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Insect pest invasions cause significant damage to crop yields, and the resultant economic
losses are truly alarming. Climate change and trade liberalization have opened new ways
of pest invasions. Given the consumer preference towards organic agricultural products
and environment-friendly nature of natural pest control strategies, biological control is
considered to be one of the potential options for managing invasive insect pests.
Drosophila suzukii (Drosophilidae) is an extremely damaging fruit pest, demanding
development of effective and sustainable biological control strategies. In this study, we
assessed the potential of the parasitoid Leptopilina japonica (Figitidae) as a biocontrol
agent for D. suzukii using ecological niche modeling approaches. We developed global-
scale models for both pest and parasitoid to identify four components necessary to derive
a niche based, target oriented prioritization approach to plan biological control programs
for D. suzukii: (i) potential distribution of pest D. suzukii, (ii) potential distribution of
parasitoid L. japonica, (iii) the degree of overlap in potential distributions of pest and
parasitoid, and (iv) biocontrol potential of this system for each country. Overlapping
suitable areas of pest and parasitoid were identified at two different thresholds and at the
most desirable threshold (E = 5%), potential for L. japonica mediated biocontrol
management existed in 125 countries covering 1.87 x 107 km2, and at the maximum
permitted threshold (E = 10%), land coverage was reduced to 1.44 x 107 km2 in 121
countries. Fly pest distributional information as a predictor variable was not found to be
improving parasitoid model performance, and globally, only in half of the countries, >50%
biocontrol coverage was estimated. We therefore suggest that niche specificities of both
pest and parasitoid must be included in site-specific release planning of L. japonica for
effective biocontrol management aimed at D. suzukii. This study can be extended to
design cost-effective pre-assessment strategies for implementing any biological control
management program.
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10 ABSTRACT

11 Insect pest invasions cause significant damage to crop yields, and the resultant economic losses 

12 are truly alarming. Climate change and trade liberalization have opened new ways of pest 

13 invasions. Given the consumer preference towards organic agricultural products and 

14 environment-friendly nature of natural pest control strategies, biological control is considered 

15 to be one of the potential options for managing invasive insect pests. Drosophila suzukii 

16 (Drosophilidae) is an extremely damaging fruit pest, demanding development of effective and 

17 sustainable biological control strategies. In this study, we assessed the potential of the 

18 parasitoid Leptopilina japonica (Figitidae) as a biocontrol agent for D. suzukii using ecological 

19 niche modeling approaches. We developed global-scale models for both pest and parasitoid to 

20 identify four components necessary to derive a niche based, target oriented prioritization 

21 approach to plan biological control programs for D. suzukii: (i) potential distribution of pest D. 
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22 suzukii, (ii) potential distribution of parasitoid L. japonica, (iii) the degree of overlap in potential 

23 distributions of pest and parasitoid, and (iv) biocontrol potential of this system for each 

24 country. Overlapping suitable areas of pest and parasitoid were identified at two different 

25 thresholds and at the most desirable threshold (E = 5%), potential for L. japonica mediated 

26 biocontrol management existed in 125 countries covering 1.87 x 107 km2, and at the maximum 

27 permitted threshold (E = 10%), land coverage was reduced to 1.44 x 107 km2 in 121 countries. 

28 Fly pest distributional information as a predictor variable was not found to be improving 

29 parasitoid model performance, and globally, only in half of the countries, >50% biocontrol 

30 coverage was estimated. We therefore suggest that niche specificities of both pest and 

31 parasitoid must be included in site-specific release planning of L. japonica for effective 

32 biocontrol management aimed at D. suzukii. This study can be extended to design cost-effective 

33 pre-assessment strategies for implementing any biological control management program. 

34 Keywords Drosophila suzukii, Leptopilina japonica, Pest, Parasitoid, Invasion, Biological control, 

35 Ecological niche modeling 
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42 INTRODUCTION

43 Over recent decades, the world has witnessed significant increases in agricultural 

44 production, but increases in crop yields have often been reduced by diverse insect pests 

45 (Vreysen et al., 2007; Savary et al., 2019). Assessment of all of the components of agricultural 

46 productivity and food security must include consideration of insect pests, as they are an 

47 integral part of anthropogenic  crop ecosystems (Food and Agriculture Organization, 2013; 

48 Savary et al., 2019). Global warming and economic globalization accelerate development of 

49 new routes of pest invasion (Girod et al., 2018), presenting new challenges. As pests pose 

50 serious threats in the functioning of global food systems (Savary et al., 2017), various strategies 

51 have been developed for insect pest management, each with its own advantages and 

52 disadvantages (Dara, 2021). Improvement in the management of invasive pest populations 

53 includes consideration of sustainable and eco-friendly approaches, with the goal of achieving 

54 long-term benefits (Bernaola & Holt, 2021). 

55 A broad (fruit) host range (Lee et al., 2011; Bellamy, Sisterson & Walse, 2013), combined 

56 with an ability to infest ripening soft fruits (Gabarra et al., 2015), has made Drosophila suzukii 

57 (Matsumura) (Diptera: Drosophilidae) an economically damaging, globally invasive fruit pest of 

58 serious concern (Walsh et al., 2011). Preference for not-quite-ripe or just-ripe fruits over 

59 damaged or decaying fruits (Mitsui, Takahashi & Kimura, 2006), and the presence of a 

60 sclerotized ovipositor of females (Kienzle & Rohlfs, 2021) with serrations to pierce undamaged 

61 fruit epicarps for laying eggs, are two notable traits (Walsh et al., 2011) that contribute 

62 significantly to economic threats imposed by D. suzukii. Bacterial and fungal pathogens can 
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63 cause secondary infections in fruits after infestation by D. suzukii, augmenting economic losses 

64 (Molina et al., 1974; Louis et al., 1996; Walsh et al., 2011). 

65 Drosophila suzukii is native to eastern and southeastern Asia (Bolda et al., 2010); it was 

66 initially detected in Japan in 1916 (Kanzawa, 1935) and described as a distinct species in 1931 

67 (Hauser, 2011). In 2008, D. suzukii was identified as an invasive species for the first time with 

68 populations in both North America (Hauser, 2011) and Europe (Calabria et al., 2012). Its host 

69 range covers 13 angiosperm families (Cloonan et al., 2018), and its invaded geographic range 

70 has now extended to South America (Deprá et al., 2014; Andreazza et al., 2017) and Africa 

71 (Kwadha et al., 2021). As D. suzukii larvae feed inside of fruits (Fanning, Grieshop & Isaacs, 

72 2018), and the fruit export trade strictly follows zero-tolerance towards infestations (Tait et al., 

73 2021), much high-value fruit is rendered  unsellable every year. Economic impact assessments 

74 in the United States (Bolda, Goodhue & Zalom, 2010; Walsh et al., 2011; Goodhue et al., 2011; 

75 Farnsworth et al., 2017; DiGiacomo et al., 2019; Yeh et al., 2020), Europe (Knapp et al., 2021), 

76 and South America (Benito, Lopes-da-Silva & Santos, 2016), have indicated losses on the order 

77 of US$550M per year.

78 Various preventive and post-infestation control measures (Lee et al., 2011; Landolt, 

79 Adams & Rogg, 2012; Haye et al., 2016; Schetelig et al., 2018; Shawer et al., 2018; Tait et al., 

80 2021) have been developed so far, but none with complete efficacy (Kehrli et al., 2017; Knapp, 

81 Mazzi & Finger, 2019). Management strategies for D. suzukii can be classified broadly into four 

82 categories: (1) chemical control (Beers et al., 2011; Van Timmeren & Isaacs, 2013; Shawer et al., 

83 2018; Shawer, 2020),  (2) microclimate manipulation (Lee et al., 2016; Rendon et al., 2020), (3) 

84 RNA interference biopesticides (Murphy et al., 2016), and (4) biological control (Chabert et al., 
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85 2012; Daane et al., 2016; Mazzetto et al., 2016; Knoll et al., 2017; Daane et al., 2021). Extensive 

86 use of chemical methods to control D. suzukii infestations can lead to increased pest resistance, 

87 and concerns regarding food and environmental safety (Santoiemma et al., 2019). Microclimate 

88 manipulation approaches to control D. suzukii are more likely to perform well in hot and dry 

89 regions (Schöneberg et al., 2022), as D. suzukii is sensitive to high temperatures and low 

90 humidity (Rendon et al., 2020). RNA interference methods involve higher development costs 

91 and involve much labor (Bramlett, Plaetinck & Maienfisch, 2020). Finally, biological control 

92 involves release of enemies of D. suzukii from the region of its origin (Asia) in invaded areas, as 

93 a means to reduce its population growth (Girod et al., 2018). This method is recommended 

94 (Cock et al., 2010; van Lenteren, 2012) in view of  improved food safety, environment-friendly 

95 characteristics, economic feasibility, and long-term control solutions that are established 

96 (Kruitwagen, Beukeboom & Wertheim, 2018).

97 Parasitoid wasps of the genera Asobara (Braconidae), Ganaspis (Figitidae), and 

98 Leptopilina (Figitidae) have been studied extensively as biological control agents with potential 

99 to suppress growth of D. suzukii populations (Kacsoh & Schlenke, 2012; Rossi Stacconi et al., 

100 2015; Daane et al., 2016; Giorgini et al., 2019; Wang et al., 2019; Biondi, Wang & Daane, 2021). 

101 In particular, the species A. japonica, G. brasiliensis, and L. japonica are potential biocontrol 

102 agents (Wang et al., 2019). However, some researchers do not recommend A. japonica for 

103 biological control programs aimed at D. suzukii (Daane et al., 2016; Girod et al., 2018; Abram et 

104 al., 2020), owing to its broad host range (Ideo et al., 2008; Furihata et al., 2016). Indeed, given 

105 its host specificity, G. brasiliensis has been proposed as a candidate for biological control of D. 

106 suzukii (Wang et al., 2020), yet, in a scenario when these three wasps coexist, L. japonica is 
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107 unique in being able to outcompete the other two species thanks to its relatively faster egg-

108 hatching potential (Wang et al., 2019). Relatively high host specificity (Wang et al., 2020), 

109 demonstrated competence in multi-parasite systems (Wang et al., 2019), and recent range 

110 expansions into areas invaded by D. suzukii  in Europe (Puppato et al., 2020) and North America 

111 (Abram et al., 2020, 2022), make L. japonica a particularly promising biocontrol agent of D. 

112 suzukii.

113 Ecological niche modeling (ENM) has been used extensively to identify potential 

114 distributions of species for a variety of purposes (Raxworthy et al., 2007; Escobar, 2020; 

115 Kolanowska & Jakubska-Busse, 2020; Wan et al., 2020; Valencia-Rodríguez et al., 2021; Agboka 

116 et al., 2022; Demján et al., 2022; Outammassine, Zouhair & Loqman, 2022). In pest-parasitoid 

117 systems, identifying and comparing relative habitat suitability of pest and parasitoid can help to 

118 guide effective biological control programs  (Pérez-de la O et al., 2020; Tepa-Yotto et al., 

119 2021a,b). The utility of ENM in applications to biological control of pests can be attributed to 

120 two factors: alien parasitoid species must survive and reproduce in the geographic regions 

121 where they are released (Mills, 2018; Schulz, Lucardi & Marsico, 2019), and unfavorable abiotic 

122 factors can reduce the long-term efficacy of biological control measures (Olfert et al., 2016). 

123 Modeling climatic preferences of deliberately introduced parasitoid species can also provide 

124 insights into possible range expansions, an important aspect to be tested in improving 

125 effectiveness of classical biological control programs (Pérez-de la O et al., 2020).  

126 In this study, we used ENM approaches to explore, discuss, and highlight five aspects of 

127 a biological control strategy for D. suzukii that can directly benefit producers, extension agents, 

128 and policy makers. (1) We estimated the potential distribution of the invasive pest D. suzukii, 
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129 and (2) that of the parasitoid L. japonica. (3) We assessed the degree of overlap in the potential 

130 distributions of D. suzukii and L. japonica, and (4) estimated the biocontrol potential of this 

131 system for each country. Finally, (5) we assessed parasitoid model performance to see if 

132 incorporating distributional information for the pest improves model performance for the 

133 parasitoid. 

134

135 METHODS

136 Occurrence data 

137 Occurrence records of D. suzukii were downloaded from five online biodiversity data 

138 portals: Global Biodiversity Information Facility (GBIF; www.gbif.org, accessed on 2 August, 

139 2022),  Biodiversity Information Serving Our Nation (BISON; www.gbif.us, accessed on 2 August, 

140 2022), Berkeley Ecoinformatics Engine (Ecoengine; ecoengine.berkeley.edu, accessed on 2 

141 August, 2022),  iNaturalist (www.inaturalist.org, accessed on 2 August, 2022), and Integrated 

142 Digitized Biocollections (iDigBio; www.idigbio.org, accessed on 2 August, 2022) using Spocc 

143 version 1.2.0 R package (Chamberlain, Ram & Hart, 2021); occurrence data were also drawn 

144 from the Centre for Agriculture and Bioscience International (CABI; www.cabi.org, accessed on 

145 3 August, 2022). This initial harvest of occurrence data yielded an initial total of 2369 records. 

146 A five-step data cleaning process was adopted: (1) removal of records with no date of 

147 observation, (2) removal of incomplete coordinates (i.e., lacking valid latitude and longitude), 

148 (3) removal of unlikely coordinates (e.g., 0.00oN, 0.00oE), (4) removal of duplicated coordinates, 

PeerJ reviewing PDF | (2022:12:80176:0:0:NEW 3 Dec 2022)

Manuscript to be reviewed



149 and (5) removal of coordinates with fewer than two decimal places. Data cleaning was 

150 performed using scrubr version 0.1.1 R package (Chamberlain, 2016). The cleaned dataset 

151 (1385 records) was overlaid on climatic raster layers (5� or ~10 km spatial resolution, see below) 

152 to remove points falling outside the raster boundaries. The resulting occurrence dataset (1377 

153 records) was subjected to visual inspection to detect clusters of points (often related to points 

154 of access or concentrations of people), and eliminate disproportionate data density at random, 

155 maintaining a minimum distance of  30km among points, to avoid model overfitting (Raghavan 

156 et al., 2019). The final dataset of 314 points (Figure 1; Supplementary file 1) showed no 

157 excessive clustering of occurrences across the known distribution of D. suzukii. Spatial filtering 

158 was performed using spThin R package (Aiello-Lammens et al., 2015).

159 Occurrence records of L. japonica were sourced from published literature (Beers et al., 

160 2022; Abram et al., 2020; Puppato et al., 2020; Giorgini et al., 2019; Girod, 2018;  et 

161 al., 2011), as online data portals held few or no records. A distance filter of 12 km was applied 

162 to the occurrences extracted, and the final dataset comprised 31 points (Figure 1; 

163 Supplementary file 2). Leptopilina japonica has two subspecies: L. japonica japonica and L. 

164 japonica formosana, occurring in Japan and Taiwan respectively   et al., 2011); both 

165 have the ability to parasitize D. suzukii (Kimura &  2015). Our final dataset included 

166 mostly the nominate subspecies, and only a single occurrence record of L. j. formosana 

167  et al., 2011). 

168

169
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170

171 Environmental data

172 Bioclimatic raster layers at 5� spatial resolution (~10 km at the Equator) were 

173 downloaded from WorldClim 2.1 for present conditions (1975-2000; Fick and Hijmans, 2017). 

174 Variables combining temperature and precipitation measurements (i.e., mean temperature of 

175 wettest quarter, mean temperature of driest quarter, precipitation of warmest quarter, and 

176 precipitation of coldest quarter) were excluded (Escobar et al., 2014) owing to discontinuous 

177 patterns of those variables in many areas (Booth, 2022). 

178 To define the set of limits and conditions for ENM, identification of areas accessible to 

179 species over relevant time periods (Soberón & Peterson, 2005; Peterson & Soberón, 2012) is 

180 essential to development of robust models (Barve et al., 2011) . The development of a 

181 hypothesis of accessible area M is crucial for rigorous characterization of niche characteristics 

182 of species (Barve et al., 2011; Machado-Stredel, Cobos & Peterson, 2021). Considering the near-

183 global distribution of D. suzukii and L. japonica, the entire world (excluding Antarctica) was 

184 defined as the accessible area for the two species. The 15 climatic data layers were clipped to 

185 the extent of this area. Multi-collinearity and dimensionality among the clipped bioclimatic 

186 layers were minimized using principal components analysis, in effect transforming correlated 

187 climatic variables into fewer, uncorrelated principal components (PCs), and these multivariate 

188 environmental variables were used as the independent variables in ENM. Principal components 

189 analysis of raster variables was done using the kuenm_rpca function of the kuenm R package 

190 (Cobos et al., 2019). 
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191

192 Ecological niche modeling

193 In separate ENM analyses, occurrences of each species (pest and parasitoid) were 

194 partitioned randomly into training and testing data in two different proportions: 70:30 for D. 

195 suzukii, and 50:50 for L. japonica. Considering the small number of records, data-splitting ratio 

196 was reduced to 0.5 for L. japonica to maintain a balance between predictive accuracy and 

197 performance estimation of models as very low sample size for testing can cause errors in 

198 estimating predictive accuracy (Peterson, Ball & Cohoon, 2002). Modeling experiments were 

199 performed using six combinations of three feature classes (l-linear, q-quadratic, p-product; l, q, 

200 lq, qp, lp, and lqp; product response types were not used in isolation owing to occasional 

201 problems that result), 10 regularization multipliers (0.1, 0.3, 0.6, 0.9, 1, 2, 3, 4, 5, 6), and nine 

202 sets of principal components summarizing climate data. The first 10 PCs accounted for >99% of 

203 the total variation: set 1 (PCs 1 and 2), set 2 (PCs 1-3), etc., up to set 9 (PCs 1-10). Best models 

204 were selected by applying three criteria sequentially (Cobos et al., 2019): (1) choosing 

205 statistically significant models using partial ROC tests, (2) filtering statistically significant models 

206 to those with < 5% omission error (E), and (3) ranking all remaining models based on Akaike 

207 information criterion (AICc) values; the subset of significant, low-omission models within 2 AICc 

208 units of the minimum were selected as the best models (Warren & Seifert, 2011). Top models 

209 were replicated 10 times using the bootstrap method to produce final models, and the median 

210 of the median outputs across all replicates was used to interpret results for each species. 
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211 To assess the potential role of fly distributional information in improving the 

212 performance of the parasitoid model, the final D. suzukii model output was added to each 

213 multivariate environmental variable set. We then re-calibrated the L. japonica model using the 

214 same set of feature class types and regularization multiplier values to develop a two-species 

215 model for the wasp (see Ashraf et al., 2021). We compared models with and without the fly 

216 distributional information using the same 3 criteria described above. Occurrence data 

217 partitioning exercises were done using caTools R package (Tuszynski, 2021). All modeling 

218 experiments were performed using maximum entropy approaches (Maxent) (Phillips, Anderson 

219 & Schapire, 2006), as implemented in the kuenm R package (Cobos et al., 2019).

220 To represent suitable and unsuitable regions for the pest and the parasitoid, Maxent 

221 models in the form of continuous logistic outputs were transformed into binary presence-

222 absence models by applying two different least-training presence thresholds (i.e., allowable 

223 omission E = 5% and E = 10%). These two thresholds were chosen as indices of most desirable 

224 (E=5%) and maximum permitted (E = 10%) omission rates to represent relative habitat 

225 suitability, and also to avoid overinterpretation of predictions (Ashraf, Chaudhry & Peterson, 

226 2021). These thresholds were applied using QGIS Tisler desktop version 3.24.3 (QGIS 

227 Geographic Information System, 2022).

228 For both thresholds, overlapping potential habitats of D. suzukii and L. japonica were 

229 identified. The ratio between the land areas of predicted potential distribution of parasitoid 

230 and pest in each country was estimated to determine the country-wise biocontrol coverage 

231 potential percentage, for both thresholds. Identification of overlapped area and estimation of 

232 land area in terms of biocontrol coverage were done in QGIS Tisler desktop version 3.24.3 (QGIS 
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233 Geographic Information System, 2022). All models were represented in an Eckert IV equal-area 

234 map projection (Qiao et al., 2019). 

235 RESULTS

236 For each of the two species, we developed 540 candidate models, of which 510 models 

237 for D. suzukii and 533 models for L. japonica were statistically significantly better than random 

238 expectations according to the partial ROC tests (P < 0.05). Of the statistically significant models, 

239 53 models for D. suzukii and 11 models for L. japonica were also acceptable in having low (<5%) 

240 omission. Finally, based on low model complexity (i.e., low AICc value), our top model for D. 

241 suzukii included linear and quadratic feature classes, a relatively low regularization multiplier 

242 value (0.6), and four multivariate environmental variables (PC 1�PC 4) (Table 1). Our best model 

243 for L. japonica had a higher regularization multiplier value (2.0), and included more multivariate 

244 environmental variables (PC 1�PC 7), also with linear and quadratic feature types (Table 1). In 

245 the two-species modeling experiment, we developed 540 models, and all models were 

246 statistically significantly better than random expectations (P < 0.05). However, none of the 

247 models met the omission rate threshold (E = 5%). We found that, even relaxing the threshold (E 

248 = 7%) did not result in the selection of any of the two-species models as best model for 

249 parasitoid. We therefore confirmed that inclusion of pest model as a predictor variable did not 

250 improve model performance for the parasitoid.

251 Our model for D. suzukii predicted potential distributional areas in southern and eastern 

252 China, with some extensions towards central Asian regions (Figure 2). Farther north in Asia, 

253 Japan and the Korean Peninsula were predicted to hold broad suitable areas for D. suzukii. 
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254 Predicted suitable areas covered seven nations [Afghanistan, Pakistan, India, Nepal, China 

255 (Tibetan Autonomous Region), Bhutan, and Myanmar] across the entire northwest-southeast 

256 spread of the Himalayas. In Oceania, southeastern Australia and much of New Zealand were 

257 predicted to hold suitable conditions for D. suzukii invasion.

258 Already-invaded parts of western Europe and the southeastern United States were 

259 identified as highly suitable for D. suzukii populations, which is logical given that occurrences 

260 there were part of the model training data. In South America, the entire geographic extent of 

261 Uruguay, known to hold invasive populations, was identified as suitable for D. suzukii; parts of 

262 other known-invaded countries (Chile, Argentina, Brazil) were also identified as suitable: 

263 eastern and northeastern Argentina, southern Brazil, and western and southern Chile. Peru is 

264 the only country in South America predicted to hold suitable areas for D. suzukii invasion for 

265 which no invasive populations are known; predicted potential distributional areas spanned the 

266 Andean Cordillera. 

267 The modeled potential geographic distribution for L. japonica was broad and continuous 

268 in Asia, covering southern and northeastern Asian countries (India, China (Tibetan autonomous 

269 region), Nepal, Bhutan, North Korea, South Korea, and Japan). Other potential distributional 

270 areas were more sparse, in northwestern Europe, western North America, and in western and 

271 southern Chile in South America. 

272 Binary models and biocontrol coverage estimation 

273 Binary model outputs were developed for D. suzukii and L. japonica (Figure 3) to identify 

274 presence or absence of the two species in the area of interest.  At the 5% threshold, potential 
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275 presence of D. suzukii was predicted in 162 countries (Supplementary file 3), covering a total 

276 area of ~4.82 x 107 km2. Potential presence of L. japonica was predicted in 148 countries 

277 (Supplementary file 3), covering a total area of 2.71 x 107 km2. At the 10% threshold, total 

278 coverage of predicted area was reduced to 3.44 x 107 km2 in 152 countries for D. suzukii, and 

279 2.46 x 107 km2 in 146 countries for L. japonica (Supplementary file 3). 

280 Overlapping suitable areas of D. suzukii and L. japonica to identify possible biocontrol 

281 regions for both thresholds (Figure 4) showed that potential for L. japonica-mediated biocontrol 

282 management of D. suzukii existed in 125 nations at E = 5%, and 121 nations at E = 10% (Table 

283 2). At a global level, the total possible biocontrol area was estimated to range 1.44 x 107 km2-

284 1.87 x 107 km2 based on the different thresholds. Country-wise biocontrol coverage estimation 

285 revealed that about half of the countries (65) had more than 50% biocontrol potential (i.e., area 

286 suitable for both fly and wasp; Table 2), with broadest areas in China (~4.4 x 106 km2), India 

287 (~1.1 x 106 km2), Zambia (4.5 x 105 km2), and Angola (~4.2 x 105 km2). 

288

289 DISCUSSION

290 Extremely fast range expansion as a consequence of globalization (Iacovone et al., 

291 2015), with severe economic damage to the fruit trade industry (Bolda, Goodhue & Zalom, 

292 2010; Gabarra et al., 2015), has led to efforts to model ecological niches and predict potential 

293 distributions for D. suzukii both locally (Castro-Sosa et al., 2017; de la Vega & Corley, 2019) and 

294 globally (Santos et al., 2017; Ørsted & Ørsted, 2019; Reyes & Lira-Noriega, 2020).  Comparing 

295 with previous global-scale models, our models predicted highly suitable areas for D. suzukii 
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296 most similar to the model developed by Ørsted and Ørsted (2019), and less similar to those of 

297 Santos et al (2017) and Reyes and Lira-Noriega (2020).  Relatively broad geographic areas in the 

298 southern part of central and eastern Africa were predicted to be suitable in the models 

299 developed by Santos et al (2017) and Reyes and Lira-Noriega (2020) compared to our model 

300 and that of Ørsted and Ørsted (2019). Unlike the predictions of Santos et al (2017) and Reyes 

301 and Lira-Noriega (2020), Patagonian region of Argentina was not included as suitable habitat for 

302 D. suzukii in our model and that of Ørsted and Ørsted (2019). Another major difference 

303 between our model and those of Santos et al (2017) and Reyes and Lira-Noriega (2020) is that 

304 their models predicted a large extent of eastern India as suitable habitats for D. suzukii. 

305 However, according to our model, the suitability was more prominent in far north, and also in 

306 some parts of Western Ghats in southern India. Although similar in many aspects of predicted 

307 distributions, our model differed notably from that of Ørsted and Ørsted (2019) in predicting 

308 the east-west continuity of potential distribution of D. suzukii in United States as our model 

309 showed a discontinuous distribution of potential habitats. 

310 For obvious reasons, choosing biological control agents for D. suzukii that have niche 

311 preferences similar to those of the fly will be helpful (Robertson, Kriticos & Zachariades, 2008; 

312 Olfert et al., 2016; Tepa-Yotto et al., 2021a,b) in the global-scale biological control challenge. 

313 Matching the climatic niche requirements of pest and parasitoid will increase chances of long-

314 term establishment of the parasitoid across key regions (Robertson, Kriticos & Zachariades, 

315 2008), resulting in more successful management via biological control. Despite various previous 

316 studies modeling the climatic niche of D. suzukii, to the best our knowledge, no effort has been 
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317 made so far to study the potential distribution of climatic niches of any parasitoid of D. suzukii 

318 in combination with analyses of the climatic niche of the fly pest. 

319 Range expansion of D. suzukii in Europe and North America occurred after initial 

320 outbreaks in California, Spain, and Italy, all in 2008 (Rota-Stabelli, Blaxter & Anfora, 2013; 

321 Asplen et al., 2015). Niche filling related to absence of competitors or natural enemies, high 

322 adaptability to temperate climates, high dispersal ability, and high reproductive output, are 

323 major factors contributing to the unprecedented invasion of D. suzukii (Rota-Stabelli, Blaxter & 

324 Anfora, 2013). As niche filling is an important factor, assessing the geographic distribution of 

325 climatic niches of D. suzukii becomes an indispensable step in biological control programs, as it 

326 can provide an initial estimate of the geographic limits for successful parasitoid release 

327 (Puppato et al., 2020). Development of niche models for parasitoids, and identification of 

328 geographic regions exhibiting overlapping climatic niches between pest and parasitoid, further 

329 delimits regions for parasitoid release, making field trials involving elaborate and time-

330 consuming experiments more economical (Sun et al., 2017). 

331 In its native distributional areas, Leptopilina japonica is one of most abundant potential 

332 parasitoids of D. suzukii (Kimura &  2015; Puppato et al., 2020); its occurrence in 

333 Europe (Puppato et al., 2020) and North America (Abram et al., 2020, 2022; Beers et al., 2022) 

334 was identified only recently. Previous laboratory experiments in the United States indicated 

335 that South Korean L. japonica strains attacked the North American strains of D. suzukii readily 

336 (Daane et al., 2016), supporting at least in part the suitability of L. japonica as a biocontrol 

337 agent for D. suzukii.  Although occurrence records of L. japonica were scarce, our modeled 

338 climatic niche for L. japonica overlapped broadly with that of D. suzukii in known-invaded 
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339 regions (Figure 2-4), meeting one of the major ecological requirements for a �natural enemy 

340 species� to be a candidate biological control agent (Robertson, Kriticos & Zachariades, 2008; 

341 Olfert et al., 2016). The two-species model developed for gaining insight into the biotic 

342 interactions shaping the potential geographic distribution of L. japonica underperformed 

343 compared to the climate-only model. These results thus contrasted with previous findings 

344 highlighting the importance of including biotic predictors in ecological niche modeling 

345 procedures to improve model performance (Araújo & Luoto, 2007; Giannini et al., 2013; 

346 Dormann et al., 2018; Simões & Peterson, 2018; Bebber & Gurr, 2019; Ashraf, Chaudhry & 

347 Peterson, 2021).

348 We recommend a niche-based, target-oriented prioritization approach in designing 

349 biological control programs aimed at D. suzukii. In Europe, three interlinked factors, (1) recently 

350 recorded occurrences (Puppato et al., 2020), (2) predicted suitability in 17 European countries 

351 (~39% of European countries) with biocontrol coverage of >80% at both thresholds (E = 5% and 

352 E = 10%) (Table 2), and (3) increasing consumer preference towards organic fruits (Murphy et 

353 al., 2022), make L. japonica a promising parasitoid for control of D. suzukii. In the remaining 

354 European countries, in particular those exhibiting biocontrol coverage <50%, we suggest extra 

355 care in defining appropriate geographic boundaries for L. japonica release plans (Table 2). In the 

356 United States and Canada, the potential distribution of L. japonica overlapped only one-third of 

357 D. suzukii�s potential distributional area, demanding strict site-specific release planning. Site-

358 specific pest management utilizing pest distributional information is preferred over uniform 

359 pest management (Park, Krell & Carroll, 2007). However, for effective site-specific biological 

360 control of pests, not only the pest distributional information but also the niche overlap 
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361 between pest and parasitoids must be taken into account.  Irrespective of the biocontrol 

362 coverage in D. suzukii invaded regions, any L. japonica release strategy has to rely strictly on 

363 specific details of both site and niche considerations. 

364 In conclusion, this study illustrates a cost-effective pre-assessment strategy that can be 

365 applied to any biological control management program before beginning the labor-intensive, 

366 time-consuming, and expensive field experiments. Availability of a greater number of 

367 occurrence records of L. japonica would further enhance the understanding of the 

368 distributional potential of this potential biocontrol agent worldwide. 
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Figure 1
Distributional information

Representation of the known distribution of the pest Drosophila suzukii, and parasitoid
Leptopilina japonica based on occurrence databases and published literature.
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Figure 2
Ecological niche models

Predicted distribution of potential distributional areas of Drosophila suzukii and Leptopilina

japonica across the world
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Figure 3
Binary models

Modeled suitable areas for Drosophila suzukii and Leptopilina japonica based on thresholding
at E = 5% and E = 10%
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Figure 4
Overlapped niches

Representation of modeled suitable biocontrol areas in terms of overlapping climatic niches
of Drosophila suzukii and Leptopilina japonica
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Table 1(on next page)

Model evaluation

Performance summary of pest, parasitoid, and two-species parasitoid models
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Species Models Mean AUC ratio OR AICc

Leptopilina japonica M_2.0_F_lp_Set_7 1.76 0.00 839.55

Drosophila suzukii M_0.6_F_lq_Set_4 1.47 0.04 8365.78

Two-species M_1.0_F_l_Set_6 1.79 0.07 798.08

1OR-Omission rate. Name of models indicates the details of regularization multiplier value, feature class and 

2environmental dataset. 
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Table 2(on next page)

Biocontrol coverage

Modeled potential for biocontrol coverage corresponding to the potential

distribution of pest (Drosophila suzukii) and parasitoid (Leptopilina japonica). E

indicates thresholding level
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Pest distribution (km2) Overlapping wasp distribution (km2) Biocontrol coverage (%)

Country E = 5% E = 10% E = 5% E = 10% E = 5% E = 10%

Afghanistan 120756.19 77038.50 87583.33 69587.73 72.53 90.33

Albania 28019.74 28019.74 27942.43 27810.06 99.72 99.25

Algeria 444458.49 222597.11 46214.07 43026.86 10.40 19.33

Andorra 452.25 452.25 407.86 344.49 90.19 76.17

Angola 725060.74 209636.29 422423.06 152662.75 58.26 72.82

Argentina 2610531.21 2136682.12 487246.09 326141.97 18.66 15.26

Armenia 29588.31 27565.71 9573.41 7333.56 32.36 26.60

Australia 4132533.88 2994970.31 284270.56 200146.28 6.88 6.68

Austria 83993.20 83993.20 77002.77 73155.41 91.68 87.10

Azerbaijan 85470.21 82660.14 29145.06 24386.68 34.10 29.50

Bahamas 9429.07 9429.07 7814.62 7766.95 82.88 82.37

Bangladesh 128942.02 101548.17 88769.51 75811.84 68.84 74.66

Belarus 207499.14 207499.14 131398.08 72083.15 63.32 34.74

Belgium 30597.07 30597.07 27115.20 24893.18 88.62 81.36

Bhutan 38954.11 37112.34 33859.02 32179.91 86.92 86.71

Bolivia 475959.05 203932.55 3394.30 1816.23 0.71 0.89

Bosnia and Herzegovina 51824.53 51824.53 32450.62 28581.47 62.62 55.15

Brazil 2088214.01 1385571.53 365390.65 278811.34 17.50 20.12

Brazilian Island 2.82 2.82 2.82 2.82 100.00 100.00

Bulgaria 112513.51 112513.51 1544.03 971.72 1.37 0.86

Cabo Verde 1750.55 630.75 479.08 269.84 27.37 42.78

Cambodia 6253.09 790.65 2055.16 133.61 32.87 16.90

Cameroon 26383.63 1809.00 14635.67 169.68 55.47 9.38

Canada 2793734.16 2155273.21 565894.51 487960.16 20.26 22.64

Chile 582097.31 475909.40 205933.41 193145.19 35.38 40.58

China 4488161.45 3862635.87 4374430.56 3827973.12 97.47 99.10

Colombia 91947.38 68214.15 340.13 340.13 0.37 0.50

Croatia 52932.84 52932.84 40105.39 36135.71 75.77 68.27

Cuba 81360.79 7022.89 510.20 26.30 0.63 0.37

Cyprus 5122.47 3433.88 4427.71 3433.88 86.44 100.00

Cyprus No Mans 296.73 33.20 72.49 33.19 24.43 99.98

Czechia 78758.87 78758.87 68665.32 58491.87 87.18 74.27

Democratic Republic of the Congo 420374.68 150483.68 161159.34 75871.68 38.34 50.42

Denmark 202079.28 130500.31 166506.11 111597.35 82.40 85.52

Djibouti 13137.52 -- 467.25 -- 3.56 --

Egypt 180965.62 -- 120.06 -- 0.07 --

Equatorial Guinea 14.17 14.17 14.17 14.17 100.00 100.00

Estonia 44389.34 44389.34 43945.97 37804.22 99.00 85.17

Ethiopia 413796.88 155614.76 39007.25 21656.50 9.43 13.92

Finland 300806.37 238124.40 93531.28 50354.32 31.09 21.15

France 562246.74 556671.13 274309.40 231951.91 48.79 41.67

Gabon 45201.71 2552.27 1222.11 267.10 2.70 10.47

Georgia 69301.13 69301.13 61604.07 58319.71 88.89 84.15

Germany 355684.24 355684.24 192739.07 159474.97 54.19 44.84

Greece 123576.16 123576.16 84346.67 79969.84 68.25 64.71

Guatemala 22913.49 16722.41 2064.41 1734.17 9.01 10.37
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Guinea 4192.93 83.65 3857.20 83.65 91.99 100.00

Hungary 93200.95 93200.95 7046.93 3609.03 7.56 3.87

Iceland 98272.76 94978.48 88865.07 83482.50 90.43 87.90

India 1274811.80 685789.21 1102039.55 543419.47 86.45 79.24

Iran 336850.53 116130.87 63329.32 37732.16 18.80 32.49

Iraq 34709.55 21099.93 29371.04 19865.20 84.62 94.15

Ireland 66629.91 66332.38 55507.01 52328.26 83.31 78.89

Israel 13449.48 8745.65 11881.97 8745.68 88.35 100.00

Italy 295635.80 295613.28 264427.13 250415.73 89.44 84.71

Japan 357893.96 356945.12 357893.91 356945.07 100.00 100.00

Jordan 4921.88 507.56 1872.74 507.56 38.05 100.00

Kazakhstan 201132.14 41577.90 706.08 190.06 0.35 0.46

Kosovo 10913.08 10913.08 1765.30 1373.59 16.18 12.59

Kyrgyzstan 90256.07 43305.48 1333.13 63.53 1.48 0.15

Laos 186149.10 124451.87 149422.53 103577.26 80.27 83.23

Latvia 64162.08 64162.08 60919.43 54215.14 94.95 84.50

Lebanon 9800.04 8682.25 9001.50 8503.74 91.85 97.94

Lesotho 30106.52 30106.52 318.96 28.00 1.06 0.09

Libya 184279.76 37328.30 5699.73 4033.72 3.09 10.81

Liechtenstein 137.25 137.25 137.25 137.25 100.00 100.00

Lithuania 64816.37 64816.37 40725.99 27301.77 62.83 42.12

Luxembourg 2608.47 2608.47 2608.47 2328.89 100.00 89.28

Madagascar 187519.17 104765.96 79329.34 39438.11 42.30 37.64

Malawi 111209.70 74340.02 108138.07 72489.54 97.24 97.51

Malta 270.90 270.90 270.90 270.90 100.00 100.00

Mauritius 1802.79 94.64 1752.24 44.08 97.20 46.58

Mexico 691072.40 296644.27 251952.23 125678.99 36.46 42.37

Moldova 33206.48 33206.48 4811.96 1963.38 14.49 5.91

Monaco 3.96 3.96 3.97 3.97 100.04 100.04

Montenegro 13631.45 13631.45 11836.29 11080.44 86.83 81.29

Morocco 354222.81 165793.77 27266.40 23178.86 7.70 13.98

Mozambique 278561.34 73923.95 154695.03 54111.84 55.53 73.20

Myanmar 445821.06 375179.90 361982.68 301972.44 81.19 80.49

Namibia 66288.68 -- 483.94 -- 0.73 --

Nepal 145624.62 141915.07 121958.80 119500.60 83.75 84.21

Netherlands 36761.20 36260.59 17922.53 15136.66 48.75 41.74

New Zealand 217910.77 212122.44 96771.30 83214.96 44.41 39.23

Nigeria 15934.24 566.67 12716.29 337.88 79.80 59.63

North Korea 120894.87 118933.68 120894.94 118933.71 100.00 100.00

North Macedonia 25385.27 25385.27 3664.82 3358.17 14.44 13.23

Northern Cyprus 2290.99 429.38 1414.83 429.39 61.76 100.00

Norway 285817.32 263207.96 225627.24 206147.09 78.94 78.32

Oman 28552.55 1859.00 3159.53 1543.99 11.07 83.06

Pakistan 153944.54 83124.10 85069.07 49372.57 55.26 59.40

Paraguay 341582.31 230965.19 37691.58 29169.69 11.03 12.63

Peru 495995.98 431000.71 49307.80 45336.48 9.94 10.52

Poland 312841.88 312841.88 214155.94 156484.69 68.46 50.02

Portugal 89463.23 89463.23 73702.57 68237.60 82.38 76.27

Republic of Serbia 77628.71 77628.71 8713.93 5548.68 11.23 7.15
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Republic of the Congo 72181.30 6283.59 446.79 26.96 0.62 0.43

Romania 235895.13 235895.13 79961.95 62526.40 33.90 26.51

Russia 3710679.26 2033909.21 662712.71 395046.93 17.86 19.42

San Marino 60.32 60.32 60.32 60.32 100.00 100.00

Slovakia 48457.79 48457.79 25232.78 22596.49 52.07 46.63

Slovenia 20295.63 20295.63 19931.57 19671.10 98.21 96.92

South Africa 902797.42 591473.81 7170.51 5131.33 0.79 0.87

South Korea 94652.90 94652.90 94652.97 94652.97 100.00 100.00

Spain 502618.58 495648.00 136222.35 112053.05 27.10 22.61

Sudan 2656.20 -- 83.33 -- 3.14 --

Sweden 436539.07 378204.51 158054.75 115334.67 36.21 30.50

Switzerland 41344.82 40890.87 37361.01 36701.13 90.36 89.75

Syria 22207.60 12452.65 14768.48 12044.15 66.50 96.72

Taiwan 24849.72 20605.88 21861.78 18151.55 87.98 88.09

Tajikistan 73944.07 45547.87 38519.69 25750.20 52.09 56.53

Thailand 117459.90 22050.79 103622.02 22024.89 88.22 99.88

Tunisia 78947.05 53298.18 10701.95 8871.64 13.56 16.65

Turkey 761388.06 678724.38 257025.95 224311.08 33.76 33.05

Turkmenistan 59106.76 4758.25 160.83 160.83 0.27 3.38

Ukraine 570440.95 570440.95 182074.04 152631.46 31.92 26.76

United Arab Emirates 428.91 15.84 155.89 15.84 36.35 100.00

United Kingdom 247439.54 243271.25 134076.15 124951.47 54.19 51.36

Tanzania 540638.96 197481.86 110629.43 79486.65 20.46 40.25

United States of America 7267495.86 5752263.93 2879003.63 2546609.52 39.61 44.27

Uruguay 176465.55 176465.55 75249.12 56325.26 42.64 31.92

Uzbekistan 64090.46 22578.88 12752.88 9003.24 19.90 39.87

Vatican 0.01 0.01 0.01 0.01 100.00 100.00

Vietnam 208079.26 173719.30 179340.06 158519.90 86.19 91.25

Zambia 471456.61 148179.91 452563.86 146359.35 95.99 98.77

Zimbabwe 186694.49 78523.17 135058.40 69964.04 72.34 89.10
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