNC model, 22.2% of the approximately
160,000 natural compounds in TCM Database@Taiwan were identified as potential
multi-P450 inhibitors. Furthermore, chemical similarity calculations suggested that
the prevailing parent structures of natural multi-P450 inhibitors were alkaloids. Our
findings show that dissection of chemical structure contributes to confident identifi-
cation of natural multi-P450 inhibitors and provides a feasible method for virtually
evaluating multi-P450 inhibition risk for a known structure.

Subjects Computational Biology, Drugs and Devices, Pharmacology
Keywords Neural network cascade, P450, Multi-P450 inhibitor, Natural compound

INTRODUCTION
The human cytochrome P450 (P450) superfamily is composed of 57 heme-containing
enzyme isoforms that are implicated in oxidative metabolism of a large number of
endogenous and exogenous substances. P450s are responsible for approximately three-
quarters of the metabolism of clinical drugs in the human body (Guengerich, 2008).
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However, only five P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4)
are responsible for over 90% of P450-mediated metabolic elimination of clinical drugs
(Williams et al., 2004).

Although most clinical drugs need P450s for oxidative metabolism and ultimately
excretion from the body (Williams et al., 2004; Guengerich, 2008), the metabolic activities
of P450s are often affected by large amounts of drugs or compounds (Rendic & Di Carlo,
1997; Lin & Lu, 1998; Pelkonen et al., 2008). Therefore, the risk of exposure to potential
adverse drug-drug interactions (DDIs) should be seriously considered when adopting
combination drug therapy (Tanaka, 1998; Lazarou, Pomeranz & Corey, 1998; Ajayi, Sun &
Perry, 2000). Compared to P450 induction, inhibiting P450 enzyme activity May restrict
or stop existing metabolic and elimination pathways and result in excessive exposure to
co-administered drugs that undergo P450-mediated metabolism. Isoherranen et al., (2012)
demonstrated that co-administration with a multi-P450 inhibitor consistently led to an
extremely high blood concentration of the affected drug. A clear example of this effect
is illustrated by the 128-fold increase in ramelteon exposure when co-administered with
fluvoxamine, a multi-P450 inhibitor (Obach & Ryder, 2010). The above findings strongly
suggest the need for more stringent assessment and clinical management of potential P450
inhibitors that simultaneously inhibit multiple drug metabolizing P450s rather than only
one of them.

In addition to methodological improvements for evaluation of in vitro P450 inhibition
by drugs and chemicals (Spaggiari et al., 2014), efforts in the past decade have also sub-
stantially advanced identification of P450 inhibitors using in silico approaches (Mishra,
2011). Recently, Cheng et al. (2011) proposed a series of virtual P450 inhibitor classifiers,
each of which was designed to independently predict potential inhibition of chemicals
against one of the five P450 isoforms most frequently involved in drug metabolism. This
strategy applied integration of multiple computational models using different algorithms
to distinguish P450 inhibitors from non-inhibitors.

Considering the higher DDI risk caused by co-administered multi-P450 inhibitor
drug(s), we innovatively developed an in silico model to identify chemicals that can block
multiple P450-mediated metabolic channels. Unlike the multiple solo-isoform design
strategy adopted previously (Cheng et al., 2011), a simple prediction concept was im-
planted into our virtual multi-P450 inhibitor discriminator that aimed to efficiently assess
the possibility of multi-P450 inhibition by chemicals with defined molecular structure. To
accomplish this goal, we applied a novel model construction method, which we termed
a neural network cascade (NNC). A NNC is a cascade of many small artificial neural
networks (ANNs) structured in a ladder-like framework. Just as illustrated previously
(Zhu & Kan, 2014), each small ANN in the NNC was assigned to independently fulfill a
relatively simple task such as data transformation, information integration, or prediction
output. As a whole, the NNC provides prediction superior to a regular ANN model.

In this study, we built a NNC with a cascade architecture of 23 ANNs to construct a
virtual prediction model of multi-P450 inhibitors by translating 11 two-dimensional
molecular descriptors and one three-dimensional molecular descriptors into a single
parameter that perceives whether a chemical extensively inhibits drug-metabolizing
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P450s. This innovative virtual screening method provides a feasible approach for rapid
identification of drugs or chemicals with high DDI risk.

Currently, co-use of modern and traditional medicine therapies have been accepted
worldwide. It was known that the enzymatic activity of P450s could also be inhibited by
natural compounds (Zhou et al., 2003). However, compared with synthetic compounds
(Cheng et al., 2011), there is no knowledge about the existence and proportion of multi-
P450 inhibitors in the entirety of natural compounds and their structural features.
By establishing the NNC model, we had an opportunity to reveal natural compounds
with high DDI risk due to multi-P450 inhibition among the approximately 160,000
monomeric natural compounds recorded in TCM Database@Taiwan (Chen, 2011).
It was thought that such an effort might bring new knowledge about potential multi-
P450 inhibition caused by natural compounds and contribute to rational use of natural
compounds and herbs.

MATERIALS AND METHODS
Acquisition of in vitro data and chemical re-sorting
The dataset of experimentally validated P450 inhibitors and non-inhibitors was down-
loaded from the LMMD Cytochrome P450 Inhibitors Database (CPID) (Cheng et al.,
2011). Only small compounds (molecular weight < 800 Dalton) were subjected to further
analysis. The P450 inhibitor and non-inhibitor classification for chemicals in the CPID
followed the threshold criterion of Auld’s reports and the PubChem BioAssay database
(Veith et al., 2009;Wang et al., 2009). Briefly, for chemicals in PubChem Data Set I in the
CPID, a P450 inhibitor was defined for AC50 ≤ 10 µMwhereas a P450 non-inhibitor was
classified as AC50> 57 µM. The AC50 is the concentration that inhibits 50% of the activity
of a specific P450 isoform. For compounds in PubChem Data Set II, P450 inhibitor was
defined if PubChem activity score > 40 whereas the compound was considered a non-
inhibitor for PubChem activity score= 0. A PubChem activity score > 40 indicates an
IC50 (the concentration leading to 50% inhibition of substrate metabolism) <40 µM
(Wang et al., 2009). The two threshold criteria were consistent in distinguishing between
inhibitors and non-inhibitors (Cheng et al., 2011). The original data were stored in
ten Excel files that were merged into a single dataset, after which all the compounds
underwent a unified re-sorting operation according to the number of inhibited P450
isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). This sorting identified
8,148 compounds with complete in vitro inhibition data for all five P450 isoforms
(Table S1). The data for these compounds were included in this study to establish an
NNC-based multi-P450 inhibitor prediction pipeline. Chemicals were categorized by
number of inhibited P450 isoforms: 0, P450 non-inhibitor; 1–2, non-extensive P450
inhibitor; and 3–5, multi-P450 inhibitor (Table S2). An additional 1,919 P450 inhibitors
with incomplete in vitro inhibition data in the CPID database but known to inhibit at
least one of the five P450 isoforms were included as model application set I for model
validation (Table S3).

Li et al. (2015), PeerJ, DOI 10.7717/peerj.1524 3/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.1524/supp-5
http://dx.doi.org/10.7717/peerj.1524/supp-6
http://dx.doi.org/10.7717/peerj.1524/supp-7
http://dx.doi.org/10.7717/peerj.1524


Mechanism-based inhibitors (MBIs) and natural compounds
A comprehensive literature search was performed in PubMed using the search terms
‘‘mechanism-based inhibition and P450’’ and ‘‘mechanism-based inactivation and
P450’’. Experimental evidence of MBIs against the P450 isoforms studied herein was
extracted independently by two researchers (ZL and YL). Any disagreement was resolved
by consensus. The database PubChem Compound was then used to search for the
simplified molecular input line entry specification (SMILES) strings of the MBIs. If no
corresponding ID was available for a MBI in PubChem Compound, the online SMILES
translator (http://cactus.nci.nih.gov/translate/) was applied to generate a SMILES string
based on the reported chemical structure. Additionally, the structural information
for natural compounds from ZINC (Irwin et al., 2012) was downloaded from TCM
Database@Taiwan (Chen, 2011), the world largest database of small molecular natural
compounds. Finally, approximately 160,000 non-duplicate natural compounds were
included in our study.

Chemical similarity network (CSN)
To investigate the structural consistency of multi-P450 inhibitors, the Tanimoto coeffi-
cient was calculated using the chemoinformatics plug-in ChemViz after importing the
SMILES strings of the chemicals into Cytoscape v2.8.3 (Smoot et al., 2011). ChemViz is
widely used for network visualization of chemicals with similar structures (Wallace et al.,
2011; Schlessinger et al., 2012; Su et al., 2012). Herein, a threshold of 0.8 was accepted for
Tanimoto coefficient calculation to cluster chemicals with similar structures in a CSN.
In the CSN, distinguishably colored nodes represent P450 non-inhibitors, non-extensive
P450 inhibitors and multi-P450 inhibitors, and edges indicate ≥80% structural similarity
between two chemicals (Fig. 1).

Molecular descriptor calculation
The 8,148 compounds with complete in vitro data were analyzed for structural consistency
by building a CSN. Thereafter, they were divided into a training set and a validation set
in a 2:1 ratio. All similar compounds were included in the training set, the validation
set only contained compounds that were dissimilar to other compounds in both sets.
The natural compounds retrieved from TCM Database@Taiwan were incorporated into
model application set II. Before molecular descriptor calculation, the natural compounds
in model application set II and the literature-reported MBIs were subjected to data
preprocessing. Briefly, salts were converted to their corresponding acids or bases, and
water molecules were removed from hydrates (Cheng et al., 2011). To avoid potential
influences of macromolecules on data overflow of the cascade network model, only
the small compounds (molecular weight < 800 Dalton) were considered. All inorganic
compounds and noncovalent complexes and mixtures were discarded from our study.

The chemical simulation software Maestro v9.3 (Schrödinger) was used to generate
three-dimensional (3D) conformation of all the compounds in each set and export
the result as a mol file. The 3D structures of these compounds were generated through
LigPrep 2.5a in Schrödinger Suite. After that, the chemoinformatics software PaDEL-
Descriptor (Yap, 2011) was applied to calculate the 1D, 2D, and 3D molecular descriptors
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Figure 1 Chemical similarity network illustration of compounds in the training set (A), the validation set
(B) and the collection of the two sets (C). Green, blue and red nodes represent P450 non-inhibitors, non-
extensive P450 inhibitors, and multi-P450 inhibitors, respectively. Edges indicate ≥80% structural similar-
ity between two compounds.

for each compound in the three sets and the literature-reported MBIs using the mol file
containing 3D information as input. In total, 1,875 molecular descriptors were calculated
for each compound.

NNC model building
To identify potential natural multi-P450 inhibitors in model application set II, an NNC
model composed of 17 cascaded ANNs was established by constructing a predictive
relationship between molecular descriptors and the number of inhibited P450 isoforms.
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Briefly, all of the molecular descriptors for each of the 8,148 chemicals in the modeling
and external validation sets were normalized between 0 and 1, as described previously
(Zhu & Kan, 2014). After normalization, a radial basis function (RBF)-ANN with 1-11-
1 network architecture was built for each molecular descriptor of the 5,426 chemicals in
the modeling set using the Intelligent Problem Solver (IPS) tool in STATISTICA Neural
Networks (SNN, Release 4.0E). The normalized molecular descriptor values were used
as input variables, with the normalized numbers of inhibited P450 isoforms as output
variables. Considering structural diversity, we also established a larger NNC model that
consisted of all the chemicals in the modeling and external validation sets. In this study,
we named the NNC models NNC model I (n= 5,426) and NNC model II (n= 8,148),
respectively. We followed a step-by-step procedure for NNC model building to set the
operating parameters in IPS (File S1).

In this study, the normalized network prediction values were uniformly termed the
P450 inhibition score (PIS). Graphpad Prism v6.0 was used to calculate the nonpara-
metric Spearman correlation coefficient (Spearman’s rho) between the PIS values and the
normalized numbers of inhibited P450 isoforms. Molecular descriptors containing more
chemical structure information related to multi-P450 inhibition have correspondingly
higher Spearman’s rho values. After re-sorting in descending order, the molecular
descriptors with the highest Spearman’s rho values were highlighted as suitable NCC
inputs. Only the molecular descriptors with a Spearman’s rho value > 0.4 were selected
to construct NNC models I and II.

Unlike the pyramid-like framework of the NNC model established previously (Zhu &
Kan, 2014), a ladder-like architecture was adopted in this study. Briefly, the molecular
descriptor with the highest Spearman’s rho was preferentially selected as the starting
point for extension of the ladder of ANNs. The remaining molecular descriptors were
arranged in turn to build a 2-11-1 network architecture ANN. The ANN was retained
only if it resulted in the maximum increase in Spearman’s rho. Thus, this ANN contained
two molecular descriptors. With the same operation, the PIS of the ANN was integrated
with one of the remaining molecular descriptors in a new ANN with the same network
architecture. Similarly, the ANN that contributed to the maximum increase in Spearman’s
rho was retained for further extension of the ANN cascade. Such a modeling operation
would be terminated artificially until there was no further increase in Spearman’s rho or
all of the molecular descriptors were incorporated in NNC model I or II.

Model validation, comparison, and application
The holdout cross-validation method was applied for internal validation of each ANN
in NNC models I and II. IPS divided the modeling set into three subsets (training set,
verification set, and testing set) in a 2:1:1 ratio when building each ANN in the NNC
model. Thus, one-quarter of all the compounds did not participate in the process of
model building but were treated as model testing samples, or internal validation samples.
The IPS-given correlation coefficients were compared for the training set (RTr) and
the testing set (RTe). The two correlation coefficients measured the linear relationship
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between the PIS values and the normalized number of inhibited P450 isoforms. Similar
RTe and RTr in value indicates good generalizability of the corresponding ANN.

To evaluate the overall performance of NNC model I, 2,716 compounds with complete
in vitro data was used for model validation. For NNC model II, a 10-fold cross-validation
method was used as illustrated by Fig. S1. Briefly, the entire compound set (n= 8,148)
was randomly divided into 10 mutually exclusive groups of nearly equal size. Of these
groups nine were selected for model training and the last was used for model validation.
The above procedure was repeated 10 times to allow each of the groups to be indepen-
dently used for validation. Moreover, two regular ANN models were built for model
comparison. ANN models I and II used the same compounds and molecular descriptors
applied in NNC models I and II, respectively.

Based on the final PIS values obtained from each of the four models, Spearman’s rho
was calculated to evaluate whether the PIS values and the number of inhibited P450
isoforms were significantly correlated. Receiver operating characteristic (ROC) curve
analysis was performed to evaluate the difference between P450 non-inhibitors (n= 0)
and P450 inhibitors (n= 1–5) and that between non-multi-P450 inhibitors (n= 0–2)
and multi-P450 inhibitors (n= 3–5) using MedCalc v13.0, where n refers to the number
of inhibited P450 isoforms. Additionally, a Chi-squared test was utilized to investigate
the potential impact of structure diversity, model type, and P450 inhibition type on
accuracy. Accuracy was calculated as the number of successfully predicted P450 inhibitors
and non-inhibitors divided by the sum of all compounds. All the 1,919 compounds in
model application set I and all of the natural compounds in model application set II were
subjected to the PIS calculation.

Statistical analysis
Data were expressed as mean± SEM (standard error of the mean). Statistical analysis was
performed with the Spearman correlation test or Chi-squared test using Graphpad Prism
v6.0. The methodology of DeLong, DeLong & Clarke-Pearson, (1988) was used for pairwise
comparison of ROC curves using MedCalc v13.0. Differences were considered significant
at p< 0.05.

RESULTS
The CPID was used to obtain in vitro data for non-inhibitors and inhibitors against
five P450 isoforms, namely, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. We
calculated 1,875 molecular descriptors for 8,148 small molecules with in vitro data to build
an NNC-based multi-P450 inhibitor prediction model and subjected it to strict internal
and external validation. Structure diversity was considered for model optimization,
and NNC models were compared with regular ANN models. Although all of the 1,875
molecular descriptors were initially considered network input without discrimination,
only 12 molecular descriptors (Table S4 and Fig. S2) were ultimately selected as inputs
in the NNC model based on the most significant correlation between their PIS values
and the normalized numbers of inhibited P450 isoforms (Spearman’ rho > 0.4) and the
optimal integration effect for elevating Spearman’s rho of the final ANN submodel. After
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calculating and importing the 12 molecular descriptors for each of the 158,795 natural
compounds from the TCM Database@Taiwan, we applied the model to predict natural
multi-P450 inhibitors from only 12 molecular descriptors depicting 2D or 3D structural
information. Ultimately,∼22% of the natural compounds were suggested as potential
multi-P450 inhibitors by the NNC model established herein. Furthermore, chemical
similarity calculation suggested alkaloids as the prevailing parent structures of natural
multi-P450 inhibitors.

Data integration enabling the NNC model to identify multi-P450
inhibition
Structure diversity was considered to group compounds used for model training and
validation. To evaluate the NNC model architecture based on structure diversity, all
similar compounds were classified to the training set, and partial dissimilar compounds
were classified to the validation set (Fig. 1). Our results indicate that the PIS of each
molecular descriptor included in NNC model I was only weakly correlated with the
normalized number of inhibited P450 isoforms, with Spearman’s rho values ranging from
0.413 to 0.620. However, ladder-like data integration by NNC dramatically increased
the correlation between chemical structure and multi-P450 inhibition. We verified
that the PIS values exported from the final ANN submodel were significantly positively
corrected with the normalized number of inhibited P450 isoforms (Spearman’s rho=
0.713, p< 0.0001, Fig. 2A). In comparison, ANN model I using the same nine molecular
descriptors only contributed a Spearman’s rho of 0.677 (Fig. 2B). Consistent with this,
ROC curve analysis indicated a significant increase in the area under the ROC (AUROC)
for identifying P450 inhibitors and multi-P450 inhibitors using NNC model I, compared
with ANN model I (p< 0.0001, Figs. 2C and 2D, and Table S5).

We further assessed the predictive power of the two models. We did not observe
significant difference in identifying P450 inhibitors (Chi-squared test, p= 0.36,
Table S6) and multi-P450 inhibitors (Chi-squared test, p= 0.44, Table S7) among the
2,716 chemicals in the validation set (Fig. 1B). The global accuracy rates were 78.7% and
77.7% for identifying P450 inhibitors and 76.8% and 75.9% for identifying multi-P450
inhibitors using NNC model I and ANN model I, respectively. However, compared with
ANN model I, we found that NNC model I more accurately identified P450 inhibitors in
application set I (Chi-squared test, p= 0.0018, Table S8). The global accuracy rates were
89.9% and 86.7% for identifying P450 inhibitors using NNC model I and ANN model I,
respectively.

All 8,148 compounds in the training and validation sets (Fig. 1C) were used to
construct a larger model to enhance the chemical structure diversity of the NCC model
architecture. The resulting NNC model II integrated 11 2D molecular descriptors and one
3D molecular descriptor into a single PIS (Fig. 3A). The PIS values exported from the final
ANN submodel were significantly positively corrected with the normalized number of
inhibited P450 isoforms (Spearman’s rho= 0.684, p< 0.0001, Fig. 3A). In comparison,
ANN model II using the same 12 molecular descriptors only yielded a Spearman’s rho of
0.652 (RTr = 0.629, RTe = 0.625). Consistent with this, ROC curve analysis indicated a

Li et al. (2015), PeerJ, DOI 10.7717/peerj.1524 8/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.1524/supp-9
http://dx.doi.org/10.7717/peerj.1524/supp-10
http://dx.doi.org/10.7717/peerj.1524/supp-11
http://dx.doi.org/10.7717/peerj.1524/supp-12
http://dx.doi.org/10.7717/peerj.1524


Figure 2 Comparison of NNCmodel I and ANNmodel I. (A) Illustration of the framework of NNC
model I. La∼ Lh represent the ladder submodels in which the corresponding molecular descriptors were
imported; Pa∼ Ph are the integrated PIS parameters. For each submodel, the correlation coefficients be-
tween the normalized number of inhibited P450 isoforms and P450 inhibition scores of the compounds
in the training set (RTr) and the testing set (RTe) are shown. Spearman’s rho for the correlation between
the PIS values and the normalized numbers of inhibited P450 isoforms was also calculated for each inte-
grated PIS (top). (B) Illustration of the framework of ANN model I. (C) The AUROCs are 0.876 and 0.862
for discrimination between P450 inhibitors (n= 1–5) and P450 non-inhibitors (n= 0) using NNC model
I and ANN model I, respectively. (D) The AUROCs are 0.860 and 0.836 for identification of non-multi-
P450 inhibitors (n= 0–2) and multi-P450 inhibitors (n= 3–5) using the two models, respectively.
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Figure 3 Comparison of NNCmodel II and ANNmodel II. (A) Illustration of the framework of NNC
model II. La∼ Lk represent the ladder submodels in which the corresponding molecular descriptors were
imported; Pa∼Pk are the integrated PIS parameter. For each submodel, the correlation coefficients be-
tween the normalized number of inhibited P450 isoforms and P450 inhibition scores of the compounds in
the training set (RTr) and the testing set (RTe) are shown. Spearman’s rho for the correlation between the
PIS values and the normalized numbers of inhibited P450 isoforms was also calculated for each integrated
PIS (top). (B) The AUROCs are 0.863 and 0.844 for discrimination between P450 inhibitors (n= 1–5) and
P450 non-inhibitors (n = 0) using NNC model II and ANN model II, respectively. (C) The AUROCs are
0.844 and 0.828 for identification of non-multi-P450 inhibitors (n= 0–2) and multi-P450 inhibitors
(n= 3–5) using the two models, respectively.
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significant increase in AUROCs using NNC model II for identifying P450 inhibitors and
multi-P450 inhibitors, compared with ANN model II (p< 0.0001, Figs. 3B and 3C, and
Table S5).

The 1,919 validated P450 inhibitors in application set I were used to compare perfor-
mance of the two models. Significantly, greater accuracy was observed for NNC model II
(Chi-squared test, p= 0.036, Table S8). The global accuracy rates were 92.1% and
90.1% for identifying P450 inhibitors using NNC model II and ANN model II, respec-
tively. Chi-squared tests suggested a significant difference in prediction accuracy between
NNC models I and II (p= 0.021, Table S8) and between ANN models I and II (p= 0.001,
Table S8). Furthermore, we investigated the potential influence of structural diversity on
P450 inhibitor identification by NNC models I and II. Using ChemViz, we found that 281
of the 1,919 P450 inhibitors were structurally similar to the compounds in the training set
(Fig. 1A). However, merging the compounds in the training and validation sets increased
this number by only 75 to give 356. Chi-squared tests indicate that the percentage of
similar compounds significantly decreased from 5.17% (281/5,432) to 4.37% (356/8,148),
although the sum of the chemicals for model building increased 33% from 5,432 to 8,148
(p= 0.033). This finding implies that structural diversity contributes to higher prediction
accuracy for NNC model II than for NNC model I.

Internal and external validation of the NNC and ANN models
The holdout cross-validation method was used for internal validation of each ANN
submodel in the two NNC models and the two ANN models. Similar values of RTe and
RTr guaranteed satisfactory generalizability of the constructed models (Figs. 2 and 3). A
set of 2,716 compounds with complete in vitro P450 inhibition data was applied to test
NNC model I and ANN model I for method validation. The PIS values exported from
the two models were significantly positively corrected with the normalized number of
inhibited P450 isoforms (Spearman’s rho= 0.613 and 0.587 for NNC model I and ANN
model I, respectively, p< 0.0001). For NNC model II and ANN model II, the 10-fold
cross-hold method was used for internal validation. Significant correlations between the
PIS scores and the normalized number of inhibited P450 isoforms were observed for
both models (Spearman’s rho= 0.686 and 0.645 for NNC model II and ANN model II,
respectively, p< 0.0001), consistent with ROC curve analysis result. NNC model II and
ANN model II exhibited good performance for identifying P450 inhibitors and multi-
P450 inhibitors (Fig. 4). The global accuracy rates were 81.3% and 80.0% for identifying
P450 inhibitors and 78.7% and 77.0% for identifying multi-P450 inhibitors using NNC
model II and ANN model II, respectively. Chi-squared tests indicated better performance
of NNC model II for identifying P450 inhibitors (p= 0.041) and multi-P450 inhibitors
(p< 0.0001) (Table S9). External validation using 1,919 P450 inhibitors suggested the
effectiveness of the above four models (Table S8). In particular, NNC model II showed the
highest accuracy of 92.1%. Furthermore, we compared the efficacies of NNC model II and
ANN model II in identifying literature-reported MBIs that irreversibly inhibit P450s
(Table S10). Although the two models did not show different predictions for the MBIs
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Figure 4 Ten-Fold cross-validation of NNCmodel II and ANNmodel II. (A) The AUROCs are 0.864
and 0.842 for discrimination between P450 inhibitors (n = 1–5) and P450 non-inhibitors (n = 0) using
NNC model II and ANN model II, respectively. (B) The AUROCs are 0.845 and 0.822 for identification of
non-multi-P450 inhibitors (n = 0–2) and multi-P450 inhibitors (n = 3–5) using the two models, respec-
tively.

(Chi-squared test, p= 0.41), NNC model II performed better by successfully identifying
126 of the 145 MBIs, whereas ANN model II recognized 121 of the 145 MBIs.

Application of NNC to identify natural multi-P450 inhibitors
A quick view of the whole CPID dataset reveals a large number of compounds without
complete in vitro inhibition data. For instance, 40.3% of the P450 non-inhibitors in the
CPID database lack in vitro inhibition data for at least three P450 isoforms. In contrast,
only 32.7% of the P450 non-inhibitors possess complete data on in vitro inhibition of
all five P450 isoforms. This demonstrates widespread inadequacies in experimental
validation of thousands of chemicals with respect to inhibition of the main drug-
metabolizing P450s. In contrast, such information may be completely missing for the vast
majority of natural compounds in the TCM Database@Taiwan. Using NNC model II, we
performed an in silico scan of∼160,000 natural compounds to identify potential multi-
P450 inhibitors. The PIS value was calculated for each chemical, and we identified 35,186
potential multi-P450 inhibitors at the optimal ROC threshold (PIS= 0.6163), which
accounted for 22.16% of all the natural compounds in the model application set (Fig. 5A).
This finding implies the presence of multi-P450 inhibitors among natural compounds.
Furthermore, by constructing the CSN of potential multi-P450 inhibitors identified by
NNC model II, we identified 29 large compound clusters (n> 100), suggesting diverse
structural characteristics (Fig. 5B). Identification of a consistent P450 inhibition feature
in one cluster raised the accuracy of NNC prediction substantially. Figure S3 presents
the 2D structures of the most representative compounds, which possess the largest
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Figure 5 NNCmodel II identified a high proportion of potential multi-P450 inhibitors among natural compounds. (A) Distribution of PIS for
the natural compounds in model application set II. Approximately 22% of natural compounds were identified as potential multi-P450 inhibitors
(PIS > 0.6163). (B) Twenty-nine large clusters of compounds with similar structure (n> 100) were found for natural compounds with PIS > 0.6163.

number of structurally similar neighbors in their individual clusters. The parent structure
characteristics suggest that 25 belong to alkaloids.

DISCUSSION
The effects of multi-P450 inhibition were only recognized recently (Isoherranen et al.,
2012). Simultaneously and forcefully blocking multiple metabolic pathways causes an
exponential rather than algebraic rise of drug plasma concentrations (Obach & Ryder,
2010), which places patients receiving such combination drug therapy at an enormous
risk of excessive drug exposure. Despite extensive application of in vitro P450 inhibition
assessment of potential drug-like compounds, related methods are mainly focused on
investigating the inhibitory potency on individual P450 isoforms, especially for the most
important drug-metabolizing P450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4) (Walsky & Boldt, 2008; Nettleton & Einolf, 2011). Even for these five isoforms,
a tendency for subjective selection is evident in the performance of P450 inhibition
assessments. For instance, within the CPID dataset containing nearly 25,000 unique
compounds, inhibition of CYP3A4 was evaluated for >75% of entries, whereas only
∼60% were tested for inhibition of CYP2D6 (Cheng et al., 2011). CYP3A4 may have more
available in vitro inhibition data because its activity is known to be more vulnerable to
chemical effects, possibly because it possesses a larger binding cavity than CYP2D6 (Tickle
& Jhoti, 2004;Williams et al., 2012;Wang et al., 2012). Thus, CYP3A4 has been the focus
of much DDI research.
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Notably, incomprehensive data limit determination of serious adverse DDIs due
to multi-P450 inhibition. Additionally, as experimental data are incomplete for many
compounds, we cannot confidently assess the proportion of multi-P450 inhibitors or
whether simultaneous inhibition of multiple P450s is significant. Until now, appropriate
and simple methods to estimate the consequence of multi-P450 inhibition on the
alteration of blood drug concentration have not been available (Obach & Ryder, 2010).
This prevents experimental evaluation of the significance of multi-P450 inhibition.

The successes achieved by previous studies toward establishing virtual P450 inhibition
models (Molnár & KeserűG, 2002; Jensen et al., 2007) prompted us to attempt a similar
approach to comprehensively scan the structure–activity property ‘multi-P450 inhibition’
in the CPID database of nearly 25,000 unique compounds. Predictions from our NNC
model reveal that multi-P450 inhibition may be a widespread occurrence in numerous
compounds with diverse chemical structures. This finding suggests that comprehensive
in vitro inhibition assessment of drug metabolism-related P450s should be seriously
considered for potential drug-like compounds in new drug development.

As overlapping structural information was commonly found among molecular descrip-
tors calculated by PaDEL-Descriptor, only 11 2D and one 3D molecular descriptors were
included as inputs in NNC model II. Despite the small number of molecular descriptors
used, a correlation coefficient of 0.684 between PIS and the number of inhibited P450s
clearly demonstrates that the NNC model is suitable for predicting multi-P450 inhibitors.
We propose that the ladder-like network organization strengthened the prediction
effectiveness of the NNC model, in which 11 RBF-ANN submodels were sequentially
cascaded to allow the flow and convergence of information originating from different
molecular descriptors. The results of internal and external validation suggest good
generalizability of each ANN unit and guarantee the overall consistent performance of the
NNC model in multi-P450 inhibitor identification. Compared with ANN model II, our
results highlight the predictive advantage of the NNC model ANN architecture using the
same molecular descriptors as inputs. This is consistent with our previous study, in which
we validated the superior prediction performance of the NNC model ANN architecture to
the ANN model (Zhu & Kan, 2014). Furthermore, our findings imply that enriching the
structure diversity of compounds in NNC model contributes to more accurate prediction.

The optimized NNC model built herein, NNC model II, provided a novel opportunity
for rapid, high-throughput screening of the multi-P450 inhibition potential for natural
compounds to explore whether natural multi-P450 inhibitors exist, how common they
are, and whether they share common structural features. NNC model II identified 35,186
potential multi-P450 inhibitors from 158,795 unique natural compounds. This finding
suggests that possible multi-P450 inhibition by natural chemicals may not be a rare
event and should be considered when in vitro assessment is performed. Furthermore,
CSN building verified this finding as isolated chemical clusters imply diverse rather than
consistent parent structures of potential natural multi-P450 inhibitors. This prediction
was consistent with current knowledge about naturally occurring chemical-caused
P450 enzyme inhibition (Delgoda & Westlake, 2004). The present method indicated
that compared with other classes of natural compounds, alkaloids may have increased
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potential for multi-P450 inhibition. This finding was supported by previous experimental
studies. For example, isoquinoline alkaloids, such as compounds 24 and 27 (Fig. S3), were
identified by our method to be potential multi-P450 inhibitors. This result was consistent
with a study from Salminen et al. (2011), in which isoquinoline alkaloids were shown to
remarkably inhibit the enzyme activity of multiple P450s.

In conclusion, we established a feasible method for virtually screening the potential for
multi-P450 inhibition in compounds with known chemical structures, and application
of our model revealed a prevalence of multi-P450s inhibition by natural compounds,
especially alkaloids. This finding suggests that serious caution should be observed when
alkaloid extract or traditional medicines rich in such substances are used in combination
with prescription medicines mainly metabolized by P450s in vivo. Our models were con-
structed using only the chemical structure information of compounds. Thus, more new
inputs reflecting multi-P450 inhibition should be investigated and considered for inclu-
sion in the NNC model in future studies, and ligand-protein docking simulations should
be performed to determine P450 inhibition-related docking simulation parameters, as
suggested by several previous studies (Shi et al., 2011; VandenBrink et al., 2012; Zhou et
al., 2013; Shityakov et al., 2014). Furthemore, examination of these predictions by in vitro
or in vivo experimental methods is necessary, especially for the natural compounds we
identified with high likelihoods of multi-P450 inhibition. Nevertheless, our results suggest
the superior predictive power of NNC model architecture to regular ANN model. Such a
novel model architecture can be used for other research fields of quantitative structure–
activity relationship.
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