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ABSTRACT

Insect pest invasions cause significant damage to crop yields, and the resultant economic
losses are truly alarming. Climate change and trade liberalization have opened new ways
of pest invasions. Given the consumer preference towards organic agricultural products
and environment-friendly nature of natural pest control strategies, biological control
is considered to be one of the potential options for managing invasive insect pests.
Drosophila suzukii (Drosophilidae) is an extremely damaging fruit pest, demanding
development of effective and sustainable biological control strategies. In this study, we
assessed the potential of the parasitoid Leptopilina japonica (Figitidae) as a biocontrol
agent for D. suzukii using ecological niche modeling approaches. We developed global-
scale models for both pest and parasitoid to identify four components necessary
to derive a niche based, target oriented prioritization approach to plan biological
control programs for D. suzukii: (i) potential distribution of pest D. suzukii, (ii)
potential distribution of parasitoid L. japonica, (iii) the degree of overlap in potential
distributions of pest and parasitoid, and (iv) biocontrol potential of this system for
each country. Overlapping suitable areas of pest and parasitoid were identified at two
different thresholds and at the most desirable threshold (E = 5%), potential for L.
japonica mediated biocontrol management existed in 125 countries covering 1.87 x 107
km?, and at the maximum permitted threshold (E = 10%), land coverage was reduced
to 1.44 x 107 km? in 121 countries. Fly pest distributional information as a predictor
variable was not found to be improving parasitoid model performance, and globally,
only in half of the countries, >50% biocontrol coverage was estimated. We therefore
suggest that niche specificities of both pest and parasitoid must be included in site-
specific release planning of L. japonica for effective biocontrol management aimed at
D. suzukii. This study can be extended to design cost-effective pre-assessment strategies
for implementing any biological control management program.

Subjects Biogeography, Ecology, Entomology, Zoology, Spatial and Geographic Information
Science

Keywords Drosophila suzukii, Leptopilina japonica, Pest, Parasitoid, Invasion, Biological control,
Ecological niche modeling

INTRODUCTION

Over recent decades, the world has witnessed significant increases in agricultural
production, but increases in crop yields have often been reduced by diverse insect pests
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(Vreysen et al., 2007; Savary et al., 2019). Assessment of all of the components of agricultural
productivity and food security must include consideration of insect pests, as they are an
integral part of anthropogenic crop ecosystems (Food and Agriculture Organization, 2013;
Savary et al., 2019). Global warming and economic globalization accelerate development
of new routes of pest invasion (Girod et al., 2018), presenting new challenges. As pests
pose serious threats in the functioning of global food systems (Savary et al., 2017),
various strategies have been developed for insect pest management, each with its own
advantages and disadvantages (Dara, 2021). Improvement in the management of invasive
pest populations includes consideration of sustainable and eco-friendly approaches, with
the goal of achieving long-term benefits (Bernaola ¢ Holt, 2021).

A broad (fruit) host range (Lee et al., 2011; Bellamy, Sisterson ¢ Walse, 2013), combined
with an ability to infest ripening soft fruits (Gabarra et al., 2015), has made Drosophila
suzukii (Matsumura) (Diptera: Drosophilidae) an economically damaging, globally invasive
fruit pest of serious concern (Walsh et al., 2011). Preference for not-quite-ripe or just-ripe
fruits over damaged or decaying fruits (Mitsui, Takahashi ¢» Kimura, 2006), and the
presence of a sclerotized ovipositor of females (Kienzle ¢ Rohlfs, 2021) with serrations to
pierce undamaged fruit epicarps for laying eggs, are two notable traits (Walsh et al., 2011)
that contribute significantly to economic threats imposed by D. suzukii. Bacterial and
fungal pathogens can cause secondary infections in fruits after infestation by D. suzukii,
augmenting economic losses (Molina, Harrison ¢ Brewer, 1974; Louis et al., 1996; Walsh et
al., 2011).

Drosophila suzukii is native to eastern and southeastern Asia (Bolda, Goodhue ¢ Zalom,
2010); it was initially detected in Japan in 1916 (Kanzawa, 1935) and described as a distinct
species in 1931 (Hauser, 2011). In 2008, D. suzukii was identified as an invasive species
for the first time with populations in both North America (Hauser, 2011) and Europe
(Calabria et al., 2012). Tts host range covers 13 angiosperm families (Cloonan et al., 2018),
and its invaded geographic range has now extended to South America (Deprd et al., 2014;
Andreazza et al., 2017) and Africa (Kwadha et al., 2021). As D. suzukii larvae feed inside
of fruits (Fanning, Grieshop ¢ Isaacs, 2018), and the fruit export trade strictly follows
zero-tolerance towards infestations (Tait et al., 2021), much high-value fruit is rendered
unsellable every year. Economic impact assessments in the United States (Bolda, Goodhue
& Zalom, 2010; Walsh et al., 2011; Goodhue et al., 2011; Farnsworth et al., 2017; DiGiacomo
et al., 2019; Yeh et al., 2020), Europe (Knapp, Mazzi & Finger, 2021), and South America
(Benito, Lopes-da Silva & Santos, 2016), have indicated losses on the order of US$550M per
year.

Various preventive and post-infestation control measures (Lee et al., 2011; Landolt,
Adams & Rogg, 2012; Haye et al., 2016; Schetelig et al., 2018; Shawer et al., 2018; Tait et al.,
2021) have been developed so far, but none with complete efficacy (Kehrli et al., 2017;
Knapp, Mazzi & Finger, 2019). Management strategies for D. suzukii can be classified
broadly into four categories: (1) chemical control (Beers et al., 2011; Van Timmeren ¢
Isaacs, 2013; Shawer et al., 2018; Shawer, 2020), (2) microclimate manipulation (Lee et al.,
20165 Rendon et al., 2020), (3) RNA interference biopesticides (Murphy et al., 2016), and
(4) biological control (Chabert et al., 2012; Daane et al., 2016; Mazzetto et al., 2016; Knoll et

Nair and Peterson (2023), PeerdJ, DOI 10.7717/peerj.15222 2/31


https://peerj.com
http://dx.doi.org/10.7717/peerj.15222

Peer

al., 2017; Daane et al., 2021). Extensive use of chemical methods to control D. suzukii
infestations can lead to increased pest resistance, and concerns regarding food and
environmental safety (Santoiemma et al., 2019). Microclimate manipulation approaches
to control D. suzukii are more likely to perform well in hot and dry regions (Schineberg
et al., 2022), as D. suzukii is sensitive to high temperatures and low humidity (Rendon et
al., 2020). RNA interference methods involve higher development costs and involve much
labor (Bramlett, Plaetinck ¢ Maienfisch, 2020). Finally, biological control involves release
of enemies of D. suzukii from the region of its origin (Asia) in invaded areas, as a means
to reduce its population growth (Girod et al., 2018). This method is recommended (Cock
et al., 2010; Van Lenteren, 2012) in view of improved food safety, environment-friendly
characteristics, economic feasibility, and long-term control solutions that are established
(Kruitwagen, Beukeboom ¢» Wertheim, 2018).

Parasitoid wasps of the genera Asobara (Braconidae), Ganaspis (Figitidae), and
Leptopilina (Figitidae) have been studied extensively as biological control agents with
potential to suppress growth of D. suzukii populations (Kacsoh & Schlenke, 2012; Rossi
Stacconi et al., 2015; Daane et al., 2016; Giorgini et al., 2019; Wang et al., 2019; Biondi,
Wang & Daane, 2021). In particular, the species A. japonica, G. brasiliensis, and L. japonica
are potential biocontrol agents (Wang et al., 2019). However, some researchers do not
recommend A. japonica for biological control programs aimed at D. suzukii (Daane et al.,
20165 Girod et al., 2018; Abram et al., 2020), owing to its broad host range (Ideo et al., 2008;
Furihata et al., 2016). Indeed, given its host specificity, G. brasiliensis has been proposed as
a candidate for biological control of D. suzukii (Wang et al., 2020); yet, in a scenario when
these three wasps coexist, L. japonica is unique in being able to outcompete the other two
species thanks to its relatively faster egg-hatching potential (Wang et al., 2019). Relatively
high host specificity (Wang et al., 2020), demonstrated competence in multi-parasite
systems (Wang et al., 2019), and recent range expansions into areas invaded by D. suzukii
in Europe (Puppato et al., 2020) and North America (Abram et al., 2020; Abram et al.,
2022), make L. japonica an intriguing candidate biocontrol agent for D. suzukii that can be
tested for overall effectiveness.

Ecological niche modeling (ENM) has been used extensively to identify potential
distributions of species for a variety of purposes (Raxworthy et al., 2007; Escobar, 2020;
Kolanowska ¢ Jakubska-Busse, 2020; Wan et al., 2020; Valencia-Rodriguez et al., 2021;
Agboka et al., 2022; Demjdn et al., 2022; Outammassine, Zouhair & Logman, 2022). In
pest-parasitoid systems, identifying and comparing relative habitat suitability of pest
and parasitoid can help to guide effective biological control programs (Pérez-de la O et al.,
20205 Tepa-Yotto et al., 2021a; Tepa-Yotto et al., 2021b). The utility of ENM in applications
to biological control of pests can be attributed to two factors: alien parasitoid species
must survive and reproduce in the geographic regions where they are released (Mills,
2018; Schulz, Lucardi ¢~ Marsico, 2019), and unfavorable abiotic factors can reduce the
long-term efficacy of biological control measures (Olfert et al., 2016). Modeling climatic
preferences of deliberately introduced parasitoid species can also provide insights into
possible range expansions, an important aspect to be tested in improving effectiveness of
classical biological control programs (Pérez-de la O et al., 2020).
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In this study, we used ENM approaches to explore, discuss, and highlight five aspects
of a biological control strategy for D. suzukii that can directly benefit producers, extension
agents, and policy makers. (1) We estimated the potential distribution of the invasive
pest D. suzukii, and (2) that of the parasitoid L. japonica. (3) We assessed the degree of
overlap in the potential distributions of D. suzukii and L. japonica, and (4) estimated the
biocontrol potential of this system for each country. Finally, (5) we assessed parasitoid
model performance to see if incorporating distributional information for the pest improves

model performance for the parasitoid.

METHODS

Occurrence data

Occurrence records of D. suzukii were downloaded from five online biodiversity data
portals: Global Biodiversity Information Facility (GBIF; http:/www.gbif.org, accessed
on 2 August, 2022; DOI: https:/doi.org/10.15468/dl.hxg8z2), Biodiversity Information
Serving Our Nation (BISON; http:/iwww.gbif.us, accessed on 2 August, 2022), Berkeley
Ecoinformatics Engine (Ecoengine; ecoengine.berkeley.edu, accessed on 2 August, 2022),
iNaturalist (http:/Awww.inaturalist.org, accessed on 2 August, 2022), and Integrated
Digitized Biocollections (iDigBio; http:/iwww.idigbio.org, accessed on 2 August, 2022)
using Spocc version 1.2.0 R package (Chamberlain, Ram ¢ Hart, 2021); occurrence data
were also drawn from the Centre for Agriculture and Bioscience International (CABI;
http:/www.cabi.org, accessed on 3 August, 2022), and published literature (see File S1 for
details). This initial harvest of occurrence data yielded an initial total of 2369 records.

A five-step data cleaning process was adopted: (1) removal of records with no date
of observation, (2) removal of incomplete coordinates (i.e., lacking valid latitude and
longitude), (3) removal of unlikely coordinates (e.g., 0.00°N, 0.00°E), (4) removal of
duplicated coordinates, and (5) removal of coordinates with fewer than two decimal
places. Data cleaning was performed using scrubr version 0.1.1 R package (Chamberlain,
2016). The cleaned dataset (1385 records) was overlaid on climatic raster layers (5" or ~10
km spatial resolution, see below) to remove points falling outside the raster boundaries.
The resulting occurrence dataset (1377 records) was subjected to visual inspection to
detect clusters of points (often related to points of access or concentrations of people), and
eliminate disproportionate data density at random, maintaining a minimum distance of >
30km among points, to avoid model overfitting (Raghavan et al., 2019). The final dataset
of 314 points (Fig. 1; File S1) showed no excessive clustering of occurrences across the
known distribution of D. suzukii. Spatial filtering was performed using spThin R package
(Aiello-Lammens et al., 2015).

Occurrence records of L. japonica were sourced from published literature (Abram et al.,
2022; Wang et al., 2022; Abram et al., 2020; Puppato et al., 2020; Giorgini et al., 2019; Girod,
2018; Novkovic et al., 2011), as online data portals held few or no records. A distance filter
of 12 km was applied to the occurrences extracted, and the final dataset comprised 31
points (Fig. 1; File S2). Leptopilina japonica has two subspecies: L. japonica japonica and
L. japonica formosana, occurring in Japan and Taiwan respectively (Novkovicet al., 2011);
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Figure 1 Distributional information. Representation of the known distribution of the pest Drosophila
suzukii, and parasitoid Leptopilina japonica based on occurrence databases and published literature.
Full-size &l DOI: 10.7717/peer;j.15222/fig-1

both have the ability to parasitize D. suzukii (Kimura & Novkovic, 2015). Our final dataset
included mostly the nominate subspecies, and only a single occurrence record of L. j.
formosana (Novkovic et al., 2011).

Environmental data

Bioclimatic raster layers at 5" spatial resolution (~10 km at the Equator) were downloaded
from WorldClim 2.1 for present conditions (1975-2000; Fick ¢ Hijmans, 2017). Variables
combining temperature and precipitation measurements (i.e., mean temperature of
wettest quarter, mean temperature of driest quarter, precipitation of warmest quarter, and
precipitation of coldest quarter) were excluded (Escobar et al., 2014) owing to discontinuous
patterns of those variables in many areas (Booth, 2022).

To define the set of limits and conditions for ENM, identification of areas accessible
to species over relevant time periods (Soberdn & Peterson, 2005; Peterson ¢ Soberdén, 2012)
is essential to development of robust models (Barve et al., 2011). The development
of a hypothesis of accessible area M is crucial for rigorous characterization of niche
characteristics of species (Barve et al., 2011; Machado-Stredel, Cobos & Peterson, 2021).
Considering the near-global distribution of D. suzukii and L. japonica, the entire world
(excluding Antarctica) was defined as the accessible area for the two species. The 15 climatic
data layers were clipped to the extent of this area. Multi-collinearity and dimensionality
among the clipped bioclimatic layers were minimized using principal components analysis,
in effect transforming correlated climatic variables into fewer, uncorrelated principal
components (PCs), and these multivariate environmental variables were used as the
independent variables in ENM.

The advantage of principal component analysis over other methods of multi-collinearity
reduction is that a significant proportion of all original information related to variables
can be retained in the form of independent components (Tabachnick & Fidell, 2007;
Cruz-Cdrdenas et al., 2014), summarizing all environmental variation across a particular
geographic region (Jiinior & Nobrega, 2018). Each PC is a linear combination of all of the
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15 original climatic variables: the first PC summarizes the major axis of the multivariate
space, explaining a large proportion of the total variance in the original data; the second
PC explains a maximum of the remaining variance, which is independent of the first axis;
and so on (Cruz-Cdrdenas et al., 2014). Principal components analysis of raster variables
was done using the kuenm_rpca function of the kuenm R package (Cobos et al., 2019).
Contributions of each of the original bioclimatic variables to the PCs (Sillero et al., 2021)
and average contribution of each of the PCs to the final models of pest and parasitoid were
estimated (Quiner & Nakazawa, 2017), to have insight into important variables driving
niches and distributions of pest and parasitoid. We applied an arbitrary threshold of
absolute value of factor loadings to assess the relative importance of variables to each of the
PCs (Rotenberry, Preston & Knick, 20065 Barrows et al., 2008); variables with factor loadings
>0.35 were explored as potentially important (Bogosian III et al., 2012). Loading values of
the variables represent the extent to which those variables are correlated with particular
PCs (Juinior ¢ Nébrega, 2018). In the case of PCs with mixed positive and negative loadings,
variables with positive loadings >0.35 contribute the same amount of information as that
of variables with negative loading <—0.35, as, in both cases, the absolute value of loadings
exceeds our arbitrary threshold of 0.35. The signs of the loadings indicate the nature of
correlation of variables with the PCs.

Ecological niche modeling

In separate ENM analyses, occurrences of each species (pest and parasitoid) were partitioned
randomly into training and testing data in two different proportions: 70:30 for D. suzukii,
and 50:50 for L. japonica. Considering the small number of records, data-splitting ratio
was reduced to 0.5 for L. japonica to maintain a balance between predictive accuracy and
performance estimation of models as very low sample size for testing can cause errors
in estimating predictive accuracy (Peterson, Ball ¢ Cohoon, 2002). Modeling experiments
were performed using six combinations of three feature classes (l-linear, q-quadratic,
p-product; 1, q, 1g, qp, lp, and Igp; product response types were not used in isolation owing
to occasional problems that result), 10 regularization multipliers (0.1, 0.3, 0.6, 0.9, 1, 2, 3,
4,5, 6), and nine sets of principal components summarizing climate data. The first 10 PCs
accounted for >99% of the total variation: set 1 (PCs 1 and 2), set 2 (PCs 1-3), efc., up to
set 9 (PCs 1-10). Best models were selected by applying three criteria sequentially (Cobos et
al., 2019): (1) choosing statistically significant models using partial ROC tests, (2) filtering
statistically significant models to those with <5% omission error (E), and (3) ranking
all remaining models based on Akaike information criterion (AICc) values; the subset of
significant, low-omission models within 2 AICc units of the minimum were selected as the
best models (Warren ¢ Seifert, 2011).

Mean AUC ratios of bootstrap replicate models were calculated using the partial ROC
approach, which remedies some of the known problems with traditional receiver operating
curve (ROCQC) analysis (Peterson, Papes ¢~ Soberon, 2008). In this method, the importance
of negative (absence) information is reduced, as such information is generally unavailable
(Peterson, Papes & Soberdn, 2008). Crucially, the interpretation of the area under the curve
is limited to relevant portions of the curve, that is those parts meeting user-defined low
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omission thresholds, in this study E = 5%. Then, as one is generally not evaluating the
curves over the entire space, to assess statistical significance, AUC ratios are defined as
the ratio of AUC of the partial ROC curve to the area under the random expectation line
over the same restricted part of the space. AUC ratio values range from 0 to 2; a value of
1 indicates random performance (Peterson, Papes ¢» Soberén, 2008; Peterson, 2012). Model
fitting was replicated 10 times using bootstrapped subsamples of the available occurrence
data; variation among replicates was then used to assess whether the AUC ratio exceeds
1 significantly, and the median of the median suitability outputs across all replicates was
used to interpret results for each species.

To assess the potential role of fly distributional information in improving the
performance of the parasitoid model, the final D. suzukii model output was added to
each multivariate environmental variable set. We then re-calibrated the L. japonica model
using the same set of feature class types and regularization multiplier values to develop
a two-species model for the wasp (see Ashraf, Chaudhry ¢ Peterson, 2021). We compared
models with and without the fly distributional information using the same 3 criteria
described above. Occurrence data partitioning exercises were done using caTools R
package (Tuszynski, 2021). All modeling experiments were performed using maximum
entropy approaches (Maxent) (Phillips, Anderson ¢ Schapire, 2006), as implemented in the
kuenm R package (Cobos et al., 2019).

To represent suitable and unsuitable regions for the pest and the parasitoid, Maxent
models in the form of continuous logistic outputs were transformed into binary presence-
absence models by applying two different least-training presence thresholds (i.e., allowable
omission E = 5% and E = 10%). These two thresholds were chosen as indices of most
desirable (E = 5%) and maximum permitted (E = 10%) omission rates to represent
relative habitat suitability, and also to avoid overinterpretation of predictions (Ashraf,
Chaudhry & Peterson, 2021). These thresholds were applied using QGIS Tisler desktop
version 3.24.3 (QGIS Geographic Information System, 2022).

Similarity between niche estimates for pest and parasitoid was quantified using
Schoener’s D index based on two methods: an ENM-based method which compares niches
in geographic space (Warren, Glor ¢ Turelli, 2008) and a parallel, ordination-based method
(PCA-env) that compares niches in environmental space using similar tests (Broennimann
et al., 2012). Given that the area M was same for both pest and parasitoid, a symmetric
background similarity test (Warren, Glor ¢ Turelli, 2008; Warren et al., 2021) was used to
implement the ENM-based method. The observed D value of the two empirical models (pest
and parasitoid) was compared with a null distribution of D values generated by comparing
the expected overlap of the niche estimates of 100 replicates of pest and parasitoid models,
developed by drawing random occurrences 100 times from the background of both species,
retaining the original sample sizes (Warren, Glor & Turelli, 2008; Warren et al., 2021).

In environmental space, the PCA-env method (Broennimann et al., 2012) was used to

summarize climatic variability across the M area of both species. This method tests whether
the niche occupied by pest is similar to that occupied by parasitoid. Occurrence densities of
pest and parasitoid were shifted randomly 100 times in the background, and niche overlap
was calculated in each iteration to create a null distribution of D values. In both cases, we
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Table 1 Model evaluation. Performance summary of pest, parasitoid, and two-species parasitoid models.

Species Models Mean OR AICc
AUC ratio
Leptopilina japonica M_2.0_F_lp_Set_6 1.76 0.00 839.55
Drosophila suzukii M_0.6_F_lq_Set_3 1.47 0.04 8365.78
Two-species M_1.0_F 1 Set 5 1.79 0.07 798.08
Notes.
OR-Omission rate. Name of models indicates the details of regularization multiplier value, feature class and environmental
dataset.

used a one-tailed test focusing on rejecting a null hypothesis of niche similarity (Peterson,
2011; Tocchio et al., 2015; Qiao, Escobar & Peterson, 2017), and ignoring the upper tail of
the distribution that would be significant niche similarity, which is of unknown biological
meaning. Non-rejection of the null hypothesis of niche similarity arises when the empirical
D value falls within the upper 95% of the null distribution of D values (P > 0.05) (Tocchio
et al., 2015), indicating that niches of the two species are not demonstrably distinguishable.
We used the ENMTools 1.0 (Warren et al., 2021) and ecospat (Di Cola et al., 2017) R
packages to implement the niche similarity tests.

For both thresholds, overlapping potential habitats of D. suzukii and L. japonica were
identified. The ratio between the land areas of predicted potential distribution of parasitoid
and pest in each country was estimated to determine the country-wise biocontrol coverage
potential percentage, for both thresholds. Identification of overlapped area and estimation
of land area in terms of biocontrol coverage were done in QGIS Tisler desktop version
3.24.3 (QGIS Geographic Information System, 2022). All models were represented in an
Eckert III map projection.

RESULTS

For each of the two species, we developed 540 candidate models, of which 510 models for
D. suzukii and 533 models for L. japonica were statistically significantly better than random
expectations according to the partial ROC tests (P < 0.05). Of the statistically significant
models, 53 models for D. suzukii and 11 models for L. japonica were also acceptable in
having low (<5%) omission. Finally, based on low model complexity (i.e., low AICc value),
our top model for D. suzukii included linear and quadratic feature classes, a relatively low
regularization multiplier value (0.6), and four multivariate environmental variables (PC
1-PC 4) (Table 1). Our best model for L. japonica had a higher regularization multiplier
value (2.0), and included more multivariate environmental variables (PC 1-PC 7), also
with linear and quadratic feature types (Table 1). In the two-species modeling experiment,
we developed 540 models, and all models were statistically significantly better than random
expectations (P < 0.05). However, none of the models met the omission rate threshold
(E =5%). We found that, even relaxing the threshold (E = 7%) did not result in the
selection of any of the two-species models as best model for parasitoid. We therefore
confirmed that inclusion of pest model as a predictor variable did not improve model
performance for the parasitoid.
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Table 2 Important variables. Relative contribution of climatic variables to principal components.

Variables Principal components

PC1 PC2 PC3 PC4 PC5 PCo6 PC7
Annual mean temperature 0.33 —0.17 —0.12 0.01 0.15 —0.07 —0.07
Mean diurnal range 0.10 —0.38 —0.14 0.34 —0.58 0.47 —0.34
Isothermality 0.32 —0.02 0.00 —0.14 —0.37 0.18 0.82
Temperature seasonality —0.32 —0.02 —0.01 0.39 0.15 —0.07 0.29
Maximum temperature of warmest month 0.25 —0.29 —0.20 0.32 0.27 —0.06 0.10
Minimum temperature of coldest month 0.34 —0.08 —0.09 —0.17 0.12 —0.06 —0.08
Temperature annual range —0.30 —0.11 —0.02 0.48 0.04 0.04 0.19
Mean temperature of warmest quarter 0.27 —0.26 —0.19 0.25 0.33 —0.16 0.10
Mean temperature of coldest quarter 0.34 —0.11 —0.08 —0.13 0.06 —0.03 —0.13
Annual precipitation 0.24 0.34 0.15 0.22 0.03 0.13 0.11
Precipitation of wettest month 0.25 0.22 0.43 0.24 0.13 0.16 —0.13
Precipitation of driest month 0.12 0.40 —0.35 0.21 —0.25 —0.31 —0.10
Precipitation seasonality 0.09 —0.31 0.52 0.11 —0.38 —0.68 —0.02
Precipitation of wettest quarter 0.25 0.24 0.40 0.24 0.12 0.19 —0.08
Precipitation of driest quarter 0.13 0.41 —0.33 0.21 —0.22 —0.26 —0.05
Average contribution of PCs to final model of pest 56.62 36.63 6.49 0.27 - - -
Average contribution of PCs to final model of parasitoid 10.81 2.14 13.42 4.41 6.58 8.07 54.57

Notes.
Factor loadings > 0.35 are shown in bold.

Collective contributions of PC1 and PC2 to the final model for D. suzukii, and that of
PC1, PC3, and PC7 to the final model for L. japonica was >75% (Table 2). For PC1 in the
D. suzukii model, no individual climatic variables met the factor loading criterion of 0.35.
However, on PC2, variables meeting that criterion included a contrast of precipitation
of driest quarter (0.41) and precipitation during driest month (0.40) with mean diurnal
range (—0.38). Other variables that fell just short of the threshold were mean temperature
of coldest quarter (0.34) and minimum temperature of coldest month (0.34). For the L.
japonica model, isothermality (0.82) was the largest contributor to PC7, and PC3 was a
contrast of precipitation of wettest quarter (0.40), precipitation during wettest month
(0.43), and precipitation seasonality (0.52) with precipitation of driest month (—0.35).
Mean diurnal range (—0.34) fell just short of the threshold.

Our model for D. suzukii predicted potential distributional areas in southern and
eastern China, with some extensions towards central Asian regions (Fig. 2). Farther north
in Asia, Japan and the Korean Peninsula were predicted to hold broad suitable areas for
D. suzukii. Predicted suitable areas covered seven nations [Afghanistan, Pakistan, India,
Nepal, China (Tibetan Autonomous Region), Bhutan, and Myanmar] across the entire
northwest-southeast spread of the Himalayas. In Oceania, southeastern Australia and much
of New Zealand were predicted to hold suitable conditions for D. suzukii invasion.

Already-invaded parts of western Europe and the southeastern United States were
identified as highly suitable for D. suzukii populations, which is logical given that
occurrences there were part of the model training data. In South America, the entire
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Figure 2 Ecological niche models. Predicted distribution of potential distributional areas of Drosophila
suzukii and Leptopilina japonica across the world.
Full-size G DOI: 10.7717/peerj.15222/fig-2

geographic extent of Uruguay, known to hold invasive populations, was identified as
suitable for D. suzukii; parts of other known-invaded countries (Chile, Argentina, Brazil)
were also identified as suitable: eastern and northeastern Argentina, southern Brazil, and
western and southern Chile. Peru is the only country in South America predicted to
hold suitable areas for D. suzukii invasion for which no invasive populations are known;
predicted potential distributional areas spanned the Andean Cordillera.

The modeled potential geographic distribution for L. japonica (Fig. 2) was broad and
continuous in Asia, covering southern and northeastern Asian countries (India, China
(Tibetan autonomous region), Nepal, Bhutan, North Korea, South Korea, and Japan).
Other potential distributional areas were more sparse, in northwestern Europe, western
North America, and in western and southern Chile in South America.

Binary models and biocontrol coverage estimation
Binary model outputs were developed for D. suzukii and L. japonica (Fig. 3) to identify
presence or absence of the two species in the area of interest. At the 5% threshold, potential
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Figure 3 Binary models. Modeled suitable areas for Drosophila suzukii and Leptopilina japonica based on
thresholding at E = 5% and E = 10%.
Full-size & DOI: 10.7717/peer;j.15222/fig-3

presence of D. suzukii was predicted in 162 countries (File S3), covering a total area of
~4.82 x 107 km?. Potential presence of L. japonica was predicted in 148 countries (File S3),
covering a total area of 2.71 x 10”7 km?2. At the 10% threshold, total coverage of predicted
area was reduced to 3.44 x 107 km? in 152 countries for D. suzukii, and 2.46 x 107 km? in
146 countries for L. japonica (File S3).

Niches of pest and parasitoid were not demonstrably distinct in either geographic
(empirical D =0.76, P > 0.05) or environmental (empirical D =0.35, P > 0.05) spaces,
as the observed D values fell within the 95% confidence limits of the null distribution of
D values in both methods (File 54). As such, no empirical evidence indicates that the two
species have distinct ecological niches, and their distributional overlap can be explored as
a bellweather of potential for distributional co-occurrence.

Overlapping suitable areas of D. suzukii and L. japonica to identify possible biocontrol
regions for both thresholds (Fig. 4) showed that potential for L. japonica- mediated
biocontrol management of D. suzukii existed in 125 nations at E = 5%, and 121 nations
at E=10% (Table 3). At a global level, the total possible biocontrol area was estimated to
range 1.44 x 107 km?>—1.87 x 107 km? based on the different thresholds. Country-wise

Nair and Peterson (2023), PeerJ, DOI 10.7717/peerj.15222 11/31


https://peerj.com
https://doi.org/10.7717/peerj.15222/fig-3
http://dx.doi.org/10.7717/peerj.15222#supp-3
http://dx.doi.org/10.7717/peerj.15222#supp-3
http://dx.doi.org/10.7717/peerj.15222#supp-3
http://dx.doi.org/10.7717/peerj.15222#supp-4
http://dx.doi.org/10.7717/peerj.15222

Peer

Absence

Extension of suitability at £ = 5%

Suitability at £ = 10%

Figure 4 Overlapped niches. Representation of modeled suitable biocontrol areas in terms of overlap-
ping climatic niches of Drosophila suzukii and Leptopilina japonica.
Full-size Gl DOI: 10.7717/peer;j.15222/fig-4

biocontrol coverage estimation revealed that about half of the countries (65) had more
than 50% biocontrol potential (i.e., area suitable for both fly and wasp; Table 3), with

broadest areas in China (~4.4 x 10° km?), India (~1.1 x 10® km?), Zambia (4.5 x 10°
km?), and Angola (~4.2 x 10° km?).

DISCUSSION

Extremely fast range expansion as a consequence of globalization (lacovone et al., 2015),
with severe economic damage to the fruit trade industry (Bolda, Goodhue ¢ Zalom, 2010;
Gabarra et al., 2015), has led to efforts to model ecological niches and predict potential
distributions for D. suzukii both locally (Castro-Sosa et al., 2017; De la Vega ¢ Corley,
2019) and globally (Santos et al., 2017; Qrsted & QOrsted, 2019; Reyes & Lira-Noriega, 2020).
Comparing with previous global-scale models, our models predicted highly suitable areas
for D. suzukii most similar to the model developed by Orsted ¢~ Orsted (2019), and less
similar to those of Santos et al. (2017) and Reyes ¢ Lira-Noriega (2020). Relatively broad
geographic areas in the southern part of central and eastern Africa were predicted to be
suitable in the models developed by Santos et al. (2017) and Reyes ¢ Lira-Noriega (2020)
compared to our model and that of Orsted ¢ Orsted (2019). Unlike the predictions of
Santos et al. (2017) and Reyes ¢ Lira-Noriega (2020), Patagonian region of Argentina was
not included as suitable habitat for D. suzukii in our model and that of Orsted ¢ Orsted
(2019). Another major difference between our model and those of Santos et al. (2017)
and Reyes ¢» Lira-Noriega (2020) is that their models predicted a large extent of eastern
India as suitable habitats for D. suzukii. However, according to our model, the suitability
was more prominent in far north, and also in some parts of Western Ghats in southern
India. Although similar in many aspects of predicted distributions, our model differed
notably from that of Orsted & Drsted (2019) in predicting the east—west continuity of
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Table 3 Biocontrol coverage. Modeled potential for biocontrol coverage corresponding to the potential distribution of pest (Drosophila suzukii)
and parasitoid (Leptopilina japonica).

Country Pest distribution (km?) Overlapping wasp distribution (km?) Biocontrol coverage (%)
E=5% E=10% E=5% E=10% E=5% E=10%
Afghanistan 120756.19 77038.50 87583.33 69587.73 72.53 90.33
Albania 28019.74 28019.74 27942.43 27810.06 99.72 99.25
Algeria 444458.49 222597.11 46214.07 43026.86 10.40 19.33
Andorra 452.25 452.25 407.86 344.49 90.19 76.17
Angola 725060.74 209636.29 422423.06 152662.75 58.26 72.82
Argentina 2610531.21 2136682.12 487246.09 326141.97 18.66 15.26
Armenia 29588.31 27565.71 9573.41 7333.56 32.36 26.60
Australia 4132533.88 2994970.31 284270.56 200146.28 6.88 6.68
Austria 83993.20 83993.20 77002.77 73155.41 91.68 87.10
Azerbaijan 85470.21 82660.14 29145.06 24386.68 34.10 29.50
Bahamas 9429.07 9429.07 7814.62 7766.95 82.88 82.37
Bangladesh 128942.02 101548.17 88769.51 75811.84 68.84 74.66
Belarus 207499.14 207499.14 131398.08 72083.15 63.32 34.74
Belgium 30597.07 30597.07 27115.20 24893.18 88.62 81.36
Bhutan 38954.11 37112.34 33859.02 32179.91 86.92 86.71
Bolivia 475959.05 203932.55 3394.30 1816.23 0.71 0.89
Bosnia and Herzegovina 51824.53 51824.53 32450.62 28581.47 62.62 55.15
Brazil 2088214.01 1385571.53 365390.65 278811.34 17.50 20.12
Brazilian Island 2.82 2.82 2.82 2.82 100.00 100.00
Bulgaria 112513.51 112513.51 1544.03 971.72 1.37 0.86
Cabo Verde 1750.55 630.75 479.08 269.84 27.37 42.78
Cambodia 6253.09 790.65 2055.16 133.61 32.87 16.90
Cameroon 26383.63 1809.00 14635.67 169.68 55.47 9.38
Canada 2793734.16 2155273.21 565894.51 487960.16 20.26 22.64
Chile 582097.31 475909.40 205933.41 193145.19 35.38 40.58
China 4488161.45 3862635.87 4374430.56 3827973.12 97.47 99.10
Colombia 91947.38 68214.15 340.13 340.13 0.37 0.50
Croatia 52932.84 52932.84 40105.39 36135.71 75.77 68.27
Cuba 81360.79 7022.89 510.20 26.30 0.63 0.37
Cyprus 5122.47 3433.88 4427.71 3433.88 86.44 100.00
Cyprus No Mans 296.73 33.20 72.49 33.19 24.43 99.98
Czechia 78758.87 78758.87 68665.32 58491.87 87.18 74.27
Democratic Republic of the Congo 420374.68 150483.68 161159.34 75871.68 38.34 50.42
Denmark 202079.28 130500.31 166506.11 111597.35 82.40 85.52
Djibouti 13137.52 - 467.25 - 3.56 -
Egypt 180965.62 - 120.06 - 0.07 -
Equatorial Guinea 14.17 14.17 14.17 14.17 100.00 100.00
Estonia 44389.34 44389.34 43945.97 37804.22 99.00 85.17
Ethiopia 413796.88 155614.76 39007.25 21656.50 9.43 13.92
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Table 3 (continued)

Country Pest distribution (km?) Overlapping wasp distribution (km?) Biocontrol coverage (%)
E=5% E=10% E=5% E=10% E=5% E=10%
Finland 300806.37 238124.40 93531.28 50354.32 31.09 21.15
France 562246.74 556671.13 274309.40 231951.91 48.79 41.67
Gabon 45201.71 2552.27 1222.11 267.10 2.70 10.47
Georgia 69301.13 69301.13 61604.07 58319.71 88.89 84.15
Germany 355684.24 355684.24 192739.07 159474.97 54.19 44.84
Greece 123576.16 123576.16 84346.67 79969.84 68.25 64.71
Guatemala 22913.49 16722.41 2064.41 1734.17 9.01 10.37
Guinea 4192.93 83.65 3857.20 83.65 91.99 100.00
Hungary 93200.95 93200.95 7046.93 3609.03 7.56 3.87
Iceland 98272.76 94978.48 88865.07 83482.50 90.43 87.90
India 1274811.80 685789.21 1102039.55 543419.47 86.45 79.24
Iran 336850.53 116130.87 63329.32 37732.16 18.80 32.49
Iraq 34709.55 21099.93 29371.04 19865.20 84.62 94.15
Ireland 66629.91 66332.38 55507.01 52328.26 83.31 78.89
Israel 13449.48 8745.65 11881.97 8745.68 88.35 100.00
Italy 295635.80 295613.28 264427.13 250415.73 89.44 84.71
Japan 357893.96 356945.12 357893.91 356945.07 100.00 100.00
Jordan 4921.88 507.56 1872.74 507.56 38.05 100.00
Kazakhstan 201132.14 41577.90 706.08 190.06 0.35 0.46
Kosovo 10913.08 10913.08 1765.30 1373.59 16.18 12.59
Kyrgyzstan 90256.07 43305.48 1333.13 63.53 1.48 0.15
Laos 186149.10 124451.87 149422.53 103577.26 80.27 83.23
Latvia 64162.08 64162.08 60919.43 54215.14 94.95 84.50
Lebanon 9800.04 8682.25 9001.50 8503.74 91.85 97.94
Lesotho 30106.52 30106.52 318.96 28.00 1.06 0.09
Libya 184279.76 37328.30 5699.73 4033.72 3.09 10.81
Liechtenstein 137.25 137.25 137.25 137.25 100.00 100.00
Lithuania 64816.37 64816.37 40725.99 27301.77 62.83 42.12
Luxembourg 2608.47 2608.47 2608.47 2328.89 100.00 89.28
Madagascar 187519.17 104765.96 79329.34 39438.11 42.30 37.64
Malawi 111209.70 74340.02 108138.07 72489.54 97.24 97.51
Malta 270.90 270.90 270.90 270.90 100.00 100.00
Mauritius 1802.79 94.64 1752.24 44.08 97.20 46.58
Mexico 691072.40 296644.27 251952.23 125678.99 36.46 42.37
Moldova 33206.48 33206.48 4811.96 1963.38 14.49 591
Monaco 3.96 3.96 3.97 3.97 100.00 100.00
Montenegro 13631.45 13631.45 11836.29 11080.44 86.83 81.29
Morocco 354222.81 165793.77 27266.40 23178.86 7.70 13.98
Mozambique 278561.34 73923.95 154695.03 54111.84 55.53 73.20
Myanmar 445821.06 375179.90 361982.68 301972.44 81.19 80.49
Namibia 66288.68 - 483.94 - 0.73 —
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Table 3 (continued)

Country Pest distribution (km?) Overlapping wasp distribution (km?) Biocontrol coverage (%)
E=5% E=10% E=5% E=10% E=5% E=10%
Nepal 145624.62 141915.07 121958.80 119500.60 83.75 84.21
Netherlands 36761.20 36260.59 17922.53 15136.66 48.75 41.74
New Zealand 217910.77 212122.44 96771.30 83214.96 44.41 39.23
Nigeria 15934.24 566.67 12716.29 337.88 79.80 59.63
North Korea 120894.87 118933.68 120894.94 118933.71 100.00 100.00
North Macedonia 25385.27 25385.27 3664.82 3358.17 14.44 13.23
Northern Cyprus 2290.99 429.38 1414.83 429.39 61.76 100.00
Norway 285817.32 263207.96 225627.24 206147.09 78.94 78.32
Oman 28552.55 1859.00 3159.53 1543.99 11.07 83.06
Pakistan 153944.54 83124.10 85069.07 49372.57 55.26 59.40
Paraguay 341582.31 230965.19 37691.58 29169.69 11.03 12.63
Peru 495995.98 431000.71 49307.80 45336.48 9.94 10.52
Poland 312841.88 312841.88 214155.94 156484.69 68.46 50.02
Portugal 89463.23 89463.23 73702.57 68237.60 82.38 76.27
Republic of Serbia 77628.71 77628.71 8713.93 5548.68 11.23 7.15
Republic of the Congo 72181.30 6283.59 446.79 26.96 0.62 0.43
Romania 235895.13 235895.13 79961.95 62526.40 33.90 26.51
Russia 3710679.26 2033909.21 662712.71 395046.93 17.86 19.42
San Marino 60.32 60.32 60.32 60.32 100.00 100.00
Slovakia 48457.79 48457.79 25232.78 22596.49 52.07 46.63
Slovenia 20295.63 20295.63 19931.57 19671.10 98.21 96.92
South Africa 902797.42 591473.81 7170.51 5131.33 0.79 0.87
South Korea 94652.90 94652.90 94652.97 94652.97 100.00 100.00
Spain 502618.58 495648.00 136222.35 112053.05 27.10 22.61
Sudan 2656.20 - 83.33 - 3.14 -
Sweden 436539.07 378204.51 158054.75 115334.67 36.21 30.50
Switzerland 41344.82 40890.87 37361.01 36701.13 90.36 89.75
Syria 22207.60 12452.65 14768.48 12044.15 66.50 96.72
Taiwan 24849.72 20605.88 21861.78 18151.55 87.98 88.09
Tajikistan 73944.07 45547.87 38519.69 25750.20 52.09 56.53
Thailand 117459.90 22050.79 103622.02 22024.89 88.22 99.88
Tunisia 78947.05 53298.18 10701.95 8871.64 13.56 16.65
Turkey 761388.06 678724.38 257025.95 224311.08 33.76 33.05
Turkmenistan 59106.76 4758.25 160.83 160.83 0.27 3.38
Ukraine 570440.95 570440.95 182074.04 152631.46 31.92 26.76
United Arab Emirates 428.91 15.84 155.89 15.84 36.35 100.00
United Kingdom 247439.54 243271.25 134076.15 124951.47 54.19 51.36
Tanzania 540638.96 197481.86 110629.43 79486.65 20.46 40.25
United States of America 7267495.86 5752263.93 2879003.63 2546609.52 39.61 44.27
Uruguay 176465.55 176465.55 75249.12 56325.26 42.64 31.92
Uzbekistan 64090.46 22578.88 12752.88 9003.24 19.90 39.87

(continued on next page)

Nair and Peterson (2023), PeerJ, DOI 10.7717/peerj.15222

15/31


https://peerj.com
http://dx.doi.org/10.7717/peerj.15222

Peer

Table 3 (continued)

Country Pest distribution (km?) Overlapping wasp distribution (km?) Biocontrol coverage (%)
E=5% E=10% E=5% E=10% E=5% E=10%
Vatican 0.01 0.01 0.01 0.01 100.00 100.00
Vietnam 208079.26 173719.30 179340.06 158519.90 86.19 91.25
Zambia 471456.61 148179.91 452563.86 146359.35 95.99 98.77
Zimbabwe 186694.49 78523.17 135058.40 69964.04 72.34 89.10
Notes.

E indicates thresholding level.

potential distribution of D. suzukii in United States as our model showed a discontinuous
distribution of potential habitats.

In exploring bioclimatic variable contributions to the pest model, mean temperature of
coldest quarter and minimum temperature of coldest month both had contributions to
the models (Table 2) that were substantive enough to merit comment; similar observations
of the influence of cold temperatures on D. suzukii distribution were made by Orsted ¢
Orsted (2019). Limiting influence of winter temperatures on the establishment of D. suzukii
populations is evident from the facts that prolonged low temperature exposure (<10°)
is detrimental for its viability (Dalton et al., 2011). A recent meta-analysis (Drsted et al.,
2021) revealed that temperature extremes are highly significant in determining the survival
and population activity of the species. Preference of D. suzukii for humid environments
(Gutierrez, Ponti ¢ Dalton, 2016; Santos et al., 2017; Qrsted ¢~ Qrsted, 2019) was reflected
in our models via high contributions of precipitation of driest quarter and precipitation of
driest month. Large contributions of isothermality, precipitation seasonality, precipitation
of wettest month, precipitation of driest month, and precipitation of wettest quarter
to L. japonica model (Table 2) indicate that temperature fluctuations and humidity of
environments may also play crucial roles in constraining the distribution of L. japonica.

For obvious reasons, choosing biological control agents for D. suzukii that have niche
preferences similar to those of the fly will be helpful (Robertson, Kriticos ¢» Zachariades,
2008; Olfert et al., 20165 Tepa-Yotto et al., 2021a; Tepa-Yotto et al., 2021b) in the global-
scale biological control challenge. Matching the climatic niche requirements of pest and
parasitoid will increase chances of long-term establishment of the parasitoid across key
regions (Robertson, Kriticos ¢ Zachariades, 2008), resulting in more successful management
via biological control. Despite various previous studies modeling the climatic niche of D.
suzukii, to the best our knowledge, no effort has been made so far to study the potential
distribution of climatic niches of any parasitoid of D. suzukii in combination with analyses
of the climatic niche of the fly pest.

Range expansion of D. suzukii in Europe and North America occurred after initial
outbreaks in California, Spain, and Italy, all in 2008 (Rota-Stabelli, Blaxter ¢» Anfora, 2013;
Asplen et al., 2015). Niche filling related to absence of competitors or natural enemies, high
adaptability to temperate climates, high dispersal ability, and high reproductive output,
are major factors contributing to the unprecedented invasion of D. suzukii (Rota-Stabelli,
Blaxter ¢» Anfora, 2013). As niche filling is an important factor, assessing the geographic
distribution of climatic niches of D. suzukii becomes an indispensable step in biological
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control programs, as it can provide an initial estimate of the geographic limits for successful
parasitoid release (Puppato et al., 2020). Development of niche models for parasitoids, and
identification of geographic regions exhibiting overlapping climatic niches between pest
and parasitoid, further delimits regions for parasitoid release, making field trials involving
elaborate and time-consuming experiments more economical (Sun et al., 2017).

In its native distributional areas, L. japonica is one of most abundant potential
parasitoids of D. suzukii (Kimura ¢» Novkovic, 2015; Puppato et al., 2020); its occurrence in
Europe(Puppato et al., 2020) and North America (Abram et al., 2020; Abram et al., 2022;
Beers et al., 2022) was identified only recently. Previous laboratory experiments in the
United States indicated that South Korean L. japonica strains attacked the North American
strains of D. suzukii readily (Daane et al., 2016), supporting at least in part the suitability of
L. japonica as a biocontrol agent for D. suzukii. Although occurrence records of L. japonica
were scarce, our modeled climatic niche for L. japonica overlapped broadly with that of
D. suzukii in known-invaded regions (Figs. 2—4), meeting one of the major ecological
requirements for a ‘natural enemy species’ to be a candidate biological control agent
(Robertson, Kriticos & Zachariades, 2008; Olfert et al., 2016).

In addition, our statistical quantification of similarity or difference in ecological
requirements of pest and parasitoid failed to reject the null hypothesis of niche similarity
(Peterson, 20115 Tocchio et al., 2015), revealing that their overlapping niches are similar, at
least given the data available to us. Using overlap of potential distributions in geographic
space, Tepa-Yotto et al. (2021b) explored the possibility of ENM in devising biological
control measures for the fall armyworm, Spodoptera frugiperda, as regards its key
parasitoids. In terms of the Hutchinsonian duality, overlapping potential distributions
of pest and parasitoid in geographic space alone does not help researchers to conclude
that ecological requirements of the species are same because a point in geographic space
can be expressed as only one point in environmental space but a point in environmental
space may expressed by more than one point in geographic space (Castaneda-Guzman,
2022; Nurfiez Penichet et al., 2022). Considering niche overlap of pest and parasitoid in
both geographic space and environmental space is therefore essential to confirm that the
species can indeed interact. Ability of the biocontrol agent to colonize the full distributional
area of the target species is critical for the success of biocontrol programs (Gupta et al.,
2022). The two-species model developed for gaining insight into the biotic interactions
shaping the potential geographic distribution of L. japonica underperformed compared to
the climate-only model. These results thus contrasted with previous findings highlighting
the importance of including biotic predictors in ecological niche modeling procedures to
improve model performance (Araiijo & Luoto, 2007; Giannini et al., 2013; Dormann et al.,
2018; Simaes & Peterson, 2018; Bebber ¢ Gurr, 2019; Ashraf, Chaudhry & Peterson, 2021).

We recommend a niche-based, target-oriented prioritization approach in designing
biological control programs aimed at D. suzukii. In Europe, three interlinked factors,
(1) recently recorded occurrences (Puppato et al., 2020), (2) predicted suitability in 17
European countries (~39% of European countries) with biocontrol coverage of >80% at
both thresholds (E =5% and E = 10%)(Table 3), and (3) increasing consumer preference
towards organic fruits (Murphy et al., 2022), make L. japonica a candidate parasitoid for
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control of D. suzukii. In the remaining European countries, in particular those exhibiting
biocontrol coverage <50%, we suggest extra care in defining appropriate geographic
boundaries for L. japonica release plans (Table 3). In the United States and Canada, the
potential distribution of L. japonica overlapped only one-third of D. suzukii’s potential
distributional area, demanding strict site-specific release planning. Site-specific pest
management utilizing pest distributional information is preferred over uniform pest
management (Park, Krell & Carroll, 2007). However, for effective site-specific biological
control of pests, not only the pest distributional information but also the niche overlap
between pest and parasitoids must be taken into account. Irrespective of the biocontrol
coverage in D. suzukii invaded regions, any L. japonica release strategy has to rely not only
on specific details of both site and niche considerations but on host-specificity trials by
taking non-target insects from the local fauna also into account (Van Driesche ¢ Hoddle,
1997).

In a study that tested the host specificity of three parasitoids of D. suzukii (Daane
et al., 2021), highly host-specific G. brasiliensis (Wang et al., 2020; Daane et al., 2021)
successfully parasitized the target D. suzukii and three other related species (D. simulans,
D. melanogaster, and D. persimilis). Our species of interest (L. japonica) was successful in
parasitizing D. suzukii at a high rate, as well as nine other related species (D. simulans, D.
melanogaster, D. persimilis, D. montana, D. robusta, D. tripunctata, D. willistoni, D. funebris,
Hirtodrosophila duncani) at relatively lower rates. Taking these facts into consideration,
prior to development of L. japonica release plans, care must be taken to properly address
two important questions: what is expected range of hosts to be parasitized, and what are
the ecological and economic values that we place on them (Van Driesche ¢» Hoddle, 1997),
as well as real-world performance of the parasitoid in small-scale release experiments.

Gross national income (GNI) per capita of the exporting country and incidences of
interception of insect pests at international ports of entry are known to be negatively
correlated (Liebhold et al., 2006), such that lower-income countries are at a greater risk
of pest-induced crop damage (Gaiha et al., 2009) due to poor surveillance (Liebhold
et al., 2006). More than 80% of current low-income economies are in Africa (https:
/datahelpdesk.worldbank.org, accessed on 21/01/2023); based on the biocontrol coverage
explored in this paper, the possibility of applying L. japonica mediated biocontrol measures
exists in six low-income African countries (Republic of the Congo, Guinea, Madagascar,
Malawi, Mozambique, Zambia). Considering the low GNI per capita, and significant export
potential of fruits from Malawi (tropical fruits; US$1.41M/year) and Mozambique (tropical
fruits; US$3.77M/year) (The observatory of economic complexity data, https:/oec.world,
accessed on 21/01/2023), D. suzukii invasion in these sub-Saharan African (SSA) countries
can affect not only the fruit yield within these countries but also fruit cultivation of the
countries of import. Biocontrol measures reduce insect pest multiplication and benefit crop
yields in SSA, and large-scale biocontrol programs can enhance food security in this region
(Ratto et al., 2022). We recommended extensive field surveys in Malawi and Mozambique
to check for presence of D. suzukii; if presence is confirmed, adopting biocontrol strategies
in the national and regional farming policies of these countries may produce the double
benefit of increasing crop yield within the countries, and reducing possible transnational
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crossing of D. suzukii to the countries of import. Biological control in SSA comes under the
purview of the consultative group on international agricultural research (CGIAR) (Adenle,
Wedig & Azadi, 2019). Given that the presence of D. suzukii has already been confirmed
in SSA (Kwadha et al., 2021) and that domestic research facilities are relatively poor (Pal,
2011), intervention of multilateral development agencies like CGIAR in detecting invaded
insect pests in agricultural fields, estimating its abundance, and devising effective strategies
of biological control is recommended (Adenle, Wedig &~ Azadi, 2019).

In conclusion, this study illustrates a cost-effective pre-assessment strategy that can
be applied to any biological control management program before beginning the labor-
intensive, time-consuming, and expensive field experiments. Availability of a greater
number of occurrence records of L. japonica would further enhance the understanding of
the distributional potential of this potential biocontrol agent worldwide. Of course, we do
not recommend straight-away release of L. japonica into the fields where biocontrol of D.
suzukii may be potentially beneficial to the farming community. We suggest instead to treat
this study as a preliminary platform in general to develop a niche-based, target-oriented
prioritization approach to select potential species for biocontrol management with the
support of evidences from host range trials involving choice and no-choice considerations.
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